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A VARIATIONAL APPROACH FOR JOINT IMAGE1
RECOVERY-SEGMENTATION BASED ON SPATIALLY VARYING2

GENERALISED GAUSSIAN MODELS3

É. CHOUZENOUX∗, M.-C. CORBINEAU∗† , J.-C. PESQUET∗, AND G. SCRIVANTI∗‡4

Abstract. The joint problem of reconstruction / feature extraction is a challenging task in5
image processing. It consists in performing, in a joint manner, the restoration of an image and6
the extraction of its features. In this work, we firstly propose a novel nonsmooth and noncon-7
vex variational formulation of the problem. For this purpose, we introduce a versatile generalised8
Gaussian prior whose parameters, including its exponent, are space-variant. Secondly, we design an9
alternating proximal-based optimisation algorithm that efficiently exploits the structure of the pro-10
posed nonconvex objective function. We also analyze the convergence of this algorithm. As shown11
in numerical experiments conducted on joint segmentation/deblurring tasks, the proposed method12
provides high-quality results.13

Key words. Image recovery ; Space-variant regularisation ; Alternating minimization ; Proximal14
algorithm ; Block coordinate descent ; Kurdyka–Łojasiewicz property ; Variable metric ; Image15
segmentation ; Texture decomposition ; Ultrasound imaging16

AMS subject classifications.17

1. Introduction. Variational regularisation of ill-posed inverse problems in ima-18
ging relies on the idea of searching for a solution in a well-suited space. A central19
role in this context is played by `p spaces with p ∈ (0,∞), and the power p of the20
corresponding norms when p ≥ 1 [32, 39, 50, 58, 63] or seminorms when p ∈ (0, 1)21
[22, 38, 73]. For every vector u = (ui)1≤i≤n ∈ Rn and p ∈ (0,+∞), the `p (semi-22

)norm is denoted by ‖u‖p =
(∑n

i=1 |ui|p
)1/p. We usually omit p when p = 2, so that23

‖·‖ = ‖·‖2. The case p ∈ (0, 1) has gained rising credit, especially in the field of sparse24
regularisation. An extensive literature has been focused on challenging numerical25
tasks raised by the nonconvexity of the seminorms and the possibility to combine26
them with linear operators to extract salient features of the sought images [37, 42]. In27
[51] the more general notion of F -norm is introduced in order to establish functional28
analysis results on products of `pi-spaces with pi ∈ (0, 2]. For some x = (xi)1≤i≤n ∈29
Rn, this amounts to studying the properties of penalties of the form

∑n
i=1 |xi|pi , for30

some positive exponents (pi)1≤i≤n. This approach offers a more flexible framework31
by considering a wider range of exponents than the standard `p-based regularisation.32
However, it extends the problem of choosing a suitable exponent p to a whole sequence33
of exponents (pi)1≤i≤n. In image restoration, a related approach consists in adopting34
space variant regularisation models built around a Total Variation-like functional35
with a variable exponent

∑n
i=1 ‖(∇x)i‖pi where ∇ is a discrete 2D gradient operator.36

The rationale is to select the set of parameters (pi)1≤i≤n in order to promote either37
edge enhancement (pi = 1) or smoothing (pi > 1) depending on the spatial location38
encoded by index i. This model was introduced in [8] and then put into practice39
firstly for pi ∈ [1, 2] in [23] and then for pi ∈ (0, 2] in [46]. In all of these works,40
the so-called space variant p-map (i.e., (pi)1≤i≤n) is estimated offline in a preliminary41
step and then kept fixed throughout the optimisation procedure.42
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In this paper, we address the problem of joint image recovery and features ex-43
traction. Image recovery amounts to retrieving an estimate of an original image from44
a degraded version of it. The degradation usually corresponds to the application of45
a linear operator (e.g., blur, projection matrix) to the image, and the addition of a46
noise. Feature extraction problems arise when one wants to assign to an image a small47
set of parameters which can describe or identify the image itself. Image segmentation48
can be viewed as an example of features extraction, which consists of defining a label49
field on the image domain so that pixels are partitioned into a predefined number of50
homogeneous regions according to some specific characteristics. Texture retrieval is a51
second example. This task relies on the idea of assigning a set of parameters to each52
coefficients of the image, in some transformed space, so that the combination of all53
parameters defines a “signature" that represents the content of various spatial regions.54
Joint image recovery and feature extraction consists in performing, in a joint manner,55
the image recovery and the extraction of features in the sought image. A power-56
ful and versatile approach for features extraction, that we will adopt here, assumes57
that the image data follow a mixture of generalised Gaussian probability distribution58
(GGD) [30, 33, 74]. In our case, this leads to the minimization of a non-smooth and59
non-convex cost function. The GGD model results in a sum of weighted `pi-based60
terms in the criterion, with general form

∑n
i=1 ϑi|xi|pi with {ϑi}1≤i≤n ⊂ [0,+∞). We61

thus aim at jointly estimating an optimal configuration for (ϑi, pi)1≤i≤n, and retriev-62
ing the image. Under an assumption of consistency within the exponents values of63
a given region of the features space, we indeed obtain the desired feature extraction64
starting from the estimated p-map.65

The specific structure of the objective function we will propose suggests the use66
of an alternating minimisation procedure. In such an approach, one sequentially up-67
dates a subset of parameters through the resolution of an inner minimization problem,68
while the other parameters are assumed to be fixed. This approach has a standard69
form in the Block Coordinate Descent method (BCD) (also known as Gauss-Seidel70
algorithm) [41]. In the context of nonsmooth and nonconvex problems, the simple71
BCD may show instabilities [65], which resulted in an extensive construction of al-72
ternative methods that efficiently exploit the characteristics of the functions, and73
introduce powerful tools to improve the convergence guarantees of BCD, or overcome74
difficulties arising in some formulations. In this respect, a central role is played75
by proximal methods [26, 27]: a proximally regularised BCD (PAM) for nonconvex76
problems was studied in [5]; a proximal linearised method (PALM) and its inertial77
and stochastic versions were then proposed in [11] resp. [57] and [40]; in [35] the78
authors investigated the advantage of a hybrid semi-linearised scheme (SL-PAM) for79
the joint task of image restoration and edge detection based on a discrete version of80
the Mumford–Shah model. A structure-adapted version of PALM (ASAP) was de-81
signed in [53] to exploit the block-convexity of the coupling terms and the regularity82
of the block-separable terms arising in some practical applications such as nonneg-83
ative matrix factorisation and blind source separation. The extension to proximal84
mappings defined w.r.t. a variable metric was firstly introduced in [18], leading to the85
so-called Block Coordinate Variable Metric Forward Backward. An Inexact version86
and a linesearch based version of it were presented in [25] and [13], respectively. In87
[59] the authors introduced a Majorisation-Minimisation strategy in a Variable Metric88
Forward-Backward algorithm to tackle the challenging task of computing the prox-89
imity operator of composite functions. We refer to [14] for an in-depth analysis of90
how to introduce a variable metric into first-order methods. To conclude this brief91
overview, let us also mention generalisations to proximal mappings defined according92
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to Bregman distances proposed in [2] and [47] , which extend to the block coordinate93
case the attempt in [9, 12] to relax the common assumption of Lipschitz continuity94
on the gradient of the smooth term.95

In the problem formulation we will be interested in, the objective function includes96
a quadratic term, hence Lipschitz differentiable, that is restricted to a single block97
of parameters. This feature makes the related subproblem well-suited for a splitting98
procedure that involves an explicit gradient step with respect to this term. None of99
the aforementioned methods provide a proper framework for this purpose. In order to100
exploit the described particular structure, we thus propose a new BCD method that101
mixes standard and linearised proximal regularisations on the different blocks (as in102
SL-PAM). The novelty lies in the fact that we include a preconditioned and structure-103
adapted linearised step to obtain more efficient and faster proximal computations (as104
in ASAP). We refer to the proposed method as the Preconditioned Semi-Linearised105
Structure Adapted Proximal Alternating Minimisation (P-SASL-PAM). We investi-106
gate the convergence properties for this algorithm based on the framework designed in107
[6]. Under analytical assumptions on the objective function, we show the global con-108
vergence toward a critical point of any sequence generated by the proposed method.109
Then, we explicit the use of this method in our problem of image recovery and feature110
extraction. The performance of the approach is illustrated by means of examples in111
the field of ultrasound imaging, in which we also show quantitative comparisons with112
state-of-the art-methods for the joint deconvolution-segmentation task.113

114
The contributions of this work are (i) the proposition of an original variational115

model for the joint image recovery and features extraction problem; (ii) the design of116
a new block coordinate descent algorithm to address the resulting minimisation prob-117
lem; (iii) the convergence analysis of this scheme based on [6]; (iv) the illustration of118
the performance of the proposed method through two numerical examples in the field119
of image processing.120

121
The paper is organised as follows. In Section 2 we introduce the degradation122

model and report our derivation of the objective function for image recovery and123
feature extraction, starting from statistical assumptions on the data. In Section 3,124
we describe the proposed P-SASL-PAM method to address a general non-smooth125
non-convex optimization problem; secondly we show that the proposed method con-126
verges globally, in the sense that the whole generated sequence converges to a (local)127
minimum. The application of the P-SASL-PAM method to the joint reconstruction-128
segmentation problem is described in Section 4. Some illustrative numerical results129
are shown in Section 5. Conclusions are drawn in Section 6130

2. Model Formulation. In this section, we describe the construction of the131
objective function associated to the joint reconstruction-feature extraction problem.132
After defining the degradation model, we report the Bayesian model that is reminis-133
cent from the one considered in [30, 74] in the context of ultrasound imaging. Then,134
we describe the procedure that leads us to the definition of our addressed optimization135
problem.136

2.1. Observation Model. Let x ∈ Rn and y ∈ Rm be respectively the vec-137
torized sought-for solution and the observed data, which are assumed to be related138
according to the following model139

(2.1) y = Kx+ ω,140
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where K ∈ Rm×n is a linear operator, and ω ∼ N (0, σ2Im), i.e. the normal distri-141
bution with zero mean and covariance matrix σ2Im with σ > 0 and Im states for the142
m × m identity matrix. We further assume that x can be characterised by a finite143
set of k features that are defined in a suitable space, where the data are described by144
a simple model relying on a small number of parameters. The Generalised Gaussian145
Distribution (GGD)146

(2.2) (∀t ∈ R) p(t; p, α) =
1

2α1/pΓ
(

1 + 1
p

) exp

(
−|t|

p

α

)
, (p, α) ∈ (0,+∞)2147

has shown to be a suitable and flexible tool for this purpose [30, 33, 74]. Each feature148
can be identified by a pair (pj , αj) for j ∈ {1, . . . , k}, where parameter p is proportional149
to the decay rate of the tail of the probability density function (PDF) and parameter150
α models the width of the peak of the PFD. Taking into account the role that p and α151
play in the definition of the PDF profile, these two parameters are generally referred152
to as shape and scale parameter.153

Assuming that K and σ are known, the task we address in this work is to jointly154
retrieve x (reconstruction) and obtain a good representation of its features through155
an estimation of the underlying model parameters (pj , αj) for j ∈ {1, . . . , k} (fea-156
ture extraction). Starting from a similar statistical model as the one considered in157
[30, 74], we infer a continuous variational framework which does not rely on the a pri-158
ori knowledge of the exact number of features k. We derive this model by performing159
a Maximum a Posteriori estimation, which allows us to formulate the Joint Image160
Reconstruction and Feature Extraction task as a nonsmooth nonconvex optimisation161
problem involving a coupling term and a block-coordinate separable one.162

163

2.2. Bayesian Model. From (2.1), we derive the following likelihood164

(2.3) p(y|x, σ2) =
1

(2πσ2)n/2
exp

(
−‖y −Kx‖

2

2σ2

)
.165

Assuming then that the components of x are independent conditionally to the knowl-166
edge of their feature class, we define x as a mixture of GGDs167

(2.4) p(x|p, α) =

k∏
j=1

1(
2α

1/pj
j Γ

(
1 + 1

pj

))Nj exp

(
−
‖xj‖

pj
pj

αj

)
.168

Hereabove, for every u ∈ Rn and a feature labels set j ∈ {1, . . . , k}, we define uj ∈ RNj169
as the vector containing only the Nj components of u that belong to the j-th feature.170
The shape parameters are assumed to be uniformly distributed on a certain interval171
[a, b] ⊂ R+∗, while uninformative Jeffreys priors are assigned to the scale parameters:172

(2.5) p(p) =

k∏
j=1

1

b− a
I[a,b](pj),173

174

(2.6) p(α) =

k∏
j=1

1

αj
IR+

(αj).175

Hereabove, IS represents the characteristic function of some subset S ⊂ R, which is176
equal to 1 over S, and 0 elsewhere.177

178
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2.3. Variational Model. In order to avoid to define a priori the number of179
features, we regularise the problem by considering the 2D Total Variation (TV) of180
the GGD parameters (p, α) ∈ (0,+∞)n× (0,+∞)n. The idea of using Total Variation181
to define a segmentation procedure is studied in [15, 16, 17, 19, 20, 55] by virtue of182
the co-area formula: the authors propose to replace the boundary information term183
of the Mumford-Shah (MS) functional [52] with the TV convex integral term. This184
choice yields a nontight convexification of the MS model that does not require to185
set the number of segments in advance. The overall segmentation procedure is then186
built upon two steps: the first one consists of obtaining a smooth version of the given187
image that is adapted to segmentation by minimising the proposed functional with188
convex methods; the second step consists of partitioning the obtained solution into the189
desired number of segments, by e.g. defining the thresholds with Otsu’s method [54]190
or the k-means algorithm. The strength of our approach is that the second step (i.e.191
the actual segmentation step) is independent from the first one, hence it is possible192
to set the number of segments (i.e., labels) without solving the optimisation problem193
again.194

In the considered model, the introduction of a TV prior leads to a minimization195
problem that is nonconvex w.r.t α. Preliminary experimental results suggested the use196
of the following reparameterisation for the scale parameter. Let β = (βi)1≤i≤n ∈ Rn197
be such that for every i ∈ {1, . . . , n},198

(2.7) βi =
1

pi
lnαi,199

and let us choose for this new variable a normal prior with zero-mean and standard200
deviation σβ . Replacing α with β and introducing the TV regularisation (weighted201
by the regularisation parameters λ > 0 and ζ > 0) leads to the following re-parame-202
terization of distributions (2.4)-(2.6):203

(2.8) p(x|p, β) =

n∏
i=1

1

2 exp(βi)Γ
(

1 + 1
pi

) exp (−|xi|pi exp(−piβi))204

205

(2.9) p(p) = exp(−λTV(p))

n∏
i=1

1

b− a
I[a,b](pi)206

(2.10) p(β) = exp(−ζTV(β))

n∏
i=1

1√
2πσβ

exp
(
− β2

i

2σ2
β

)
.207

The joint posterior distribution is determined as follows:208

p(x, p, β|y) ∝ p(y|x, p, β)p(x, p, β)209

∝ p(y|x, p, β)p(x|p, β)p(p)p(β).(2.11)210211

Let us take the negative logarithm of (2.11), then computing the Maximum a Poste-212
riori estimates (i.e., maximising the joint posterior distribution) is equivalent to the213
following optimization problem, which we refer to as the Joint Image Reconstruction214
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and Features Extraction Problem:215

minimize
(x,p,β)∈Rn×Rn×Rn

Θ(x, p, β) =
1

2σ2
‖y −Kx‖2216

+

n∑
i=1

(
|xi|pie−piβi + ln Γ(1 +

1

pi
) + ι[a,b](pi) + βi +

β2
i

2σ2
β

)
(2.12)217

+ λTV(p) + ζTV(β).218219

We notice that, when restricted to variable x for a given set of parameters (p, β), the220
above minimisation problem boils down to the flexible sparse regularisation model221

(2.13) minimize
x∈Rn

1

2σ2
‖y −Kx‖2 +

n∑
i=1

|xi|pie−piβi ,222

where the contribution of the `pi regularisation term is itself weighted in a space223
varying fashion.224

Function Θ in (2.12) is nonsmooth and nonconvex. It reads as the sum of a cou-225
pling term and three block-separable terms. In particular, the block-separable data-fit226
term relative to x is quadratic, and hence has a Lipschitz continuous gradient. Our227
proposed algorithm aims at leveraging this property, which is generally not accounted228
for by other BCD methods. To this aim, we exploit a hybrid scheme that involves229
both standard and linearised proximal steps. The details about the proposed method230
are presented in the next section.231

3. Preconditioned Structure Adapted Semi-Linearised Proximal Alter-232
nating Minimisation (P-SASL-PAM). In this section, we introduce a BCD-based233
method to address a class of sophisticated optimization problems including (2.12) as234
a special case. We start the section by useful preliminaries about subdifferential cal-235
culus. Then, we present the Kurdyka-Łojasiewicz property, which plays a prominent236
role in the convergence analysis of BCD methods in a nonconvex setting. Finally,237
we define problem (3.4), itself generalising (2.12), for which we derive our proposed238
BCD-based algorithm, and show its convergence properties. The so-called Precon-239
ditioned Structure Adapted Semi-Linearised Proximal Alternating Minimisation (P-240
SASL-PAM) approach mixes both standard and preconditioned linearised proximal241
regularisation on the different coordinate blocks of the criterion.242

3.1. Subdifferential Calculus. Let us now recall some definitions and elements243
of subdifferential calculus that will be useful in the upcoming sections. For a proper244
and lower semicontinuous function f : Rn → (−∞,∞], the domain of f is defined as245

dom f = {u ∈ Rn | f(u) < +∞} .246

Firstly, we recall the notion of subgradients and subdifferential for convex functions.247

Definition 3.1 (Subgradient of a convex function). Let f : Rn → (−∞,∞] be248
a proper convex lower semicontinuous function. The subdifferential ∂f(u+) of f at249
u+ ∈ Rn is the set of all vectors v ∈ Rn, known as subgradients of f at u+, such that250

∀u ∈ Rn f(u) ≥ f(u+) + 〈v, u− u+〉.251

If u+ /∈ dom f , then ∂f(u+) = ∅.252
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Secondly, we consider the more general notion of (limiting)-subdifferential for non253
necessarily convex functions, as proposed in [61, Definition 8.3].254

Definition 3.2 (Limiting Subdifferential). Let f : Rn → (−∞,+∞] be a proper255
and lower semicontinuous function. For a vector u+ ∈ Rn,256

• the Fréchet subdifferential of f at u+, written as ∂̂f(u+), is the set of all257
vectors v ∈ Rn such that258

(∀u ∈ Rn) f(u) ≥ f(u+) + 〈v, u− u+〉+ o(‖u− u+‖);259

if u+ /∈ dom f , then ∂̂f(u+) = ∅;260
• the limiting-subdifferential of f at u+, denoted by ∂f(u+), is defined as261

∂f(u+) =
{
u ∈ Rn | ∃uk → u+, f(uk)→ f(u+), vk → v, vk ∈ ∂̂f(uk)

}
.262

If f is lower semicontinuous and convex, then the three previous notions of sub-263
differentiality are equivalent, i.e. ∂̂f(u+) = ∂f(u+). If f is differentiable, then264
∂f(u+) = {∇f(u+)}. Now it is possible to formalise the notion of critical point265
for a general function:266

Definition 3.3 (Critical point). Let f : Rn → (−∞,+∞] be a proper function.267
A point u∗ ∈ Rn is said to be a critical (or stationary) point for f if 0 ∈ ∂f(u∗).268

Eventually, we define the notion of proximal map relative to the norm induced269
by a positive definite matrix.270

Definition 3.4. Let Sn be the set of symmetric and positive definite matrices in271
Rn×n. For a matrix A ∈ Sn, the weighted `2-norm induced by A is defined as272

(3.1) (∀u ∈ Rn) ‖u‖A = (u>Au)1/2.273

Definition 3.5. Let f : Rn → (−∞,+∞] be a proper and lower semicontinuous274
function, let A ∈ Sn and u+ ∈ Rn. The proximity operator of function f at u+ with275
respect to the norm induced by A is defined as276

(3.2) proxAf (u+) = argminu∈Rn

(
1

2
‖u− u+‖2A + f(u)

)
.277

Note that proxAf (u+), as defined above, can be the empty set. It is nonempty for278

every u+ ∈ Rn, if f is lower-bounded by an affine function. In addition, it reduces to279
a single-valued operator when f is convex.280

3.2. The KŁ-Property. Most of the works related to BCD-based algorithms281
rely on the framework developed by Attouch, Bolte, and Svaiter in their seminal paper282
[6] in order to prove the convergence of block alternating strategies for nonsmooth and283
nonconvex problems. A fundamental assumption in [6] is that the objective function284
satisfies the Kurdyka-Łojasiewicz (KŁ) property [45, 48, 49]. We recall the definition285
of this property as it was given in [11]. Let η ∈ (0,+∞] and denote by Φh the class of286
concave continuous functions ϕ : [0,+∞)→ R+ satisfying the following conditions:287
(i) ϕ(0) = 0;288
(ii) ϕ is C1 on (0, η) and continuous at 0;289
(iii) for every s ∈ (0, η), ϕ′(s) > 0.290
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For any subset S ⊂ Rn and any point u+ ∈ Rn, the distance from u+ to S is291
defined by292

dist(u+, S) = inf
u∈S
‖u+ − u‖293

with dist(u+,∅) = +∞.294

Definition 3.6 (KŁ property). Let f : Rn → (−∞,+∞] be a proper and lower295
semicontinuous function.296
(i) Function f is said to satisfy the Kurdyka-Łojasiewicz property at u+ ∈ dom ∂f297

if there exist η ∈ (0,+∞], a neighbourhood U of u+, and a function ϕ ∈ Φη such298
that, for every u ∈ U ,299

(3.3) f(u+) < f(u) < f(u+) + η ⇒ ϕ′(f(u)− f(u+)) dist(0, ∂f(u)) ≥ 1.300

(ii) Function f is said to be a KŁ function if it satisfies the KŁ property at each301
point of dom ∂f .302

3.3. Proposed Algorithm. Consider the general problem303

(3.4) minimize
(x,p,β)∈(Rn)3

(
θ(x, p, β) = q(x, p, β) + f(x) + g(p) + h(β)

)
304

associated to the following set of assumptions:305

Assumption 1.306
(i) Function q : (Rn)3 → R is bounded from below and differentiable with Lipschitz307

continuous gradient on bounded subsets of (Rn)3. In other words, for every308
bounded subsets S of (Rn)3, there exists Lq,S > 0 such that, for every (x, p, β) ∈309
S and (x+, p+, β+) ∈ S,310

311
(3.5) ‖∇q(x, p, β)−∇q(x+, p+, β+)‖312

≤ Lq,S(‖x− x+‖2 + ‖p− p+‖2 + ‖β − β+‖2)1/2.313314

(ii) Function f : Rn → R is differentiable with globally Lipschitz continuous gradient315
of constant Lf > 0, and is bounded from below.316

(iii) Functions g : Rn → (−∞,+∞] and h : Rn → (−∞,+∞] are proper, lower317
semicontinuous and bounded from below.318

(iv) θ is a KŁ function.319

We propose a block alternating algorithm to solve problem (3.4) which sequentially320
updates one of the three coordinate blocks (x, p, β) involved in function θ, through321
proximal and gradient steps. This yields Algorithm 3.1, that we call P-SASL-PAM.322

Algorithm 3.1 P-SASL-PAM
Initialize x0, p0 and β0

Set A ∈ Sn
Set γ1 ∈ (0, 1), γ2 > 0, γ3 > 0
For ` = 0, 1, . . .

x`+1 ∈ proxAγ1q(·,p`,β`)(x
` − γ1A−1∇f(x`))(3.6)

p`+1 ∈ proxγ2θ(x`+1,·,β`)(p
`)(3.7)

β`+1 ∈ proxγ3θ(x`+1,p`+1,·)(β
`)(3.8)
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A VARIATIONAL APPROACH FOR JOINT IMAGE RECOVERY-SEGMENTATION 9

Our P-SASL-PAM approach is inspired from the rich literature on proximal ver-323
sions of BCD. We refer in particular to SLPAM [35] and ASAP [53] since our algorithm324
mixes both standard and linearised proximal regularisation on the coordinate blocks325
as in the former work, while inverting the splitting in order to gain more efficient326
proximal computations as in the latter. More precisely, we took advantage of the dif-327
ferentiability assumption on f to perform a linearised step for the update of variable328
x, while p and β are updated according to a standard proximal step. In addition,329
in order to accelerate the convergence, we introduced a preconditioned version of the330
linearised step which relies on the variable metric forward-backward strategy from331
[24]. As in [24], the preconditioning matrix A ∈ Sn is set so as to fulfill the following332
majorisation condition:333

Assumption 2.334
(i) The quadratic function defined, for every x+ ∈ Rn, as335

(3.9) (∀x ∈ Rn) φ(x, x+) = f(x+) + (x− x+)>∇f(x+) +
1

2
‖x+ − x‖2A336

is a majorant function of f at x+, i.e.337

(3.10) (∀x ∈ Rn) f(x) ≤ φ(x, x+).338

(ii) There exist (ν, ν) ∈ (0,+∞)2 such that339

(3.11) νIn � A � νIn.340

Remark that, since f satisfies Assumption 1, the Descent Lemma [7, Proposition341
A.24] applies, yielding342

(∀(x, x+) ∈ Rn × Rn) f(x) ≤ f(x+) + (x− x+)>∇f(x+) +
Lf
2
‖x+ − x‖2.343

This guarantees that the preconditioning matrix A = Lf In satisfies Assumption 2,344
with ν = ν = Lf . Apart from this simple choice for matrix A, more sophisticated345
construction strategies have been studied in the literature [24, 34, 43].346

3.4. Convergence analysis. In this subsection, we provide some technical re-347
sults regarding the sequences (z`)`∈N =

(
(x`, p`, β`)

)
`∈N and

(
θ(z`)

)
`∈N generated348

by Algorithm (3.1) that are instrumental to prove the convergence of the proposed349
method. Our proof relies on the general strategy designed in [6] which is based on350
three main ingredients: firstly a sufficient decrease property, secondly an inexact opti-351
mality condition, and finally the Kurdyka-Łojasiewicz property. On the one hand, this352
last property does not depend on the chosen algorithm, but only on the function at353
hand. In our framework, it is ensured by Assumption 1(iv). On the other hand, the354
first two properties, only related to the design of the algorithm itself, are expressed355
by Lemmas 3.7 and 3.9.356

Lemma 3.7 (Sufficient decrease and finite length). Let (z`)`∈N be a sequence357
generated by Algorithm 3.1. Then, under Assumptions 1 and 2,358

359
i) there exists µ ∈ (0,+∞) such that for every ` ∈ N,360

(3.12) θ(z`+1) ≤ θ(z`)− µ

2
‖z`+1 − z`‖2.361
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ii)
∑+∞
`=0 ‖z`+1 − z`‖2 < +∞ and lim`→+∞ z`+1 − z` = 0.362

Proof. Let ` ∈ N.363
i) Based on the variational definition of the proximity operator induced by the364

weighted norm, x`+1 belongs to the set given by365

366

(3.13) proxAγ1q(·,p`,β`)(x
` − γ1A−1∇f(x`))367

= argminu∈Rn

{
q(u, p`, β`) +

1

2γ1
‖u− x`‖2A + 〈∇f(x`), u− x`〉

}
.368

369

Hence,370

q(x`+1, p`, β`) +
1

2γ1
‖x`+1 − x`‖2A + 〈∇f(x`), x`+1 − x`〉 ≤ q(x`, p`, β`).(3.14)371

372

Moreover, the majorisation property (3.10) leads to373

(3.15) f(x`+1) ≤ f(x`) + 〈x`+1 − x`,∇f(x`)〉+
1

2
‖x`+1 − x`‖2A.374

Adding the quantity f(x`) + 1
2‖x

`+1 − x`‖2A on both sides of (3.14) allows us to375
exploit (3.15) together with (3.11), to obtain376

q(x`+1, p`, β`) + f(x`+1) +
ν

2

(
1

γ1
− 1

)
‖x`+1 − x`‖2 ≤ q(x`, p`, β`) + f(x`),

(3.16)

377
378

where we have used the fact that, since γ1 ∈ (0, 1), ν2
(

1
γ1
− 1
)
> 0.379

380
Then, the variational definition of the proximal steps on functions p and β implies381
that382

(3.17)
1

2γ2
‖p`+1 − p`‖2 + g(p`+1) + q(x`+1, p`+1, β`) ≤ g(p`) + q(x`+1, p`, β`),383

384
(3.18)

1

2γ3
‖β`+1 − β`‖2 + h(β`+1) + q(x`+1, p`+1, β`+1) ≤ h(β`) + q(x`+1, p`+1, β`).385

In conclusion, combining (3.16), (3.17), and (3.18) yields386

ν

2
(

1

γ1
− 1)‖x`+1 − x`‖2+

1

2γ2
‖p`+1 − p`‖2 +

1

2γ3
‖β`+1 − β`‖2387

≤ θ(x`, p`, β`)− θ(x`+1, p`+1, β`+1).(3.19)388389

Thus, by setting (z`)`∈N =
(
(x`, p`, β`)

)
`∈N and defining the positive constant390

µ = min{ν( 1
γ1
− 1), 1

γ2
, 1
γ3
}, we get (3.12).391

ii) From (3.12), it follows that the sequence (θ(z`))`∈N is nonincreasing. Since func-392
tion θ is assumed to be bounded from below, this sequence converges to some393

This manuscript is for review purposes only.



A VARIATIONAL APPROACH FOR JOINT IMAGE RECOVERY-SEGMENTATION 11

real number θ. We have then, for every integer N ,394

N∑
`=0

‖z` − z`+1‖2 ≤ 1

µ

N∑
`=0

(
θ(z`)− θ(z`+1)

)
(3.20)395

=
1

µ
(θ(z0)− θ(zN+1))(3.21)396

≤ 1

µ
(θ(z0)− θ).(3.22)397

398

Taking the limit as N → +∞ yields the desired summability property.399

Before presenting the inexact optimality property for any sequence generated by the400
proposed method, we recall an important result regarding function θ appearing in401
(3.4), under Assumption 1:402

Property 3.8. For function θ defined as in (3.4) and satisfying Assumption 1,403
the following equality holds: for every (x, p, β) ∈ (Rn)3,404

∂θ(x, p, β)405

= ∂xθ(x, p, β)× ∂pθ(x, p, β)× ∂βθ(x, p, β)406

= {∇xq(x, p, β) +∇f(x)} ×
(
∇pq(x, p, β) + ∂g(p)

)
×
(
∇βq(x, p, β) + ∂h(β)

)
.407408

409

Lemma 3.9 (Inexact optimality). Assume that the sequence (z`)`∈N generated410
by Algorithm 3.1 is bounded. Then, for every ` ∈ N, there exists b` ∈ ∂θ(z`) such that411

(3.23) ‖b`‖ ≤ ρ‖z`−1 − z`‖,412

where ρ ∈ (0,+∞).413

Proof. The assumed boundedness obviously implies that there exists a bounded414
subset S of Rn such that {z`}`∈N = {(x`, p`, β`)}`∈N, {(x`, p`−1, β`−1)}`∈N, and415
{(x`, p`, β`−1)}`∈N are included in S. In addition, recall that, according to Assump-416
tion 1, the coupling term q has a Lipschitz continuous gradient on S. In the following,417
we will exploit the fact that, at every iteration `, the update for each block of coor-418
dinate needs to satisfy Fermat’s rule for the corresponding subproblem.419

420
• Fermat’s rule for (3.6) reads421

(3.24) γ−11 A(x`−1 − x`) = ∇f(x`−1) +∇xq(x`, p`−1, β`−1).422

Notice that423

(3.25) ∂xθ(x
`, p`, β`) = {∇xθ(x`, p`, β`)} = {∇f(x`) +∇xq(x`, p`, β`)}.424

So, by defining425

b`x = γ−11 A(x`−1 − x`) +∇f(x`) +∇xq(x`, p`, β`)(3.26)426

−∇f(x`−1)−∇xq(x`, p`−1, β`−1),427428

This manuscript is for review purposes only.



12 É. CHOUZENOUX, M.-C. CORBINEAU, J.-C. PESQUET, G. SCRIVANTI

we have b`x ∈ ∂xθ(x`, p`, β`) and429

‖b`x‖430

≤ γ−11 ν̄‖x`−1 − x`‖+ Lf‖x`−1 − x`‖+ Lq,S‖(0, p`−1 − p`, β`−1 − β`)‖431

= (γ−11 ν̄ + Lf )‖x`−1 − x`‖+ Lq,S‖(0, p`−1 − p`, β`−1 − β`)‖432

≤ (γ−11 ν̄ + Lf + Lq,S)‖z`−1 − z`‖,
(3.27)

433434

where the first inequality follows from Assumptions 1(i)-(ii) and 2(ii).435
436

• Fermat’s rule for (3.7) reads437

(3.28) r` +∇pq(x`, p`, β`−1) + γ−12 (p` − p`−1) = 0438

where r` ∈ ∂g(p`). Since439

(3.29) r` +∇pq(x`, p`, β`) ∈ ∂pθ(x`, p`, β`),440

by defining441

(3.30) b`p = γ−12 (p`−1 − p`) +∇pq(x`, p`, β`)−∇pq(x`, p`, β`−1),442

we have b`p ∈ ∂pθ(x`, p`, β`) and443

‖b`p‖ ≤ γ−12 ‖p`−1 − p`‖+ Lq,S‖(0, 0, β` − β`−1)‖444

≤ (γ−12 + Lq,S)‖z`−1 − z`‖(3.31)445446

where the first inequality stems from Assumption 1(i).447
448

• Fermat’s rule for (3.8) reads449

(3.32) s` +∇βq(x`, p`, β`) + γ−13 (β` − β`−1) = 0450

where s` ∈ ∂h(β`). By noticing that451

(3.33) s` +∇βq(x`, p`, β`) ∈ ∂βθ(x`, p`, β`)452

and defining453

(3.34) b`β = γ−13 (β`−1 − β`) ∈ ∂βθ(x`, p`, β`),454

we have455

(3.35) ‖b`β‖ ≤ γ−13 ‖β`−1 − β`‖ ≤ γ
−1
3 ‖z`−1 − z`‖.456

In a nutshell, by virtue of Property 3.8, b` = (b`x, b
`
p, b

`
β) ∈ ∂θ(x`, p`, β`). To conclude,457

we set458

ρ = max{γ−11 ν̄ + Lf + Lq,S , γ
−1
2 + Lq,S , γ

−1
3 },459

which yields the desired inequality (3.23).460
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We now report a first convergence result for a sequence generated by the proposed461
algorithm, which is reminiscent from [5, Proposition 6]:462

Proposition 3.10 (Properties of the cluster points set). Suppose that Assump-463
tions 1 and 2 hold. Let (z`)`∈N be a sequence generated by Algorithm 3.1. Denote by464
ω(z0) the (possibly empty) set of its cluster points. Then465
i) if (z`)`∈N is bounded, then ω(z0) is a nonempty compact connected set and

dist(z`, ω(z0))→ 0 as `→ +∞;

ii) ω(z0) ⊂ crit θ, where crit θ is the set of critical points of function θ;466
iii) θ is finite valued and constant on ω(z0), and it is equal to467

inf
`∈N

θ(z`) = lim
`→+∞

θ(z`).468

Proof. The proof of the above results for the proposed algorithm is basically469
identical to the one for [5, Proposition 6] for PAM algorithm. The only point to check470
is that our objective function is continuous with respect to x, i.e. the only block of471
variables on which we apply a different update than in PAM.472

In conclusion, we have proved that a bounded sequence generated by the proposed473
method under Assumptions 1 and 2 satisfies the assumptions in [6, Theorem 2.9].474
Hence we can state the following result:475

Proposition 3.11. Let Assumptions 1 and 2 be satisfied and let476
(z`)`∈N =

(
(x`, p`, β`)

)
`∈N be a sequence generated by Algorithm 3.1 that is assumed477

to be bounded. Then478
i)
∑+∞
`=1 ‖z`+1 − z`‖ < +∞;479

ii) (z`)`∈N converges to a critical point z∗ of θ.480

Remark 3.12. It is worth mentioning that the proposed P-SASL-PAM algorithm481
can be easily adapted to the more general setting of minimizing482

(3.36) (∀X ∈ RN ) θ(X) = q(X) +

S∑
k=1

gk(Xk).483

Hereabove, X = (X1, . . . , XS) ∈ RN , with each Xk ∈ Rnk , k ∈ {1, . . . , S}, so484

that N =
∑S
k=1 nk. Function θ involves a a locally Lipschitz-differentiable cou-485

pling term q : RN → R and S block-separable terms gk : Rnk →] − ∞,+∞[ (with486
k ∈ {1, . . . , S}), some of which may be differentiable with a Lipschitz continuous gra-487
dient. Then, the generalized variant of P-SASL-PAM generates a sequence (Z`)`∈N =488
((X`

1, . . . , X
`
S))`∈N where the blocks of coordinates are updated via the following489

scheme, at every iteration ` ∈ N:490

For k = 1, . . . , S
X`+1
k ∈ proxAk

γkq(X
`+1
1 ,...,X`+1

k−1,·,X
`
k+1,...,X

`
S)

(X`
k − γkA

−1
k ∇gk(X`

k))

with γk ∈ (0, 1), if gk is differentiable,
X`+1
k ∈ proxγkθ(X`+1

1 ,...,X`+1
k−1,·,X

`
k+1,...,X

`
S)

(X`
k)

with γk > 0, otherwise.

491

If, for every k ∈ {1, . . . , S} such that gk is Lipschitz differentiable, Ak ∈ Snk satisfies492
a majorisation condition like in Assumption, 2 for function gk, then the Sufficient493
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Decrease and the Inexact Optimality properties expressed in Lemma 3.7 and Lemma494
3.9 can be extended to a bounded sequence (Z`)`∈N generated by the above extended495
variant of P-SASL-PAM. In addition, if function θ is a KŁ function, then the con-496
vergence results expressed in Proposition 3.11 can be extended, ensuring that the497
above mentioned sequence has a finite length, i.e.

∑∞
`=1 ‖Z`+1 − Z`‖ < +∞, and it498

converges to a critical point Z∗ of θ.499

4. Application of P-SASL-PAM to the Joint Reconstruction and Fea-500
ture Extraction Problem.501

4.1. Smoothing of the coupling term. The application of Algorithm 3.1 to502
Problem (2.12) requires the involved functions to fulfill the requirements listed in503
Assumption 1. This section is devoted to this analysis, by first defining the following504
functions, for every x = (xi)1≤i≤n ∈ Rn, p = (pi)1≤i≤n ∈ Rn, and β = (βi)1≤i≤n ∈505
Rn,506

q̃(x, p, β) =

n∑
i=1

|xi|pie−βipi ,(4.1)507

f(x) =
1

2σ2
‖y −Kx‖22,(4.2)508

g(p) =

n∑
i=1

(
ln Γ(1 +

1

pi
) + ι[a,b](pi)

)
+ λTV(p),(4.3)509

h(β) =

n∑
i=1

(
βi +

β2
i

2σ2
β

)
+ ζ TV(β).(4.4)510

511

The first item in Assumption 1 regarding the regularity of the coupling term is not512
satisfied by (4.1). To circumvent this difficulty, we introduce the pseudo-Huber loss513
function [21] depending on a pair of parameters δ = (δ1, δ2) ∈ (0,+∞)2 such that514
δ2 < δ1:515

(4.5) (∀t ∈ R) Cδ(t) = Hδ1(t)− δ2,516

where Hδ1 is the hyperbolic function defined, for every t ∈ R, by Hδ1(t) =
√
t2 + δ21 .517

Function (4.5) is used as a smooth approximation of the absolute value involved in518
(4.1). We then replace (4.1) with519

(4.6) q(x, p, β) =

n∑
i=1

(Cδ(xi))
pi e−βipi .520

Function Cδ is infinitely differentiable, i.e. its derivatives are continuous for all orders.521
Thus function (4.6) satisfies Assumption 1.522

Function (4.2) is quadratic convex, thus it clearly satisfies Assumption 1(ii). Func-523
tion (4.3) is a sum of functions that are proper, lower semicontinuous and either non-524
negative or bounded from below. The same applies to function (4.4), which is also525
strongly convex. It results that (4.3) and (4.4) satisfy Assumption 1(iii).526

527
Now, we must show that Θ is a KŁ function. To do so, let us consider the notion528

of o-minimal structure [66], which is a particular family O = {On}n∈N where each On529
is a collection of subsets of Rn, satisfying a series of axioms (we refer to [5, Definition530
13], for a complete illustration). We present hereafter the definition of definable set531
and definable function in an o-minimal structure:532
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Definition 4.1 (Definable sets and definable functions). Given an o-minimal533
structure O, a set A ⊂ Rn such that A ∈ On is said to be definable in O. A real534
extended valued function f : R→ (−∞,+∞] is said to be definable in O if its graph535
is a definable subset of Rn × R.536

The importance of these concepts in mathematical optimisation is related to the537
following key result concerning the Kurdyka-Łojasiewicz property [10]:538

Theorem 4.2. Any proper lower semicontinuous function f : Rn → (−∞,+∞]539
which is definable in an o-minimal structure O has the KŁ property at each point of540
dom ∂f .541

Let us identify a structure in which all the functions involved in the definition of542
Θ are definable. This will be sufficient, as definability is a closed property with respect543
to several operations including finite sum and composition of functions. Before that,544
we provide a couple of examples of o-minimal structure. The first is represented by545
the structure of globally subanalytic sets Ran [36], which contains all the sets of the546
form {(u, t) ∈ [−1, 1]n ×R | f(u) = t} where f : [−1, 1]n → R is an analytic function547
that can be analytically extended on a neighbourhood of [−1, 1]n. The second exam-548
ple is the log-exp structure (Ran, exp) [66, 71], which includes Ran and the graph of549
the exponential function. Even though this second structure is a common setting for550
many optimisation problems, it does not meet the requirements for ours: as shown551
in [67], Γ>0 (i.e., the restriction of the Gamma function to (0,+∞)) is not definable552
on (Ran, exp). We thus consider the larger structure (RG , exp), where Γ>0 has been553
proved to be definable [68]. RG is an o-minimal structure that extends Ran and is554
generated by the class G of Gevrey functions from [64].555

556
We end this section by the following result which will be useful subsequently.557

Proposition 4.3. The function t 7→ ln Γ(1 + 1
t ) defined on (0,+∞) is µ-weakly558

convex with µ > µ0 ≈ 0.1136.559

Proof. Let us show that there exists µ > 0 such that function t 7→ ln Γ(1 +560
1
t ) + µt2/2 is convex on (0,+∞). The second-order derivative of this function on the561
positive real axis reads562

d2

dt2

(
ln Γ

(
1 +

1

t

)
+
µ

2
t2
)

563

=
1

t3

(
2Digamma

(
1 +

1

t

)
+

1

t
Digamma′

(
1 +

1

t

)
+ µt3

)
,(4.7)564

565

where the Digamma function is the logarithmic derivative of the Gamma function.566
In order to show the convexity of the considered function, we need to ensure that567
(4.7) is positive for every t ∈ (0,+∞). By virtue of Bohr–Möllerup’s theorem568
[4, Theorem 2.1], among all functions extending the factorial functions to the pos-569
itive real numbers, only the Gamma function is log-convex. More precisely, its570
natural logarithm is (strictly) convex on the positive real axis. This implies that571
t 7→ Digamma′(t) is positive. It results that the only sign-changing term in (4.7)572
is function t 7→ 2Digamma

(
1 + 1

t

)
as t 7→ Digamma(t) vanishes in a point t0 > 1573

(t0 ≈ 1.46163) which corresponds to the minimum point of the Gamma function – and574
therefore also of its natural logarithm [72]. As a consequence, the Digamma function575
is strictly positive for t ∈ (t0,+∞), implying that t 7→ Digamma

(
1 + 1

t

)
is strictly576

positive for all t ∈ (0, 1
t0−1 ). Furthermore, t 7→ Digamma

(
1 + 1

t

)
is strictly decreasing577
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and bounded from below, as shown by the negativity of its first derivative578

d

dt
Digamma

(
1 +

1

t

)
= − 1

t2
Digamma′

(
1 +

1

t

)
579

and by the following limit580

lim
t→+∞

Digamma
(

1 +
1

t

)
= Digamma(1) = −E581

where the last equality holds by virtue of the Gauss Digamma theorem and E is Euler-
Mascheroni’s constant E ≈ 0.57721 [3]. In conclusion, for t ∈ [ 1

t0−1 ,+∞) we need to
ensure that the positive terms in (4.7) manage to balance the negative contribution
of function t 7→ 2Digamma

(
1 + 1

t

)
> −2E . This leads to a condition on parameter

µ > 0, since we can impose that

0 < µt3 − 2E ,

where the right hand side expression has a lower bound µ/(t0−1)3−2E that is positive
when

µ > 2E(t0 − 1)3 = µ0 ≈ 0.1136.

This shows that function t 7→ ln Γ(1 + 1
t ) is µ-weakly convex.582

4.2. Proximal computations. Let us now focus on the proximal computations583
involved in Algorithm 3.1. Given the elaborate structure of the involved functions,584
no trivial closed-form expression is available to compute the required proximity op-585
erators. Luckily, efficient minimisation strategies can be designed to tackle the three586
inner optimisation problems. To ease the description, we summarize in Algorithm 4.1587
the application of Algorithm 3.1 to the resolution of (2.12).588

589

Algorithm 4.1 P-SASL-PAM to solve (2.12)
Initialize x0, p0 and β0

Set A ∈ Sn
Set γ1 ∈ (0, 1), γ2 ∈ (0, 1/µ0), γ3 > 0
For ` = 0, 1, . . .

x`+1 ∈ proxAγ1q(·,p`,β`)(x
` − γ1A−1∇f(x`)) (with Alg. 4.2)(4.8)

p`+1 ∈ proxγ2θ(x`+1,·,β`)(p
`) (with Alg. 4.4)(4.9)

β`+1 ∈ proxγ3θ(x`+1,p`+1,·)(β
`) (with Alg. 4.5)(4.10)

Proximal computation with respect to x. Subproblem (3.6) in Algorithm 3.1 re-
quires the computation of the proximity operator of the following separable function

q(·, p`, β`) : x 7→
n∑
i=1

(Cδ(xi))
p`i e−β

`
ip
`
i ,

within a weighted Euclidean metric induced by some matrix A ∈ Sn. We notice590

that xi 7→ (Cδ(xi))
p`i is nonconvex whenever p`i ∈ (0, 1), for some i ∈ {1, . . . , n}. In591
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order to overcome this issue, we apply a majorisation principle [62]. Let us introduce592
function σ defined, for every u ∈ [δ1,+∞), as σ(u) = (u − δ2)p with p ∈ (0, 1], and593
vector δ = (δ1, δ2) ∈ (0,+∞)2 such that δ2 < δ1. Since this function is concave, it594
can be majorised by its first-order expansion around any point w > δ2:595

(∀u > δ2) (u− δ2)p ≤ (w − δ2)p + p(w − δ2)p−1(u− w),596

= (1− p)(w − δ2)p + p(w − δ2)p−1(u− δ2).(4.11)597598

Setting, for every (t, t′) ∈ R2, u = Hδ1(t) ≥ δ1, w = Hδ1(t′) ≥ δ1 allows us to deduce599
the following majorisation:600

(Cδ(t))
p ≤(1− p)(Cδ(t′))p + p(Cδ(t

′))p−1Cδ(t).(4.12)601602

Let us now define I` = {i ∈ {1, . . . , n} | p`i ≥ 1} and J ` = {1, . . . , n} \ I`. Given603
v = (vi)1≤i≤n ∈ Rn, we deduce from (4.12) that604

(∀x = (xi)1≤i≤n ∈ Rn) q(x, p`, β`) =
∑
i∈I`

(Cδ(xi))
p`i e−β

`
ip
`
i +

∑
i∈J `

(Cδ(xi))
p`i e−β

`
ip
`
i605

≤ q(x, v, p`, β`),(4.13)606607

where the resulting majorant function is separable, i.e.608

(4.14) q(x, v, p`, β`),=

n∑
i=1

qi(xi, vi, p
`
i , β

`
i ),609

with, for every i ∈ {1, . . . , n} and xi ∈ R,610

qi(xi, vi, p
`
i , β

`
i )(4.15)611

=

e−β
`
ip
`
i (Cδ(ui))

p`i , if p`i ≥ 1

e−β
`
ip
`
i

(
(Cδ(vi))

p`i (1− p`i) + p`i(Cδ(vi))
p`i−1Cδ(xi)

)
otherwise.

612

613

In a nutshell, each term of index i ∈ {1, . . . , n} in (4.14) coincides either with the i-th614
term of q(·, p`, β`) when i ∈ I`, or it is a convex majorant of this i-th term with respect615
to vi when i ∈ J `. We thus propose to adopt a majorisation-minimisation procedure616
by building a sequence of convex surrogate problems for the nonconvex minimisation617
problem involved in the computation of proxAγ1q(·,p`,β`). At the κ-th iteration of this618

procedure, following the MM principle, the next iterate xκ+1 is determined by setting619
v = xκ. We summarise the strategy in Algorithm 4.2.620

Algorithm 4.2 MM algorithm to approximate proxAγ1q(·,p`,β`)(x
+) with x+ ∈ Rn

Initialize x0 ∈ Rn
For κ = 0, 1, . . . until convergence

xκ+1 = proxAγ1q(·,xκ,p`,β`)(x
+) (with Alg. 4.3).(4.16)

Function q(·, v, p`, β`) being convex, proper, and lsc, its proximity operator in the621
weighted Euclidean metric induced by matrix A is guaranteed to be uniquely defined.622
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It can be computed efficiently using the Dual Forward-Backward (DFB) method [28],623
outlined in Algorithm 4.3.624

Algorithm 4.3 DFB algorithm to compute proxAγ1q(·,v;p`,β`)(x
+) with x+ ∈ Rn

Initialize dual variable w0 ∈ Rn
Set η ∈ (0, 2|||A|||−1)
For κ′ = 0, 1, . . . until convergence

uκ
′

= x+ −Awκ
′
,(4.17)

wκ
′+1 = wκ

′
+ ηuκ

′
− η proxη−1γ1q(·,v,p`,β`)(η

−1wκ
′
+ uκ

′
).(4.18)

Return uκ
′ ∈ Rn

The update in (4.18) can be performed componentwise since function q(·, v, p`, β`)625
is separable. Thanks to the separability property, computing proxη−1γ1q(·,v,p`,β`) boils626
down to solve n one-dimensional optimization problems, that is627

628

(4.19) (∀u+ = (u+i )1≤i≤n ∈ Rn)629

proxη−1γ1q(·,v,p`,β`)(u
+) =

(
proxη−1γ1qi(·,vi,p`i ,β`i )(u

+
i )
)
1≤i≤n

.630
631

More precisely,632
• for every i ∈ {1, . . . , n}, such that p`i ≤ 1,633

proxη−1γ1qi(·,vi,p`i ,β`i )(u
+
i ) = prox

η−1γ1e
−β`

i
p`
i p`i(Cδ(vi))

p`
i
−1Cδ1

(u+i )634

= prox
η−1γ1e

−β`
i
p`
i p`i(Cδ(vi))

p`
i
−1Hδ1

(u+i ).(4.20)635
636

The proximity operator of the so-scaled version of function Hδ1 can be deter-637
mined by solving a quartic polynomial equation.1638

• For every i ∈ {1, . . . , n} such that p`i > 1,639

(4.21) proxη−1γ1qi(·,vi,p`i ,β`i )(u
+
i ) = prox

η−1γ1e
−β`

i
p`
i (Cδ)

p`
i
(u+i ).640

The latter quantity can be evaluated through a bisection search to find the641
root of the derivative of the involved proximally regularised function.642

Remark 4.4. Due to the nonconvexity of q(·, p`, β`), there is no guarantee that the643
point estimated by Algorithm 4.3 coincides with the exact proximity point. However,644
we did not notice any numerical issue in our implementation.645

Proximal computation with respect to p. Subproblem (3.7) requires to compute the646
proximity operator of γ2

(
q(x`+1, ·, β`) + g

)
, which is equivalent to solve the following647

minimization problem648

(4.22) minimize
p∈[a,b]n

ψ`(p) + λ`1,2(Dp),649

1http://proximity-operator.net/scalarfunctions.html
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where, for every p ∈ Rn, ψ`(p) =
∑n
i=1 ψ

`
i (pi) with650

651
(4.23) (∀i ∈ {1, . . . , n})(∀pi ∈ R)652

ψ`i (pi) =

{(
Cδ(x

`+1
i )

)pi
e−β

`
ipi + ln Γ(1 + 1

pi
) + 1

2γ2
(pi − p`i)2 if pi > 0

+∞ otherwise.
653
654

Moreover, D = [Dh, Dv] where (Dh, Dv) ∈ (Rn×n)2 are the discrete horizontal and
vertical 2D gradient operators, and the `1,2-norm is defined as

(∀p ∈ Rn) `1,2(Dp) =

n∑
i=1

‖([Dhp]i, [Dvp]i)‖2.

Problem (4.22) is equivalent to minimizing the sum of the indicator function of655
a hypercube, a separable component, and a nonseparable term involving the linear656
operator D. Accoding to Proposition 4.3, we can ensure the convexity of each term657
(ψ`i )1≤i≤n by setting γ2 < 1

µ0
≈ 8.805. In order to solve (4.22), it is then possible to658

implement a Primal-Dual (PD) algorithm [29, 44, 69] as outlined in Algorithm 4.4.659
660

Algorithm 4.4 Primal Dual Algorithm for solving (4.22)
Initialise the dual variables v01 ∈ Rn×2,v02 ∈ Rn.
Set τ > 0 and σ > 0 such that τσ(|||D|||2 + 1) < 1.
for κ = 0, 1, . . . until convergence

uκ = pκ − τ(D∗vκ1 + vκ2 ),(4.24)

pκ+1 = proj[a,b]n(uκ),(4.25)

wκ1 = vκ1 + σD(2pκ+1 − pκ),(4.26)

vκ+1
1 = wκ+1

1 − σproxλ`1,2
σ

(
wκ1
σ

).(4.27)

wκ2 = vκ2 + σ(2pκ+1 − pκ),(4.28)

vκ+1
2 = wκ+1

2 − σproxψ`
σ

(
wκ2
σ

).(4.29)

Return pκ+1 ∈ [a, b]n

The proximity operator of the involved `1,2 norm has a closed-form expression.661
For every w1 = ([w1]i,1, [w1]i,2)1≤i≤n ∈ Rn×2 and λ > 0, we have662

proxλ`1,2(w1) =
(

proxλ‖·‖2

(
([w1]i,1, [w1]i,2)

))
1≤i≤n

663

=

(
([w1]i,1, [w1]i,2)− λ([w1]i,1, [w1]i,2)

max{λ, ‖([w1]i,1, [w1]i,2)‖2}

)
1≤i≤n

.664
665

The proximal point at wκ2/σ = ([wκ2 ]i/σ)1≤i≤n ∈ Rn of the separable term ψ` with
respect to a step size 1/σ can be found by minimizing, for every i ∈ {1, . . . , n}, the
following smooth function

(∀t ∈ (0,+∞)) gi(t) = ψ`i (t) +
σ

2

(
t− [wκ2 ]i

σ

)2
.
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The update in (4.29) then reads

vκ+1
2 =

(
[wκ+1

2 ]i − σ[wκ2 ]∗i
)
1≤i≤n

where, for every i ∈ {1, . . . , n}, [wκ2 ]∗i corresponds to the unique zero of the derivative
of gi. This zero is found by applying Newton’s method initialised with

w̄i =

(
max

{
10−3,

[wκ2 ]i
σ

})
1≤i≤n

.

666
Proximal computation with respect to β. Subproblem (3.8) requires the solution667

of the following minimisation problem:668

(4.30) minimize
β∈Rn

ϕ`(β) + ζ`1,2(Dβ)669

where D and `1,2 have been defined previously and

(∀β = (βi)1≤i≤n ∈ Rn) ϕ`(β) =

n∑
i=1

ϕ`i(βi)

with, for every i ∈ {1, . . . , n},

ϕ`i(βi) =
(
Cδ(x

`+1
i )

)p`+1
i e−βip

`+1
i + βi +

β2
i

2σ2
β

+
1

2γ3
(βi − β`i )2

The above problem shares structure similar to the one studied in the previous case670
since the objective function is the sum of the smooth convex term ϕ` and the nons-671
mooth convex one ζ TV = ζ`1,2(D·), and it can be solved by the primal-dual procedure672
outlined in Algorithm 4.5.673

Algorithm 4.5 Primal Dual Algorithm for minimizing (4.30)
Set τ > 0 and σ > 0 such that τσ|||D|||2 ≤ 1.
Initialise the dual variable v0 ∈ Rn×2.
for κ = 0, 1, . . . until convergence

uκ = βκ − τ(D∗vκ),(4.31)

βκ+1 = proxτϕ`(u
κ),(4.32)

wκ = vκ + σD(2βκ+1 − βκ),(4.33)

vκ+1 = wκ+1 − σprox ζ`1,2
σ

(
wκ

σ
).(4.34)

Return βκ+1 ∈ Rn

At each iteration κ of Algorithm 4.5, the proximity operator of ϕ` is expressed as674

(4.35) (∀β = (βi)1≤i≤n ∈ Rn) proxτϕ`(β) =
(

proxτϕ`i (βi)
)
1≤i≤n

675
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For every i ∈ {1, . . . , n}, proxτϕ`i (βi) is the minimizer of function676

(∀βi ∈ R) hi(βi) = ϕ`i(βi) +
1

2τ
(βi − uκi )2.(4.36)677

678

The nonlinear equation defining the unique zero of the derivative of hi admits a closed-679
form solution that involves the Lambert W -function [31]. Indeed, let us introduce the680
following notation:681

a1,i = p`+1
i

(
Cδ(x

`+1
i )

)p`+1
i ,(4.37)682

a2 =

(
1

σ2
β

+
1

γ3
+

1

τ

)−1
,(4.38)683

a3,i = 1− β`i
γ3
− uκi

τ
.(4.39)684

685

Then686

h′i(βi) = 0 ⇐⇒ −a1,i exp(−p`+1
i βi) +

βi
a2

+ a3,i = 0687

⇐⇒ p`+1
i (βi + a2a3,i) exp(p`+1

i (βi + a2a3,i)) = p`+1
i a1,ia2 exp(p`+1

i a2a3,i)688

⇐⇒ βi =
1

p`+1
i

W (p`+1
i a1,ia2 exp(p`+1

i a2a3,i))− a2a3,i,(4.40)689
690

where the last equivalence comes from the fact that the Lambert W -function is single691
valued on satisfies the following identity for a pair (X,Y ) ∈ R2:692

(4.41) X exp(X) = Y ⇐⇒ X = W (Y ).693

In conclusion, the update in (4.32) reads as βκ+1 =
(
βκ+1
i

)
1≤i≤n where each compo-694

nent of this vector is calculated according to (4.40).695

5. Numerical Experiments. We now illustrate the performance of P-SASL-696
PAM by means of two examples of joint segmentation/deblurring of textured images697
(Sec. 5.1) and ultrasound images (Sec. 5.2). Let us first explain how our approach698
(common to both examples) is practically implemented in the context of joint seg-699
mentation/deblurring.700

The observation model reads as (2.1), and the goal is to retrieve an estimate of701
the sought image as well as a segmented version of it. The standard deviation σ of702
the noise affecting the data and the linear operator K are assumed to be known. We703
adopt the recovery strategy described in Section 4. We describe hereafter the setting704
of the model/algorithm hyperparameters.705

The model parameters that need to be tuned are the regularisation parameters706
(λ, ζ) ∈]0,+∞[2 for the TV terms, the δ1 > 0 and δ2 > 0 values for the pseudo Huber707
function, and the standard deviation σβ > 0 for the reparameterised scale parameter.708
Parameters (λ, ζ) are identified via an empirical search based on visual inspection,709
considering the fact that the higher the effect of the TV regularisation term, the710
flatter the estimated solution is. The third parameter, δ = (δ1, δ2), is tuned so that711
δ1 is chosen in the range [0.1, 3] as the one that defines the best trade-off between a712
high PSNR and a high overall accuracy (OA) value, while δ2 = δ1− 0.01. Eventually,713
for the last parameter σβ , experimental results give credit to the fact that the choice714
σβ = 1 is a robust one, so it is used in all our experiments.715
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The algorithmic hyperparameters include the stepsizes of the proximal steps, as
well as the preconditioning matrix involved in the preconditioned proximal gradient
step. We set (γ1, γ2, γ3) = (0.99, 1, 1). With this choice of γ2, the condition γ2 < 8.805
for the convexity of the function in (4.22) is satisfied. For the preconditioner, we
consider a regularized version of the inverse of the Hessian of the data fidelity function
in (4.2), given by

A = σ2(K>K + µIm)−1

where µ = 0.1, so that A is well defined.716
In order to obtain the labelling of a segmented image from our estimated shape717

parameter (denoted by p̂) we use a quantisation procedure based on Matlab functions718
multithresh and imquantize. The former defines a desired number of quantisation719
levels using Otsu’s method, while the latter performs a truncation of the data values720
according to the provided quantisation levels. We remark here that the number of721
labels does not need to be defined throughout the proposed optimisation procedure,722
but only at the final segmentation step. This step can thus be considered as a post-723
processing that is performed on the estimated solution.724

In order to evaluate the quality of the solution, we consider the following metrics:725
for the estimated image, we make use of the peak signal-to-noise ratio (PSNR) defined726
as follows, x being the original signal and x̂ the estimated one:727

PSNR = 10 log10

(
n max
i∈{1,...,n}

(xi, x̂i)
2/‖xi − x̂i‖2

)
,728

and of the structure similarity measure (SSIM) [70]. For the segmentation task we729
compute the percentage OA of correctly predicted labels.730

The stopping criterions for both the P-SASL-PAM outer loop and the inner loops731
are set by defining a threshold level on the relative change between two consecutive732
iterates of the involved variables and a maximum number of iterations. The outer733
loop in Algorithm 3.1 stops whenever ` = 2000 or when ‖z`+1 − z`‖/‖z`‖ < 10−4.734
The MM procedure to compute x`+1 in Algorithm 4.2 is stopped after 300 iterations735
or when ‖xκ+1 − xκ‖/‖xκ‖ < 5 × 10−3. The DFB procedure in Algorithm 4.3 to736
compute uκ+1 is stopped after 300 iterations or when ‖uκ+1−uκ‖/‖uκ‖ < 10−3. The737
PD procedure in Algorithms 4.4 and 4.5 computing p`+1 (resp. β`+1) terminates af-738
ter 200 iteration or when ‖pκ+1−pκ‖/‖pκ‖ < 10−3 (resp. ‖βκ+1−βκ‖/‖βκ‖ < 10−3).739

740
In the first example, we illustrate the performance of the proposed method on an741

image that is composed of three different texture regions. For the second example,742
we work on the ultrasound images considered in [30, Section IV.C] and provide a743
quantitative comparison with the methods that are mentioned in this work - namely,744
a combination of Wiener deconvolution and Otsu’s segmentation [54], a combination745
of Lasso deconvolution and SLaT segmentation [15], the adjusted Hamiltonian Monte746
Carlo (HMC) method [60], the Proximal Unadjusted Langevin algorithm (P-ULA)747
[56] and its preconditioned version (PP-ULA) [30] for joint deconvolution and seg-748
mentation.749

5.1. Example 1. In this first example, we propose an illustration of the ability750
of the proposed framework to deconvolve and segment a synthetically created image.751
The image, which we refer to as Texture, is a combination of three textures belonging752
to the Original Brodatz’s Database2 [1]. Each texture is located in a distinct region,753

2https://multibandtexture.recherche.usherbrooke.ca/original_brodatz.html
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ORIGINAL DEGRADED RECONSTRUCTED
x y x̂

Fig. 1. Original (x), Degraded (y) and Reconstructed (x̂) versions of Texture.

namely the background, a quadratic shape in the upper left corner and a circular shape754
in lower right corner. We display the resulting image in Figure 1(left). We assume755
that each texture is characterised by different GGD parameters and, in particular, we756
constrain the shape parameter to the interval [0.01, 10]. For the degradation process757
we choose K as the blur operator corresponding to the convolution with an isotropic758
Gaussian filter of size 7 × 7 and standard deviation 1, created with Matlab function759
fspecial. Furthermore, we utterly corrupt the data with additive white Gaussian760
noise with zero mean and small standard deviation σ = 0.1. The degraded image is761
displayed in Figure 1(middle).762

As a starting point for the algorithm we choose x0 as the degraded image y,763
(p0i )1≤i≤n is drawn from an i.i.d. uniform random distribution over the range [0.5, 1.5],764
and (β0

i )1≤i≤n is drawn from an i.i.d Gaussian distribution with zero mean and stan-765
dard deviation σβ = 1. Figure 1(right) the reconstructed image x̂, using P-SASL-766
PAM. Figure 2 shows the ability of P-SASL-PAM to accurately reconstruct a piecewise767
constant approximation of the shape parameter p. Namely, we propose a compari-768
son between the reference labelling of the textures in the image (Fig. 2(left)) and769
the estimated shape parameter p̂ (Fig. 2(middle)) along with its quantised version p̄770
(Fig. 2(right)), which corresponds to our estimated labelling. Figure 3 shows the de-771
cay of the cost function θ along the first 500 iterations of P-SASL-PAM, assessing its772
fast and stable convergence. Eventually, we report in Table 1 the metrics of the quan-773
titative evaluation of the estimated solution, which confirms the good performance of774
our proposed method.775

PSNR SSIM OA
33.13 0.95 99.7

Table 1
PSNR, SSIM and OA for Texture

5.2. Example 2. In this example, we illustrate the good performance of our776
approach on the joint deconvolution/segmentation of realistically simulated ultra-777
sound images with two regions (Simu1 ) and three regions (Simu2 ) extracted from778
[30]. We define K as the linear operator modelling the convolution with the point779
spread function of the probe, and set the noise variance to σ2 = 0.013 for Simu1 and780
σ2 = 33 for Simu2. Following the procedure outlined in [30], we initialise x0 using781
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REFERENCE ESTIMATED QUANTISED
LABELLING p̂ p̄

Fig. 2. Segmentation of the shape parameter for Texture: reference labelling, estimated p̂ and
quantised p̄.

Fig. 3. Texture: Decay of the objective value along 500 iterations.

a pre-deconvolved image obtained with a Wiener filter applied to the observed data782
y, (p0i )1≤i≤n is drawn from an i.i.d. uniform distribution in the range [0.5, 1.5], while783
(β0
i )1≤i≤n is drawn from an i.i.d. Gaussian distribution with zero mean and unit784

standard deviation.785
Figure 4 illustrates the B-mode image of the original x, of the degraded y, and786

of the reconstructed image x̂ on both examples. The B-mode image is the most787
common representation of an ultrasound image, displaying the acoustic impedance788
of a 2-dimensional cross section of the considered tissue. The reconstructed results789
in Figure 4(right) show clearly reduced blur and sharper region contours. We then790
report in Figure 5 the segmentation obtained from the estimated shape parameter via791
the aforementioned quantisation procedure, confirming its great capabilities. Figure 6792
shows a plot of the vectorised references for the shape parameter against the vectorised793
versions of the images obtained by assigning to each estimated region the median of794
the pi values within it. We notice that our estimated median values are consistent795
with the original ones. The results for Simu2 are slightly less accurate, but this is in796
agreement with the results presented in [30, Table III] for P-ULA, HMC and PP-ULA,797
suggesting that the configuration of the parameters for Simu2 is quite challenging.798
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Simu1

Simu2

ORIGINAL DEGRADED RECONSTRUCTED

Fig. 4. B-mode of Simu1 and Simu2. The B-mode image is the most common type of ultrasound
image, displaying the acustic impedance of a 2-dimensional cross section of the considered tissue.
All images are presented in the same scale [0,1].

Figure 7 shows the evolution of the cost function for both Simu1 and Simu2 along799
1000 iterations, hereagain showing the great convergence behavior of our algorithm.800

Eventually, Tables 2 and 3 propose a quantitative comparison of our results801
against those of the methods considered in [30]. From these tables we can conclude802
that the proposed variational method is able to compete with state-of-the-art Monte803
Carlo Markov Chain techniques in terms of both segmentation and deconvolution804
performance.805

METHOD PSNR SSIM OA
Wiener-Otsu 37.1 0.57 99.5
Lasso-SLaT 39.2 0.60 99.6

P-ULA 38.9 0.45 98.7
HMC 40.0 0.62 99.7

PP-ULA 40.3 0.62 99.7
OURS 40.2 0.61 99.9

Table 2
PSNR, SSIM and OA scores for Simu1

6. Conclusions. We investigated a novel approach for the joint reconstruction-806
feature extraction problem. The novelty in this work lies both in the problem for-807
mulation and in the resolution procedure. Firstly, we proposed a new variational808
model in which we introduced a flexible sparse regularisation term for the recon-809
struction task; secondly, we designed a new iterative block alternating minimization810
method, whose aim is to exploit the structure of the problem and the properties of811
the functions involved in it. We established convergence results for the proposed algo-812
rithm and illustrated the validity of the approach on numerical examples in the case of813
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Simu1

Simu2

REFERENCE ESTIMATED QUANTISED
p p̂ p̄

Fig. 5. Segmentation of the shape parameter for Simu1 and Simu2: reference p, estimated p̂
and quantised p̄.

(a) (b)

Fig. 6. Plot of the vectorised estimated shape parameter median values (blue) against the
reference values (red) for Simu1 (a) and Simu2 (b).

joint deconvolution-segmentation problems. We also included comparisons with state-814
of-the-art methods with respect to which our proposal registers a similar and even815
superior qualitative performance. An attractive aspect of the proposed work is that816
the space variant parameters defining the flexible sparse regularisation do not need817
to be defined in advance, but are inherently estimated by the iterative optimisation818
procedure.819
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(a) (b)

Fig. 7. Decay of the objective value along 500 iterations for Simu1 (a) and Simu2 (b).

METHOD PSNR SSIM OA
Wiener-Otsu 35.4 0.63 96.0
Lasso-SLaT 37.8 0.70 98.3

P-ULA 37.1 0.57 94.9
HMC 36.4 0.64 98.5

PP-ULA 38.6 0.71 98.7
OURS 37.9 0.67 97.5

Table 3
PSNR, SSIM and OA scores for Simu2
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