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Abstract
The joint problem of reconstruction/feature extraction is a challenging task in image processing. It
consists in performing, in a joint manner, the restoration of an image and the extraction of its fea-
tures. In this work, we firstly propose a novel non-smooth and non-convex variational formulation of
the problem. For this purpose, we introduce a versatile generalised Gaussian prior whose parameters,
including its exponent, are space-variant. Secondly, we design an alternating proximal-based optimi-
sation algorithm that efficiently exploits the structure of the proposed non-convex objective function.
We also analyse the convergence of this algorithm. As shown in numerical experiments conducted on
joint deblurring/segmentation tasks, the proposed method provides high-quality results.

Keywords: Image recovery ; Space-variant regularisation ; Alternating minimization ; Proximal algorithm ;
Block coordinate descent ; Image segmentation

1 Introduction
Variational regularisation of ill-posed inverse
problems in imaging relies on the idea of search-
ing for a solution in a well-suited space. A central
role in this context is played by ℓp spaces with
p ∈ (0,∞), and the power p of the corresponding
norms when p ≥ 1 [1–5] or seminorms when p ∈
(0, 1) [6–8]. For every vector u = (ui)1≤i≤n ∈ Rn

and p ∈ (0,+∞), the ℓp (semi-)norm is denoted
by ∥u∥p =

(∑n
i=1 |ui|p

)1/p. We usually omit p
when p = 2, so that ∥ · ∥ = ∥ · ∥2. The case
p ∈ (0, 1) has gained rising credit, especially
in the field of sparse regularisation. An exten-
sive literature has been focused on challenging

numerical tasks raised by the non-convexity of
the seminorms and the possibility of combining
them with linear operators to extract salient fea-
tures of the sought images [9, 10]. In [11], the
more general notion of F -norm is introduced in
order to establish functional analysis results on
products of ℓpi-spaces with pi ∈ (0, 2]. For some
x = (xi)1≤i≤n ∈ Rn, this amounts to studying the
properties of penalties of the form

∑n
i=1 |xi|pi , for

some positive exponents (pi)1≤i≤n. This approach
offers a more flexible framework by considering
a wider range of exponents than the standard
ℓp-based regularisation. However, it extends the
problem of choosing a suitable exponent p to a
whole sequence of exponents (pi)1≤i≤n. In [12],
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the authors proposed a non-convex regulariser
of the form

∑n
i=1 |xi|ϖ(|xi|), where each expo-

nent is expressed as a function of the absolute
magnitude of the data and function ϖ(·) is a
rescaled version of the sigmoid function, taking
values in the interval [0, 1]. In image restoration, a
similar approach consists in adopting space vari-
ant regularisation models built around a Total
Variation-like functional with a variable exponent∑n

i=1 ∥(∇x)i∥pi where ∇ is a discrete 2D gradi-
ent operator. The rationale is to select the set of
parameters (pi)1≤i≤n in order to promote either
edge enhancement (pi = 1) or smoothing (pi >
1) depending on the spatial location encoded by
index i. This model was introduced in [13] and
then put into practice firstly for pi ∈ [1, 2] in [14]
and then for pi ∈ (0, 2] in [15]. To conclude, in a
recent work [16], the authors proposed a modular-
proximal gradient algorithm to find solutions to
ill-posed inverse problems in variable exponents
Lebesgue spaces Lp(·)(Ω) with Ω ⊆ Rn, rather
than in L2(Ω). In all of these works, the so-called
space variant p-map (i.e. , (pi)1≤i≤n) is estimated
offline in a preliminary step and then kept fixed
throughout the optimisation procedure.

In this paper, we address the problem of
joint image recovery and feature extraction. Image
recovery amounts to retrieving an estimate of an
original image from a degraded version of it. The
degradation usually corresponds to the applica-
tion of a linear operator (e.g., blur, projection
matrix) to the image and the addition of a noise.
Feature extraction problems arise when one wants
to assign to an image a small set of parameters
which can describe or identify the image itself.
Image segmentation can be viewed as an exam-
ple of feature extraction, which consists of defining
a label field on the image domain so that pix-
els are partitioned into a predefined number of
homogeneous regions according to some specific
characteristics. A second example, similar to seg-
mentation, is edge detection, where one aims at
identifying the contour changes within different
regions of the image. Texture retrieval is a third
example. This task relies on the idea of assigning
a set of parameters to each coefficient of the image
– possibly in some transformed space – so that
the combination of all parameters defines a "signa-
ture" that represents the content of various spatial
regions. Joint image recovery and feature extrac-
tion consists in performing, in a joint manner, the

image recovery and the extraction of features in
the sought image.

A powerful and versatile approach for feature
extraction, that we propose to adopt here, assumes
that the data follow a mixture of generalised Gaus-
sian probability distribution (GGD) [17–19]. The
GGD model results in a sum of weighted ℓpi-
based terms in the criterion, with general form∑n

i=1 ϑi|xi|pi with {ϑi}1≤i≤n ⊂ [0,+∞). We thus
aim at jointly estimating an optimal configura-
tion for (ϑi, pi)1≤i≤n, and retrieving the image.
Under an assumption of consistency within the
exponents’ values of a given region of the fea-
tures space, we indeed obtain the desired feature
extraction starting from the estimated p-map. The
latter amounts to minimizing a non-smooth and
non-convex cost function.

This specific structure of the proposed objec-
tive function suggests the use of an alternating
minimisation procedure. In such an approach,
one sequentially updates a subset of parameters
through the resolution of an inner minimization
problem, while the other parameters are assumed
to be fixed. This approach has a standard form
in the Block Coordinate Descent method (BCD)
(also known as Gauss-Seidel algorithm) [20]. In the
context of non-smooth and non-convex problems,
the simple BCD may, however, show instabilities
[21], which resulted in an extensive construction
of alternative methods that efficiently exploit the
characteristics of the functions, and introduce
powerful tools to improve the convergence guar-
antees of BCD, or overcome difficulties arising in
some formulations. In this respect, a central role
is played by proximal methods [22, 23]: a prox-
imally regularised BCD (PAM) for non-convex
problems was studied in [24]; a proximal linearised
method (PALM) and its inertial and stochastic
versions were then proposed in [25] resp. [26] and
[27]; in [28], the authors investigated the advan-
tage of a hybrid semi-linearised scheme (SL-PAM)
for the joint task of image restoration and edge
detection based on a discrete version of the Mum-
ford–Shah model. A structure-adapted version of
PALM (ASAP) was designed in [29, 30] to exploit
the block-convexity of the coupling terms and the
regularity of the block-separable terms arising in
some practical applications such as image colori-
sation and blind source separation. The extension
to proximal mappings defined w.r.t. a variable
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metric was firstly introduced in [31], leading to
the so-called Block Coordinate Variable Metric
Forward-Backward. An Inexact version and a line
search based version of it were presented in [32]
and [33], respectively. In [34] the authors intro-
duced a Majorisation-Minimisation (MM) strat-
egy within a Variable Metric Forward-Backward
algorithm to tackle the challenging task of com-
puting the proximity operator of composite func-
tions. We refer to [35] for an in-depth analysis of
how to introduce a variable metric into first-order
methods. In [36], the authors introduced a fam-
ily of block-coordinate majorisation-minimisation
methods named TITAN. Various majorisation
strategies can be encompassed by their framework,
such as proximal surrogates, Lipschitz gradient
surrogates, or Bregman surrogate functions. Con-
vergence of the algorithm iterates are shown in
[32, 36], under mild assumptions, that include
the challenging non-convex setting. These stud-
ies emphasised the prominent role played by the
Kurdyka-Łojasiewicz (KL) inequality [37].

In the proposed problem formulation, the
objective function includes several non-smooth
terms, as well as a quadratic term – hence
Lipschitz differentiable – that is restricted to
a single block of variables. This feature makes
the related subproblem well-suited for a split-
ting procedure that involves an explicit gradient
step with respect to this term, combined with
implicit proximal steps on the remaining blocks
of variables. Variable metrics within gradien-
t/proximal steps would also be desirable for
convergence speed purposes. As we will show,
the TITAN framework from [36] allows building
and analysing such an algorithm. Unfortunately,
the theoretical convergence properties of TITAN
assume exact proximal computations at each
step, which cannot be ensured in practice in our
context. To circumvent this, we thus propose
and prove the convergence of an inexact version
of a TITAN-based optimisation scheme. Inexact
rules in the form of those studied in [32] are
considered. We refer to the proposed method as
to a Preconditioned Semi-Linearised Structure
Adapted Proximal Alternating Minimisation
(P–SASL–PAM) scheme. We investigate the con-
vergence properties for this algorithm by relying
on the KŁ property first considered in [37]. Under
analytical assumptions on the objective function,
we show the global convergence toward a critical

point of any sequence generated by the proposed
method. Then, we explicit the use of this method
in our problem of image recovery and feature
extraction. The performance of the approach is
illustrated by means of examples in the field of
image processing, in which we also show quanti-
tative comparisons with state-of-the-art methods.

In a nutshell, the contributions of this work
are (i) the proposition of an original non-convex
variational model for the joint image recovery
and feature extraction problem; (ii) the design of
an inexact block coordinate descent algorithm to
address the resulting minimisation problem; (iii)
the convergence analysis of this scheme; (iv) the
illustration of the performance of the proposed
method through a numerical example in the field
of ultrasound image processing.

The paper is organised as follows. In Section 2
we introduce the degradation model and report
our derivation of the objective function for image
recovery and feature extraction, starting from
statistical assumptions on the data. In Section 3,
we describe the proposed P-SASL-PAM method
to address a general non-smooth non-convex
optimization problem; secondly we show that
the proposed method converges globally, in the
sense that the whole generated sequence con-
verges to a (local) minimum. The application
of the P-SASL-PAM method to the joint recon-
struction/segmentation problem is described in
Section 4. Some illustrative numerical results are
shown in Section 5. Conclusions are drawn in
Section 6.

2 Model Formulation
In this section, we describe the construction of the
objective function associated to the joint recon-
struction/feature extraction problem. After defin-
ing the degradation model, we report the Bayesian
model that is reminiscent from the one considered
in [17, 19] in the context of ultrasound imaging.
Then, we describe the procedure that leads us
to the definition of our addressed optimization
problem.
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2.1 Observation Model
Let x ∈ Rn and y ∈ Rm be respectively the vec-
torised sought-for solution and the observed data,
which are assumed to be related according to the
following model

y = Kx+ ω, (1)

where K ∈ Rm×n is a linear operator, and ω ∼
N (0, σ2Im), i.e. the normal distribution with zero
mean and covariance matrix σ2Im with σ > 0 and
Im states for the m ×m identity matrix. We fur-
ther assume that x can be characterised by a finite
set of k features that are defined in a suitable
space, where the data are described by a simple
model relying on a small number of parameters.
The Generalised Gaussian Distribution (GGD)

(∀t ∈ R) p(t; p, α)

=
1

2α1/pΓ
(
1 + 1

p

) exp

(
−|t|p
α

)
(2)

with (p, α) ∈ (0,+∞)2 has shown to be a suitable
and flexible tool for this purpose [17–19]. Each
feature can be identified by a pair (pj , αj) for
j ∈ {1, . . . , k}, where parameter p is proportional
to the decay rate of the tail of the probability den-
sity function (PDF) and parameter α models the
width of the peak of the PFD. Taking into account
the role that p and α play in the definition of the
PDF profile, these two parameters are generally
referred to as shape and scale parameter.

Assuming that K and σ are known, the task
we address in this work is to jointly retrieve x
(reconstruction) and obtain a good represen-
tation of its features through an estimation of
the underlying model parameters (pj , αj) for
j ∈ {1, . . . , k} (feature extraction). Starting from
a similar statistical model as the one considered
in [17, 19], we infer a continuous variational
framework which does not rely on the a priori
knowledge of the exact number of features k. We
derive this model by performing a Maximum a
Posteriori estimation, which allows us to formu-
late the Joint Image Reconstruction and Feature
Extraction task as a non-smooth and non-convex
optimisation problem involving a coupling term
and a block-coordinate separable one.

2.2 Bayesian Model
From (1), we derive the following likelihood

p(y|x, σ2)

=
1

(2πσ2)n/2
exp

(
−∥y −Kx∥2

2σ2

)
. (3)

Assuming then that the components of x are inde-
pendent conditionally to the knowledge of their
feature class, the prior distribution of x is a
mixture of GGDs

p(x|p, α)

=

k∏

j=1

1
(
2α

1/pj
j Γ

(
1 + 1

pj

))Nj exp
(
−∥xj∥pjpj

αj

)
.

(4)

Hereabove, for every x ∈ Rn and a feature labels
set j ∈ {1, . . . , k}, we define xj ∈ RNj as the vec-
tor containing only the Nj components of x that
belong to the j-th feature. Following the discus-
sion in [38], for the shape parameter, we choose a
uniform distribution on a certain interval [a, b] ⊂
[0,+∞):

p(p) =
k∏

j=1

1

b− a
I[a,b](pj). (5)

This choice stems from the fact that setting a = 0
and b = 3 allows covering all possible values of the
shape parameter encountered in practical appli-
cations, but no additional information about this
parameter is available. For the scale parameter, we
adopt the Jeffreys distribution to reflect the lack
of knowledge about this parameter:

p(α) =
k∏

j=1

1

αj
I[0,+∞)(αj). (6)

Note that such kind of prior is often used for
scale parameters [39]. Hereabove, IS represents
the characteristic function of some subset S ⊂ R,
which is equal to 1 over S, and 0 elsewhere.
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2.3 Variational Model
In order to avoid to define a priori the number of
features, we regularise the problem by considering
the 2D Total Variation (TV) of the GGD param-
eters (p, α) ∈ (0,+∞)n × (0,+∞)n. The idea of
using Total Variation to define a segmentation
procedure is studied in [40–45] by virtue of the co-
area formula: the authors propose to replace the
boundary information term of the Mumford-Shah
(MS) functional [46] with the TV convex integral
term. This choice yields a non-tight convexifica-
tion of the MS model that does not require setting
the number of segments in advance. The overall
segmentation procedure is then built upon two
steps: the first one consists of obtaining a smooth
version of the given image that is adapted to seg-
mentation by minimising the proposed functional
with convex methods; the second step consists of
partitioning the obtained solution into the desired
number of segments, by e.g. defining the thresh-
olds with Otsu’s method [47] or the k-means
algorithm. The strength of our approach is that
the second step (i.e. the actual segmentation step)
is independent from the first one; hence it is pos-
sible to set the number of segments (i.e. , labels)
without solving the optimisation problem again.

In the considered model, the introduction of a
TV prior leads to a minimization problem that is
non-convex with respect to α. To circumvent this
issue, a possible strategy would involve applying
the variable change β = 1/α, which leads to a
convex problem with regard to β. However, after
performing some tests, we noticed that this choice
tends to promote extreme values 0 or +∞. We
then opted for the following reparameterisation for
the scale parameter: let β = (βi)1≤i≤n ∈ Rn be
such that, for every i ∈ {1, . . . , n},

βi =
1

pi
lnαi, (7)

and let us choose for this new variable a non-
informative Gaussian prior that is defined on the
whole space of configurations with mean µβ ≥ 0
and standard deviation σβ > 0. The choice of a
non-necessarily zero-mean distribution stems from
the idea of having a more flexible prior to represent
our reparameterised scale parameter.

Thus, replacing α with β and further introduc-
ing TV regularisation potentials (weighted by the

regularisation parameters λ > 0 and ζ > 0) leads
to the following reformulation of distributions
(4)-(6):

p(x|p, β)

=

n∏

i=1

1

2 exp(βi)Γ
(
1 + 1

pi

) exp (−|xi|pi exp(−piβi))

(8)

p(p) = cp exp(−λTV(p))

n∏

i=1

1

b− a
I[a,b](pi) (9)

p(β)

= cβexp(−ζTV(β))

n∏

i=1

1√
2πσβ

exp
(
− (βi − µβ)

2

2σ2
β

)
.

(10)

where (cp, cβ) ∈ (0,+∞)2 are normalisation con-
stants. In Figure 1, we depict the probabilistic
dependence graph defining the relations between
variables and hyperparameters in our model.

The joint posterior distribution is determined
as follows:

p(x, p, β|y) ∝ p(y|x, p, β)p(x, p, β)
∝ p(y|x, p, β)p(x|p, β)p(p)p(β). (11)

Let us take the negative logarithm of (11), then
computing the Maximum a Posteriori estimates
(i.e., maximising the joint posterior distribu-
tion) is equivalent to the following optimization
problem, which we refer to as the joint image
reconstruction and feature extraction problem

minimize
(x,p,β)∈Rn×Rn×Rn

Θ(x, p, β) =
1

2σ2
∥y −Kx∥2

+

n∑

i=1

(
|xi|pie−piβi + lnΓ(1 +

1

pi
) + ι[a,b](pi) + βi

+
(βi − µβ)

2

2σ2
β

)
+ λTV(p) + ζTV(β). (12)

Hereabove, ιS represents the indicator function
of some subset S ⊂ R, which is equal to 0 over S,
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Fig. 1: Probabilistic dependence graph of our
model. Hyperparameters are represented as dia-
monds, and variables as ellipses: a and b are
the lower and the upper bound for the interval
appearing in the uniform distribution of the shape
parameter, p is the shape parameter, α is the origi-
nal scale parameter, β is the reparameterised scale
parameter with mean µβ and standard deviation
σβ , x is the sought signal, y is the observed one, K
is the linear operator, and ω is the additive Gaus-
sian noise with standard deviation σ.

and +∞ elsewhere.

In [28], the authors proposed a generalised
discrete Mumford-Shah variational model that is
specifically designed for the joint image recon-
struction and edge detection problem. In contrast,
the model we propose in (12) is well suited to
encompass a wider class of problems. In Section 5,
we present two applications, namely in the con-
text of wavelet-based image restoration and in the
context of joint deblurring/segmentation of ultra-
sound images. In particular, we notice that when
restricted to variable x for a given set of parame-
ters (p, β), the formulation (12) boils down to the
flexible sparse regularisation model

minimize
x∈Rn

1

2σ2
∥y−Kx∥2 +

n∑

i=1

|xi|pie−piβi , (13)

where the contribution of the ℓpi regularisation
term is itself weighted in a space varying fashion.

Function Θ in (12) is non-smooth and non-
convex. It reads as the sum of a coupling term
and three block-separable terms. In particular,

the block-separable data-fit term relative to x
is quadratic and hence has a Lipschitz contin-
uous gradient. Our proposed algorithm aims to
leverage this property, which is generally not
accounted for by other BCD methods. To this
aim, we exploit a hybrid scheme that involves
both standard and linearised proximal steps. The
details about the proposed method are presented
in the next section.

3 Preconditioned Structure
Adapted Semi-Linearised
Proximal Alternating
Minimisation
(P-SASL-PAM)

In this section, we introduce a BCD-based method
to address a class of sophisticated optimiza-
tion problems that includes (12) as a special
case. We start the section by useful preliminaries
about subdifferential calculus. Then, we present
the Kurdyka-Łojasiewicz property, which plays a
prominent role in the convergence analysis of
BCD methods in a non-convex setting. Finally, we
define problem (20), itself generalising (12), for
which we derive our proposed BCD-based algo-
rithm and show its convergence properties. The
so-called Preconditioned Structure Adapted Semi-
Linearised Proximal Alternating Minimisation (P-
SASL-PAM) approach mixes both standard and
preconditioned linearised proximal regularisation
on the different coordinate blocks of the criterion.

3.1 Subdifferential Calculus
Let us now recall some definitions and elements
of subdifferential calculus that will be useful in
the upcoming sections. For a proper and lower
semicontinuous function h : Rn → (−∞,∞], the
domain of h is defined as

domh = {u ∈ Rn | h(u) < +∞} .

Firstly, we recall the notion of subgradients and
subdifferential for convex functions.
Definition 1 (Subgradient of a convex function).
Let h : Rn → (−∞,∞] be a proper convex
lower semicontinuous function. The subdifferential
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∂h(u+) of h at u+ ∈ Rn is the set of all vectors
r ∈ Rn, called subgradients of h at u+, such that

∀u ∈ Rn h(u) ≥ h(u+) + ⟨r, u− u+⟩.

If u+ /∈ domh, then ∂h(u+) = ∅.
Secondly, we consider the more general notion

of (limiting)-subdifferential for non-necessarily
convex functions, as proposed in [48, Definition
8.3].
Definition 2 (Limiting Subdifferential). Let h :
Rn → (−∞,+∞] be a proper and lower semicon-
tinuous function. For a vector u+ ∈ Rn,

• the Fréchet subdifferential of h at u+, written
as ∂̂h(u+), is the set of all vectors r ∈ Rn such
that

h(u) ≥ h(u+) + ⟨r, u− u+⟩+ o(∥u− u+∥);

if u+ /∈ dom h, then ∂̂h(u+) = ∅;
• the limiting-subdifferential of h at u+, denoted

by ∂h(u+), is defined as

∂h(u+) = {r ∈ Rn | ∃uk → u+,

h(uk) → h(u+), rk → r, rk ∈ ∂̂h(uk)}.

If h is lower semicontinuous and convex, then
the three previous notions of subdifferentiality are
equivalent, i.e. ∂̂h(u+) = ∂h(u+). If h is differ-
entiable, then ∂h(u+) = {∇h(u+)}. Now, it is
possible to formalise the notion of critical points
for a general function:
Definition 3 (Critical point). Let h : Rn →
(−∞,+∞] be a proper function. A point u∗ ∈ Rn

is said to be a critical (or stationary) point for h
if 0 ∈ ∂h(u∗).

Eventually, we define the notion of proximal
maps relative to the norm induced by a positive
definite matrix.
Definition 4. Let Sn be the set of symmetric and
positive definite matrices in Rn×n. For a matrix
A ∈ Sn, the weighted ℓ2-norm induced by A is
defined as

(∀u ∈ Rn) ∥u∥A = (u⊤Au)1/2. (14)

Definition 5. Let h : Rn → (−∞,+∞] be a
proper and lower semicontinuous function, let A ∈
Sn and u+ ∈ Rn. The proximity operator of func-
tion h at u+ with respect to the norm induced by

A is defined as

proxA
h (u

+) = argminu∈Rn

(
1

2
∥u− u+∥2A + h(u)

)
.

(15)
Note that proxA

h (u
+), as defined above, can be

the empty set. It is nonempty for every u+ ∈ Rn, if
h is lower-bounded by an affine function. In addi-
tion, it reduces to a single-valued operator when
h is convex.

In order to deal with the situation when no
closed-form proximal formulas are available (as
it might be the case for non-trivial precondition-
ing metrics A), we take into account an inexact
notion of proximal computation in the sense of [37,
Theorems 4.2 and 5.2] and [32]:
Definition 6. Let h : Rn → (−∞,+∞] be a
proper and lower semicontinuous function, let A ∈
Sn, τ > 0 and u+ ∈ Rn. Then u∗ ∈ Rn is an
inexact proximal point for h at u+ if the following
relative error conditions are satisfied:
(i) Sufficient Decrease Condition:

h(u∗) +
1

2
∥u+ − u∗∥2A ≤ h(u+) (16)

(ii) Inexact Optimality: there exists r ∈ ∂h(u∗)
such that

∥r∥ ≤ τ∥u+ − u∗∥. (17)

In this case we write that u∗ ∈ proxA,τ
h (u+).

Remark 1. We highlight that when exact proxi-
mal points are considered, the optimality condition
reads as

0 ∈ ∂h(u∗) +A(u+ − u∗) (18)

implying that there exists r ∈ ∂h(u∗) such that
r = A(u∗ − u+).

3.2 The KŁ-Property
Most of the works related to BCD-based algo-
rithms rely on the framework developed by
Attouch, Bolte, and Svaiter in their seminal paper
[37] in order to prove the convergence of block
alternating strategies for non-smooth and non-
convex problems. A fundamental assumption in
[37] is that the objective function satisfies the
Kurdyka-Łojasiewicz (KŁ) property [49–51]. We
recall the definition of this property as it was
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given in [25]. Let η ∈ (0,+∞] and denote
by Φη the class of concave continuous func-
tions φ : [0,+∞) → [0,+∞) satisfying the follow-
ing conditions:

(i) φ(0) = 0;
(ii) φ is C1 on (0, η) and continuous at 0;
(iii) for every s ∈ (0, η), φ′(s) > 0.

For any subset S ⊂ Rn and any point u+ ∈ Rn,
the distance from u+ to S is defined by

dist(u+, S) = inf
u∈S

∥u+ − u∥

with dist(u+,∅) = +∞.
Definition 7 (KŁ property). Let h : Rn →
(−∞,+∞] be a proper and lower semicontinuous
function.

(i) Function h is said to satisfy the Kurdyka-
Łojasiewicz property at u+ ∈ dom ∂h if there
exist η ∈ (0,+∞], a neighbourhood U of u+

and a function φ ∈ Φη such that, for every
u ∈ U ,

h(u+) < h(u) < h(u+) + η

⇒ φ′(h(u)− h(u+)) dist(0, ∂h(u)) ≥ 1.
(19)

(ii) Function h is said to be a KŁ function if
it satisfies the KŁ property at each point of
dom ∂h.

3.3 Proposed Algorithm
Let us consider that every element ζ ∈ RN is
block-decomposed as ζ = (ζ0, . . . , ζd), with, for
every i ∈ {0, . . . , d}, ζi ∈ Rni , with

∑d
i=0 ni = N .

As we will show in Subsection 4.1, Problem (12) is
a special instance of the general class of problems
of the form

minimize
ζ∈RN

θ(ζ) = q(ζ) + f(ζ0) +

d∑

i=1

gi(ζi), (20)

under the following assumption:
Assumption 1.

1. Function q : RN → R is bounded from below
and differentiable with Lipschitz continuous
gradient on bounded subsets of RN .

2. Function f : Rn0 → R is differentiable
with globally Lipschitz continuous gradient of
constant Lf > 0, and is bounded from below.

3. For every i ∈ {1, . . . , d}, function gi : Rni →
(−∞,+∞] is proper, lower semicontinuous
and bounded from below and the restriction
to its domain is continuous.

4. θ is a KŁ function.

Remark 2. The assumption of continuity in
Assumption 1.3 is standard in the context of inex-
act minimisation algorithm (see the assumptions
in [37, Theorem 4.1, Theorem 5.2]).

Throughout the paper we will use the following
notation: for every (ζi′)1≤i′≤d ∈ Rn1 ×· · ·Rnd and
i ∈ {0, . . . , d}, ζ̸=i = (ζ0, . . . , ζi−1, ζi+1, . . . , ζd)
and

(∀z ∈ Rni) (z; ζ ̸=i)

= (ζ0, . . . , ζi−1, z, ζi+1, . . . , ζd). (21)

In order to proceed with the algorithm construc-
tion and analysis, let us recall the notion of partial
subdifferentiation for a function θ : RN −→ R as
the one in (20). For every i ∈ {0, . . . , d} given a
fixed ζ̸=i, the subdifferential of the partial func-
tion θ(· ; ζ̸=i) with respect to the i-th block, is
denoted as ∂iθ(· ; ζ ̸=i). Given these definitions, we
have the following differential calculus property
(see [48, Exercises 8.8(c), Proposition 10.5]:

Proposition 1. Let function θ be defined as in
(20). Under Assumption 1, the following equality
holds: for every ζ ∈ RN ,

∂θ(ζ)

= {∇0q(ζ) +∇f(ζ0)} ××d

i=1 (∇iq(ζ) + ∂gi(ζi))

=×d

i=0∂iθ(ζ). (22)

We are now ready to introduce our block
alternating algorithm P-SASL-PAM, outlined in
Algorithm 1, to solve problem (20). Throughout
the paper, we use the following notation: for every
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ℓ ∈ N and and for i ∈ {1, . . . , d},

ζℓ+1,0 = ζℓ;

ζℓ+1,i = (ζℓ+1
0 , . . . , ζℓ+1

i−1 , ζ
ℓ
i , ζ

ℓ
i+1, . . . , ζ

ℓ
d)

ζℓ+1,d+1 = ζℓ+1.

Algorithm 1 P-SASL-PAM to solve (20).
Initialize ζ00 ∈ dom f , ζ0i ∈ dom gi for i ∈
{1, . . . , d}
Set (Aℓ)ℓ∈N ∈ Sn0

for every ℓ ∈ N
Set γ0 ∈ (0, 1) and γi > 0 and τi > 0 for
i ∈ {1, . . . , d} and τi > 0 for i ∈ {0, . . . , d}
For ℓ = 0, 1, . . . until convergence

ζℓ+1
0 ∈ proxAℓ,τ0

γ0q(· ;ζℓ̸=0)

(
ζℓ0 − γ0A

−1
ℓ ∇f(ζℓ0)

)
(23)

For i = 1, . . . , d

ζℓ+1
i ∈ proxτi

γiθ(· ; ζℓ+1,i
̸=i )

(ζℓi ) (24)

end
end

The proposed method sequentially updates
one of the coordinate blocks (ζ0, . . . , ζd) involved
in function θ, through proximal and gradient
steps. Our algorithm P-SASL-PAM, summarised
in Algorithm 1, mixes both standard and lin-
earised proximal regularisation on the coordinate
blocks as in SLPAM [28], while inverting the
splitting in order to gain more efficient proximal
computations as in ASAP [29, 30]. On the one
hand, the lack of global Lipschitz-continuity of
∇q prevents us from adopting BCVMFB [32]. On
the other hand, the lack of differentiability for the
whole set of block-separable functions prevents us
from adopting ASAP [29, 30]. Our approach takes
full advantage of the Lipschitz differentiability
assumption on f to perform a linearised step for
the update of variable ζ0, while the remaining ζi’s
are updated sequentially, according to a standard
proximal step. In addition, in order to accelerate
the convergence, a preconditioned version of the
linearised step is used, which relies on the MM-
based variable metric forward-backward strategy
introduced in [52]. The latter relies on the follow-
ing technical assumptions:

Assumption 2. We choose a sequence of SPD
matrices (Aℓ)ℓ∈N in such a way that there exists
(ν, ν) ∈ (0,+∞)2 such that, for every ℓ ∈ N,

νIn0 ⪯ Aℓ ⪯ νIn0 . (25)

Assumption 3. The quadratic function defined,
for every ζ+0 ∈ Rn0 and every SPD matrix A ∈ Sn

satisfying Assumption 2, as

(∀ζ0 ∈ Rn0) ϕ(ζ0, ζ
+
0 )

= f(ζ+0 ) + ⟨ζ0 − ζ+0 ,∇f(ζ+0 )⟩+ 1

2
∥ζ+0 − ζ0∥2A

(26)

is a majorant function of f at ζ+0 , i.e.

(∀ζ0 ∈ Rn0) f(ζ0) ≤ ϕ(ζ0, ζ
+
0 ). (27)

Remark 3. Since f satisfies Assumption 1, the
Descent Lemma [53, Proposition A.24] applies,
yielding

(∀(ζ0, ζ+0 ) ∈ Rn0 × Rn0) f(ζ0)

≤ f(ζ+0 ) + ⟨ζ0 − ζ+0 ,∇f(ζ+0 )⟩+ Lf

2
∥ζ+0 − ζ0∥2.

This guarantees that the preconditioning matrix
A = Lf In0 satisfies Assumption 2, with
ν = ν = Lf . Apart from this simple choice for
matrix A, more sophisticated construction strate-
gies have been studied in the literature [52, 54, 55].
Practical choices of metrics for Problem (12) will
be discussed in Section 5, which is dedicated to
numerical experiments.

Remark 4. Alternative approaches to deal with
the lack of global Lipschitz continuity of ∇q could
involve a backtracking strategy as in [56] or adap-
tive step sizes based on an estimate of the local
smoothness of the function as in [57, 58].

Remark 5. Esentially Cyclic update rule
Even though Algorithm 1 relies on a sequen-
tial update rule for the blocks of coordinates
i ∈ {0, . . . , d}, an extension to a quasi-cyclic rule
with interval d ≥ d is possible. In this case, at
each iteration, the index i ∈ {0, . . . , d} of the
updated block is randomly chosen in such a way
that each of the d blocks is updated at least once
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every d steps.

P-SASL-PAM involves the computation of
three proximal operators, at each iteration ℓ ∈
N. As we will show in Subsection 3.3.1, if these
operators are exactly computed, P-SASL-PAM
fits within the general algorithmic framework
TITAN [36], and, as such, inherits its convergence
properties. The links between the exact and the
inexact form of Algorithm 1 is discussed in Sub-
section 3.3.2. The convergence of the inexact form
of Algorithm 1 is shown in Subsection 3.4.

3.3.1 Links between P-SASL-PAM and
TITAN

Let us show that the exact version of Algorithm 1
is a special instance of the TITAN algorithm
from [36]. The scheme of TITAN relies on an
MM strategy that, at each iteration, for each
block of coordinates, minimizes a block surrogate
function, i.e. a majorizing approximation for the
restriction of the objective function to this block.
Let us define formally the notion of block surro-
gate function in the case of Problem (20).

Definition 8 (Block surrogate function). Con-
sider a function h : RN −→ R. For every
i ∈ {0, . . . , d}, function hi : Rni × RN → R is
called a block surrogate function of h at block i
if (ζi, ξ) 7→ hi(ζi; ξ) is continuous in ξ, lower-
semicontinuous in ζi and the following conditions
are satisfied:
(i) hi(ξi; ξ) = h(ξ) for every ξ ∈ RN

(ii) hi(ζi; ξ) ≥ h(ζi; ξ ̸=i) for all ζi ∈ Rni and
ξ ∈ RN

Function hi(·; ξ) is said to be a block surrogate
function of h at block i in ξ. The block approxima-
tion error for block i at a point (ζi, ξ) ∈ Rni ×RN

is then defined for every i ∈ {0, . . . , d} as

ei(ζi; ξ) := hi(ζi; ξ)− h(ζi; ξ ̸=i).

Let us now show that each of the steps of
Algorithm 1 is actually equivalent to minimising
an objective function involving a block surrogate
function of the differentiable terms in θ for block
i ∈ {0, . . . , d} at the current iterate.

Solving (23) in Algorithm 1 is equivalent to
solving

argmin
ζ0∈Rn0

h0(ζ0; ζ
ℓ) (28)

where

(∀ζ0 ∈ Rn0) h0(ζ0; ζ
ℓ) =

q(ζ0; ζ
ℓ
̸=0)+f(ζ

ℓ
0)+⟨∇f(ζℓ0), ζ0−ζℓ0⟩+

1

2γ1
∥ζℓ0−ζ0∥2Aℓ ,

is a surrogate function of (q(· ; ζℓ̸=0) + f by virtue
of Assumption 3. Notice that function h0 is con-
tinuous on the block (ζ0; ζ) ∈ Rn0 × RN .

Solving (24) for a certain block index i ∈
{1, . . . , d} in Algorithm 1 is equivalent to solving

argmin
ζi∈Rni

hi(ζi; ζ
ℓ+1,i) + gi(ζi) (29)

where the function

(∀ζi ∈ Rni) hi(ζi; ζ
ℓ+1,i) =

q(ζi; ζ
ℓ+1,i
̸=i ) +

1

2γi
∥ζi − ζℓi ∥2

is a proximal surrogate of function q(· , ζℓ+1
̸=i ) at

its i-th block in ζℓ+1,i. Note that function hi is
continuous on RN .

In a nutshell, Algorithm 1 alternates between
minimization of problems involving block surro-
gates for the differentiable terms of function θ,
and, as such, can be viewed as a special instance
of TITAN [36]. This allows us to state the follow-
ing convergence result for a sequence generated
by Algorithm 1.

Theorem 2. Let Assumptions 1-3 be satisfied.
Assume also that the sequence (ζℓ)ℓ∈N generated
by Algorithm 1 is bounded. Then,

i)
∑+∞

ℓ=0 ∥ζℓ+1 − ζℓ∥ < +∞;
ii) (ζℓ)ℓ∈N converges to a critical point ζ∗ for

function θ in (20).

Proof. We start the proof by identifying the three
block approximation errors for the block surrogate
functions at an iteration ℓ ∈ N:

(∀ζ0 ∈ Rn0) e0(ζ0; ζ
ℓ)

= f(ζℓ0)+⟨∇f(ζℓ0), ζ0−ζℓ0⟩+
1

2γ0
∥ζℓ0−ζ0∥2Aℓ−f(ζ0)
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and for i ∈ {1, . . . , d}

(∀ζi ∈ Rni) ei(ζi; ζ
ℓ+1,i) =

1

2γi
∥ζi − ζℓi ∥2.

Clearly e0(· ; ζℓ) (resp. ei(· ; ζℓ+1,i) for i ∈
{1, . . . , d}) are differentiable at ζℓ0 (resp. at ζℓi for
i ∈ {1, . . . , d}) and the following holds for every
i ∈ {0, . . . , d}:

ei(ζ
ℓ
i ; ζ

ℓ+1,i) = 0, ∇iei(ζ
ℓ
i ; ζ

ℓ+1,i) = 0.

This shows that [36, Assumption 2] is satisfied.
From (23) and Assumptions 2-3, we deduce

that

q(ζℓ+1,1)+ f(ζℓ+1
0 )+

1

2

(
1

γ0
− 1

)
ν∥ζℓ+1

0 − ζℓ0∥2

≤ q(ζℓ) + f(ζℓ1)

which implies that the Nearly Sufficient Descend-
ing Property [36, (NSDP)] is satisfied for the first
block of coordinate with constant 1

2

(
1
γ0

− 1
)
ν.

On the other hand, for every i ∈ {1, . . . , d}, func-
tion ei(· ; ζℓ+1,i) satisfies [36, Condition 2], which
implies that [36, (NSDP)] also holds for i-the block
of coordinates with the corresponding constant
1/γi.

Moreover, [36, Condition 4.(ii)] is satisfied by
Algorithm 1 with

l = max

{
ν

2

(
1

γ0
− 1

)
,
1

γ1
, . . . ,

1

γd

}

and this constant fulfill the requirements of [36,
Theorem 8]. In addition, by virtue of Proposi-
tion 1, [36, Assumption 3.(i)] holds, while the
requirement in [36, Assumption 3.(ii)] is guar-
anteed by the fact that all the block surrogate
functions are continuously differentiable.

Finally, since Algorithm 1 does not include
any extrapolation step, we do not need to verify
[36, Condition 1], whereas [36, Condition 4.(i)] is
always satisfied.

In conclusion, we proved that all the require-
ments of [36, Proposition 5, Theorems 6 and 8]
are satisfied. [36, Proposition 5] guarantees that
the sequence has the finite-length property as
expressed by i),while [36, Theorems 6 and 8] state

that the sequence converges to a critical point ζ∗
of (20), which concludes the proof.

3.3.2 Well-definition of Algorithm 1

Now, we show that the inexact updates involved
in Algorithm 1 are well-defined. To do so, we prove
that the P-SASL-PAM algorithm with exact prox-
imal computations can be recovered as a special
case of Algorithm 1.

By the variational definition of proximal oper-
ator, for every ℓ ∈ N, the iterates of Algorithm 1
satisfy, for every i ∈ {1, . . . , d},

ζℓ+1
0 ∈ argmin

u0∈Rn0

{
q(u0 ; ζ

ℓ
̸=0) + ⟨∇f(ζℓ0), u0 − ζℓ0⟩

+
1

2γ0
∥u0 − ζℓ0∥2Aℓ

}
(30)

ζℓ+1
i ∈ argmin

ui∈Rni

{
q(ui ; ζ

ℓ+1,i
̸=i ) + gi(ui)

+
1

2γi
∥ui − ζℓi ∥2

}
(31)

so that

q(ζℓ+1,1) + ⟨∇f(ζℓ0), ζℓ+1
0 − ζℓ0⟩

+
1

2γ0
∥ζℓ+1

0 − ζℓ0∥2Aℓ ≤ q(ζℓ) (32)

q(ζℓ+1,i+1) + g(ζℓ+1
i )

+
1

2γi
∥ζℓ+1

i − ζℓi ∥2 ≤ q(ζℓ+1,i) + g(ζℓi ), (33)

which implies that the sufficient decrease condi-
tion (16) is satisfied for every i ∈ {0, . . . , d}.

The use of the Fermat’s rule implies that, for
every ℓ ∈ N, the iterates of P-SASL-PAM are
such that for every i ∈ {1, . . . , d} there exists
ri ∈ ∂gi(ζ

ℓ+1
i ) for which the following equalities

are satisfied for i ∈ {1, . . . , d}:

0 = ∇f(ζℓ0) +∇0q(ζ
ℓ+1,1) + γ−1

0 Aℓ(ζ
ℓ+1
0 − ζℓ0)

(34)

0 = ri +∇iq(ζ
ℓ+1,i+1) + γ−1

i (ζℓ+1
i − ζℓi ) (35)
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Hence, for every i ∈ {1, . . . , d}

∥∇f(ζℓ0) +∇0q(ζ
ℓ+1,1)∥ ≤ γ−1

0 ν∥ζℓ+1
0 − ζℓ0∥

(36)

∥ri +∇iq(ζ
ℓ+1,i+1)∥ = γ−1

i ∥ζℓ+1
i − ζℓi ∥ (37)

which implies that the inexact optimality condi-
tion (17) is satisfied with τ0 = γ−1

0 ν for the first
block of coordinates and τi = γ−1

i for the remain-
ing ones. In a nutshell, Algorithm 1 is well defined,
as its inexact rules hold assuming exact compu-
tation of the proximity operators, which leads to
TITAN.

3.4 Convergence analysis in the
inexact case

Let us now present our main result, that is the
convergence analysis for Algorithm 1.

Lemma 1. Let (ζℓ)ℓ∈N be the sequence generated
by Algorithm 1. Then, under Assumptions 1 and 2

i) there exists µ ∈ (0,+∞) such that for every
ℓ ∈ N,

θ(ζℓ+1) ≤ θ(ζℓ)− µ

2
∥ζℓ+1 − ζℓ∥2. (38)

ii)
∑+∞

ℓ=0 ∥ζℓ+1 − ζℓ∥2 < +∞.

Proof. Let us start by considering the sufficient
decrease inequality related to the first block:

q(ζℓ+1,1) + ⟨∇f(ζℓ0), ζℓ+1
0 − ζℓ0⟩

+
1

2γ0
∥ζℓ+1

0 − ζℓ0∥2Aℓ ≤ q(ζℓ). (39)

Adding f(ζℓ0) +
1
2∥ζℓ+1

0 − ζℓ0∥2Aℓ on both sides of
(39) yields

q(ζℓ+1,1) + ⟨∇f(ζℓ0), ζℓ+1
0 − ζℓ0⟩

+
1

2γ0
∥ζℓ+1

0 − ζℓ0∥2Aℓ + f(ζℓ0) +
1

2
∥ζℓ+1

0 − ζℓ0∥2Aℓ

≤ q(ζℓ) + f(ζℓ0) +
1

2
∥ζℓ+1

0 − ζℓ0∥2Aℓ (40)

By applying (26) and (27) with ζ+0 = ζℓ0 and
ζ0 = ζℓ+1

0 we obtain

f(ζℓ+1
0 ) ≤ f(ζℓ0) + ⟨ζℓ+1

0 − ζℓ0,∇f(ζℓ0)⟩

+
1

2
∥ζℓ+1

0 − ζℓ0∥2Aℓ (41)

hence the LHS in (40) can be further lower
bounded, yielding

q(ζℓ+1,1) + f(ζℓ+1
0 ) +

1

2γ0
∥ζℓ+1

0 − ζℓ0∥2Aℓ

≤ q(ζℓ) + f(ζℓ0) +
1

2
∥ζℓ+1

0 − ζℓ0∥2Aℓ , (42)

hence

q(ζℓ+1,1)+ f(ζℓ+1
0 )+

1

2

(
1

γ0
− 1

)
∥ζℓ+1

0 − ζℓ0∥2Aℓ
≤ q(ζℓ) + f(ζℓ0). (43)

To conclude, by Assumption 2, we get

q(ζℓ+1,1)+ f(ζℓ+1
0 )+

1

2

(
1

γ0
− 1

)
ν∥ζℓ+1

0 − ζℓ0∥2

≤ q(ζℓ) + f(ζℓ0). (44)

The sufficient decrease inequality for the remain-
ing blocks of index i ∈ {1, . . . , d} can be expressed
as

q(ζℓ+1,i+1) + g(ζℓ+1
i )− g(ζℓi ) +

1

2γi
∥ζℓ+1

i − ζℓi ∥2

≤ q(ζℓ+1,i). (45)

The first term in the LHS of (45) for the i-th block
can be similarly bounded from below with the suf-
ficient decrease inequality for the (i+1)-th block,
yielding

q(ζℓ+1,i+2) + g(ζℓ+1
i+1 )− g(ζℓi+1)

+
1

2γi+1
∥ζℓ+1

i+1 − ζℓi+1∥2 + g(ζℓ+1
i )− g(ζℓi )

+
1

2γi
∥ζℓ+1

i − ζℓi ∥2 ≤ q(ζℓ+1,i). (46)

By applying this reasoning recursively from i = 1
to i = d, we obtain

q(ζℓ+1,d+1) +

d∑

i=1

g(ζℓ+1
i )−

d∑

i=1

g(ζℓi )
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+

d∑

i=1

1

2γi
∥ζℓ+1

i − ζℓi ∥2 ≤ q(ζℓ+1,1) (47)

where we recall that q(ζℓ+1,d+1) = q(ζℓ+1).
Exploiting now (47), we can lower bound the

first term in the LHS of (44), which yields

q(ζℓ+1) +

d∑

i=1

g(ζℓ+1
i )−

d∑

i=1

g(ζℓi )

+

d∑

i=1

1

2γi
∥ζℓ+1

i − ζℓi ∥2 + f(ζℓ+1
0 )

+
1

2

(
1

γ0
− 1

)
ν∥ζℓ+1

0 − ζℓ0∥2 ≤ q(ζℓ) + f(ζℓ0).

(48)

By setting µ = min
{(

1
γ0

− 1
)
ν, 1

γ1
, . . . , 1

γd

}
,

we deduce (38).

From (38), it follows that the sequence
(θ(ζℓ))ℓ∈N is non-increasing. Since function θ is
assumed to be bounded from below, this sequence
converges to some real number θ. We have then,
for every integer K,

K∑

κ=0

∥ζℓ − ζℓ+1∥2 ≤ 1

µ

K∑

κ=0

(
θ(ζℓ)− θ(ζℓ+1)

)

=
1

µ
(θ(ζ0)− θ(ζK+1))

≤ 1

µ
(θ(ζ0)− θ).

(49)

Taking the limit as K → +∞ yields the desired
summability property.

Lemma 2. Assume that the sequence (ζℓ)ℓ∈N gen-
erated by Algorithm 1 is bounded. Then, for every
ℓ ∈ N, there exists sℓ+1 ∈ ∂θ(ζℓ+1) such that

∥sℓ+1∥ ≤ ρ∥ζℓ+1 − ζℓ∥, (50)

where ρ ∈ (0,+∞).

Proof. The assumed boundedness implies that
there exists a bounded subset S of RN such that
for every i ∈ {0, . . . , d} and ℓ ∈ N, ζℓ+1,i ∈ S. For
every ℓ ∈ N, we define

sℓ+1
0 = ∇f(ζℓ+1

0 ) +∇0q(ζ
ℓ+1) (51)

for which the following holds by virtue of Propo-
sition 1

sℓ+1
0 ∈ ∂0θ(ζ

ℓ+1) = {∇0θ(ζ
ℓ+1)}. (52)

Then

∥sℓ+1
0 ∥ ≤ ∥∇f(ζℓ+1

0 )−∇f(ζℓ0)∥
+ ∥∇f(ζℓ0) +∇0q(ζ

ℓ+1,1)∥
+ ∥∇0q(ζ

ℓ+1)−∇0q(ζ
ℓ+1,1)∥.

From the Lipschitz continuity of ∇f and ∇q on S
and the inexact optimality inequality for the first
block, we conclude that

∥sℓ+1
0 ∥ ≤ (Lf + τ0 + Lq) ∥ζℓ+1 − ζℓ∥. (53)

In the same spirit, for every i ∈ {1, . . . , d} we
consider rℓ+1

i ∈ ∂g(ζℓ+1
i ) satisfying the inexact

optimality inequality with the corresponding τi.
We then define

sℓ+1
i = ∇iq(ζ

ℓ+1) + rℓ+1
i

∈ ∇iq(ζ
ℓ+1) + ∂gi(ζ

ℓ+1
i ) = ∂iθ(ζ

ℓ+1). (54)

For i = d, by virtue of the inexact optimality
inequality,

∥sℓ+1
d ∥ ≤ τd∥ζℓ+1 − ζℓ∥. (55)

On the other side, for i = 1, . . . , d− 1

∥sℓ+1
i ∥ = ∥∇iq(ζ

ℓ+1) + rℓ+1
i ∥

≤ ∥∇iq(ζ
ℓ+1)−∇iq(ζ

ℓ+1,i+1)∥
+ ∥rℓ+1

i +∇iq(ζ
ℓ+1,i+1)∥

≤ Lq∥ζℓ+1 − ζℓ∥+ τi∥ζℓ+1
i − ζℓi ∥,

where the last estimate stems from inexact opti-
mality inequality for the i-th block. This yields

∥sℓ+1
i ∥ ≤ (Lq + τi)∥ζℓ+1 − ζℓ∥. (56)

To conclude, setting

sℓ+1 = (sℓ+1
0 , . . . , sℓ+1

d ) ∈ ∂θ(ζℓ+1) (57)

and ρ = Lf +
∑d

i=0 τi + dLq yields (50).
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We now report a first convergence result for
a sequence generated by the proposed algorithm,
which is reminiscent from [24, Proposition 6]:

Proposition 3 (Properties of the cluster points
set). Suppose that Assumptions 1 and 2 hold. Let
(ζℓ)ℓ∈N be a sequence generated by Algorithm 1.
Denote by ω(ζ0) the (possibly empty) set of its
cluster points. Then

i) if (ζℓ)ℓ∈N is bounded, then ω(ζ0) is a
nonempty compact connected set and

dist(ζℓ, ω(ζ0)) → 0 as ℓ→ +∞;

ii) ω(ζ0) ⊂ crit θ, where crit θ is the set of
critical points of function θ;

iii) θ is finite valued and constant on ω(ζ0), and
it is equal to

inf
ℓ∈N

θ(ζℓ) = lim
ℓ→+∞

θ(ζℓ).

Proof. The proof of the above results for the pro-
posed algorithm is basically identical to the one
for [24, Proposition 6] for PAM algorithm. In
addition, we highlight that according to Assump-
tion 1, our objective function θ is continuous on
its domain.

In conclusion, we have proved that, under
Assumptions 1-3, a bounded sequence generated
by the proposed method satisfies the assumptions
in [37, Theorem 2.9]. Consequently, we can state
the following result:

Theorem 4. Let Assumptions 1-3 be satisfied and
let (ζℓ)ℓ∈N be a sequence generated by Algorithm 1
that is assumed to be bounded. Then,

i)
∑+∞

ℓ=1 ∥ζℓ+1 − ζℓ∥ < +∞;
ii) (ζℓ)ℓ∈N converges to a critical point ζ∗ of θ.

We managed to show that both the exact and
the inexact version of Algorithm 1 share the same
convergence guarantees under Assumptions 1-3.
One of the main differences between the two
algorithms, as highlighted in [37], is that the for-
mer has convergence guarantees that hold for an
objective function that is lower semicontinuous,
whereas the latter requires its continuity on the
domain. However, as it will be shown in the next
section, this does not represent an obstacle to the

use of Algorithm 1 in image processing applica-
tions.

4 Application of P-SASL-PAM

4.1 Smoothing of the coupling term
The application of Algorithm 1 to Problem (12)
requires the involved functions to fulfil the require-
ments listed in Assumption 1. This section is
devoted to this analysis, by first defining d = 2,
n0 = n1 = n2 = n, N = 3n and the follow-
ing functions, for every x = (xi)1≤i≤n ∈ Rn,
p = (pi)1≤i≤n ∈ Rn, and β = (βi)1≤i≤n ∈ Rn,

q̃(x, p, β) =

n∑

i=1

|xi|pie−βipi , (58)

f(x) =
1

2σ2
∥y −Kx∥22, (59)

g1(p) =

n∑

i=1

(
ln Γ(1 +

1

pi
) + ι[a,b](pi)

)
(60)

+ λTV(p),

g2(β) =

n∑

i=1

(
βi +

(βi − µβ)
2

2σ2
β

)
+ ζ TV(β).

(61)

The first item in Assumption 1 regarding the reg-
ularity of the coupling term is not satisfied by
(58). To circumvent this difficulty, we introduce
the pseudo-Huber loss function [59] depending on
a pair of parameters δ = (δ1, δ2) ∈ (0,+∞)2 such
that δ2 < δ1:

(∀t ∈ R) Cδ(t) = Hδ1(t)− δ2, (62)

where Hδ1 is the hyperbolic function defined, for
every t ∈ R, by Hδ1(t) =

√
t2 + δ21 . Function (62)

is used as a smooth approximation of the absolute
value involved in (58). We then replace (58) with

q(x, p, β) =

n∑

i=1

(Cδ(xi))
pi e−βipi . (63)

Function Cδ is infinitely differentiable. Thus func-
tion (63) satisfies Assumption 1.

Function (59) is quadratic convex, hence it
clearly satisfies Assumption 1(ii). Function (60)
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is a sum of functions that are proper, lower semi-
continuous and either non-negative or bounded
from below. The same applies to function (61),
which is also strongly convex. It results that (60)
and (61) satisfy Assumption 1(iii).

Now, we must show that Θ is a KŁ func-
tion. To do so, let us consider the notion of
o-minimal structure [60], which is a particular
family O = {On}n∈N where each On is a col-
lection of subsets of Rn, satisfying a series of
axioms (we refer to [24, Definition 13], for a more
complete description). We present hereafter the
definition of definable set and definable function
in an o-minimal structure:

Definition 9 (Definable sets and definable
functions). Given an o-minimal structure O,
a set A ⊂ Rn such that A ∈ On is said to be
definable in O. A real extended valued function
f : R → (−∞,+∞] is said to be definable in O if
its graph is a definable subset of Rn × R.

The importance of these concepts in mathe-
matical optimisation is related to the following
key result concerning the KŁ property [61]:

Theorem 5. Any proper lower semicontinuous
function f : Rn → (−∞,+∞] which is definable
in an o-minimal structure O has the KŁ property
at each point of dom ∂f .

Let us identify a structure in which all the
functions involved in the definition of Θ are
definable. This will be sufficient, as definability
is a closed property with respect to several oper-
ations, including finite sum and composition of
functions. Before that, we provide a couple of
examples of o-minimal structure. The first is rep-
resented by the structure of globally subanalytic
sets Ran [62], which contains all the sets of the
form {(u, t) ∈ [−1, 1]n × R | f(u) = t} where
f : [−1, 1]n → R is an analytic function that
can be analytically extended on a neighbourhood
of [−1, 1]n. The second example is the log-exp
structure (Ran, exp) [60, 63], which includes Ran

and the graph of the exponential function. Even
though this second structure is a common setting
for many optimisation problems, it does not meet
the requirements for ours: as shown in [64], Γ>0

(i.e. , the restriction of the Gamma function to
(0,+∞)) is not definable on (Ran, exp). We thus
consider the larger structure (RG , exp), where
Γ>0 has been proved to be definable [65]. RG is
an o-minimal structure that extends Ran and is
generated by the class G of Gevrey functions from
[66].

We end this section with the following result,
which will be useful subsequently.

Proposition 6. The function t 7→ ln Γ(1 + 1
t )

defined on (0,+∞) is µ-weakly convex with
µ > µ0 ≈ 0.1136.

Proof. Let us show that there exists µ > 0 such
that function t 7→ ln Γ(1 + 1

t ) + µt2/2 is convex
on (0,+∞). The second-order derivative of this
function on the positive real axis reads

d2

dt2

(
ln Γ

(
1 +

1

t

)
+
µ

2
t2
)

=

1

t3

(
2Dig

(
1 +

1

t

)
+

1

t
Dig′

(
1 +

1

t

)
+ µt3

)
,

(64)

where the Digamma function Dig() is the log-
arithmic derivative of the Gamma function. In
order to show the convexity of the considered func-
tion, we need to ensure that (64) is positive for
every t ∈ (0,+∞). By virtue of Bohr–Möllerup’s
theorem [67, Theorem 2.1], among all functions
extending the factorial functions to the positive
real numbers, only the Gamma function is log-
convex. More precisely, its natural logarithm is
(strictly) convex on the positive real axis. This
implies that t 7→ Dig′(t) is positive. It results that
the only sign-changing term in (64) is function
t 7→ 2Dig

(
1 + 1

t

)
as t 7→ Dig(t) vanishes in a

point t0 > 1 (t0 ≈ 1.46163) which corresponds
to the minimum point of the Gamma function –
and therefore also of its natural logarithm [68]. As
a consequence, the Digamma function is strictly
positive for t ∈ (t0,+∞), implying that t 7→
Dig

(
1 + 1

t

)
is strictly positive for all t ∈ (0, 1

t0−1 ).
Furthermore, t 7→ Dig

(
1 + 1

t

)
is strictly decreas-

ing and bounded from below, as shown by the
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negativity of its first derivative

d

dt
Dig

(
1 +

1

t

)
= − 1

t2
Dig′

(
1 +

1

t

)

and by the following limit

lim
t→+∞

Dig
(
1 +

1

t

)
= Dig(1) = −E

where the last equality holds by virtue of
the Gauss Digamma theorem, and E is Euler-
Mascheroni’s constant E ≈ 0.57721 [69]. In con-
clusion, for t ∈ [ 1

t0−1 ,+∞), we need to ensure
that the positive terms in (64) manage to bal-
ance the negative contribution of function t 7→
2Dig

(
1 + 1

t

)
> −2E . This leads to a condition on

parameter µ > 0, since we can impose that

0 < µt3 − 2E ,

where the right-hand side expression has a lower
bound µ/(t0 − 1)3 − 2E that is positive when

µ > 2E(t0 − 1)3 = µ0 ≈ 0.1136.

This shows that function t 7→ ln Γ(1 + 1
t ) is µ-

weakly convex.

4.2 Proximal computations
Let us now discuss the practical implementation
of the proximal computations involved in Algo-
rithm 1. Specifically, as we will show, none of
these operators have closed-form expressions, so
we need to resort to the inexact version. To ease
the description, we summarise in Algorithm 2 the
application of Algorithm 1 to the resolution of
(12). As pointed out in [70] and in [35], the role
of the relative error conditions (16) and (17) are
more of theoretical interest than of practical use.
In the following, we will illustrate optimisation
procedures ensuring that condition (16) is satisfied
for every block of variables at every iteration.

Proximal computation with respect to x.
Subproblem (65) in Algorithm 2 requires the com-
putation of the proximity operator of the following

Algorithm 2 P-SASL-PAM to solve (12)
Initialize x0, p0 and β0

Set γ0 ∈ (0, 1), γ1 ∈ (0, 1/µ0), γ2 > 0
For ℓ = 0, 1, . . .
Set Aℓ ∈ Sn

Find

xℓ+1 ≈ proxA
γ0q(·,pℓ,βℓ)(x

ℓ − γ0A
−1∇f(xℓ)) (65)

(with Algorithm 3)

pℓ+1 ≈ proxγ1θ(xℓ+1,·,βℓ)(p
ℓ) (66)

(with Algorithm 5)

βℓ+1 ≈ proxγ2θ(xℓ+1,pℓ+1,·)(β
ℓ) (67)

(with Algorithm 6)

separable function

q(·, pℓ, βℓ) : x 7→
n∑

i=1

(Cδ(xi))
pℓi e−βℓip

ℓ
i ,

within a weighted Euclidean metric induced by
some matrix A ∈ Sn. We notice that xi 7→
(Cδ(xi))

pℓi is non-convex whenever pℓi ∈ (0, 1),
for some i ∈ {1, . . . , n}. In order to overcome
this issue, we apply a majorisation principle [71].
Let us introduce function σ defined, for every
u ∈ [δ1,+∞), as σ(u) = (u − δ2)

p with p ∈ (0, 1],
and vector δ = (δ1, δ2) ∈ (0,+∞)2 such that
δ2 < δ1. Since this function is concave, it can be
majorised by its first-order expansion around any
point w > δ2:

(∀u > δ2) (u− δ2)
p ≤ (w − δ2)

p

+ p(w − δ2)
p−1(u− w)

= (1− p)(w − δ2)
p + p(w − δ2)

p−1(u− δ2).
(68)

Setting, for every (t, t′) ∈ R2, u = Hδ1(t) ≥ δ1,
w = Hδ1(t

′) ≥ δ1 allows us to deduce the following
majorisation:

(Cδ(t))
p ≤(1− p)(Cδ(t

′))p + p(Cδ(t
′))p−1Cδ(t).

(69)

Let us now define Iℓ = {i ∈ {1, . . . , n} | pℓi ≥ 1}
and J ℓ = {1, . . . , n} \ Iℓ. Given v = (vi)1≤i≤n ∈
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Rn, we deduce from (69) that

(∀x = (xi)1≤i≤n ∈ Rn)

q(x, pℓ, βℓ) =
∑

i∈Iℓ
(Cδ(xi))

pℓi e−βℓip
ℓ
i (70)

+
∑

i∈J ℓ

(Cδ(xi))
pℓi e−βℓip

ℓ
i

≤ q(x, v, pℓ, βℓ), (71)

where the resulting majorant function is separa-
ble, i.e.

q(x, v, pℓ, βℓ),=

n∑

i=1

qi(xi, vi, p
ℓ
i , β

ℓ
i ), (72)

with, for every i ∈ {1, . . . , n} and xi ∈ R,

qi(xi, vi, p
ℓ
i , β

ℓ
i ) (73)

=





e−βℓip
ℓ
i (Cδ(ui))

pℓi , if pℓi ≥ 1

e−βℓip
ℓ
i

(
(Cδ(vi))

pℓi (1− pℓi)

+pℓi(Cδ(vi))
pℓi−1Cδ(xi)

)
otherwise.

In a nutshell, each term of index i ∈ {1, . . . , n}
in (72) coincides either with the i-th term of
q(·, pℓ, βℓ) when i ∈ Iℓ, or it is a convex majorant
of this i-th term with respect to vi when i ∈ J ℓ.
We thus propose to adopt an MM procedure by
building a sequence of convex surrogate problems
for the non-convex minimisation problem involved
in the computation of proxA

γ0q(·,pℓ,βℓ). At the κ-th
iteration of this procedure, following the MM
principle, the next iterate xκ+1 is determined by
setting v = xκ. We summarise the strategy in
Algorithm 3.

Algorithm 3 MM algorithm to approximate
proxA

γ0q(·,pℓ,βℓ)(x
+) with x+ ∈ Rn

Initialize x0 ∈ Rn

For κ = 0, 1, . . . until convergence

xκ+1 = proxA
γ0q(·,xκ,pℓ,βℓ)(x

+) (74)

(with Algorithm 4)

Since function q(·, v, pℓ, βℓ) is convex, proper,
and lower semicontinuous, its proximity opera-
tor in the weighted Euclidean metric induced by
matrix A is guaranteed to be uniquely defined.
It can be computed efficiently using the Dual
Forward-Backward (DFB) method [72], outlined
in Algorithm 4.

Algorithm 4 DFB algorithm to compute
proxA

γ0q(·,v;pℓ,βℓ)(x
+) with x+ ∈ Rn

Initialize dual variable w0 ∈ Rn

Set η ∈ (0, 2|||A|||−1)
For κ′ = 0, 1, . . . until convergence

uκ
′
= x+ −Awκ′

, (75)

wκ′+1 = wκ′
+ ηuκ

′
(76)

− ηproxη−1γ0q(·,v,pℓ,βℓ)(η
−1wκ′

+ uκ
′
).

Return uκ
′ ∈ Rn

The update in (77) can be performed compo-
nentwise since function q(·, v, pℓ, βℓ) is separable.
Thanks to the separability property, computing
proxη−1γ0q(·,v,pℓ,βℓ) boils down to solving n one-
dimensional optimization problems, that is

(∀u+ = (u+i )1≤i≤n ∈ Rn)

proxη−1γ0q(·,v,pℓ,βℓ)(u
+)

=
(
proxη−1γ0qi(·,vi,pℓi ,βℓi )(u

+
i )
)
1≤i≤n

. (77)

More precisely,

• for every i ∈ {1, . . . , n}, such that pℓi ≤ 1,

proxη−1γ0qi(·,vi,pℓi ,βℓi )(u
+
i )

= prox
η−1γ0e

−βℓ
i
pℓ
i pℓi(Cδ(vi))

pℓ
i
−1Cδ1

(u+i )

= prox
η−1γ0e

−βℓ
i
pℓ
i pℓi(Cδ(vi))

pℓ
i
−1Hδ1

(u+i ). (78)

The proximity operator of the so-scaled version
of function Hδ1 can be determined by solving a
quartic polynomial equation.1

• For every i ∈ {1, . . . , n} such that pℓi > 1,

1http://proximity-operator.net/scalarfunctions.html
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proxη−1γ0qi(·,vi,pℓi ,βℓi )(u
+
i )

= prox
η−1γ0e

−βℓ
i
pℓ
i (Cδ)

pℓ
i
(u+i ). (79)

The latter quantity can be evaluated through a
bisection search to find the root of the derivative
of the involved proximally regularised function.

Remark 6. Due to the non-convexity of
q(·, pℓ, βℓ), there is no guarantee that the point
estimated by Algorithm 4 coincides with the exact
proximity point. However, we did not notice any
numerical issues in our implementation.

Proximal computation with respect to p.
Subproblem (66) requires to compute the prox-
imity operator of γ1

(
q(xℓ+1, ·, βℓ) + g

)
, which is

equivalent to solving the following minimization
problem

minimize
p∈[a,b]n

ψℓ(p) + λℓ1,2(Dp), (80)

where, for every p ∈ Rn, ψℓ(p) =
∑n

i=1 ψ
ℓ
i (pi) with

(∀i ∈ {1, . . . , n})(∀pi ∈ R)

ψℓ
i (pi) =





(
Cδ(x

ℓ+1
i )

)pi
e−βℓipi + lnΓ(1 + 1

pi
)

+ 1
2γ1

(pi − pℓi)
2 if pi > 0

+∞ otherwise.
(81)

Moreover, D = [Dh, Dv] where (Dh, Dv) ∈
(Rn×n)2 are the discrete horizontal and verti-
cal 2D gradient operators, and the ℓ1,2-norm is
defined as

(∀p ∈ Rn) ℓ1,2(Dp) =

n∑

i=1

∥([Dhp]i, [Dvp]i)∥2.

Problem (80) is equivalent to minimizing the
sum of the indicator function of a hypercube, a
separable component and a non-separable term
involving the linear operator D. According to
Proposition 6, we can ensure the convexity of
each term (ψℓ

i )1≤i≤n by setting γ1 < 1
µ0

≈ 8.805.
In order to solve (80), it is then possible to imple-
ment a Primal-Dual (PD) algorithm [73–75] as
outlined in Algorithm 5.

Algorithm 5 Primal Dual Algorithm for solving
(80)
Initialise the dual variables v01 ∈ Rn×2,v02 ∈ Rn.
Set τ > 0 and σ > 0 such that τσ(|||D|||2+1) < 1.
for κ = 0, 1, . . . until convergence

uκ = pκ − τ(D∗vκ1 + vκ2 ), (82)

pκ+1 = proj[a,b]n(u
κ), (83)

wκ
1 = vκ1 + σD(2pκ+1 − pκ), (84)

vκ+1
1 = wκ+1

1 − σproxλℓ1,2
σ

(
wκ

1

σ
). (85)

wκ
2 = vκ2 + σ(2pκ+1 − pκ), (86)

vκ+1
2 = wκ+1

2 − σproxψℓ
σ

(
wκ

2

σ
). (87)

Return pκ+1 ∈ [a, b]n

The proximity operator of the involved ℓ1,2
norm has a closed-form expression. For every w1 =
([w1]i,1, [w1]i,2)1≤i≤n ∈ Rn×2 and λ > 0, we have

proxλℓ1,2(w1)

=
(
proxλ∥·∥2

(
([w1]i,1, [w1]i,2)

))
1≤i≤n

=

(
([w1]i,1, [w1]i,2)

− λ([w1]i,1, [w1]i,2)

max{λ, ∥([w1]i,1, [w1]i,2)∥2}

)

1≤i≤n

.

The proximal point at
wκ

2/σ =
(
[wℓ

2]i/σ
)
1≤i≤n

∈ Rn of the separable
term ψℓ with respect to a step size 1/σ can be
found by minimizing, for every i ∈ {1, . . . , n}, the
following smooth function

(∀t ∈ (0,+∞)) g1,i(t) = ψℓ
i (t) +

σ

2

(
t− [wκ

2 ]i
σ

)2
.

The update in (87) then reads

vκ+1
2 =

(
[wκ+1

2 ]i − σ[wκ
2 ]

∗
i

)
1≤i≤n

where, for every i ∈ {1, . . . , n}, [wκ
2 ]

∗
i corre-

sponds to the unique zero of the derivative of g1,i.
This zero is found by applying Newton’s method
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initialised with

w̄i =

(
max

{
10−3,

[wκ
2 ]i
σ

})

1≤i≤n

.

Proximal computation with respect to β.
Subproblem (67) requires the solution of the fol-
lowing minimisation problem:

minimize
β∈Rn

φℓ(β) + ζℓ1,2(Dβ) (88)

whereD and ℓ1,2 have been defined previously and

(∀β = (βi)1≤i≤n ∈ Rn) φℓ(β) =

n∑

i=1

φℓ
i(βi)

with, for every i ∈ {1, . . . , n},

φℓ
i(βi) =

(
Cδ(x

ℓ+1
i )

)pℓ+1
i e−βip

ℓ+1
i + βi

+
(βi − µβ)

2

2σ2
β

+
1

2γ2
(βi − βℓ

i )
2 (89)

The above problem shares a structure similar to
the one studied in the previous case since the
objective function is the sum of the smooth convex
term φℓ and the non-smooth convex one ζ TV =
ζℓ1,2(D·), and it can be solved by the primal-dual
procedure outlined in Algorithm 6.

Algorithm 6 Primal Dual Algorithm for mini-
mizing (88)
Set τ > 0 and σ > 0 such that τσ|||D|||2 ≤ 1.
Initialise the dual variable v0 ∈ Rn×2.
for κ = 0, 1, . . . until convergence

uκ = βκ − τ(D∗vκ), (90)

βκ+1 = proxτφℓ(u
κ), (91)

wκ = vκ + σD(2βκ+1 − βκ), (92)

vκ+1 = wκ+1 − σprox ζℓ1,2
σ

(
wκ

σ
). (93)

Return βκ+1 ∈ Rn

At each iteration κ of Algorithm 6, the prox-
imity operator of φℓ is expressed as

(∀β = (βi)1≤i≤n ∈ Rn)

proxτφℓ(β) =
(
proxτφℓi

(βi)
)
1≤i≤n

. (94)

For every i ∈ {1, . . . , n}, proxτφℓi
(βi) is the mini-

mizer of function

(∀βi ∈ R) g2,i(βi) = φℓ
i(βi) +

1

2τ
(βi − uκi )

2.

(95)

The nonlinear equation defining the unique zero
of the derivative of g2,i admits a closed-form solu-
tion that involves the Lambert W -function [76].
Indeed, let us introduce the following notation:

a1,i = pℓ+1
i

(
Cδ(x

ℓ+1
i )

)pℓ+1
i , (96)

a2 =

(
1

σ2
β

+
1

γ2
+

1

τ

)−1

, (97)

a3,i = 1−µβ

σ2
β

− βℓ
i

γ2
− uκi

τ
. (98)

Then

g′2,i(βi) = 0

⇐⇒ −a1,i exp(−pℓ+1
i βi) +

βi
a2

+ a3,i = 0

⇐⇒ pℓ+1
i (βi + a2a3,i) exp(p

ℓ+1
i (βi + a2a3,i))

= pℓ+1
i a1,ia2 exp(p

ℓ+1
i a2a3,i)

⇐⇒ βi

=
1

pℓ+1
i

W (pℓ+1
i a1,ia2 exp(p

ℓ+1
i a2a3,i))− a2a3,i,

(99)

where the last equivalence comes from the fact
that the Lambert W -function is single-valued and
satisfies the following identity for a pair (X,Y ) ∈
R×

(
− 1

e ,+∞
)
:

X exp(X) = Y ⇐⇒ X =W (Y ). (100)

Notice that the expression in (99) is well defined
since the argument of the Lambert function is
always positive.

In conclusion, the update in (91) reads as
βκ+1 =

(
βκ+1
i

)
1≤i≤n

where each component of
this vector is calculated according to (99).
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5 Numerical Experiments
In this section, we illustrate the performance of

our approach on a problem of joint deblurring/seg-
mentation of realistically simulated ultrasound
images. We consider images with two regions
(Simu1 ) and three regions (Simu2 ) extracted
from [17]. Both images have dimension 256× 256
pixels. The shape parameters p and the reparam-
eterised scale parameters β are set in each region
following the choices for p and α in [17], itself
based on the experimental setting in [19]. This
strategy allows us to have a reference configura-
tion for β, which led us to choose a non-necessarily
zero-mean Gaussian distribution as a prior for this
parameter. In our experiments, we will treat µβ as
an unknown parameter, along with the regularisa-
tion parameters for the Total Variation priors. The
pixel values in each region of the original image
x ∈ Rn are obtained as a realisation of a random
variable following a GGD with the corresponding
shape and scale parameters p and α. We define K
as the linear operator modelling the convolution
with the point spread function of a 3.5 MHz lin-
ear probe obtained with the Field II ultrasound
simulator [77]. To reproduce the same setting as
in [17], we obtain the observed degraded images
y ∈ Rn from the original images x ∈ Rn by apply-
ing the observation model (1), where we set the
additive noise variance (which will be assumed to
be known) to σ2 = 0.013 for Simu1 and σ2 = 33
for Simu2. For the preconditioner, we consider a
regularised version of the inverse of the Hessian of
the data fidelity function in (59), given by

A = σ2(K⊤K + µIm)−1

where µ = 0.1, so that A is well defined and
constant throughout the iterations. Following the
procedure outlined in [17], we initialise x0 ∈ Rn

using a pre-deconvolved image obtained with a
Wiener filter applied to the observed data y,
(p0i )1≤i≤n is drawn from an i.i.d. uniform dis-
tribution in the range [0.5, 1.5], while (β0

i )1≤i≤n

is drawn from an i.i.d. Gaussian distribution
with mean µβ and unit standard deviation. We
set µβ = 0 for Simu 1 and µβ = 4 for Simu
2, for arguments discussed in SM 2. We adopt
the recovery strategy described in Section 4 and

describe hereafter the setting of the model/algo-
rithm hyperparameters.

The model parameters that need to be tuned
are the δ1 > 0 and δ2 > 0 values for the
pseudo-Huber function, the mean µβ ∈ R and
the standard deviation σβ > 0 for the reparam-
eterised scale parameter, and finally the regular-
isation parameters (λ, ζ) ∈ (0,+∞)2 for the TV
terms. For parameter δ = (δ1, δ2), we applied the
following choice, resulting from a rough empir-
ical search,: δ1 = 1 while δ2 = δ1 × 10−2.
For what concerns the Gaussian parameters of
the reparameterised scale variable (µβ , σβ), the
mean µβ is the most influential on the estimated
solution, so we dedicated an in-depth analysis
for its choice in combination with the TV reg-
ularisation parameters (λ, ζ). More precisely, we
tested different values of µβ in the range [−10, 10]
in combination with a grid search for (λ, ζ) ∈
{10−2, 10−1, 1, 10, 102, 103}2 with respect to dif-
ferent quality metrics and identified an optimal
choice for µβ . The standard deviation appeared
less influential and is set to σβ = 1 in all our exper-
iments. The details of the analysis are illustrated
in the annexed SM 2.

The algorithmic hyperparameters include the
step sizes of the proximal steps, as well as
the preconditioning matrix involved in the pre-
conditioned proximal gradient step. We set
(γ0, γ1, γ2) = (0.99, 1, 1) in order to meet the
convergence assumptions in Algorithm 2. In par-
ticular, the choice for γ0 approximates the highest
value allowed for the step size of the precondi-
tioned inexact FB scheme in (65), while γ1 satisfies
the condition γ1 < 8.805 for the convexity of the
function in (80).

In order to obtain the labelling of a seg-
mented image from our estimated shape param-
eter (denoted by p̂) we use a quantisation proce-
dure based on Matlab functions multithresh and
imquantize. The former defines a desired num-
ber of quantisation levels using Otsu’s method,
while the latter performs a truncation of the data
values according to the provided quantisation lev-
els. We remark here that the number of labels
does not need to be defined throughout the pro-
posed optimisation procedure, but only at the final
segmentation step. This step can thus be consid-
ered as a post-processing that is performed on the
estimated solution.
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In order to evaluate the quality of the solu-
tion, we consider the following metrics: for the
estimated image, we make use of the peak signal-
to-noise ratio (PSNR) defined as follows, x being
the original signal and x̂ the estimated one:

PSNR = 10 log10
(
n max

i∈{1,...,n}
{xi, x̂i}2/∥xi−x̂i∥2

)
,

and of the structure similarity measure (SSIM)
[78]. For the segmentation task we compute the
percentage OA of correctly predicted labels.

The stopping criteria for Algorithm 2 outer
and inner loops are set by defining a threshold
level on the relative change between two consecu-
tive iterates of the involved variables, the relative
change of the objective values of two consecutive
iterates and a maximum number of iterations.
The outer loop in Algorithm 2 stops whenever
ℓ = 10000 or when both ∥ζℓ+1 − ζℓ∥/∥ζℓ∥ < 10−4

and |θ(ζℓ+1) − θ(ζℓ)|/|θ(ζℓ)| < 10−4. The
MM procedure to compute xℓ+1 in Algo-
rithm 3 is stopped after 300 iterations or when
∥xκ+1−xκ∥/∥xκ∥ < 10−3. The DFB procedure in
Algorithm 4 to compute uκ+1 is stopped after 300
iterations or when ∥uκ+1−uκ∥/∥uκ∥ < 10−3. The
PD procedure in Algorithm 5, and Algorithm 6
computing pℓ+1 (resp. βℓ+1) terminates after 200
iteration or when ∥pκ+1− pκ∥/∥pκ∥ < 10−3 (resp.
∥βκ+1 − βκ∥/∥βκ∥ < 10−3).

Figure 2 illustrates in the first and second
line the B–mode image of the original x, of the
degraded y, and of the reconstructed image x̂
on both examples. The B–mode image is the
most common representation of an ultrasound
image, displaying the acoustic impedance of a
2-dimensional cross section of the considered tis-
sue. The reconstructed results in Figure 2 (right)
show clearly reduced blur and sharper region con-
tours. We then report in the third and fourth
lines of Figure 2 the estimated shape parameter
and the segmentation obtained via the aforemen-
tioned quantisation procedure, which confirms its
good performance. We notice that our estimated
p̂i values are consistent with the original ones and
the fact that the results for Simu2 are slightly
less accurate than the ones for Simu1 is in line
with the results presented in [17, Table III] for
P-ULA, HMC and PP-ULA, suggesting that the

configuration of the parameters for Simu2 is quite
challenging.

Table 1 proposes a quantitative comparison
of our results against those of the methods con-
sidered in [17]: a combination of Wiener decon-
volution and Otsu’s segmentation [47], a combi-
nation of LASSO deconvolution and SLaT seg-
mentation [40], the adjusted Hamiltonian Monte
Carlo (HMC) method [79], the Proximal Unad-
justed Langevin algorithm (P-ULA) [80] and its
preconditioned version (PP-ULA) [17] for joint
deconvolution and segmentation. From this table,
we can conclude that the proposed variational
method is able to compete with state-of-the-
art Monte Carlo Markov Chain techniques in
terms of both segmentation and deconvolution
performance. For what concerns the computa-
tional time, the average time (over 10 runs of
the algorithm) required by P-SASL-PAM to meet
the stopping criteria ∥ζℓ+1 − ζℓ∥/∥ζℓ∥ < 10−4

and |θ(ζℓ+1)− θ(ζℓ)|/|θ(ζℓ)| < 10−4 corresponds
to 493.2 seconds (approximately 8′13′′) for Simu1
and 536.4 seconds (approximately 8′56′′) for
Simu2. Simulations were run on Matlab 2021b
on an Intel Xeon Gold 6230 CPU 2.10GHz. In
Table 1, we report the computational times for
PULA, HMC and PP-ULA from [17, TABLE II],
which were obtained on Matlab 2018b on an Intel
Xeon CPU E5-1650 3.20GHz.

Eventually, Figure 3 (a)-(b) show the evolu-
tion of the mean value of the cost function for
both Simu1 (a) and Simu2 (b) along 500 itera-
tions for ten different sampling of p0 and β0, while
Figure 3 (c)-(d)illustrate on a logarithmic scale
the relative distance from the iterates to the solu-
tion ∥ζℓ − ζ∞∥/∥ζ∞∥ for Simu1 (c) and Simu2
(d), showing the convergence of our algorithm.

Additional experiments can be found in Sup-
plementary Material: SM1, showing that for
standard wavelet-based image restoration prob-
lems the proposed regularisation outperforms
other sparsity measures.

6 Conclusions
We investigated a novel approach for the joint
reconstruction/feature extraction problem. The
novelty in this work lies both in the problem for-
mulation and in the resolution procedure. Firstly,
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Simu1 Simu2

METHOD PSNR SSIM OA TIME PSNR SSIM OA TIME

Wiener-Otsu 37.1 0.57 99.5 – 35.4 0.63 96.0 –
LASSO-SLaT 39.2 0.60 99.6 – 37.8 0.70 98.3 –

P-ULA 38.9 0.45 98.7 2 h 27 min 37.1 0.57 94.9 3 h 06 min
HMC 40.0 0.62 99.7 1 h 08 min 36.4 0.64 98.5 4 h 14 min

PP-ULA 40.3 0.62 99.7 12 min 38.6 0.71 98.7 39 min

OURS 40.2 0.61 99.9 8 min 38.1 0.70 97.7 9 min
Table 1: PSNR, SSIM, OA scores and Computational time for Simu1 and Simu2 from [17]. The symbol
"–" means the result was not available in the reference paper.

we proposed a new variational model in which we
introduced a flexible sparse regularisation term for
the reconstruction task. Secondly, we designed an
inexact version of a TITAN-based block alternat-
ing optimisation scheme, whose aim is to exploit
the structure of the problem and the properties of
the functions involved in it. We established con-
vergence results for the proposed algorithm whose
scope goes beyond the image processing problems
considered in our work. We illustrated the validity
of the approach on numerical examples in the case
of a joint deconvolution-segmentation problem.
We also included comparisons with state-of-the-
art methods with respect to which our proposal
registers a similar qualitative and quantitative
performance. An attractive aspect of the proposed
work is that the space variant parameters defin-
ing the flexible sparse regularisation do not need
to be defined in advance, but are inherently esti-
mated by the iterative optimisation procedure. For
what concerns the tuning of the hyperparamters
of the model, the design of an automatic strategy
could be an interesting development of the work,
for instance through supervised learning.
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1 Wavelet-based restoration
We illustrate the performance of our approach
in the context of wavelet-based image restora-
tion. The sought solution x ∈ Rn corresponds
to the wavelet coefficients of a source image x,
i.e. x = Wx where W : Rn → Rn models the
Db8 wavelet orthogonal transform with 4 decom-
position levels [1]. We choose x ∈ [0, 255]n to be
the image Westconcord illustrated in Figure 1(a)
and set H ∈ Rn×n as the blur operator mod-
elling the convolution, using zero padding, with a
11×11 Gaussian Kernel with zero-mean and stan-
dard deviation σb ∈ {1.5, 2}, which generates the
blurred images Hx ∈ Rn illustrated in Figure 1(b)
and Figure 1(e). Hence, in this example, the linear
operator in (1) corresponds to K = HW . Finally,
we generate four noisy observation y ∈ Rn×n

by applying model (1) using zero-mean Gaussian
noise with standard deviation σ = 5 (Figure 1(c)
and Figure 1(f)) and σ = 10 (Figure 1(d) and
Figure 1(g)).

In this context we set [a, b] = [10−3, 10]. We
initialise the algorithm with x0 = W⊤y that is
the wavelet decomposition of the degraded image,
while (p0i )1≤i≤n is drawn from an i.i.d. uniform
distribution in the range [0.5, 1.5] and (β0

i )1≤i≤n

is drawn from an i.i.d. Gaussian distribution with

mean µβ and unit standard deviation, and the
choice µβ = 5 will be soon discussed. No pre-
conditioning is considered in this example, that is
Aℓ = Im for every ℓ = 1, 2, . . . until convergence.

For comparisons, we consider the following
models.

• The LASSO regularisation model (LASSO)

minimise
x∈Rn

1

2σ2
∥Kx− y∥2 + ξ∥x∥1, (1)

where ξ > 0 is a regularisation parameter that
is chosen through a grid search for PSNR and
SSIM. We address (1) by means of a Forward-
Backward algorithm.

• The Adaptive Order Non-Convex ℓp-norm reg-
ularization model (AONCLP) from [2]

minimise
x∈Rn

1

2σ2
∥Kx− y∥2 + ξ

n∑

i=1

|xi|ϖ(xi) (2)

with ϖ : R −→ R defined as t 7→
1/ (1 + exp(−0.51(log(|t| − 1))) and ξ > 0 is a
regularisation parameter that is chosen through
a grid search for PSNR and SSIM. We address
(2) by means of a Split Augmented Lagrangian
Shrinkage Algorithm as described in [2].
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• The Generalised Multivariate Exponential
Power (GMEP) regularisation model from [3]:

minimise
x∈Rn

1

2σ2
∥Kx− y∥2

+ ξ

M∑

m=1

Cm∑

c=1

(ρ1/χmm x2m,c + δ)χm , (3)

where M is the number of wavelet subbands
(in our case M = 13), Cm the number of ele-
ments of the m-th subband (

∑M
m=1 Cm = n),

δ = 10−6, and the parameters {ρ1, . . . , ρM} and
{χ1, . . . , χM} are obtained with a maximum
likelihood estimator, run on each subband, of a
Wiener-filtered version of the observed image
y. Finally, ξ > 0 is a regularisation parameter
that is chosen through a grid search for PSNR
and SSIM. Problem (3) is addressed by means
of the Majorize-Minimize Memory Gradient
(3MG) algorithm [4, 5].

In Figure 2 we illustrate the restored images
obtained by the four regularisation models on the
four degraded versions of the Westconcord image.
The proposed model generates solutions which are
competitive with the ones obtained by GMEP,
with less artefacts and less saturated values than
the ones obtained with LASSO and AONCLP.
The good performance of our model is also sup-
ported by the quantitative evaluation illustrated
in Table 1 in terms of PSNR and SSIM.

For what concerns the convergence properties
of the algorithm, Figure 3 illustrates the decay
of the objective values over 500 iterations for the
different combinations of (σb, σ). To study the
stability with respect to the initialisations, we con-
sidered 10 random sampling for p0 and β0: the
continuous lines in the plots represent the mean
objective values at each iteration and the shaded
area, highlighted in the zoomed region at the
centre of the plot, corresponds to the confidence
interval related to the standard deviation of the
objective value at each iteration. Figure 4 illus-
trates on a logarithmic scale the relative distance
from the iterates to the solution ∥ζℓ − ζ∞∥/∥ζ∞∥,
showing the convergence of our algorithm.

Figure 5, Figure 6 and Figure 7 illustrate the
procedure that we adopted to identify an opti-
mal value of parameter µβ in combination with λ

and ζ, for the reconstruction of the Westconcord
image: in these figures we show in different forms
the PSNR and SSIM scores for all the combina-
tions of (λ, ζ) ∈ {0.01, 0.1, 1, 10, 100, 1000}2 and
µβ ∈ {0, 2, 5, 7, 10}. In particular, Figure 5 and
Figure 6 show the PSNR and SSIM scores respec-
tively in the forms of matrices, where each row
corresponds to a value of λ and each column to
a value of ζ. For every combination (σb, σ), we
used the same colour scale for all the values of µβ ,
in order to highlight the variability of the results
with respect to the whole triplet (λ, ζ, µβ): it can
be seen that the parameter having the highest
impact on the quality of the solution is µβ , while
the impact of λ and β is weaker, especially on the
SSIM, in spite of the fact that the choice for those
values spans over 6 orders of magnitude. This is
further highlighted in Figure 7, where the data are
illustrated in the form of boxplots (PSNR scores
in the left column and SSIM scores in the right col-
umn): from these plots we also infer that µβ = 5
is a stable and optimal choice.

To conclude, we illustrate the performance of
our method on a second group of test images:
Galaxy which is a test image included in Mat-
lab, Buildings from [6], and Skyscrapers from [7].
In this case, we set the noise level σ = 10 and
blur level σb ∈ {1.5, 2}. Figure 8 displays the
degraded images, along with the reconstructions
obtained with LASSO, AONCLP, GMEP, and our
model, while Tables 2 and 3 report the PSNR and
SSIM scores, which again advocates for the use
of the proposed model. We also report for each
method and for each image, the average computa-
tional time over 10 simulations required to meet
the stopping criteria ∥ζℓ+1 − ζℓ∥/∥ζℓ∥ < 10−4 and
|θ(ζℓ+1)− θ(ζℓ)|/|θ(ζℓ)| < 10−4. Simulations were
run on Matlab 2021b on an Intel Xeon Gold 6230
CPU 2.10GHz. A Matlab profiling of the simula-
tions showed that the most time-consuming step
is the update in (87), which is based on Newton’s
method. A possible solution to accelerate this step
could consist in pre-computing a sufficiently large
sample of solutions and replacing the computa-
tion with an indexing operation with respect to a
lookup table.
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(a)

(b) (c) (d)

(e) (f) (g)

Fig. 1: Westconcord image: (a) original image, (b) blurred image with σb = 1.5, (c) degraded image
with (σb, σ) = (1.5, 5) (PSNR = 22.49, SSIM = 0.55), (d) degraded image with (σb, σ) = (1.5, 10)
(PSNR = 22.18, SSIM = 0.49); (e) blurred image with σb = 2, (f) degraded image with (σb, σ) = (2, 5)
(PSNR = 21.07, SSIM = 0.43), (g) degraded image with (σb, σ) = (2, 10) (PSNR = 21.01, SSIM = 0.38).

σb = 1.5 σb = 2

σ = 5 σ = 10 σ = 5 σ = 10

METHOD PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

LASSO 24.48 0.66 23.33 0.58 23.65 0.59 22.62 0.50
AONCLP 24.32 0.64 23.29 0.56 22.87 0.54 22.56 0.49
GMEP 24.61 0.68 23.91 0.63 22.94 0.57 22.70 0.54
OURS 24.83 0.68 24.27 0.62 24.41 0.60 24.42 0.53

Table 1: PSNR and SSIM scores for Westconcord example.

2 Parameter Tuning for joint
deblurring/segmentation

Figures 9-12 illustrate the procedure that we
adopted to identify an optimal value of param-
eter µβ in combination with λ and ζ, for
the reconstruction of Simu1 and Simu2. In
these figures, for all the combinations of
(λ, ζ) ∈ {0.01, 0.1, 1, 10, 100, 1000}2 and µβ ∈
{−5,−2, 0, 2, 5} for Simu1 and µβ ∈ {0, 2, 3, 4, 5}
for Simu2, we show in different forms the PSNR
and SSIM scores for the reconstruction of the
images, while for the shape parameter we rely on
the RMSE the OA of the segmentation. In par-
ticular, Figures 9 and 10 illustrate the results in
the form of matrices, where each row corresponds
to a value of λ and each column to a value of ζ.
Figures11 and 12 illustrate the results in the form

of boxplots. The values of the PSNR and SSIM
are mostly affected by the value of µβ , while less
variability is related to the choice of λ and ζ. On
the other side, RMSE and OA depend on a com-
bination of the three parameters (in particular on
a combination of µβ and λ). In conclusion, for the
choice of µβ , we relied on the value that could
provide us with the best trade-off between high
PSNR/SSIM, high OA and low RMSE. For Simu1,
this choice is clearly represented by µβ = 0, as
with this value we manage to optimise all the met-
rics. For Simu2, the best trade-off is represented
by µβ = 4, as µβ = 5 yields high PSNR/SSIM lev-
els on one side, but unsatisfactory OA and RMSE
on the other.
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(σb, σ) DEGRADED LASSO AONCLP GMEP OURS

(1.5, 5)

(1.5, 10)

(2, 5)

(2, 10)

Fig. 2: Estimated solutions for Westconcord image. First column: Degraded image. Second column:
LASSO regularisation. Third column: AONCLP regularisation. Fourth column: GMEP regularisation.
Fifth column: Proposed regularisation.

(σb, σ) = (1.5, 5) (σb, σ) = (1.5, 10) (σb, σ) = (2, 5) (σb, σ) = (2, 10)

Fig. 3: Decay of the objective value along 500 iterations for Westconcord example, using different com-
binations of (σb, σ). We considered 10 random sampling for p0 and β0. The continuous line in the plot
represents the mean objective value at each iteration and the shaded area, highlighted in the zoomed
region at the centre of the plot spanning over 20 iterations, corresponds to the confidence interval related
to the standard deviation.
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(σb, σ) µβ = 0 µβ = 2 µβ = 5 µβ = 7 µβ = 10

(1.5,5)

(1.5,10)

(2,5)

(2,10)

Fig. 5: Illustration of the PSNR scores obtained with a grid search on parameters (λ, ζ) for Westconcord
for 5 different choices for parameter µβ . In each matrix, rows correspond to the values for λ and columns
to the values for ζ. For each parameter we chose 6 values in a logarithmic scale between 10−2 and 103.
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(σb, σ) µβ = 0 µβ = 2 µβ = 5 µβ = 7 µβ = 10

(1.5,5)

(1.5,10)

(2,5)

(2,10)

Fig. 6: Illustration of the SSIM scores obtained with a grid search on parameters (λ, ζ) for Westconcord
for 5 different choices for parameter µβ . In each matrix, rows correspond to the values for λ and columns
to the values for ζ. For each parameter we chose 6 values in a logarithmic scale between 10−2 and 103.
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(σb, σ) PSNR SSIM

(1.5,5)

µβ µβ

(1.5,10)

µβ µβ

(2,5)

µβ µβ

(2,10)

µβ µβ

Fig. 7: Boxplots of the PSNR scores (left column) and SSIM scores (right column) obtained with a grid
search on parameters (λ, ζ) for Westconcord for 5 different choices for parameter µβ .The rows corresponds
to different combinations of (σb, σ) with σb ∈ {1.5, 2} and σ ∈ {5, 10}.

8



σb DEGRADED LASSO AONCLP GMEP OURS

1.5

2

Fig. 8: Estimated solutions for Galaxy, Buildings and Skyscrapers and σ = 10. First column: Degraded
image. Second column: LASSO regularisation. Third column: AONCLP regularisation. Fourth column:
GMEP regularisation. Fifth column: Proposed regularisation. First line: σb = 1.5, Second line: σb = 2
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µβ = −5 µβ = −2 µβ = 0 µβ = 2 µβ = 5
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Fig. 9: Illustration of the PSNR, SSIM, OA and RMSE values obtained with a grid search on parameters
(λ, ζ) for Simu1 and 5 different choices for parameter µβ . In each matrix, rows correspond to the values
for λ and columns to the values for ζ. For each parameter we chose 6 values in a logarithmic scale between
10−2 and 103.
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µβ = 0 µβ = 2 µβ = 3 µβ = 4 µβ = 5
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Fig. 10: Illustration of the PSNR, SSIM, OA and RMSE values obtained with a grid search on parameters
(λ, ζ) for Simu2 and 5 different choices for parameter µβ . In each matrix, rows correspond to the values
for λ and columns to the values for ζ. For each parameter we chose 6 values in a logarithmic scale between
10−2 and 103.
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PSNR SSIM

µβ µβ

OA RMSE

µβ µβ

Fig. 11: Boxplots of the PSNR, SSIM, OA and RMSE values obtained with a grid search on parameters
(λ, ζ) for Simu1 and 5 different choices for parameter µβ .
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PSNR SSIM
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Fig. 12: Boxplots of the PSNR, SSIM, OA and RMSE values obtained with a grid search on parameters
(λ, ζ) for Simu2 and 5 different choices for parameter µβ .
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