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Fusing Event-based and RGB camera for Robust Object Detection in
Adverse Conditions

Abhishek Tomy, Anshul Paigwar∗, Khushdeep S. Mann∗, Alessandro Renzaglia, Christian Laugier

Abstract— The ability to detect objects, under image corrup-
tions and different weather conditions is vital for deep learning
models especially when applied to real-world applications such
as autonomous driving. Traditional RGB-based detection fails
under these conditions and it is thus important to design a
sensor suite that is redundant to failures of the primary frame-
based detection. Event-based cameras can complement frame-
based cameras in low-light conditions and high dynamic range
scenarios that an autonomous vehicle can encounter during
navigation. Accordingly, we propose a redundant sensor fusion
model of event-based and frame-based cameras that is robust
to common image corruptions. The method utilizes a voxel grid
representation for events as input and proposes a two-parallel
feature extractor network for frames and events. Our sensor
fusion approach is more robust to corruptions by over 30%
compared to only frame-based detections and outperforms the
only event-based detection. The model is trained and evaluated
on the publicly released DSEC dataset.

I. INTRODUCTION

A neuromorphic or event-based camera is a bio-inspired
sensor that detects the changes in intensity at the pixel
level. Event-based cameras rely on Contrast Detector (CD)
to detect the changes in the intensity of incoming light at
each pixel and when that exceeds a predefined threshold,
an event signal is recorded and transmitted asynchronously.
Event-based cameras are particularly suited for low-light
conditions, such as night-time driving or situations involving
high dynamic ranges, and can track motions at high speed
and temporal resolution.

Many advances in the deep-learning approaches and appli-
cations with frame-based tasks have also been explored using
an event-based vision system. Event cameras have been used
for object detections [1], visual odometry [2], optical flow
estimation [3] and depth prediction [4]. Though event-based
cameras have proven their edge in adverse conditions, RGB
cameras still perform better in normal conditions.

Considering the domain of autonomous driving which
primarily uses frame-based cameras, it becomes crucial to
cope with varying weather conditions that limit the applica-
bility of state-of-the-art algorithms. These conditions include
snow, fog, frost, and others visualized in Figure 1. Current
object-detection models for autonomous driving lack the
robustness to perform well in varying conditions [5]. While
certain conditions have been modelled including snow [6],
fog [7], rain [8], daytime and night-time transitions [5],
[9], it is not possible to include all potential environmen-
tal conditions. Currently, LiDARs and RADARs are used
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to complement frame-based cameras to attain robustness
to varying illumination and weather conditions [10], [11].
LiDARs however are in general extremely costly and bulky
for a commercial autonomous vehicle. Event-based cameras
seem a promising alternative for low-cost applications like
autonomous delivery robots.

In this work, we propose to fuse the information from an
event-based and a frame-based camera for object detection
with the goal of obtaining a detection accuracy comparable to
RGB detection in normal condition but a more robust model
in presence of image corruptions and variations. Accordingly,
we evaluate the performance of various fusion models over
15 types of corruptions metrics adopted from [12] that
were not part of training. This is a useful performance
approximation metric that can be utilized to model natural
and internal distortions that a camera may experience.

We perform training and evaluation on the DSEC dataset
[13] that contains data from event cameras in stereo setup
and is recorded from a dynamic ego vehicle through multiple
cities in Switzerland.

The key contributions of this study can be summarized as
follows:

• We present a novel sensor fusion method with Event-
based and Frame-based camera for improving object de-
tection under adverse conditions. The proposed method
uses Feature Pyramid Network to combine information
at multiple scales.

• We publicly release an extension of DSEC dataset with
ground truth labels to facilitate object detection research
using both Event-based and Frame-based camera. Our
extension includes 131965 bounding box annotations
for Car, Pedestrian and Large Vehicle object categories.

• We show in detail the robustness of the proposed
sensor-fusion model against common corruptions in the
frame-based camera at various severity level. We per-
form ablation studies and make comparisons with only
RGB/Event based detections to prove the effectiveness
of our method.

II. RELATED WORK

A. Event-based detection

Researchers have explored multiple ways to represent the
sparse and asynchronous events into a dense tensor that can
be fed to a learning based approach. For object detection task,
Zhu et al. proposed an event-volume representation in which
the events are accumulated by weighted interpolation into a
discretized time domain [4]. Rebecq et al. proposed a state-
of-art method to reconstruct a gray-scale image from event



Fig. 1. Visualization of the 15 common corruption types adapted from [14] and applied on a sample image from DSEC dataset. The images correspond
to the severity level 3 for each corruption type.

volumes [15]. The reconstructed gray-scale image when
applied to standard frame-based object detection networks
have shown promising results. Some of the previous works
have tried to exploit the sparse nature of events by utilizing
spiking neural networks to gain efficiency in processing
and handling of events [16]. A Conv-LSTM based state-
of-art object detection method that used the spatio-temporal
information to improve overall detection was proposed in
[1]. In our work, we exploit only individual frame for
detection. The ablation studies performed on various input
representations show that the event volumes have the best
performance for the object detection task [1].

B. Sensor fusion

Fusion of RADAR, camera and LiDAR sensor have been
extensively explored for various perception tasks but sensor
fusion using event-based camera is relatively a nascent field
[17] [18]. Gehrig et al. proposed a generalized model of
RNNs to handle asynchronous nature of event-based cameras
for fusion with other sensor modalities [19]. A general pre-
processing step for sensor fusion approaches is to align
sensor modalities to a common reference frame. In [20], the
radar data is projected to the image plane before concate-
nating it to the image channels for input to an early sensor
fusion model. In [21], the inputs from radar and images are
fused at multiple levels, allowing the network to identify
at which scale to combine the two modalities. We establish
our event-based sensor fusion models inspired from these
approaches.

C. Robustness

Numerous studies illustrate that the performance of Con-
volutional neural networks (CNN) degrade when subjected

to image corruptions [12]. Vulnerability of four state-of-
art CNN models to image quality distortions, particularly
to noise and blur is well demonstrated in [22]. Changing
weather conditions impose severe challenges for perception
in autonomous driving. Several attempts have been made to
model these conditions [5], [6], [9], While it is not possible to
model all potential conditions, [14] provide a benchmark for
evaluating model performance against common corruptions
that are close to natural distortions. A different robustness
approach that evaluates the fusion network of RGB camera
and Lidar to adversarial attacks have also been undertaken
in [23][24].

III. PROPOSED METHOD

This section provides a detailed description of our ap-
proach starting with the choice of event representation in
subsection III-A and in subsection III-B we provide the
details to transform RGB images to the viewpoint of events-
frames. In subsection III-C, we elaborate on the proposed
sensor fusion approach to combine events and RGB images
for object detection. Finally, in subsection III-D we provide
the adopted image corruption metrics to evaluate robustness.

A. Input Event Representation

An event is a positive or negative signal corresponding to
each pixel that is exposed to a change in brightness over a
certain threshold value. An event ei = (xi, yi, ti, pi) contains
the pixel location (xi, yi) and the time ti at which the event
is triggered. The polarity of the event (pi = ±1) denotes the
direction of change.

In this work, we have utilized the voxel grid representation
proposed in [4]. The events within a time window ∆T are
converted into a B×H×W voxel grid where H and W are



Fig. 2. Network architecture of proposed feature pyramid sensor-fusion model. Event frame and RGB images are passed through a backbone network
(ResNet-50) for feature extraction. Pyramidal event and RGB features at the same scale are concatenated before being fed to the feature pyramid network
of the RetinaNet-50.

the height and width of the event-frame and B is the number
of temporal bins.

V (x, y, t) =
∑
i

piδb(x− xi)δb(y − yi)δb(t− t∗i ) (1)

where,

t∗i =
B − 1

∆T
(ti − t1) (2)

δb(a) = max(0, 1− |a|) (3)

Our models use a time window ∆T = 50ms and B = 5
temporal bins.

Recently, the authors of [15] proposed a method to convert
events to a high-quality gray-scale image. The proposed
conversion utilizes the voxel grid representation as input to
the model. However, the computation of a gray-scale image
adds a further pre-processing step that is computationally
expensive. We evaluate our object detection models using
both the voxel and gray-scale representation in section VI.

B. Homographic transformation

In the DSEC dataset, the events are recorded by a
monochrome camera of resolution 640 × 480 and an RGB
camera recording at a 1440×1080 resolution. The baseline of
4.5 cm between two cameras allows for the transformation to
a common viewpoint which can be exploited in sensor fusion
approaches. In our case, we assume that the imaged scene
appears far away from the camera. Since the baseline of the
two cameras is small compared to the distances of the scene
objects, we utilize the homographic transformation induced
by the pure rotation as derived in equation (4) to transform
the scene in RGB frame to event-camera frame.

Pevent,rgb = Kevent ∗Rrgb ∗Revent,rgb ∗RT
event ∗K−1

rgb (4)

where Krgb and Kevent is the respective intrinsic camera
matrix, Rrgb and Revent is the rotation matrix between dis-
torted and undistorted frame of each cameras, and Revent,rgb

is the rotation matrix between the RGB camera coordinates
system to the event camera.

C. Sensor fusion network: Event + RGB

Our model builds on RetinaNet [25] with a ResNet-50
backbone [26]. The RetinaNet architecture is composed of
a backbone feature extractor responsible for computing a
feature map over the image, which is passed to a Feature
Pyramid Network (FPN), finally, two subnetworks are used
for classification and bounding box regression. The FPN
has a top-down pathway with 3 pyramidal feature layers
going from a coarse feature map to finer maps, along with
lateral connection from the backbone network. In our model,
RetinaNet is modified to take input from two modalities
through two independent streams of feature extractors made
up of ResNet-50 for events and RGB frames. Features from
both are combined at multiple levels before being fed to the
FPN network as shown in Figure 2. This allows the model to
extract relevant information from two modalities at different
resolutions.

D. Image corruption

All the models presented in this work are trained using
clean data, while during testing only camera RGB images
were subjected to 15 different corruption types. The perfor-
mance is evaluated over 5 severity levels for each corruption
type. We undertake the image corruption metrics from [12]
that was originally introduced in [14]. These corruptions are
broadly categorized into four groups as noise, blur, weather,
and digital. An illustration of these corruption types under
severity level 3 is shown in Figure 1.

E. Robustness metrics

The performance of models for object detection is eval-
uated using the COCO mAP metric that averages over
IoUs between 50% and 95% [27]. Over the corrupted data,
the performance is measured as mean performance under
corruption (mPC) which is the average mAP over various
corruption types and severity levels as shown below:

mPC =
1

Nc

Nc∑
c=1

1

Ns

Ns∑
s=1

mAPc,s (5)
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Fig. 3. Model performance mAP (%) subjected to 15 corruption types and 5 severity levels. Severity level 0 implies clean data. We can observe that
FPN fusion models are more robust compared to RetinaNet-50 (RGB) and Early fusion (Event-Gray+RGB), particularly for snow, frost, fog, and contrast
conditions.

TABLE I
MODEL PERFORMANCE UNDER DIFFERENT CORRUPTION TYPES. FOR EACH CORRUPTION TYPE, RPC (%) IS CALCULATED FOR ALL SEVERITY

LEVELS.

Noise rPC(%) Blur rPC(%) Weather rPC(%) Digital rPC(%)
Network mPC(%) Gauss. Shot Impulse Defocus Glass Motion Zoom Fog Snow Frost Bright Contrast Elastic Pixel JPEG
ReinaNet-50 (RGB) 9.8 24.0 36.7 20.3 38.0 58.7 49.4 34.1 0.3 18.8 3.2 28.8 1.1 89.0 91.1 86.1
Early-fusion (Gray) 10.6 17.7 38.8 19.3 43.6 60.6 50.7 37.0 6.6 17.5 4.6 32.4 4.8 89.7 94.8 87.2
FPN-fusion (Gray) 15.2 56.01 66.02 56.51 61.38 73.56 67.62 57.52 31.34 46.13 28.58 49.37 37.74 93.48 94.97 91.77
Early-fusion (Voxel) 16.0 59.9 74.2 54.6 74.2 81.9 70.3 66.5 44.1 40.0 37.8 59.3 44.7 93.8 96.6 94.9
FPN-fusion events (Voxel) 16.4 62.6 97.5 60.6 67.6 78.2 69.3 63.1 44.7 57.6 40.8 60.3 46.6 94.1 95.0 92.5

where mAPc,s is the performance measure evaluated on
corruption type c under severity level s, Nc is the number
of corruption types, and Ns is the number of severity levels
considered. Further, we use the relative performance under
corruption (rPC) metric to measure the relative performance
degradation under corruption:

rPC =
mPC

mAPclean
(6)

where mAPclean denotes the performance over a clean
dataset.

IV. DATASET

Among the available event-based dataset, 1 Mega-pixel
event-dataset is one of the largest event-based autonomous
driving datasets with over 25M bounding boxes for object
detection [1]. RGB images from a frame-based camera were
used to generate annotations and then projected to an event-
based camera but RGB data is not publicly released.

The DSEC dataset contains data from two event and
frame-based cameras in stereo setup and data from both
sensor modalities are publicly released [13]. This dataset
was recorded from a moving vehicle in challenging illumi-
nation conditions and it is particularly suitable to evaluate



TABLE II
OBJECT ANNOTATIONS IN THE DSEC TRAINING DATASET

Categories Car Pedestrian Large vehicle
(Bus & Truck) Total

Count 100068 17126 14771 131965
Percentage 0.76 0.13 0.11 1

event-based sensor fusion approaches. However, the dataset
lacks annotations for the object detection task. Alterna-
tively, application-specific large-scale event-camera datasets
can be generated through simulation for development and
experimentation [28]. But this simulation-based dataset poses
additional challenges while performing sim2real transfer.

To evaluate our object detection models, we decided to
use the DSEC training dataset and generate annotations
with an automated labeling protocol similar to [1]. The
RGB images are labeled using YOLOv5 from [29]. The
labels and bounding box from RGB images are transferred
to event-frame using equation (4). The asynchronous event
data is labelled at frames corresponding to the timestamps
of the RGB images. Bounding boxes of objects within the
640× 480 resolution of event-camera are considered. Since
the event camera has a lower resolution, bounding boxes with
a diagonal smaller than 30 pixels in the event frame are also
filtered out. Three dominant object categories were chosen
as shown in Table II, to create the final training dataset. The
labelled data can be found here [30].

V. TRAINING AND EXPERIMENTS

Our model is trained only on the DSEC dataset and is
implemented in PyTorch. The model takes as input informa-
tion from the left frame-based and event cameras. Training
is done to minimize the focal loss between the output and
ground truth. The model is trained by using the Adam
optimizer [31] with an initial learning rate of 1e−4 and a
batch size of 64. Out of the 41 sequences in the dataset,
30 sequences are considered for training, 3 sequences for
validation, and 8 sequences for testing. The training was
done on Nvidia GTX 1080 Ti. The implementation of the
model is made available in [30].

During the training of the sensor fusion model, the input
from the RGB image is made completely blank (zeros) with
a probability of 0.15. This forces the sensor fusion model to
learn information from the second modality (Event camera).
Also, this ensures that the model is robust to failure or
corruption from the frame-based camera [21].

A. Ablation study

We study the effectiveness of the proposed homographic
transformation of the RGB images as discussed earlier in
subsection III-B. Table III shows the results obtained by
training our sensor fusion models using original RGB images
that have a viewpoint and resolution that is different from
the event frame. Comparing these results in Table IV, we
observe that with the homographic transformation of RGB
images and Event-Voxel, the model achieves an mAP of
0.24 and without the homographic transformation, it drops

TABLE III
ABLATION STUDY, MAP ACCURACY WITHOUT THE HOMOGRAPHIC

TRANSFORMATION OF RGB IMAGE TO THE EVENT FRAME.

Input Model mAP
Event-Voxel + RGB Early-fusion 0.14
Event-Voxel + RGB FPN-fusion 0.19

Fig. 4. Early Fusion: In this network the RGB and the event-voxels are
concatenated before being fed to the RetinaNet.

to 0.19. Also, testing the FPN-fusion model by feeding in
an entirely black RGB image and Event-Voxel as input, the
model achieves an mAP of 0.12 which is same as the mAP
of the event-only models.

B. Early sensor fusion network

To evaluate the performance of our proposed FPN based
sensor fusion method, we compare it with the performance
of a simple early-fusion method. The input from the camera
(RGB) and events (Voxel/Gray) are concatenated to create a
common input grid and fed as input to a RetinaNet as shown
in Figure 4. Previous literature studies have discussed that
the early-fusion models are susceptible to perturbations and
corruptions of one of the modalities [32]. In this work, we
evaluate the model performance and also the capability of
an early-fusion method to handle corruption in one of the
modalities as discussed further in section VI.

VI. RESULTS

For a thorough comparison, we evaluate models with 7
combinations of input sensor modalities and representations.
We used two types of input representations for events as
explained in subsection III-A: Event volume representation,
indicated by Event-Voxel and reconstructed gray-scale image
from events, indicated by Event-Gray. The input from the
frame-based camera is indicated by RGB. For all models
including RetinaNet-50 (RGB), the RGB images are trans-
formed to event-frame as explained in subsection III-B. Input
from a single modality is evaluated by a RetinaNet with
ResNet-50 backbone and all of the results from this model
would be indicated by RetinaNet-50. Apart from this, the
proposed sensor fusion approach of our work is indicated by
FPN-fusion that captures the essence that the fusion is done
at the feature pyramid network and Early-fusion to indicate
the baseline sensor fusion approach from subsection V-B.

The models are primarily evaluated on two metrics: COCO
’mAP’ [27] to evaluate the object detection accuracy and
’rPC’ to understand relative performance degradation under
multiple RGB image corruptions.



A. Model evaluations

The Table IV shows the comparison of various object
detection models discussed in this work. The RetinaNet-
50 (Event-Voxel/Gray) models have the least mAP and the
Early-fusion and FPN-fusion models significantly improve
upon this baseline.

Since the labeling of the dataset was done using a frame-
based detector, we expect RetinaNet-50 (RGB) to have
the best performance, and accordingly, all fusion models
achieved a comparable mAP as expected. The Early-fusion
(Event-Gray+RGB) model slightly surpasses the RetinaNet-
50 (RGB) model. However, it has the second-worst per-
formance on the rPC metric, indicating that the primary
information for detection is extracted from RGB and hence
is susceptible to image corruptions.

The proposed FPN-fusion model (Event-Voxel+RGB)
shows high robustness with 68.7% rPC which is 30% better
than the RetinaNet-50 (RGB) model. In general, the models
having Event-Voxel input with the raw event data were able
to attain a higher rPC in comparison to their counterpart
Gray-scale events. This is true for both Early-fusion and
FPN-fusion models.

Early-fusion models have shown that with a suitable
representation (voxel in this case) of the input, it can
achieve higher robustness. On the other hand, ablation study
performed in subsection V-A and the results from Table III
show that when the two sensor modalities and representation
are not in the same viewpoint, the Early fusion model fails
to correlate this two information and has a poor performance
that is close to RetinaNet-50 (Event-Voxel/Gray) models.

B. Discussion on robustness

Table I provides average rPC(%) over five severity levels.
A brief look at the four categories of corruption shows
that the RetinaNet-50 (RGB) model is severely affected
by noise and weather conditions. Meanwhile, the sensor
fusion models, excluding Early-fusion (Event-Gray+RGB),
are comparatively robust to all categories. Notably, the
weather conditions such as snow, frost, and fog also affect
the event camera. Hence, the results do not illustrate the
performance of fusion models under weather conditions, but
rather an elaborate study on the performance of models
with corruptions on the RGB images. However, an event
camera has the intrinsic ability to work well in low-light
conditions or with high dynamic range scenarios. As seen
in Table I, under Brightness and Contrast corruption type
the RetinaNet-50 (RGB) model degrades rapidly compared
to the proposed FPN-fusion models.

Figure 3 provides the performance of different models
across 15 corruption types and 5 severity levels. Under the
Digital corruption category, all models including RetinaNet-
50 (RGB) model are arguably robust (excluding the contrast
corruption). Moreover, under severity level 5 (worst cor-
ruption scenario), FPN-fusion (Event-Voxel/Gray+RGB) and
Early-fusion (Event-Voxel+RGB) models have an mAP close
to RetinaNet-50 (Event-Voxel/Gray). This indicates that in
case of faulty frame-based sensor or corrupted images, the
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Fig. 5. Relative performance under various severity levels.

proposed model is able to fall back on events for object
detection.

TABLE IV
COMPARING THE PERFORMANCE OF THE DIFFERENT PROPOSED MODELS

ON MAP AND RPC METRICS.

Input Model mAP rPC (%)
Event-Voxel RetinaNet-50 0.12 -
Event-Gray RetinaNet-50 0.12 -

RGB RetinaNet-50 0.25 38.6
Event-Gray + RGB Early-fusion 0.26 40.4
Event-Gray + RGB FPN-fusion 0.25 60.8
Event-Voxel + RGB Early-fusion 0.24 66.2
Event-Voxel + RGB FPN-fusion 0.24 68.7

CONCLUSIONS AND FUTURE WORK

In this work, we presented the first sensor fusion ap-
proach using Event-based and RGB cameras for robust
object detection. Our approach combines features from two
independent feature extractors corresponding to events and
RGB in the feature pyramidal network of RetinaNet. We
analyzed the robustness under common image corruption.
We demonstrate that our sensor fusion approach has obtained
higher robustness for a similar object detection performance.
Along with this, to promote further research we have publicly
released the labels for object detection in DSEC dataset.

In the future, we would refine our object labels in DSEC
dataset through manual annotation and add more object
categories. Apart from RetinaNet, various other baseline
models can be explored for sensor fusion to achieve a higher
mAP and robustness.
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