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Algorithms for the Computation of all Mathieu Functions of Integer Orders

The article presents methods for the computation of all Mathieu functions of integer order, which cover a large range of n and h; previous algorithms were limited to small values of n. The algorithms are given in sufficient details to enable straightforward implementation. The algorithms can handle a large range of the order n (0-200) and the parameter h (0-4n).

INTRODUCTION

Elliptically shaped devices are employed in many applications as antennas, waveguides, fiber optic cables and horns [START_REF] Alhargan | Frequency response characteristics of multiport planar elliptic patch[END_REF], [START_REF] Alhargan | A general mode theory for the elliptic disk microstrip antenna[END_REF], [START_REF] Bhattacharyya | Theoretical and experimental investigation of the elliptical annual ring antenna[END_REF], [START_REF] Lewis | Modes on elliptical cross-section dielectric-tube waveguides[END_REF]], [J.D. [START_REF] Love | Rays and modes on step-index multimode elliptical waveguides[END_REF], [H.A. [START_REF] Ragheb | Plane wave scattering by conducting elliptic cylinder coated by a nonconfocal dielectric[END_REF], [START_REF] Shen | The elliptical microstrip antenna with circular polarization[END_REF]] and [START_REF] Do-Nhat | Exact eigenvalue equations of modes in elliptical fibers of step-index profile[END_REF]. For the analysis of such devices the homogeneous Helmholtz equation in the elliptic coordinates is employed. The solution of such an equation invariably leads to Mathieu functions [START_REF] Alhargan | Frequency response characteristics of multiport planar elliptic patch[END_REF], [START_REF] Alhargan | A complete method for the computations of Mathieu characteristic numbers of integer orders[END_REF]], [START_REF] Mclachlan | Theory and Applications of Mathieu Functions[END_REF]], [START_REF] Morse | Tables relating to Mathieu functions, characteristic values, and joining factors[END_REF] and [NBS 1967]. The analytical solutions of many elliptical problems have been hindered by the difficulties in the computation of Mathieu functions.

Many algorithms have been devised to compute Mathieu functions with various degrees of success [START_REF] Alhargan | A complete method for the computations of Mathieu characteristic numbers of integer orders[END_REF]], [F.M. [START_REF] Arscott | A three-term recursion and the computation of Mathieu functions[END_REF], [START_REF] Blanch | Numerical aspects of Mathieu eigenvalues[END_REF]], [START_REF] Leeb | Algorithm 537: Characteristic values of Mathieu's differential equation[END_REF]], [START_REF] Mclachlan | Theory and Applications of Mathieu Functions[END_REF]], [START_REF] Morse | Tables relating to Mathieu functions, characteristic values, and joining factors[END_REF], [NBS 1967], [START_REF] Rengarajan | Mathieu functions of integral orders and real arguments[END_REF], [Shirts 1993b], [Shirts 1993a], [START_REF] Toyama | Computer program descripation[END_REF] and [START_REF] Wimp | Computation with Recurrence Relations[END_REF]]. These efforts are often concerned with only one aspect of the computation of Mathieu functions, such as dealing with Mathieu characteristic numbers (MCN). This state of affairs has resulted in many gaps in the computation of Mathieu functions and has presented difficulties in implementing complete algorithms for their computation. Furthermore, available algorithms are either limited in range or too elaborate for the non-specialist to implement.

In this paper an attempt is made to select and outline the most appropriate algorithms as well as the most appropriate series for the functions, and to fill the many gaps required for their computation. Each algorithm is clearly described to facilitate its immediate implementation. The scope of the paper is restricted to the outline of the algorithms and discussion of important aspects only. The objective of the paper is to present all the necessary algorithms for computing Mathieu functions without needing to recourse to the literature. These algorithms can deal with a large range of the order n (0-200) and the parameter h (0-4n). For very large values of n and h the use of asymptotic expressions, which are out of the scope of this paper, are more appropriate.

PRELIMINARY

Using the separation of variables technique the solution of the homogeneous Helmholtz equation in the elliptic coordinates

∂ 2 Ψ ∂u 2 + ∂ 2 Ψ ∂v 2 + h 2 2 (cosh 2u -cos 2v)Ψ = 0 (1)
results in the following two differential equations:

The circumferential Mathieu's differential equation

d 2 V dv 2 + (c - h 2 2 cos 2v)V = 0 (2)
and the radial Mathieu's differential equation

d 2 U du 2 -(c - h 2 2 cosh 2u)U = 0 (3)
where Ψ = U (u)V (v) and c is the separation constant. The separation constant c is called the Mathieu characteristic number (MCN), which is associated with even or odd solutions, in this case c is denoted by a and b respectively. An important case is when h is purely imaginary, i.e. replacing h by jh in the above equations we obtain: The modified circumferential Mathieu's differential equation

d 2 V dv 2 + (c + h 2 2 cos 2v)V = 0 (4)
and the modified radial Mathieu's differential equation

d 2 U du 2 -(c + h 2 2 cosh 2u)U = 0 (5)
The solutions of equations ( 4) and ( 5) are special cases of the solutions of equations (2) and (3). This relation is similar to the relation between Bessel and modified Bessel functions.

Circumferential Mathieu Functions

Equation (2) has two possible solutions. The first is periodic and the second solution is nonperiodic as follows. The circumferential first kind even Mathieu function (even about v=0):

Se 2n+p (h, cos v) = ∞ m=0 Be 2m+p cos (2m + p)v (6) 
The circumferential first kind odd Mathieu function (odd about v=0):

So 2n+p (h, cos v) = ∞ m=0 Bo 2m+p sin (2m + p)v (7) 
where p ∈ {0, 1} will be assumed throughout the paper.

In the above, the functions of order 2n are of period π and functions of order 2n + 1 are of period 2π.
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The circumferential second kind even Mathieu function:

Fe 2n+p (h, cos v) = δe 2n+p vSe 2n+p (h, cos v) + ∞ m=0 De 2m+p sin (2m + p)v (8) 
The circumferential second kind odd Mathieu function:

Fo 2n+p (h, cos v) = δo 2n+p vSo 2n+p (h, cos v) + ∞ m=0 Do 2m+p cos (2m + p)v (9) 
The Wronskians are ∆(Se n , Fe n ) = 1, ∆(So n , Fo n ) = -1, Be,Bo are first kind even and odd Mathieu coefficients respectively, De, Do are second kind even and odd Mathieu coefficients respectively, and δe, δo are the second kind normalization constants, given by

δe 2n+p = 1 1 + ∞ m=0 (2m + p)De 2m+p (10) δo 2n+p = 1 ∞ m=0 Do 2m+p (11)

Radial Mathieu Functions

Equation (3) has two solutions, termed radial first kind and radial second kind Mathieu functions:

The radial first kind even Mathieu function:

Je 2n+p (h, cosh u) = π/2 σ 2n+p Be 2n+p ∞ m=0 (-1) m+n Be 2m+p [J m-n (w 1 )J m+n+p (w 2 ) +J m+n+p (w 1 )J m-n (w 2 )]
(12) The radial first kind odd Mathieu function:

Jo 2n+p (h, cosh u) = π/2 Bo 2n+p ∞ m=0 (-1) m+n Bo 2m+p [J m-n (w 1 )J m+n+p (w 2 ) -J m+n+p (w 1 )J m-n (w 2 )] (13) 
fThe radial second kind even Mathieu function:

Ye 2n+p (h, cosh u) = π/2 σ 2n+p Be 2n+p ∞ m=0 (-1) m+n Be 2m+p [J m-n (w 1 )Y m+n+p (w 2 ) +J m+n+p (w 1 )Y m-n (w 2 )]
(14) The radial second kind odd Mathieu function:

Yo 2n+p (h, cosh u) = π/2 Bo 2n+p ∞ m=0 (-1) m+n Bo 2m+p [J m-n (w 1 )Y m+n+p (w 2 ) -J m+n+p (w 1 )Y m-n (w 2 )] ( 15 
)
where J n (),Y n () are the first and second kind Bessel functions respectively,

w 1 = h 2 e -u , w 2 = h 2 e u , σ r = 2, r = 0; 1, r = 0.
The Wronskians are ∆(Je n , Ye n ) = 1 and ∆(Jo n , Yo n ) = 1.

Modified Circumferential Mathieu Functions

The solutions of equation ( 4) are:

The modified circumferential first kind Mathieu functions:

Qe 2n+p (h, cos v) = ∞ m=0 Ae 2m+p (h) cos (2m + p)v (16) Qo 2n+p (h, cos v) = ∞ m=0 Ao 2m+p (h) sin (2m + p)v (17) 
The modified circumferential second kind Mathieu functions:

Ee 2n+p (h, cos v) = γe 2n+p vQe 2n+p (h, cos v) + ∞ m=0 Ce 2m+p sin (2m + p)v (18) Eo 2n+p (h, cos v) = γo 2n+p vQo 2n+p (h, cos v) + ∞ m=0 Co 2m+p cos (2m + p)v (19)
where the Wronskians are ∆(Qe n , Ee n ) = 1, ∆(Qo n , Eo n ) = -1, Ae,Ao are modified first kind even and odd Mathieu coefficients, Ce, Co are modified second kind even and odd Mathieu coefficients, and γe, γo are the modified second kind normalization constants, given by

γe 2n+p = 1 1 + ∞ m=0 (2m + p)Ce 2m+p (20) γo 2n+p = 1 ∞ m=0 Co 2m+p (21) 

Modified Radial Mathieu Functions

The solutions for equation ( 5) are:

The modified radial first kind even Mathieu functions are

Ie 2n+p (h, cosh u) = 1 σ 2n+p Ae 2n+p ∞ m=0 Ae 2m+p [I m-n (w 1 )I m+n+p (w 2 ) +I m+n+p (w 1 )I m-n (w 2 )] (22) 
The modified radial first kind odd Mathieu functions are

Io 2n+p (h, cosh u) = 1 Ao 2n+p ∞ m=0 Ao 2m+p [I m-n (w 1 )I m+n+p (w 2 ) -I m+n+p (w 1 )I m-n (w 2 )] (23) 
The modified radial second kind even Mathieu functions are

Ke 2n+p (h, cosh u) = (-1) n σ 2n+p Ae 2n+p ∞ m=0 (-1) m Ae 2m+p [I m-n (w 1 )K m+n+p (w 2 ) +(-1) p I m+n+p (w 1 )K m-n (w 2 )] (24)
The modified radial second kind odd Mathieu functions are

Ko 2n+p (h, cosh u) = (-1) n Ao 2n+p ∞ m=0 (-1) m Ao 2m+p [I m-n (w 1 )K m+n+p (w 2 ) -(-1) p I m+n+p (w 1 )K m-n (w 2 )] (25) 
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where I n (),K n () are the first and second kind modified Bessel functions respectively, Ae,Ao are the modified Mathieu coefficients and w 1 , w 2 , σ 2n+p were defined in section 2.4.

Relations of Mathieu Coefficients

The recurrence relation for the first kind Mathieu coefficients are given by [START_REF] Mclachlan | Theory and Applications of Mathieu Functions[END_REF], [START_REF] Morse | Tables relating to Mathieu functions, characteristic values, and joining factors[END_REF] and [NBS 1967]: Even coefficients of even order,

Be 0 -(h/2) 2 a2n Be 2 = 0 h 2 /2 2 2 -a2n Be 0 + Be 2 + (h/2) 2 2 2 -a2n Be 4 = 0 (h/2) 2 4m 2 -a2n Be 2m-2 + Be 2m + (h/2) 2 4m 2 -a2n Be 2m+2 = 0, m ≥ 2 (26)
Even coefficients of odd order,

Be 1 + (h/2) 2 (h/2) 2 -a2n+1+1 Be 3 = 0 (h/2) 2 (2m+1) 2 -a2n+1 Be 2m-1 + Be 2m+1 + (h/2) 2 (2m+1) 2 -a2n+1 Be 2m+3 = 0, m ≥ 1 (27) Odd coefficients of even order, Bo 0 = 0 Bo 2 + (h/2) 2 2 2 -b2n Bo 4 = 0 (h/2) 2 4m 2 -b2n Bo 2m-2 + Bo 2m + (h/2) 2 4m 2 -b2n Bo 2m+2 = 0, m ≥ 1 (28)
Odd coefficients of odd order,

Bo 1 - (h/2) 2 (h/2) 2 -1+b2n+1 Bo 3 = 0 (h/2) 2 (2m+1) 2 -b2n+1 Bo 2m-1 + Bo 2m+1 + (h/2) 2
(2m+1) 2 -b2n+1 Bo 2m+3 = 0, m ≥ 1 (29) These recurrence relations are the core equations for computing Mathieu characteristic numbers and Mathieu coefficients. We will first deal with the computation of MCNs and then with the computation of Mathieu coefficients.

MATHIEU CHARACTERISTIC NUMBERS A N AND B N

The computations of MCNs consist of two parts [START_REF] Alhargan | A complete method for the computations of Mathieu characteristic numbers of integer orders[END_REF]]. First we require an estimated initial value for the MCN for a given n and h. Then the initial estimated value can be improved using the modified Miller method of computing recurrence relations [START_REF] Alhargan | A complete method for the computations of Mathieu characteristic numbers of integer orders[END_REF]] and [START_REF] Wimp | Computation with Recurrence Relations[END_REF]].

The starting values can be obtained using approximation formulas for small h and asymptotic formulas for large h within the appropriate ranges of h and n which are described below. A general approximate formula for MCNs [START_REF] Mclachlan | Theory and Applications of Mathieu Functions[END_REF]] and [START_REF] Morse | Tables relating to Mathieu functions, characteristic values, and joining factors[END_REF], is

a n b n n 2 + (h/2) 4 2(n 2 -1) + (5n 2 + 7)(h/2) 8 32(n 2 -1) 3 (n 2 -4) + (9n 4 + 58n 2 + 29)(h/2) 12 64(n 2 -1) 5 (n 2 -4)(n 2 -9) +• • •
(30) which is suitable for n ≥ 4 only. For n < 4, there are approximate expressions [START_REF] Mclachlan | Theory and Applications of Mathieu Functions[END_REF]]. Though, these expressions are limited in their range, leaving a gap between approximate and asymptotic expressions where the MCNs cannot be estimated by either of them. New approximate expressions have been developed in [START_REF] Alhargan | A complete method for the computations of Mathieu characteristic numbers of integer orders[END_REF]] to overcome this problem, and these are as follows:

a 0 2 -(4 + 2(h/2) 4 ) 1/2
(31)

a 1 5 + 1 2 (h/2) 2 - 1 2 [5(h/2) 4 -16(h/2) 2 + 64] 1/2 (32)
a 2 4 + δ , where δ is a root of the following cubic equation:

δ 3 -8δ 2 -δ(48 + 3(h/2) 4 ) + 20(h/2) 4 = 0 (33) 
a 3 9 + δ , where δ is a root of the following cubic equation:

δ 3 -δ 2 [(h/2) 2 + 8] + δ[16(h/2) 2 -128 -2(h/2) 4 ] + (h/2) 4 [(h/2) 2 + 8] = 0 (34) b 1 5 - 1 2 (h/2) 2 - 1 2 [5(h/2) 4 + 16(h/2) 2 + 64] 1/2 (35) b 2 10 -(36 + (h/2) 4 ) 1/2 (36) 
b 3 9 + δ , where δ is a root of the following equation:

δ 3 + δ 2 [(h/2) 2 -8] -δ[128 + 16(h/2) 2 + 2(h/2) 4 ] + (h/2) 4 [8 -(h/2) 2 ] = 0 (37)
For large h the asymptotic expression for MCNs is

a n b n+1 ∼ - h 2 2 + mh - (m 2 + 1) 8 - (m 3 + 3m) 64h - (5m 4 + 34m 2 + 9) 2 10 h 2 - (33m 5 + 410m 3 + 405m) 2 14 h 3 - (63m 6 + 1260m 4 + 2943m 2 + 486) 2 16 h 4 - (527m 7 + 15617m 5 + 69001m 3 + 41607m) 2 20 h 5 (38) 
where m=2n+1.

The approximate and asymptotic expressions are useful at different regions of h, critical values of h (h c ) were obtained at which the estimate is computed using approximate if h ≤ h c or the asymptotic formula if h > h c , these values are shown in table 1.

Through numerical experimentation, it has been found that the approximate expression (30) (denoted by X n ) can be used for all n > 3 as long as t < 1 (t = h/n), whereas the asymptotic expression (38) (denoted by Y n ) is applicable as long as t > 2. Furthermore, it has been found that for n > 3 and n < 70, X n can be used as an estimate for t < 1.4, Y n for t > 1.7 and in the region of 1.4 ≤ t ≤ 1.7 the average 0.5(X n + Y n ) can also be applied. For larger orders the accuracy requirement for the initial estimate is higher and thus a more accurate method was developed in [START_REF] Alhargan | A complete method for the computations of Mathieu characteristic numbers of integer orders[END_REF]], the method is based on an approximate recurrence relation between any two orders n and m (n > m > 4 and n/m ≤ 2), given by

a n (nt) n m 2 a m (mt) (39) b n (nt) n m 2 b m (mt) (40)
Equations ( 39) and ( 40) are used to obtain estimates for large orders from MCNs of smaller orders via chaining (e.g. for n = 200, compute a 50 and use it to estimate and compute a 100 , then a 100 is used to estimate and compute a 200 ) as show in table 2. Now given an initial estimate for the MCN, computed as described above, a more accurate MCN can be obtained by iterative procedures that improve on the first estimate [START_REF] Alhargan | A complete method for the computations of Mathieu characteristic numbers of integer orders[END_REF]] and [START_REF] Wimp | Computation with Recurrence Relations[END_REF]].

The recurrence relations for MCNs computations can be generalized as

(h/2) 2 W r-1 + [(2r + p) 2 -c]W r + (h/2) 2 W r+1 = 0, r = 1, 2, 3, ... ( 41 
) (h/2) 2 W r-1 + [(2r + p) 2 -c]W r + (h/2) 2 W r+1 = W r ( 42 
)
where p ∈ {0, 1} and c ∈ {a, b} . For Even MCNs of Even Order a 2n

f (a) = W 0 2 a -(h/2) 2 W 1 (43) f (a) = W 0 2 a -(h/2) 2 W 1 + W 0 2 (44)
For Even MCNs of Odd Order a 2n+1

f (a) = [(h/2) 2 -a + 1]W 0 + (h/2) 2 W 1 (45) f (a) = [(h/2) 2 -a + 1]W 0 + (h/2) 2 W 1 -W 0 (46) For Odd MCNs of Even Order b 2n f (b) = (4 -b)W 1 + (h/2) 2 W 2 (47) f (b) = (4 -b)W 1 + (h/2) 2 W 2 -W 1 (48) with W 0 =0. For Odd MCNs of Odd Order b 2n+1 f (b) = [(h/2) 2 + b -1]W 0 -(h/2) 2 W 1 (49) f (b) = [(h/2) 2 + b -1]W 0 -(h/2) 2 W 1 + W 0 (50) 
The Newton Raphson procedure is

c (i+1) m = c (i) m - f (c (i) m ) f (c (i) m ) (51) where c m ∈ {a m , b m }

COMPUTATION OF MATHIEU COEFFICIENTS

It is important to note that the coefficients Be and Bo are functions of h and the characteristic number (hence the order n). To avoid ambiguity the relation is sometimes stated in the literature as Be (n) m (h) or Be m (h, n), similarly for Bo. However, writing the expressions fully is tedious, hence if there is no ambiguity the coefficients will be written with the explicit relation omitted for simplicity.

Once the characteristic numbers have been evaluated for a given h, the coefficients can be calculated for each order. There are four types of coefficients; each is calculated with different recursive equations. As is the case with Mathieu functions, there are several ways of computing the coefficients. The method adopted by [START_REF] Mclachlan | Theory and Applications of Mathieu Functions[END_REF]] will be outlined and its pitfalls pointed out. Then a modification of the method will be discussed and illustrated.

First Kind Coefficients, Be m and Bo m

Consider the first kind even coefficients of even order Be 2m equation ( 26), taking

V 2m = Be 2m+2 Be 2m ⇒ V 2m-2 V 2m = Be 2m+2 Be 2m-2 (52) 
and substituting back into equations ( 26), the relationship for backward computation results in

V 2m-2 = - (h/2) 2 /(2m) 2 1 -a2n (2m) 2 + (h/2) 2 V2m (2m) 2 , m ≥ 2 (53) V 0 = - 1 2 (h/2) 2 1 -a2n 4 + (h/2) 2 V2 4 (54) V 0 = a 2n (h/2) 2 (55) 
and forward computation yields

V 0 = a 2n (h/2) 2 (56) 
Table 3. V s generated using equations ( 53)-( 55) and ( 56)-( 58 

V 2 = a 2n (h/2) 2 - 4 (h/2) 2 - 2 V 0 (57) V 2m = a 2n (h/2) 2 - (2m) 2 (h/2) 2 - 1 V 2m-2 , m ≥ 2 (58) 
Of course we can use either of the equations to compute the V s. However, convergence of the computations must be verified at the end as both the backward and forward recurrence are unstable for some values of h and n. The divergence can be identified from two salient features:

(1) V 0 is given explicitly by equation ( 55),

(2) V 2m → 0 as m → ∞ , since we require Be 2m → 0 as m → ∞ for a converging series.

The first is used to check backward computation as it will produce another V 0 from (54) and the two values can be compared. The second is used to check the forward computation by making sure that consecutive values of V 2m are getting smaller as m increases.

From table 3, it is seen that the forward computation diverges for m > n (2m > 22 in this case), while backward computations diverges for m < n (2m < 8 in this case) and in the region around n they agree. In some extreme cases the values agree only at m = n and disagree in the rest, in some other cases the two column agree for all m's. Blanch [START_REF] Blanch | Numerical aspects of Mathieu eigenvalues[END_REF]] and [START_REF] Blanch | Numerical evaluation of continued fractions[END_REF]] suggests an elaborate method which employs both forward and backward computations coupled with a routine which determines the appropriate chaining point for minimum loss of significant figures. However, the computational effort does not match the accuracy obtained as compared to the use of straight forward and backward computation and chaining m ≥ 1 Odd coefficients of even order,

b 2n Do 0 -(h/2) 2 Do 2 = 0 (b 2n -4)Do 2 -(h/2) 2 (Do 4 + 2Do 0 ) = -4Bo 2 (81) (b 2n -4m 2 )Do 2m -(h/2) 2 (Do 2m+2 + Do 2m-2 ) = -4mBo 2m , m ≥ 2 Odd coefficients of odd order, (b 2n+1 -1 -(h/2) 2 )Do 1 -(h/2) 2 Do 3 = -2Bo 1 (82) (b 2n+1 -(2m + 1) 2 )Do 2m+1 -(h/2) 2 (Do 2m+3 + Do 2m-1 ) = -2(2m + 1)Bo 2m+1 , m ≥ 1 Taking W 2m+p = D 2m+p , D 2m+p ∈ {De 2m+p , Do 2m+p }, p ∈ {0, 1} and B 2m+p ∈ {Be 2m+p , Bo 2m+p } .
Assume, that at some large value S, W 2S+p = 0 and W 2S+2+p = 0, then from equations ( 79)-( 82), we have 

W 2S-2+p = - 2 (2S + p)B 2S+p (h/2) 2 (83) W 2m-2+p = [c 2n+p -(2m + p) 2 ]W 2m+p -2 (2m + p)B 2m+p (h/2) 2 -µW 2m+2+p , (84) 
We also define as follows

θe 0 = 1 2Be 0 (a 2n -4)W 2 (h/2) 2 -W 4 - 2a 2n (h/2) 2 (88) θe 1 = 1 2Be 1 (a 2n+1 -1 + (h/2) 2 )W 1 (h/2) 2 -W 3 - 1 (h/2) 2 (89) θo 0 = 1 Bo 2 W 2 - b 2n W 0 (h/2) 2 (90) θo 1 = 1 2Bo 1 W 3 - (b 2n+1 -1 -(h/2) 2 )W 1 (h/2) 2 - 1 (h/2) 2 (91) 
Finally, the coefficients are computed using The computation of the modified second kind coefficients {Ce n , Co n } is similar to {De n , Do n }, with following modifications: Take W 2m+p = C 2m+p , C 2m+p ∈ {Ce 2m+p , Co 2m+p }, replace every h 2 by -h 2 and p ∈ {0, 1} and assume that at some large value S, W 2S+p = 0 and W 2S+2+p = 0, then from equations ( 83)-( 92 

D 2m+p = W 2m+p -θ p B 2m+p , m = 0,
We also define as follows θe 0 = 1 2Ae 0 -(a 2n -4)W 2 (h/2) 2 -W 4 + 2a 2n (h/2) 2 (98)

θe 1 = - 1 2Ae 1 (b 2n+1 -1 -(h/2) 2 )W 1 (h/2) 2 + W 3 + 1 (h/2) 2
(99)

θo 0 = 1 Ao 2 W 2 + b 2n W 0 (h/2) 2 (100) θo 1 = 1 2Ao 1 W 3 + (a 2n+1 -1 + (h/2) 2 )W 1 (h/2) 2 + 1 (h/2) 2 (101) 
Finally, the coefficients are computed using

C 2m+p = W 2m+p -θ p A 2m+p , m = 0, 1, 2, ..., S. (102) 
where θ p ∈ {θe p , θo p }.

CONCLUSION

In this paper algorithms for computing the Mathieu functions are explained in sufficient detail to enable straightforward implementation. It is hoped that these algorithms will enable the analysis and solutions of many practical problems involving the elliptic shapes.

  where m = S -1, S -2, ..., 1, c r = a r , for De m ; b r , for Do m .

Table 1 .

 1 Critical values of h

	The order n	hc for an	hc for bn
	0	4	-
	1	4	4
	2	3.5	4.5
	3	5	5

Table 2 .

 2 Chaining for a 200

	t	correct value	estimated	correct	estimated	correct
		a 50	a 100 = 4a 50	a 100	a 200 = 4a 100	a 200
	0.50	2504.8908	10019.5631	10019.5571	40078.2286	40078.2227
	1.00	2579.7817	10319.1268	10319.0145	41276.0580	41275.9458
	1.50	2957.5651	11830.2604	11822.8017	47291.2066	47287.8821
	2.00	3568.0884	14272.3537	14142.7298	56570.9193	56309.8245
	2.50	3357.5231	13430.0925	13243.3610	52973.4441	52598.6944
	3.00	2485.3404	9941.3614	9701.4426	38805.7704	38324.8229
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  W 2m-2+p = -[c 2n+p -(2m + p) 2 ]W 2m+p -2 (2m + p)A 2m+p (h/2) 2 -µW 2m+2+p , (94)where m = S -1, S -2, ..., 1, A 2m+p ∈ {Ae 2m+p , Ao 2m+p }, Ce 2m ; b 2m+1 , for Ce 2m+1 ; b 2m , for Co 2m ; a 2m+1 , for Co 2m+1 .

		), we have
		W 2S-2+p =	2 (2S + p)A 2S+p (h/2) 2	(93)
		c 2m+p =	   	a 2m ,	for (95)
			  	
		=	1, -1, for Co m . for Ce m ;	(96)
	and			
	µ =	0.5, odd coefficients of even order; 1, otherwise.
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at the order (2n) only. This is based on observations from table 3 that the forward computation gives good results up to V 2n , after which it starts diverging, whereas the backward computation provides good results down to V 2n , after which it starts to diverge. We will denote V 2n forward by V f 2n and backward by V b 2n . Now by combining the two methods where they give good results, much of the convergence problems are eliminated. A check for accuracy is that |V f 2n -V b 2n | is very small. In the very few cases when this method is not successful, the method of Blanch may be employed. Now we may rewrite the equations for the combined method which are applicable to all the coefficients as

, m = 2, 3, 4, ..., n n > 1 (59)

if n = 0, then the last term in ( 61) is given by

For the Even Coefficients of Even Order Be 2m : c = a, p = 0,

and the normalization convention is

For the Even Coefficients of Odd Order Be 2m+1 : c = a, p = 1,

and the normalization convention is

For Odd Coefficients of Even Order Bo 2m : c = b, p = 0,
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and the normalization convention is

For Odd Coefficients of Odd Order Bo 2m+1 : c = b, p = 1,

and the normalization convention is

The modified first kind Mathieu coefficients are computed by first computing the coefficients Be and Bo, then the following equations are used to compute the values of Ae and Ao. The modified Mathieu coefficients are related to the standard Mathieu coefficients as follows: