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ABSTRACT

We extend a recent classical mechanical analog of Bohr’s atom consisting of a scalar field coupled to a massive point-like particle [P. Jamet and
A. Drezet, “A mechanical analog of Bohr’s atom based on de Broglie’s double-solution approach,” Chaos 31, 103120 (2021)] by adding and
studying the contribution of a uniform weak magnetic field on their dynamics. In doing so, we are able to recover the splitting of the energy
levels of the atom called Zeeman’s effect within the constraints of our model and in agreement with the semiclassical theory of Sommerfeld.
This result is obtained using Larmor’s theorem for both the field and the particle, associating magnetic effects with inertial Coriolis forces
in a rotating frame of reference. Our work, based on the old “double solution” theory of de Broglie, shows that a dualistic model involving a
particle guided by a scalar field can reproduce the normal Zeeman effect.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0081254

Quantum mechanics is generally opposed to classical physics.
However, Louis de Broglie already attempted, and partially suc-
ceeded, to give a physical spatiotemporal interpretation of wave-
particle duality in the 1920s. In the present work, we further
develop a classical analog model of the old Bohr–Sommerfeld
atom involving a particle coupled to a wave. Here, we introduce
a coupling with an external magnetic field and show, using the
Larmor theorem, that we can recover the famous Zeeman split-
ting of energy levels predicted in the old quantum theory. This, we
believe, can shed new light on the relations between the quantum
and the classical worlds and will provide new ways for observing
this relation experimentally.

I. INTRODUCTION

As early as 1897,1 and following the interests of Michael Fara-
day that led him to perform his last experiments on this subject in
1862,2 Pieter Zeeman published a study on the effects of a magnetic
field on the characteristics of the light emitted by various sources.
He observed at the time that the spectral lines of sodium salts were
widened when the substance was placed near a magnetic field. With
his experiments, he was able to not only identify this widening as
being related only to the microscopic properties of the sources and
not on the thermodynamic state of the substance, but also to explain
its origin using Lorentz’s theory3 with whom he shared the Nobel
prize in 1902. The theoretical explanation at the time was that light

was emitted by oscillating or orbiting discrete charges so that their
orbital period was increased or decreased through the effect of the
magnetic field, and, in turn, the frequency of the light would also be
modified accordingly.

Years later in 1913, Bohr proposed a new planetary model4 for
the atom, following more than a decade of similar works on the
structure of matter—in particular, by Larmor who wrote himself a
planetary model with elliptical orbits explaining Zeeman’s obser-
vations in late 18975—introducing the hypothesis of quantization
for orbital momenta. In this model, negatively charged electrons
orbit around a positively charged nucleus—at the time only mov-
ing along circular paths but extended in 1916 by Sommerfeld to
elliptical ones6—but only at fixed radii and energies. In this theory,
light is emitted when an electron jumps from one energy level to
a lower one, emitting a quantum of light with frequency equal to
the difference in the energies of the two orbits divided by Planck’s
constant h. This is clearly reminiscent of Lorentz, Zeeman, and
Larmor’s explanations of 1897;1,3,5 indeed, one can easily recover
the same phenomenon of the effect of a magnetic field on the fre-
quency of the electromagnetic waves, relating the orbital period or
the angular frequency to that of the waves. Of course, this model
also has the advantage of explaining the origin of the line struc-
ture in the spectra of atoms and predicts that it is not widening of
these lines but rather splitting of a single line into 2n + 1, where
n is the orbital angular momentum quantum number character-
izing the orbit L =

∮

p dq = nh. This explanation, however, could
not account for all observations. In fact, two phenomena existed,
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the normal Zeeman effect where a spectral line splits into an odd
number of subsequent lines, correctly explained by the theory, and
an anomalous one with a line dividing into an even number, as
yet unexplained. Later still, the development of modern quantum
mechanics by de Broglie, Schrödinger, Heisenberg, Born, and many
others led to yet another atomic model, which once again predicted
this normal Zeeman splitting, but also the anomalous one (related to
the existence of the half-integer spin for the electron) characterizing
any electronic orbital by a set of four quantum numbers |n, l, lz, sz〉.6

More recently, experiments have been performed7–10 on
droplets bouncing on a vibrating liquid bath showing that such
droplets can exhibit quantum-like properties (for reviews, see
Refs. 11–14). In particular, if the bath itself is rotated, the quan-
tization of the orbital angular momentum of the droplet induces,
in turn, quantization of other quantities, such as the radii of the
orbits, which were shown to follow the same rules as Zeeman or Lan-
dau levels.9 This phenomenon can be understood as an interaction
between the orbital angular momentum of the droplet and an “effec-
tive magnetic field,” which actually is an inertial force arising from
the rotating reference frame.

In this paper, we will go back to the old quantum theory
and start from a new atomic model developed recently15,16 with a
mechanical approach related to ideas introduced by de Broglie17–19

and add to it an external magnetic field to recover the normal Zee-
man splitting of the energy levels. As we will see, this model will
indeed explain this phenomenon both from a particle and a field
point of view, while also gaining insights into some limitations or
constraints on such a procedure. After briefly recalling in Sec. II
the characteristics of our previously developed model,15,16 we will,
in particular, look first at the dynamics of the particle in Sec. III A
and then of the guiding field in Sec. III B, making use of an inter-
esting method for finding the solutions of complex field equations
coupled to a magnetic field using Larmor’s theorem.5,20 Moreover,
we stress that the general methodology proposed in this work is
based on mechanical analogies that can be applied to several fields of
physics, including acoustic and optics. We discuss the fundamental
and applicative potentialities of our work in the final discussion.

II. DESCRIPTION OF OUR MODEL

In a previous paper16 (hereafter called JD), we developed a
classical analog of a quantum atom based on some ideas first intro-
duced by Louis de Broglie, known as the “double solution,” which
successfully reproduced the usual quantization rules of Bohr and
Sommerfeld. More specifically, this model uses a complex scalar
field u(x) defining a physical object in space-time [to be distin-
guished from the usual wave-function 9(x) introduced in quantum
mechanics] that is coupled to a particle represented by a point-like
mass mp via a holonomic constraint between the field itself and an
internal oscillation z(τ ) for the particle (τ is a relativistic proper
time for the particle). We also introduced a four-vector potential
A(x) to take into account external electromagnetic forces on both
the field and the particle, such as a central electrostatic energy poten-
tial U(r) = eV(r) = −α/r [α = e2/(4π) denotes Sommerfeld’s fine
structure constant, and we use the convention e = −|e| < 0]. Here,
we will study this system further by adding an external uniform
magnetic field B = Bêz in order to derive the quantized splitting

of the energy levels with respect to the projection of the angular
momentum Lz, called the Zeeman effect.

As shown in JD, our system is characterized by the action

I = −
∫ [

mp − 1

2
mpσ

(

|ż(τ )|2 − �2
p |z(τ )|2

)

]

dτ

+
∫

{

N (τ )
[

z(τ ) − u(xp(τ ))
]∗

+ N
∗(τ )

[

z(τ ) − u(xp(τ ))
]}

dτ

− e

∫

A(xp(τ ))ẋp(τ ) dτ + T

∫

(Du)(Du)∗ d4x, (1)

which contains several physical quantities listed in Table I and
discussed in more detail in JD. In our work, we use natural
units (c = ~ = 1) and the Minkowski metric ηµν with signature
(1, −1, −1, −1).

The physical meaning of the different contributions to Eq. (1)
must be briefly discussed. The first line in Eq. (1) contains a sin-

gle particle relativistic Lagrangian where dτ =
√

ηµν dx
µ
p (τ ) dxν

p(τ )

is a Minkowski proper time interval defined along the particle tra-
jectory (repeated indices are implicitly summed over), and mp is a
rest mass for the particle with trajectory xp(τ ). The specificity of our
model is to generally have a nonconstant mass obtained by adding
a harmonic oscillator term in the first line of Eq. (1). This harmonic
oscillator is associated with an internal degree of freedom z(τ ) (rep-
resenting an internal clock for the particle) and a typical pulsation
�p. This term plays a key role in the analogy with de Broglie’s theory
as we show below. We mention that the addition of this term gener-
alizes our non-relativistic mechanical analogy developed in Ref. 15.
The second and third lines of the action [Eq. (1)] define a holo-
nomic constraint connecting the wave u(x) and the particle at the
position x = xp(τ ). The terms N (τ ), N ∗(τ ) play the role of reac-
tion forces between the wave, the internal clock, and the particle.
Finally, the last line in Eq. (1) describes a standard quadratic field
Lagrangian density for a d’Alembert scalar wave equation (T is a
constant similar to a tension in a elastic string15). Here, however, the
field u(x) is complex valued, and instead of the usual partial deriva-
tive ∂µ, we have a covariant derivative Dµ = ∂µ + ieAµ depending
on the external electromagnetic potential A(x) interacting with the

TABLE I. Summary of the different parameters of the model.

Parameters Physical meaning

u(x) Fundamental field
Aµ(x) Electromagnetic four-vector potential
z(τ ) Internal oscillator

N (τ ) Internal reaction force acting upon the particle
xµ

p (τ ) Four-vector position of the particle

T Tension of the field
�p Internal oscillator pulsation
mp Bare particle mass
σ Coupling constant

e = −|e| Particle electric charge
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u-wave. The model is thus gauge invariant in a way similar to the
Klein–Gordon equation. The last line of Eq. (1) also includes a stan-
dard coupling term for the particle and the external electromagnetic
potential Aµ(x). We stress that here, we have used the same elec-
tric charge e for both the particle and the covariant derivative Dµ.
As explained in JD, this hypothesis could be relaxed but will be
considered in the following.

Using a variational principle δI = 0, Eq. (1) leads to a sys-
tem of coupled differential equations, from which we can extract
a regime called transparency15,16,21 where the force N (τ ) vanishes,
meaning that the particle and the field are no longer affecting each
other. In this case, the equations decouple, apart from the holonomic
constraint

z(τ ) = u(xp(τ )), (2)

which defines a synchronization condition between the u-wave and
the particle. This is reminiscent of the “phase harmony” condition
introduced by de Broglie in his Ph.D. thesis.22 This is fundamental in
our model where the particle is guided by the u-wave. The dynamics
of z(τ ) then describes a simple harmonic motion

z(τ ) = z0 e−i�pτ , (3)

while the particle with coordinate xp(τ ) and the u-field follow the
equations

meff.

d2xpµ(τ )

dτ 2
= eFµν(xp(τ ))ẋν

p, (4)

D2u(x) = 0, (5)

with meff. = mp

(

1 + σ�2
p |z0|2

)

being an effective “dressed” mass

that takes into account both the usual inertia mp and the oscil-
latory motion along z, Fµν = ∂µAν − ∂νAµ being the electromag-
netic tensor, and Dµ = ∂µ + ieAµ being the covariant derivative.
Equation (4) describes the usual Lorentz force acting on a point-like
particle (with dressed mass), and Eq. (5) describes a field dynamics
similar to the Klein–Gordon equation but without a mass term. The
coupling between the wave and the particle is fixed by the holonomic
constraint [Eq. (2)] and the internal oscillation [Eq. (3)].

Solving Eqs. (3)–(5) may prove difficult because of both the
relativistic formalism and the presence of the four-vector potential
involving electric and magnetic contributions. As we showed in JD
in the presence of a Coulomb electrostatic field, we can obtain a
solution of Eq. (5) defining a guiding wave for the particle mov-
ing along a circular orbit. The phase harmony condition z = u
forces the particle motion to be quantized, and the dynamics repro-
duces the Bohr–Sommerfeld quantization formula for the energy
levels, velocities, and radii of the particle. Inspired by de Broglie’s
work,17–19 we found a solution of Eq. (5) where u(x) is a sum of two
counter-propagating modes with frequencies ω± and orbital angular
momentum Lz := m± (i.e., projected along the z-axis). This solu-
tion induces a supraluminal phase wave having all the properties
of the wave introduced by de Broglie in his Ph.D. work.17 In turn,
the particle-wave system fulfills the holonomic constraint z = u
along the orbit as it is required in order to induce the quantization
of the particle motion. Here, we introduce an additional constant

magnetic field, and we will see that it is still possible to give approxi-
mate solutions in the non-relativistic and weak magnetic field limits
corresponding to the standard Zeeman effect.

III. SOLUTIONS OF THE EQUATIONS OF MOTION

A. The particle dynamics

Assuming a uniform circular motion in the (x, y) := (ρ, ϕ)

plane, let us write Eq. (4) with a specific form of the four electro-
magnetic potential R2A =

(

− e
4πr

, 1
2
Bρêϕ

)

,

−meff.γ
v2

r
= − α

r2
+ evB, (6)

with v being the particle velocity and γ = (1 − v2)
− 1

2 and where we

used the Sommerfeld fine structure constant α = e2

4π
. Equation (6)

describes the classical relativistic mechanics of a point-like particle
along a circular orbit in a mixed electro- and magnetostatic exter-
nal field. Similarly, we can define the integral of motion associated
with the angular orbital momentum by using the action variable
formalism,

J :=
∮

Pdl = 2πr

(

γ meff.v + 1

2
eBr

)

= 2πn. (7)

This notation is similar to the one used by Sommerfeld in his old
quantum mechanics.6 Note first that for simplicity, we identified
the spherical radius r with the cylindrical coordinate ρ since we
impose a magnetic field along the direction z normal to the plane of
motion z = 0. We also have introduced a number n defining an inte-
gral of motion for the dynamics, i.e., the orbital angular momentum
Lz = n of the particle. Knowing that, from now on, we will index all
physical quantities related to the particle’s motion with this num-
ber n. Finally, we will introduce the Larmor frequency defined by
ωL = −eB/(2meff.), which will be derived later in this article using
Larmor’s theorem (see Sec. III B).

Equations (6) and (7) allow us to derive the characteristic prop-
erties of the motion; in particular, we can get the constant particle
velocity along the orbit,

vn = α

n

1

1 − meff.ωLr2n
n

. (8)

In the absence of magnetic field, we recover the formula v(0)
n = α

n

for the purely Coulombian atom as obtained by Bohr4 and justified
in JD for our model. We also have, in the non-relativistic limit, a
fourth order equation for the radius rn,

(meff.ωL)
2r4

n + meff.αrn − n2 = 0. (9)

In the case of a weak magnetic field, we can find an approximate
solution for this equation with a perturbation around the radius
without magnetic field r(0)

n = n2/(meff.α) [if n = 1, we recover the
standard Bohr radius 1/(meff.α)]. We obtain

rn ≈ n2

meff.α

(

1 − (meff.ωL)
2 n6

(meff.α)4

)

, (10)
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which will be equal to r(0)
n at first order in B. We can then use this

expression in the velocity, and we obtain

vn ≈ α

n

(

1 + (meff.ωL)
n3

(meff.α)2

)

= α

n
+ ωLr(0)

n . (11)

This time, the deviation from v(0)
n = α/n is of order 1 in B. This for-

mula is very intuitive and can be recovered using Larmor’s theorem
by adding to v(0)

n a velocity ωLr(0)
n associated with a change of the

reference frame: This is explained in Sec. III B.
In the end, the energy of the particle is

En ≈ meff. +
1

2
meff.v

2
n − α

rn

≈ meff.

(

1 − 1

2

α2

n2

)

+ nωL, (12)

and we recover the usual expression for the Zeeman splitting in the
weak field and non-relativistic limits,

En ≈ E(0)
n + nωL = E(0)

n − Lz

eB

2meff.

, (13)

where E(0)
n = meff.

(

1 − 1
2

α2

n2

)

is the standard Bohr formula for the

hydrogen-like atom energy (including a constant mass energy meff.).
Moreover, observe that the previous formulas are valid irrespec-
tive of the sign of B and n. If n > 0, we have a positive orbital
angular momentum Lz = n and the orbit is followed in the anti-
clockwise direction, whereas if n = −|n| < 0, we have a negative
orbital angular momentum Lz = −|n| < 0 and the orbit is followed
in the clockwise direction. Therefore, for a given magnetic field
along z, say B > 0, we have two solutions for the Zeeman effect cor-
responding to En ≈ E(0)

n ± |n|ωL: The symmetry between the two
travel directions along the orbit existing in the absence of B has
been broken. Of course, the same broken symmetry is obtained if
instead of considering the two possible travel directions along the
orbit, we reverse the magnetic field so as to have B = −|B| < 0. This
equivalence will be used in Sec. III B dealing with Larmor’s theorem.

At this point, we stress that n does not need to be an inte-
ger; i.e., we still have a completely classical unquantized motion for
the particle. Indeed, the Zeeman effect1 is not inherently quantum
mechanical but can also be found in classical mechanics as it was
historically done by Lorentz3 and Larmor.20 Moreover, in the fol-
lowing, we will show that this Bohr–Sommerfeld quantization of
n is required as soon as we reintroduce the holonomic constraint
with the field as was shown previously in JD for the case of the pure
Coulombian field.

We also stress that Eq. (13) is a particular case of the formula
En = E(0)

n − Lz
eB

2meff.
, where n and Lz (historically named the mag-

netic quantum number) are generally different. Indeed, here, we
considered a motion in the z = 0 plane where Lz is identical to the
full orbital angular momentum. In the more general case, we can
write Lz = cos θ0|L|, where θ0 is the angle between the orbital angu-
lar momentum pseudovector L = meff.x × v and the z axis oriented
along the magnetic field. The effect of the magnetic field pertur-
bation is to induce a slow precession of the electron orbital plane
along the z-axis with Larmor’s frequency ωL. Here, we have only
considered the case θ0 = 0 or π corresponding to the anticlockwise
and clockwise motions in the z = 0 plane around the magnetic field
axis. Moreover, we also supposed |n| = |L| associated with the sim-
plest Bohr-like circular motion. The most general case considered by

Sommerfeld6 allows |n| ≥ |L| corresponding to elliptical orbits with

eccentricity ε =
√

1 − |L|2
n2 (the case n = 0 is excluded). Here, the

restriction ε = 0 to a pure circular orbit is imposed by our theoreti-
cal model coupling the particle to a wave motion. More precisely, as
we will show in Sec. III B, the very demanding holonomic condition
[Eq. (3)] requires the velocity to be a constant of motion, which is
not compatible with a general elliptical motion.

B. Larmor’s theorem and the solutions for the u field

Solving the full wave equation for the field in the presence of
the electromagnetic potential

(

∂t − i
α

r

)2

u −
(

∇ − 1

2
ieBρêϕ

)2

u = 0 (14)

is not an easy task. It is, however, possible to find an approximate
solution by emulating the magnetic field with an inertial Coriolis
force, as is explained by Larmor’s theorem.

Consider first the following wave equation:

(

∂t′ − i
α

r′

)2

u′ −
(

∇ ′)2
u′ = 0, (15)

defined in an inertial reference frame R ′ where the scalar u-field
reads u′(t′, x′). When this wave equation is watched from the point
of view of an accelerated reference frame R rotating uniformly
around the z = z′ axis, this wave equation will be modified to
include some inertial force terms. For this purpose, we use the
following cylindrical coordinate transformation (sketched in Fig. 1):

t′ = t,

ρ ′ = ρ,

z′ = z,

ϕ′ = ϕ − ωLt,

(16)

where t, ρ, ϕ, z are coordinates in the accelerated reference frame
and ωL is the constant rotation frequency of R ′ relatively to R (the
rotation is supposedly nonrelativistic).

This transformation, in turn, modifies the temporal derivative

∂t′ = ∂t + ωL∂ϕ′ , (17)

but otherwise, it allows the spatial derivatives unchanged: ∇ = ∇
′.

Applying this transformation to Eq. (15) leads (after some
calculations detailed in Appendix A) to

(

∂t − i
α

r

)2

u − ∇2u − 2iωLmeff.∂ϕu + O(ω2
L) ≈ 0. (18)

On the other hand, going back to Eq. (14), the spatial operator can
also be expanded as

(

∇ − 1

2
ieBρêϕ

)2

u = ∇2u − ieB∂ϕu + O(B2), (19)

and Eq. (14) reduces to

(

∂t − i
α

r

)2

u − ∇2u + ieB∂ϕu + O(B2) ≈ 0. (20)
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FIG. 1. Illustration of the change of coordinates following Larmor’s theorem. The
new coordinates x′, y′, z′ (or, equivalently, ρ ′,ϕ′, z′) are associated with a rotation
of the original coordinate system x, y, z (or, equivalently, ρ,ϕ, z) by an angle ωLt
around the z axis.

Comparing Eqs. (18) and (20), we see that the two are identical
[i.e., neglecting second order terms O(B2) ∼ O(ω2

L)] if we carefully
impose ωL := −eB/(2meff.) defining the Larmor frequency. In other
words, a change of coordinates from the laboratory frame R to a
new virtual frame R ′ rotating with the Larmor frequency ωL exactly
cancels out the effects of the magnetic field at the first order in B.
This means that if we know the solution u′ without a magnetic field
in a frame R ′, we can obtain an approximate solution u = u′ in
the laboratory frame R where a weak magnetic field is present by
performing the rotation ϕ = ϕ′ + ωLt′ as shown in Fig. 1.

In JD, we previously obtained the solution of the wave equation
D2u(x) = 0 in the presence of a Coulombian potential eV(r)
= −α/r. In particular, we showed that in order to fulfill the holo-
nomic condition z(τ ) = u(xn(τ )), the u-field must be written as
u(x) = u+(x) + u−(x) involving two counterpropagating modes u±.
This is necessary in order to obtain the correct de Broglie “phase
harmony” condition between the field and the oscillation z of the
particle. Moreover, along the circular orbit of radius rn, we have

u±

(

t, rn,
π

2
, ϕ

)

= 1

2
u0e

i(±k±rnϕ−ω′
±t), (21)

where we introduced the two quantized wave vectors k± = m±
rp

(m± ∈ N) and the mode frequencies ω′
± := ω

(0)
± (the complete

expression for the field is given in JD and in Appendix B). To go fur-
ther, we first write u′

±(x′) in the R ′ frame where Eq. (15) holds true.
If we use Larmor’s theorem in the laboratory frame R, we obtain
u±(t, r, θ , ϕ) = u′

±(t′, r′, θ ′, ϕ′) defining our new solutions. Along the
orbit, we thus obtain

u±

(

t, rn,
π

2
, ϕ

)

= 1

2
u0 ei(±k±rnϕ−(ω′

±±m±ωL)t), (22)

FIG. 2. Rotation of the total u-field following Larmor’s theorem. The density of
the modulus of the total field |u(0, x)| in the case n = 1, m+ = 4, m− = 2 is
represented in color.

where the shifted frequencies ω′
± ± m±ωL appear. Note that in

the first order approximation, rn ' r(0)
n as justified in Sec. III A.

Moreover, along the orbit, the total field u(x) = u+(x) + u−(x) is

u
(

t, rn,
π

2
, ϕ

)

= u0 ei(ñϕ−(ω′
n+ñωL))t

· cos

[

(ω′
n + ñωL + ε)

(

rnϕ − kn − η

ω′
n + ñωL + ε

t

)]

, (23)

with

kn = k+ − k−

2
, ωn = ω+ + ω−

2
, ω′

n = ω′
+ + ω′

−
2

(24)

and where we introduced

η = ε+ − ε−

2
, ε = ε+ + ε−

2
. (25)

Moreover, the total field in the 3D space is obtained by summing
the two modes, and we illustrate in Fig. 2 the case of a simple combi-
nation of modes m+ = 4, m− = 2 leading to the energy level n = 1.
The wave is rotating (precessing) with the frequency ωL in agree-
ment with Larmor’s theorem. Importantly, in Eq. (23), we have
inserted a quantum number ñ = m+−m−

2
∈ Z/2. Thus, the mean fre-

quency in the laboratory frame ωn is related to the mean frequency
in the rotating frame ω′

n by

ωn = ω′
n + ñωL = ω(0)

n + ñωL. (26)

This looks like the expression [Eq. (13)] for Zeeman’s energy-shift
when applying a weak magnetic field.

In order for this analogy to become an identity, we must first
have ñ = n. This is justified in our approach15,16 if, in agreement with
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de Broglie,17,22 we identify the group velocity of the u-wave in Eq.
(23),

vg = k − η

ω + ε
, (27)

to the velocity of the particle along the circular trajectory,

vn = Pn − eAϕ

En − eV
, (28)

with the canonical momentum Pn = γ meff.vn + eAϕ = γ meff.vn

+ 1
2
eBrn. The equality vn = vg implies that the particle is constantly

in phase with the guiding wave. With this condition, the term
rnϕ − vgt becomes a constant in Eq. (23). In other words, this corre-
sponds to synchronization of the internal clock of the particle with
the phase of the u-wave as required by the holonomic condition
z = u. This motivates the fundamental de Broglie relations,

Pn = bkn and En = bωn, (29)

with b an a priori arbitrary constant. In our previous work JD,
we showed that a self-consistent model is easily obtained if we
impose b = 1 as a condition. In the following, we will thus accept
the requirement b = 1 for simplicity, but we emphasize that in
principle, our model could be generalized to b 6= 1 as explained in
JD.

The condition Pn = kn = ñ
rn

is clearly reminiscent of Eq. (7),

which can be written as
∮

Pndl = 2πrn

∮

kn dϕ = 2π ñ. (30)

This is indeed the Bohr–Sommerfeld quantization condition if
n = ñ as is also required to identify Eqs. (13) and (26).

Moreover, the condition vn = vg together with Eq. (29) leads to

ε±= α

rn

± 1

2
eBrn, (31)

and therefore, from k± = n±
rn

= ω± + ε±, we deduce

En = ωn = N

rn

− ε = N

rn

− α

rn

, (32)

where we defined N = m++m−
2

. Inserting En and Pn = n/rn into
Eq. (28), we then easily find that

vp = vg ≈ n

N

(

1 + meff.ωL

(meff.α)2
n3

)

+ O(B2)

= n

N

(

1 + meff.ωLr(0)
n

n

)

+ O(B2), (33)

from which we can deduce an interesting condition on the value of
the fine structure constant α by comparing to Eq. (11),

α ≈ n2

N
+ O(B2) ≡ α0 + O(B2), (34)

where α0 = n2/N is the value for an isolated atom, i.e., without a
magnetic field as studied in JD. This relation is fundamental since it
provides a selection rule for the different possible values of n and N
or, equivalently, m±. As we showed in JD if α−1

0 is an integer (e.g.,

α−1
0 = 137), then the allowed values for n are necessarily limited

to integer numbers |n| = 1, 2, . . .. As justified in JD, this is cen-
tral to recover the Bohr–Sommerfeld quantization postulate since
a priori our number n ≡ ñ = m+−m−

2
∈ Z/2 is not necessarily an

integer: Without this selection rule, it would also allow half-integers
1/2, 3/2, . . .. While half-quanta are not a priori useless in connection
with fermionic spin (that was the initial reasoning of Heisenberg as
a student of Sommerfeld6), we prefer here to be rather conservative
and follow the usual approach without half-quanta (reserving the
possibility to come back to this issue in a future work).

One final important relation is obtained by writing the holo-
nomic constraint

z(t) = z0 e−i�p

√
1−v2

nt = u(t, xp(t)) = u0 eiLpt, (35)

where Lp is the particle Lagrangian,

Lp = −meff.

√

1 − v2
n − eV(rn) + eAϕ(rn)vn

= −meff.

√

1 − v2
n + α

rn

+ 1

2
eBrnvn, (36)

which is, of course, the classical Lagrangian for a relativistic par-
ticle in an electromagnetic field. The presence of the Lagrangian
comes from the fact that the phase of u(t, xp(t)) can be written as
(knvn − ωn)t = (Pnvn − En)t, which by definition is Lpt. Therefore,
as required by the holonomic condition, we have equal amplitudes
z0 = u0 as well as equal phases,

�p = meff. −
(

α

rn

+ 1

2
eBrnvn

)

1
√

1 − v2
n

≈ meff.

(

1 − α2

n2

)

+ ωLn

(

1 − α2

2n2

)

, (37)

which, remembering that meff. = mp(1 + σ�2
p |z0|2), completely

determines the amplitude z0 and, therefore, all the characteristics of
the motion using the different parameters of our model.

Before concluding, a few points must be emphasized in order to
show the consistency of our model: (i) First, in JD, the frequencies

ω
(0)
± of the modes were calculated to be

ω
(0)
± = meff.

√

1 − α2

n2

(

1 ± α

n
− α2

n2

)

≈ meff.

(

1 ± α

n
− α2

2n2

)

. (38)

The dominant contribution is the effective mass meff., and this is not
modified if we include the first order magnetic perturbation so that

ω± = ω
(0)
± ± m±ωL ∼ meff.. This plays a role in self-consistency of

our method (see Appendix A).
(ii) Second, we stress that the Larmor theorem is usually pre-

sented for particles and not for waves. Moreover, the derivation of
the particle dynamics given in Sec. III A could be done directly using
the Larmor theorem as it was proposed by Larmor himself.20 The
derivation is straightforward: Starting from the inertial reference
frame R ′ where the nonrelativistic particle dynamics is described
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by a Newtonian equation

meff.

d

dt′
v′

p(t
′) = −αr̂′

r′2 (39)

that involves a Coulombian (electrostatic) force, and using the coor-
dinate transformation Eq. (16) to the accelerated reference frame R

uniformly rotating around the z axis with an angular velocity ωLẑ,
we obtain

meff.

d

dt
vp(t) ≈ −αr̂

r2
− 2meff.vp(t) × ωLẑ + O(ω2

L). (40)

Up to second order terms in ωL, this equation is similar to the
dynamics of a particle submitted to both a central Coulombian force
and to the Laplace–Ampere–Lorentz force in a constant magnetic
field B = Bẑ; i.e.,

meff.

d

dt
vp(t) = −αr̂

r2
+ evp(t) × Bẑ. (41)

The identity occurs if we assume ωL = − eB
2meff.

that constitutes the

Larmor formula. Importantly, the particle velocity in the R refer-
ence frame is given by vp(t) = v′

p(t
′) + ωLẑ × r; i.e.,

vϕ = v′
ϕ + ωLr := α

n
+ ωLrn, (42)

which is equivalent to Eq. (11), v = α

n
+ ωLr(0)

n with rn ' r(0)
n . In

the end, the nonrelativistic particle energy E′ − meff. = 1
2
meff.v

′2

− α

r′ in R ′ transforms into the energy E − meff. = 1
2
meff.v

2 − α

r
= E′

+ meff.ωLrnvn + O(ω2
L) in R ′. Using the formula for rn ' n2/meff.α

and vn leads to

En ' E′
n + nωL + O(ω2

L) (43)

recovering the Zeeman splitting of Eq. (13). Therefore, we see that
the two applications of the Larmor theorem to, respectively, the
wave and the particle are self consistent. The coordinate transforma-
tion [Eq. (16)] from the reference frame R ′ to R leads to a circular
particle orbit with a modified velocity vn = α

n
+ ωLr(0)

n , whereas the
u-field is also modified accordingly to obey Eq. (23). In the R ′ ref-
erence frame, the u-field is given by the unperturbed wave field
associated with the pure Coulombian solution studied in JD. The
Larmor theorem applied to both the field and the particle allows
us to obtain the new dynamics in the presence of a weak constant
magnetic field B valid in the laboratory reference frame R.

(iii) As a final remark, we must return to our comment at the
end of Sec. III A concerning the limitation of our model to uniform
circular motion. For this purpose, it is enough to consider the regime
without an external magnetic field, i.e., B = 0, and to use once more
the holonomic condition [Eq. (35)] with the Lagrangian given by
Eq. (36). This leads to

(�p − meff.)γ
−1
n = −α/rn = En − meff.γn, (44)

where we used the definition of the constant energy En = meff.γn

− α/rn (with γn = 1/
√

1 − v2
n). Solving Eq. (44) gives

γn = En

2meff.

+ 1

2meff.

√

(E2
n − 4meff.(�p − meff.)), (45)

which corresponds to a constant velocity. This clearly shows the
intrinsic limitation of our model associated with the constant value
of the internal frequency �p.

IV. DISCUSSION AND PERSPECTIVES

In this paper, we have extended our 3D mechanical atomic
model presented in JD by adding an external uniform magnetic field.
We recovered the mathematics of the normal Zeeman splitting of
the energy levels in the atom in the weak field limit by making use of
an equivalence between a constant and uniform magnetic field and
inertial forces of a rotating frame of reference.

Going back to the results of the present work, we showed
that the quantum Zeeman effect arises naturally in our model. This
extends the regime of applicability of the analogy discussed in our
previous article JD. There are, however, some limitations that need
to be considered, mainly the difficulties of our model to introduce
elliptical orbits or the case of s-orbitals with n = 0 that are part of
quantum mechanics. Moreover, here, we limited our analysis to the
transparency regime where N = 0. Going beyond would imply to
consider transitions between orbits (e.g., to study the stability of
trajectories or the chaotic nature of the dynamics). Such a regime
clearly needs further considerations.

In JD, we suggested ways of experimentally reproducing the
Bohr–Sommerfeld quantum condition [Eq. (7)] as implementations
of our atomic model, in particular, using optical vortices with def-
inite orbital angular momenta to trap small particles on quantized
orbits (following the method developed by Ashkin23 for optical
tweezers). This same system could naturally be extended to include
a transverse magnetic field, which, by interacting with the orbital
angular momentum, should also reproduce the results shown in
this paper, i.e., the modification of all orbital quantities follow-
ing Zeeman’s results. The most important feature in the optical
tweezers analogy is the holonomic condition z(τ ) = u(xp(τ )) that
can be seen as a particular weak resonance condition for a nano-
particle or a nano-antenna in an optical24 or plasmonic field25 (that
is, if we can neglect scattering). Further studies should be done in
order to understand this interesting analogy in both the 2D and
3D regime. Potential applications in biology or micro/nano technol-
ogy could ultimately be considered. More generally, if one were to
produce an experimental demonstration of this system, introduc-
ing inertial forces would suffice at first order to mimic the effects
of an electromagnetic field, as was hinted in other experimental and
theoretical works on hydrodynamical analogs.9,26 This opens inter-
esting perspectives for discussing analogies with the Zeeman effect
using mechanical or acoustical systems. This was the original moti-
vation of our nonrelativistic model15 where a particle sliding on a
vibrating string was guided by the phase wave generated by two
counterpropagating plane waves u±. Clearly, this shows the strong
transdisciplinarity of our analogy and method. Furthermore, the dif-
ferent mathematical tools used in our model coupling a wave to a
guided particle also stress the links between methods applied to clas-
sical mechanics of point-like objects and the dynamics of waves (in
full agreement with the goal of de Broglie in his double solution
theory19). We believe that this constitutes strength of our general
methodology that can be applied to different fields.

Chaos 32, 033101 (2022); doi: 10.1063/5.0081254 32, 033101-7

Published under an exclusive license by AIP Publishing

 11 August 2023 12:02:27

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

Moreover, at a fundamental level, it should be noted that this
equivalence between a constant and uniform magnetic field and
inertial forces of a rotating frame of reference could be taken one
step further by using a general relativity formalism and interpreting
the whole electromagnetic field as a curvature in the metric. The idea
is to find some kind of an equivalence between the two covariant
derivatives in general relativity and our formalism,

∂µ + ieAµ ∼ ∂µ + 0̃µ, (46)

with 0̃µ being some contraction or operation on the Levi-Civita
connection 0ρ

µ ν defined in general relativity by

0ρ
µ ν = 1

2
gρλ

(

∂νgµλ + ∂µgνλ − ∂λgµν

)

, (47)

with gµν being the metric tensor and ∂µ the derivative with respect
to the coordinate xµ. This of course cannot be done in the general
case, and the equivalence (46) is only here to represent schematically
the goal of the analogy. However, it was done, for example, in the
case of weak static fields26,27—which is our case of interest—using the
electromagnetic tensor Fµν and part of the affine connection 0

ρ

0 ν ,

Fµν = ∂µAν − ∂νAµ

≡ ηµρ0
ρ

0 ν = 1

2
ηµρgρλ

(

∂0gλν + ∂νg0λ − ∂λg0ν

)

, (48)

with ηµν = diag(1, −1, −1, −1) being the Minkowski metric. On top
of being interesting analogies in and of themselves, these ideas of
emulating or equating “real” forces with inertial ones can prove
computationally useful as was shown here by our solving of the
covariant wave equation. This general relativity formalism has, of
course, the added benefit of being able to account for both electric
and magnetic forces with a combination of Coriolis and centrifugal
forces.

In the end, the formalism developed in the present work allows
us to consider very general cases of wave-particle duality with var-
ious external potentials, such as a central electrostatic potential
or a uniform magnetic field, with the two main assumptions, i.e.,
the existence of a periodic phenomenon in the particle and its
holonomic coupling with the field, being at the root of all quan-
tum phenomena. These are ideas that clearly deserve to be studied
extensively and using various approaches (e.g., pilot-wave theo-
ries, double solution theories, Bohmian mechanics, hydrodynamic
analogs, . . .19,28–30), as they are able to provide us with insights into
the nature of quantum mechanics.
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APPENDIX A: LARMOR’S THEOREM FOR THE WAVE

EQUATION

The application of the transformation from Eq. (16) to (15)
leads to

(

∂t − i
α

r′

)2

=
(

∂t − i
α

r
+ ωL∂ϕ

)2

=
(

∂t − i
α

r

)2

+ 2ωL∂ϕ

(

∂t − i
α

r

)

+ O(ω2
L), (A1)

where we used r =
√

ρ2 + z2 =
√

ρ ′2 + z′2 = r′. Moreover, assum-
ing a harmonic solution for the u-field u′(t′, x′) := u(t, x)
= f(x) e−iωt, and if we neglect the radial term α/r � ω, we can write

(

∂t − i
α

r

)

f(x) e−iωt ≈ −iωf(x) e−iωt, (A2)

which finally gives us for the temporal part of the d’Alembert
operator when we identify the energy ω with an equivalent mass
meff.,

(

∂t − i
α

r
+ ωL∂ϕ

)2

≈
(

∂t − i
α

r

)2

u − 2iωLmeff.∂ϕu + O(ω2
L).

(A3)
Moreover, we justify the identification ω ∼ meff. used in Eq. (A2)
afterward. Indeed, from Eq. (38), we see that the dominant contribu-

tion in the mode frequencies ω
(0)
± is the effective mass meff., and this

is not modified if we include the first order magnetic perturbation

so that ω± = ω
(0)
± ± m±ωL ∼ meff.. This, in turn, justifies why it was

judicious in Eq. (A3) to identify the frequency ω with the mass term
meff. (a similar method is used for deriving Schrödinger’s equation
from Klein–Gordon’s one). Therefore, the self-consistency of our
derivation of Larmor’s theorem for the wave equation and of the
related dispersion relation given by Eq. (B5) is a posteriori justified.

APPENDIX B: SOLUTIONS OF THE WAVE EQUATION

For the present problem writing the two solutions u′
±(x′) in

the R ′ frame where Eq. (15) holds true, we have (using spherical
coordinates)

u′
±(t′, r′, θ ′, ϕ′) = A±Rl̃±(r′)P

±m±
l± (cos θ ′) ei(±m±ϕ′−ω′

±t), (B1)

where l± ≥ 0 and m± ≤ l± are positive integers labeling spherical

harmonics P
±m±
l± (cos θ ′) e±im±ϕ′

and where the radial contribution

Rl′±(r′) (with l̃± = −1
2

+
√

((l± + 1
2
)

2 − α2)) is a complex function,

Rl̃±(r′) = eiω′
±r′ r′̃l±M(l̃±+1 − iα, 2l̃±+2, −2iω±r′), (B2)

defined using the Kummer confluent hypergeometric function
M(a, b, c) = 1F1(a, b, c).

Moreover, using Larmor’s theorem in the laboratory frame R,
we obtain u±(t, r, θ , ϕ) = u′

±(t′, r′, θ ′, ϕ′),

u±(t, r, θ , ϕ) = A±Rl̃±(r)P
±m±
l± (cos θ) ei(±m±ϕ−(ω′

±±m±ωL)t). (B3)

This equation clearly shows that the mode frequencies ω± in the R

reference frame are, according to Larmor’s theorem, given by the
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formula

ω± = ω′
± ± m±ωL, (B4)

which is actually reminiscent of the Zeeman spectrum given in

Eq. (13). Therefore, in Eq. (B4), ω′
± = ω

(0)
± can be interpreted as the

zero-order solution in the absence of a magnetic field,

ω± = ω
(0)
± ± m±ωL. (B5)

To go further, we recall from our previous article JD that along the
circular path of the particle the two modes u± read

u±

(

t, rn,
π

2
, ϕ

)

= 1

2
u0e

i(±k±rnϕ−ω±t), (B6)

with the wave vector condition k± = m±
rp

(m± ∈ N). By definition of

the modes u±, we have A±Rl̃±(rn)P
±m±
l± (0) = u0

2
imposing a specific

condition on the amplitudes of the two modes u+ and u−.
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