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SHAPE DERIVATIVE FOR SOME EIGENVALUE FUNCTIONALS IN1

ELASTICITY THEORY∗2

FABIEN CAUBET† , MARC DAMBRINE‡ , AND RAJESH MAHADEVAN§3

Abstract. This work is the second part of a previous paper which was devoted to scalar4
problems. Here we study the shape derivative of eigenvalue problems of elasticity theory for various5
kinds of boundary conditions, that is Dirichlet, Neumann, Robin, and Wentzell boundary conditions.6
We also study the case of composite materials, having in mind applications in the sensitivity analysis7
of mechanical devices manufactured by additive printing.8

The main idea, which rests on the computation of the derivative of a minimum with respect to9
a parameter, was successfully applied in the scalar case in the first part of this paper and is here10
extended to more interesting situations in the vectorial case (linear elasticity), with applications in11
additive manufacturing. These computations for eigenvalues in the elasticity problem for generalized12
boundary conditions and for composite elastic structures constitute the main novelty of this paper.13
The results obtained here also show the efficiency of this method for such calculations whereas the14
methods used previously even for classical clamped or transmission boundary conditions are more15
lengthy or, are based on various simplifying assumptions, such as the simplicity of the eigenvalue or16
the existence of a shape derivative.17

Key words. eigenvalues of elasticity operators, shape derivatives, shape sensitivity analysis,18
generalized boundary conditions19

AMS subject classifications. 49Q10, 35P15, 49R0520

1. Introduction.21

1.1. Motivations and generalities on shape derivatives. Many problems22

ranging from engineering to physics deal with questions of optimal shapes or designs.23

An important class of these problems involves eigenvalues of elliptic operators since24

they are important in understanding the vibrating modes of a mechanical structure. A25

famous example is the so-called Rayleigh-Faber-Krahn inequality for the first vibrating26

mode of a clamped membrane. In recent years, additive manufacturing, or the so-27

called 3D printing, has been used in the manufacturing of machine parts with complex28

geometries or even having a heterogeneous structure. The structural properties of29

these parts depend on two important features: the distribution of the materials and30

the effect of thin coatings on the boundary of the device. Of course, engineers would31

like to optimize the performance of such a printed device by means of an optimal32

layout of the materials. One of the criteria to consider in the performance of the33

device are its vibrational properties. In this work, we study the shape sensitivity of34

eigenvalue problems in linear elasticity for a wide variety of boundary conditions and35

for both homogeneous and heterogeneous materials with the above applications in36

mind.37

Let Oad be a family of admissible open sets in Rd, d = 1, 2, 3, which is stable38

with respect to a family of diffeomorphisms (I + tV ), that is, for a given δ > 0, we39
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§Departamento de Matemática, Universidad de Concepción, Chile (rmahadevan@udec.cl, https:

//udec-cl.academia.edu/RajeshMahadevan).

1

This manuscript is for review purposes only.

mailto:fabien.caubet@univ-pau.fr
http://fcaubet001.perso.univ-pau.fr
mailto:marc.dambrine@univ-pau.fr
mailto:http://mdambrin.perso.univ-pau.fr
mailto:rmahadevan@udec.cl
https://udec-cl.academia.edu/RajeshMahadevan
https://udec-cl.academia.edu/RajeshMahadevan


2 FABIEN CAUBET, MARC DAMBRINE, AND RAJESH MAHADEVAN

have (I+tV )(Ω) ∈ Oad whenever Ω ∈ Oad for all t ∈ [0, δ] and for all V smooth vector40

fields with compact support in a neighborhood of Ω. Previously and in what follows, I41

denotes the identity vector field. The semi-derivative a shape functional F : Oad → R,42

in the sense of J. Hadamard [17], at Ω ∈ Oad in the direction of a vector field V , is43

defined as44

(1.1) F ′(Ω;V ) := lim
t→0+

F (Ωt)− F (Ω)

t
,45

where46

Ωt := Ψt(Ω), being Ψt(x) := x+ tV (x),47

whenever the limit in (1.1) exists. This is called a shape derivative if it exists and is48

a linear functional with respect to V .49

1.2. Aim of this work. In the first part of the present work exposed in [8],50

we have shown how to compute efficiently the semi-derivative of eigenvalue function-51

als in the scalar case by following a procedure developed initially by M. Delfour and52

J.P. Zolesio for dealing with the sensitivity with respect to a parameter in minimiza-53

tion problems. In this paper, we focus on vector case and, to be specific, on the study54

of the semi-derivatives for several families of eigenvalue problems in linear elasticity55

problems for various kinds of boundary conditions. Whether or not this is linear and56

continuous with respect to the vector field will not be addressed here. Indeed, the57

fact that eigenvalues in elasticity problems are not simple makes it very little probable58

that we could go beyond establishing the existence of a semi-derivative.59

Our strategy. For establishing the existence of a semi-derivative in the prob-60

lems of our interest we shall adopt the following approach. This approach starts with61

the application of the following version of Theorem 2.1, Chapter 10, M. Delfour and62

J.P. Zolesio [14] for proving the existence and for obtaining an initial expression for63

the semi-derivative.64

Theorem 1.1. Let X be a Banach space and let G : [0, δ] × X → R be a given65

functional and we set66

g(t) = inf
X
G(t, x) and X(t) = {x ∈ X : G(t, x) = g(t)}.67

If the following hypotheses hold,68

(H1) X(t) 6= ∅ for all t ∈ [0, δ],69

(H2) ∂tG(t, x) exists in [0, δ] at all x ∈ ∪t∈[0,δ]X(t),70

(H3) there exists a topology τ on X such that, for every sequence {tn} ⊂]0, δ]71

tending to 0 and xn ∈ X(tn), there exists x0 ∈ X(0) and a subsequence {tnk
}72

of {tn}, for which73

(i) xnk
−→ x0 with respect to τ74

(ii) lim infk−→∞ ∂tG(tnk
, xnk

) ≥ ∂tG(0, x0),75

(H4) for all x ∈ X(0), the function t −→ ∂tG(t, x) is upper semi-continuous at76

t = 0,77

then we have that
g′(0) = inf

x∈X(0)
∂tG(0, x).

In our setting, the functional G(t, ·) will be chosen to be the Rayleigh quotient as-78

sociated to the original eigenvalue problem on the perturbed domain Ωt after it is79
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SHAPE DERIVATIVE FOR SOME EIGENVALUE FUNCTIONALS 3

transported back to Ω. We then follow the procedure used in the scalar case [8], for80

a step-by-step verification of the hypotheses which guarantee the applicability of the81

theorem. Is follows that we break up the different terms which constitute the Rayleigh82

quotient and calculate their contributions to the shape derivative through Proposi-83

tions 3.1 and 3.2 proved below. Then the rather complicated obtained expressions are84

simplified thanks to a systematic choice of test functions in the variational formula-85

tion of the eigenvalue problem. By following this methodical approach, we are able to86

rigorously establish the existence of the Eulerian semi-derivatives in these problems87

and obtain the corresponding boundary representations in a simplified manner.88

Main novelties of this work. Now a word about some existing results for89

such derivatives in the elasticity case. Previously, the shape sensitivity of eigenvalue90

problems of elasticity has been considered for example by J. Sokolowski and J.P.91

Zolesio in [23] and G. Allaire and F. Jouve in [2]. In these works, the computation for92

this shape derivative in the presence of Dirichlet and Neumann boundary conditions93

is given while assuming that the eigenvalue in consideration is simple (and this may94

be the case for certain domains although not true in general). The arguments therein95

are based on a suitable adjoint formulation.96

In the present work, we avoid the hypothesis of the simplicity of the eigenvalue97

and, by following our unified and systematic approach, we do not only recover the98

earlier results but also are able to extend it with a fair amount of ease to other99

boundary value problems of interest, especially in additive printing, like the so-called100

Wentzell boundary conditions. Let us emphasize that such boundary conditions are101

not a mathematical curiosity but appear naturally in the context of linear elasticity102

as soon as the configuration presents discontinuities on the material properties on103

a submanifold (see, e.g., [9] for a crusted body or [20] for an interface problem).104

In particular, the Wentzell boundary conditions, coming from asymptotic analysis105

(see [20, 21, 9] for the mechanical and theoretical justification of such conditions),106

permit to model coating or membrane effects. Notice that this approximation of an107

original structure with a thin layer by adhering to another domain with new boundary108

conditions, called generalized impedance boundary conditions, is a classical method in109

order to avoid huge difficulties in the theoretical and numerical analysis of a thin110

structure (for instance a mesh refinement adapted to the thickness of the layer).111

We also underline that we consider two types of eigenvalues problems: the volume112

and surface types. If the volume type is more classical, at least for classical bound-113

ary conditions, the study of shape sensitivity of surface type eigenvalues problem is,114

up to our knowledge, much less studied although this permits to study transmission115

problems. Let us emphasize that the surface eigenvalue problems do not model ei-116

genvalues of thin structures like shells. They have been introduced to justify that the117

asymptotic models derived by M. David, J.J. Marigo and C. Pideri in [20, 21] are well118

posed in the sense that the problems are of Fredholm type (see [4] for the scalar case119

and [5] for the elastic case in dimension two). This is why we also deal with these120

problems in this paper, in order to be as complete as possible.121

Motivated by structural optimization of multi-phase material, we consider, in a122

second step, the eigenvalue problem for a mixture of two isotropic elastic materials.123

We specify that we use the terminology composite to refer to this case. In addition to124

considering such piecewise constant material properties in the interior of the domain,125

the effect of a thin coating is also taken into account by allowing a Robin or Wentzell126

boundary condition.127
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4 FABIEN CAUBET, MARC DAMBRINE, AND RAJESH MAHADEVAN

1.3. Organization of the paper. To conclude this introduction, the paper is128

organized as follows. The main results of the paper are stated in Section 2. We present129

first the result in the case of a single isotropic elastic material and, then in the case130

of a mixture of two phases. The proofs are gathered in Section 3: we first provide the131

derivatives of the elementary terms arising in Rayleigh quotient in Section 3.2, and132

then give the proof of the main theorems in Sections 3.3 and 3.4. Finally, we recall133

(classical) background and technical results in Appendix A.134

2. The results.135

2.1. Notations. We consider a bounded open subset Ω of Rd with a C2,1 bound-
ary ∂Ω. Firstly, at each point of ∂Ω, we consider an orthonormal frame (τ ,n) consist-
ing of a family of orthonormal tangential vectors, denoted by τ , and the unit normal
vector, denoted by n. Then the tangential projection is given by

Πd := Id − n⊗ n

and, in the local frame, has the representation

Πd =

(
Id−1 0

0 0

)
,

where Id and Id−1 are respectively the identity matrices of size d×d and (d−1)×(d−1).
More generally, any d×d matrixM has the following representation in the frame (τ ,n):(

Mττ Mτn

Mnτ Mnn

)
,

with the components Mττ := ΠdMΠd, Mτn := ΠdM (Id − Πd), Mnτ := (Id −136

Πd)MΠd and Mnn := (Id −Πd)M (Id −Πd).137

Secondly, in the whole paper, we use

Csym :=
1

2

(
C + tC

)
to denote the symmetric part of a square matrix C. For any vector field u =
(ui)i=1,...,d ∈ H1(Ω), the strain tensor

e(u) :=
1

2

(
∇u+ t∇u

)
= (∇u)

sym

is the symmetric part of the Jacobian matrix ∇u whose rows are t∇ui for i = 1, . . . , d.138

We also introduce, for a scalar function φ ∈ H1(∂Ω), the tangential gradient139

∇Γφ := Πd∇φ,140

and, for all vectorial functions ψ ∈ H1(∂Ω), the tangential strain141

eΓ(ψ) :=
1

2

(
∇Γψ + t∇Γψ

)
= (∇Γψ)

sym
,142

where the rows of∇Γψ are the tangential gradients of the components ψi, i = 1, . . . , d.
Notice that we have ∇Γψ = ∇ψΠd since

∇Γψ =


t∇Γψ1

...
t∇Γψd

 =


t∇ψ1Πd

...
t∇ψdΠd

 = ∇ψΠd,
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SHAPE DERIVATIVE FOR SOME EIGENVALUE FUNCTIONALS 5

and thus
e

Γ
(ψ) = Πde(ψ)Πd.

Therefore, in the local frame, it is of the form

(
eττ 0
0 0

)
. Then, we denote by

divΓψ := Tr(e
Γ
(ψ))

the surface or tangential divergence. The tangential divergence of a matrix field C
will be the vector field obtained by taking the tangential divergence of the rows of C,
that is, for all i = 1, . . . , d,

(divΓC)i := divΓCi·

Remark 2.1. We should keep in mind the following basic differences with respect143

to the scalar case. On the one hand, in the scalar case, we have ∇Γψ = Πd∇ψ,144

whereas, on the other hand, in the case of elasticity, we have ∇Γψ = ∇ψΠd. Also,145

in this case, the tangential strain e
Γ
(ψ) is obtained by reducing the strain e(ψ) to146

the tangent space by multiplying by the projection Πd on either side. This leads to147

substantial differences in the formulae for shape derivatives in the scalar case and in148

the case of elasticity.149

Then we introduce the signed distance to the boundary ∂Ω defined by

b(x) :=

{
d(x, ∂Ω), if x ∈ Ω,
−d(x, ∂Ω), if x ∈ Rd \ Ω,

and the mean curvature at any point on ∂Ω, defined by

H := divΓ n.

Finally, as mentioned in the introduction, given a C2,1 vector field V with compact150

support in a neighborhood of Ω and a (small) real number δ > 0, we consider the one151

parameter family of deformations152

(2.1) Ψt := I + tV ,153

for all t ∈ [0, δ], which are in fact diffeomorphisms if δ is sufficiently small. Then we154

define the perturbed domain by155

(2.2) Ωt := Ψt(Ω).156

We also use the following notation for the normal component of the vector field V :

Vn := V · n.

2.2. Shape derivative for eigenvalue problems of linear elasticity-single
phase isotropic materials. We assume that Ω is an elastic body and we consider
an isotropic elastic medium with Lamé coefficients µ > 0 and λ > 0, and associated
elastic or Hooke tensor A given by

Aξ := 2µ ξ + λTr(ξ) Id, for all symmetric matrices ξ.

We also assume that the body Ω is surrounded by a thin layer with an elasticity tensor157

given by158

(2.3) Acξ := 2µc ξ + λc Tr(ξ) Πd,159
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where µc > 0 and λc > 0 are some (modified) Lamé constants which correspond to160

a coating (the thin layer). Then, given α, β ≥ 0 two real numbers, we are interested161

in the following kinds of eigenvalues problems: of volume type, where the spectral162

parameter is in the domain,163

(2.4)

{
−div (Ae(u)) = ΛΩ(Ω)u in Ω,

−βdivΓ (AceΓ(u)) + αu+Ae(u)n = 0 on ∂Ω,
164

and of surface type, where the spectral parameter is on the boundary,165

(2.5)

{
−div (Ae(u)) = 0 in Ω,

−βdivΓ (AceΓ(u)) + αu+Ae(u)n = Λ∂Ω(Ω)u on ∂Ω.
166

For different regimes of the parameter, we have different kinds of eigenvalue prob-167

lems. For the choice β = 0 and α = 0 in (2.4), we obtain Neumann (pure traction)168

eigenvalues. The Dirichlet (clamped) eigenvalue problem is obtained from (2.4) in169

the limiting case α → +∞. The Robin eigenvalue problem is obtained from (2.4) by170

taking β = 0. If we take β = 0 and α = 0 in (2.5), we obtain the Steklov eigenvalue171

problem. Finally, for the choice β > 0, we have the Wentzell eigenvalue problem172

(see [9] for the model and the derivation of the Wentzell boundary conditions in the173

elasticity case).174

These eigenvalues problems arise as minimization of the associated Rayleigh quo-175

tient given by176

177

(2.6) ΛΩ(Ω) = inf
u∈H(Ω)


1∫

Ω

|u|2 dx

(∫
Ω

Ae(u) : e(u) dx178

+α

∫
∂Ω

|u|2 dς(x) + β

∫
∂Ω

AceΓu : eΓu dς(x)

)}
,179

180

and181
182

(2.7) Λ∂Ω(Ω) = inf
u∈H(Ω)


1∫

∂Ω

|u|2 dx

(∫
Ω

Ae(u) : e(u) dx183

+α

∫
∂Ω

|u|2 dς(x) + β

∫
∂Ω

AceΓu : eΓu dς(x)

)}
.184

185

Notice that, in the various eigenvalue problems, an appropriate choice of a subspace186

of H1(Ω) has to be made for H(Ω). For example, in the case of the first Dirichlet187

eigenvalue, we may choose β = 0 and H(Ω) = H1
0(Ω) in (2.6). In the case of the188

first non-trivial Neumann or Steklov eigenvalue, we may choose α = 0 and β = 0189

and take H(Ω) to be the quotient space of H1(Ω) modulo the rigid transformations.190

In the case of the Wentzell eigenvalue problem, we are in the situation where β > 0191

and we need to choose H(Ω) to be {u ∈ H1(Ω);u ∂Ω ∈ H1(∂Ω)} with the associated192

norm
(
‖u‖2

H1(Ω)
+ ‖u‖2

H1(∂Ω)

)1/2

(quotiented over the subspace of rigid transforma-193

tions if α = 0).194

We now state the results for these problems.195
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SHAPE DERIVATIVE FOR SOME EIGENVALUE FUNCTIONALS 7

Theorem 2.2. Given a C2,1 domain Ω and V a smooth vector field, the semi-196

derivative Λ′Ω(Ω;V ) of ΛΩ(Ω) in the direction of the vector field V exists and is given197

by198

199

Λ′Ω(Ω;V ) = inf

{∫
∂Ω

(
Ae(u) : e(u)− 4Ae(u)n ·Πde(u)n200

+ αu · (Hu+ 2∂nu− 4Πde(u)n)201

+ β
(
HAceΓ(u) : eΓ(u)−AceΓ(u) : Πd

(
∇uD2b+ D2b t∇u

)
Πd

)
202

+ 2β
(
AceΓ(∂nu) : eΓ(u)− 2AceΓ(u) :∇Γ (Πde(u)n)

)
− ΛΩ(Ω) |u|2

)
Vn dς(x)

}
.203

204

In the above, the inf is taken with respect to all functions u ∈ H(Ω) for which the205

value ΛΩ(Ω) is attained in (2.6).206

Theorem 2.3. Given a C2,1 domain Ω and V a smooth vector field, the semi-207

derivative Λ′∂Ω(Ω;V ) of Λ∂Ω(Ω) in the direction of the vector field V exists and is208

given by209

210

Λ′∂Ω(Ω;V ) = inf

{∫
∂Ω

(
Ae(u) : e(u)− 4Ae(u)n ·Πde(u)n211

+ αu (Hu+ 2∂nu− 4Πde(u)n)212

+ β
(
HAceΓ(u) : eΓ(u)−AceΓ(u) : Πd

(
∇uD2b+ D2b t∇u

)
Πd

)
213

+ 2β
(
AceΓ(∂nu) : eΓ(u)− 2AceΓ(u) :∇Γ (Πde(u)n)

)
214

− Λ∂Ω(Ω)u · (Hu+ 2∂nu− 4Πde(u)n)

)
Vn dς(x)

}
,215

216

where the inf is taken with respect to all functions u ∈ H(Ω) for which the value217

Λ∂Ω(Ω) is attained in (2.7).218

Apart from the case of Dirichlet and Neumann boundary conditions for the volume219

case stated in Theorem 2.2, the remaining others results are, completely new to our220

best knowledge, new even in the case of a simple eigenvalue. We finally underline221

that, even if it is not the same expression, the given formula given above coincides222

with the known expression in the corresponding to Dirichlet and Neumann case: this223

can be done with checked by direct a computation.224

2.3. Shape derivative for eigenvalue problems of linear elasticity - com-
posite materials. Consider now a subset Ω1 of Ω with a C2,1 boundary and set
Ω2 := Ω \ Ω1. We assume that there exists ρ > 0 such that ‖x − y‖ ≥ ρ for
all x ∈ Ω1 and y ∈ ∂Ω. We consider two isotropic elastic materials, with elastic-
ity tensors A1 6= A2 given by (for i = 1, 2)

Aiξ := 2µi ξ + λi Tr(ξ) Id,

with Lamé coefficients µi > 0 and λi > 0, which occupy respectively the domains Ω1

and Ω2 with respective densities ρ1 > 0 and ρ2 > 0 (with ρ1 6= ρ2). We set

ρ := ρ1χΩ1
+ ρ2χΩ2

and A := A1χΩ1
+A2χΩ2

.
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8 FABIEN CAUBET, MARC DAMBRINE, AND RAJESH MAHADEVAN

As previously, n denotes the exterior unit normal to ∂Ω. Moreover Γ stands for the
interface between Ω1 and Ω2, that is

Γ := ∂Ω1 ∩ ∂Ω2 = ∂Ω1,

and, on Γ, the notation n will represent the unit normal pointing outward from Ω1,
that is

n = n1 = −n2

(where ni, i = 1, 2, represent the exterior unit normal to ∂Ωi). We summarize the
notations in Figure 1. We also use the notation [·] in order to represent the jump on
the interface Γ, that is, for a function u and a point x ∈ Γ,

[u] (x) := lim
ε→0+

(u(x− εn(x))− u(x+ εn(x))) = u1 − u2.

Ω1

Ω2

Γ

∂Ω

n

n

Fig. 1. Notations

We consider the eigenvalue problem of volume type225

(2.8)

{
−div (A(x)e(u)) = MΩ(Ω)ρ(x)u in Ω,

−βdivΓ (AceΓ(u)) + αu+Ae(u)n = 0 on ∂Ω,
226

and of surface type227

(2.9)

{
−div (A(x)e(u)) = 0 in Ω,

−βdivΓ (AceΓ(u)) + αu+Ae(u)n = M∂Ω(Ω)u on ∂Ω.
228

As previsouly, for different regimes of the parameters α and β, we obtain different229

kinds of boundary conditions and the eigenvalues are associated to minimization of230

the Rayleigh quotients231

232

(2.10) MΩ(Ω) = inf
u∈H(Ω)


1∫

Ω

ρ |u|2

(∫
Ω

A(x)e(u) : e(u) dx233

+α

∫
∂Ω

|u|2 dς(x) + β

∫
∂Ω

AceΓ(u) : eΓ(u) dς(x)

)}
,234

This manuscript is for review purposes only.



SHAPE DERIVATIVE FOR SOME EIGENVALUE FUNCTIONALS 9

235

and236
237

(2.11) M∂Ω(Ω) = inf
u∈H(Ω)


1∫

∂Ω

|u|2 dς(x)

(∫
Ω

A(x)e(u) : e(u) dx238

+α

∫
∂Ω

|u|2 dς(x) + β

∫
∂Ω

AceΓ(u) : eΓ(u) dς(x)

)}
,239

240

where H(Ω) is an appropriate subspace of H1(Ω) as discussed above.241

We now state the results for these problems.242

Theorem 2.4. Let Ω be a C2,1 domain and V a smooth vector field. Let u243

be a normalized eigenfunction corresponding to MΩ(Ω). Then the semi-derivative244

M′Ω(Ω;V ) of MΩ(Ω) in the direction of the vector field V exists and is given by245

246

M′Ω(Ω;V ) = inf

{∫
∂Ω1

(
[Ae(u) : e(u)]− 2Ae(u)n · [∂nu]−MΩ(Ω)[ρ]|u|2

)
Vn dς(x)247

+

∫
∂Ω

(
Ae(u) : e(u)− 4Ae(u)n ·Πde(u)n + αu · (Hu+ 2∂nu− 4Πde(u)n)248

+ β
(
HAceΓ(u) : eΓ(u)−AceΓ(u) : Πd

(
∇uD2b+ D2b t∇u

)
Πd

)
249

+2β
(
AceΓ(∂nu) : eΓ(u)−2AceΓ(u) :∇Γ (Πde(u)n)

)
−MΩ(Ω)ρ2 |u|2

)
Vn dς(x)

)}
,250

251

where the inf is taken over all functions u ∈ H(Ω) for which the value ΛΩ(Ω) is252

attained in (2.10).253

Theorem 2.5. Let Ω be a C2,1 domain and V a smooth vector field. Let u be a254

normalized eigenfunction corresponding to M∂Ω. Then the semi-derivative M′∂Ω(Ω;V )255

of M∂Ω(Ω) in the direction of the vector field V exists and is given by256

257

M′∂Ω(Ω;V ) = inf

{∫
∂Ω1

(
[Ae(u) : e(u)]− 2Ae(u)n · [∂nu]

)
Vn dς(x)258

+

∫
∂Ω

(
Ae(u) : e(u)− 4Ae(u)n ·Πde(u)n + αu · (Hu+ 2∂nu− 4Πde(u)n)259

+ β
(
HAceΓ(u) : eΓ(u)−AceΓ(u) : Πd

(
∇uD2b+ D2b t∇u

)
Πd

)
260

+ 2β
(
AceΓ(∂nu) : eΓ(u)− 2AceΓ(u) :∇Γ (Πde(u)n)

)
261

−M∂Ω(Ω)ρ2 u · (Hu+ 2∂nu− 4Πde(u)n)

)
Vn dς(x)

)}
,262

263

where the inf is taken over all u ∈ H(Ω) for which the value M∂Ω(Ω) is attained264

in (2.11).265

Obviously, Theorem 2.2 (respectively Theorem 2.3) can be obtained as a par-266

ticular case of Theorem 2.4 (respectively Theorem 2.5) by letting A1 = A2 = A267
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and ρ1 = ρ2 = 1. Even so, we present the proofs of Theorem 2.2 (respectively The-268

orem 2.3) since the main ideas can be illustrated more clearly in these particular269

cases.270

Remark 2.6. We can notice that the formulae of the above Theorems 2.2, 2.3, 2.4271

and 2.5 are a little bit different and more complicated that the scalar case exposed272

in [8]. Indeed, in the scalar case, some simplifications occur, which is not the case in273

the elasticity case: this is linked with the differences underlined in Remark 2.1 (see274

also Remark 3.4 below).275

3. Proofs. The shape derivative results stated in the previous section will be276

established in this section in the framework of Theorem 1.1 by following a general277

strategy which we employed in the scalar problems (see [8]) and is recalled below for278

the benefit of the reader.279

3.1. General strategy. The first step is to reformulate the eigenvalue problem280

for the perturbed domain Ωt, which is obtained by the minimization of a Rayleigh281

quotient, as a minimization problem for a functional G(t, ·) in a space H(Ω) which is282

independent of the parameter t.283

The next step consists in verifying that the assumptions of Theorem 1.1 are284

satisfied. For verifying the hypothesis (H3), in the class of eigenvalue problems, we285

usually need to show the Γ-convergence (see Appendix A for some reminders on this286

notion) of G(t, ·) to G(0, ·) as t → 0+ in the weak topology of H(Ω) and later the287

strong convergence of a sequence of minimizers.288

Then, Theorem 1.1 allows us to immediately calculate the shape derivative by289

evaluating infu∈X(0) ∂tG(0,u) whereX(0) is, generally, an eigenspace for the problem290

on Ω. In the case of a simple eigenfunction, it is enough to evaluate at a normalized291

eigenfunction. An initial expression for ∂tG(0,u) is obtained by using the propositions292

given in the following subsection and this gives an integral over the domain Ω.293

As a last step, we transform and simplify the initial calculation of ∂tG(0,u), to get294

a boundary expression for ∂tG(0,u). This can be usually achieved by choosing −∇uV295

as a test function in the governing equation, provided that it has enough regularity.296

3.2. Preliminary computations. Before computing the shape derivatives, we297

first prove some preliminary results. We compute the separate contributions of the298

different terms of the Rayleigh quotient to the derivatives ∂tG(0,u) in the various299

problems. For this, we rely on the classical formulae in the calculation of shape300

derivatives which are recalled in Lemma A.1 and Lemma A.2 in the appendix.301

Proposition 3.1. For u ∈ H1(Ω), we have302

303

(3.1) ∂t

(∫
Ωt

Ae(u ◦Ψ−1
t ) : e(u ◦Ψ−1

t ) dx

)
t=0

304

=

∫
∂Ω

Ae(u) : e(u)Vn dς(x) + 2

∫
Ω

Ae(u) : e(−∇uV ) dx,305
306
307

(3.2) ∂t

(∫
Ωt

|(u ◦Ψ−1
t )|2dx

)
t=0

=

∫
∂Ω

|u|2 Vn dς(x) + 2

∫
Ω

u · (−∇uV ) dx308

and309
310

(3.3) ∂t

(∫
∂Ωt

|(u ◦Ψ−1
t )|2dx

)
t=0

=311
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∂Ω

(
H |u|2 + ∂n |u|2

)
Vn dς(x) + 2

∫
∂Ω

u · (−∇uV ) dς(x).312
313

Proof. The above formulae are obtained by a straighforward application of the314

formulae for derivatives of domain and boundary integrals given in Lemma A.1 and315

Lemma A.2 in the appendix and the fact that ∂t(u ◦Ψ−1
t ) t=0 = −∇uV since316

∂t(Ψ
−1
t ) t=0 = −V (see [19, equation (5.7)]).317

Proposition 3.2. For u ∈ H2(Ω), we have318

319

(3.4) ∂t

(∫
∂Ωt

AceΓt(u ◦Ψ−1
t ) : eΓt(u ◦Ψ−1

t ) dx

)
t=0

320

=

∫
∂Ω

(
HAceΓ(u) : eΓ(u) + 2AceΓ(∂nu) : eΓ(u)321

−AceΓ(u) : Πd

(
∇uD2b+ D2b t∇u

)
Πd

)
Vn dς(x)322

+ 2

∫
∂Ω

AceΓ(u) :
(
eΓ(−∇uV ) + Πde(u)(n⊗∇ΓVn +∇ΓVn ⊗ n)323

+ (n⊗∇ΓVn +∇ΓVn ⊗ n)e(u)Πd

)
dς(x).324

325

Proof. By applying the classical derivation formula recalled in Lemma A.2, we326

get327

328

∂t

(∫
∂Ωt

AceΓt
(u ◦Ψ−1

t ) : eΓt
(u ◦Ψ−1

t ) dx

)
t=0

329

=

∫
∂Ω

(HAceΓ(u) : eΓ(u) + ∂n(AceΓ(u) : eΓ(u))) Vn dς(x)330

+ 2

∫
∂Ω

AceΓ(u) : ∂t
(
eΓt

(u ◦ Φ−1
t )
)
t=0

dς(x).331
332

We conclude using the fact (see respectively Lemma A.3 and Lemma A.4)333

∂n (AceΓ(u) : eΓ(u)) = 2AceΓ(∂nu) : eΓ(u)−AceΓ(u) : Πd

(
∇uD2b+ D2b t∇u

)
Πd,334

and335

336

∂t
(
eΓt

(u ◦Ψ−1
t )
)
t=0

= eΓ(−∇uV )337

+ Πde(u)(n⊗∇ΓVn +∇ΓVn ⊗ n) + (n⊗∇ΓVn +∇ΓVn ⊗ n)e(u)Πd.338339

We also need the following proposition concerning the case of eigenvalue problems
for composites. Let Ω1 and Ω2 be a subdivision of Ω as presented in Section 2.3 with
the corresponding notations for normal vectors and for the jumps of functions. Then
we define following perturbed elasticity tensor and density

At := A1χΩ1,t +A2χΩ2,t and ρt := ρ1χΩ1,t + ρ2χΩ2,t

with

Ω1,t := Ψt(Ω1) and Ω2,t := Ψt(Ω2).
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Proposition 3.3. For u ∈ H1(Ω), we have340

341

(3.5) ∂t

(∫
Ωt

Ate(u ◦Ψ−1
t ) : e(u ◦Ψ−1

t ) dx

)
t=0

342

=

∫
Γ

[Ae(u) : e(u)]Vn dς(x) + 2

∫
Ω1

A1e(u) : e(−∇uV ) dx343

+2

∫
Ω2

A2e(u) : e(−∇uV ) dx+

∫
∂Ω

A2e(u) : e(u)Vn dς(x)344

345

and346
347

(3.6) ∂t

(∫
Ωt

ρt|(u ◦Ψ−1
t )|2dx

)
t=0

=

∫
Γ

[ρ|u|2]Vn dς(x)348

+ 2

∫
Ω1

ρ1u · (−∇uV ) dx+2

∫
Ω2

ρ2u · (−∇uV ) dx+

∫
∂Ω

ρ2|u|2Vn dς(x).349

350

Proof. The above formulae are obtained by an application of Lemma A.1 to each351

of the terms on the right hand side after writing352

353 ∫
Ωt

Ate(u ◦Ψ−1
t ) : e(u ◦Ψ−1

t ) dx354

=

∫
Ω1,t

A1e(u ◦Ψ−1
t ) : e(u ◦Ψ−1

t ) dx+

∫
Ω2,t

A2e(u ◦Ψ−1
t ) : e(u ◦Ψ−1

t ) dx355

356

and ∫
Ωt

ρt|(u ◦Ψ−1
t )|2dx =

∫
Ω1,t

ρ1|(u ◦Ψ−1
t )|2dx+

∫
Ω2,t

ρ2|(u ◦Ψ−1
t )|2dx.

3.3. Semi-derivatives for single phase isotropic materials.357

3.3.1. Proof of Theorem 2.2. The considered eigenvalue functional on the358

perturbed domain is359

360

(3.7) ΛΩ(Ωt) = inf
v∈H(Ωt)


1∫

Ωt

|v|2 dx

(∫
Ωt

Ae(v) : e(v) dx+ α

∫
∂Ωt

|v|2 dς(x)361

+β

∫
∂Ωt

AceΓ(v) : eΓ(v) dς(x)

)}
,362

363

where H(Ωt) is a suitable subspace of H1(Ωt) as discussed in Section 2.2. Since the
function space H(Ωt) gets mapped to a function space H(Ω) which is independent
of t under the isomorphism v 7→ v ◦ Ψt, the above functional can be obtained as a
minimization problem over H(Ω) as follows

ΛΩ(Ωt) = inf
u∈H(Ω)

GΩ(t,u)

where the functional GΩ is defined by364

365
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(3.8) GΩ(t,u) :=
1∫

Ωt

∣∣u ◦Ψ−1
t

∣∣2 dx

(∫
Ωt

Ae(u ◦Ψ−1
t ) : e(u ◦Ψ−1

t ) dx366

+ α

∫
∂Ωt

∣∣u ◦Ψ−1
t

∣∣2 dς(x) + β

∫
∂Ωt

AceΓ(u ◦Ψ−1
t ) : eΓ(u ◦Ψ−1

t ) dς(x)

)
.367

368

Existence of the semi-derivative. First, we check that the assumptions of369

Theorem 1.1 are satisfied for the above functional GΩ.370

Let us start by Assumption (H1). The arguments to show that the set of mini-371

mizers of (3.7) is non-empty for each t is classical and is based on the direct method372

of calculus of variations. In fact, the functional is lower semi-continuous for the weak373

topology on H(Ωt), since the numerator is convex and continuous for the strong374

topology on H(Ωt) (and therefore weakly lower semi-continuous), and since the de-375

nominator is continuous due to the compact inclusion of H1(Ωt) into L2(Ωt). As376

concerns the coercivity of the functional for given t, it is enough to show that the377

numerator dominates square of the norm or a quotient norm on H(Ωt). In the case of378

Dirichlet eigenvalue problem, this can be obtained from the coercivity of the tensor A379

and by the use of Korn’s inequality (see, e.g., [1, Lemma 2.25] or [16, Theorem 3.1]).380

In the case of the first non-trivial Neumann eigenvalue problem, one uses the coerciv-381

ity of the tensor A and the generalized Korn’s inequality, that is, Korn’s inequality382

modulo rigid transformations. When α > 0 it is enough, once again, to use Korn’s383

inequality without quotienting. The set X(t), defined in Theorem 1.1, of minimizers384

for GΩ(t, ·) is obtained by transporting the minimizers in (3.7) to Ω by composition385

with Ψt. Therefore Assumption (H1) is satisfied.386

Let us now check Assumption (H2). Since ∇(u ◦Ψ−1
t ) =

(
∇u DΨ−1

t

)
◦Ψ−1

t , we
have

e(u ◦Ψ−1
t ) =

(
∇u DΨ−1

t

)sym ◦Ψ−1
t .

and

eΓ(u ◦Ψ−1
t ) = (Id − nt ⊗ nt)

(
∇u DΨ−1

t

)sym ◦Ψ−1
t (Id − nt ⊗ nt),

where nt the normal vector field on ∂Ωt. Therefore,387

388

GΩ(t,u)389

=
1∫

Ωt

∣∣u ◦Ψ−1
t

∣∣2 dx

(∫
Ωt

A
(
∇u DΨ−1

t

)sym ◦Ψ−1
t :

(
∇u DΨ−1

t

)sym ◦Ψ−1
t dx390

+α

∫
∂Ωt

∣∣u ◦Ψ−1
t

∣∣2 dς(x)+β

∫
∂Ωt

Ac(Id−nt⊗nt)
(
∇u DΨ−1

t

)sym◦Ψ−1
t (Id−nt⊗nt)391

: (Id − nt ⊗ nt)
(
∇u DΨ−1

t

)sym ◦Ψ−1
t (Id − nt ⊗ nt) dς(x)

)
.392

393

Then, by a change of variables, this can be written as394

395

(3.9) GΩ(t,u) =
1∫

Ω

|u|2j(t)dx

(∫
Ω

A
(
∇u DΨ−1

t

)sym
:
(
∇u DΨ−1

t

)sym
j(t)dx396
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+ α

∫
∂Ω

|u|2ω(t)dς(x) + β

∫
∂Ω

Ac(Id − νt ⊗ νt)
(
∇u DΨ−1

t

)sym
(Id − νt ⊗ νt)397

: (Id − νt ⊗ νt)
(
∇u DΨ−1

t

)sym
(Id − νt ⊗ νt)ω(t)dς(x)

)
,398

399

where

j(t) := det(DΨt(x)) and ω(t) := det(DΨt(x))‖t(DΨ−1
t )(x)n(x)‖

are respectively the Jacobian and the surface Jacobian and where

νt := nt ◦Ψt.

Clearly, by the definition (2.1), Ψt depends smoothly on t and, for t small enough, Ψt is400

a diffeomorphism by which we have that j(t) and ω(t) are smooth functions of t. Also,401

since ∂Ω is smooth, it follows that Ωt has the same smoothness of Ω and therefore, nt402

is differentiable with respect to t for t small enough (see, e.g., [19, Proposition 5.4.14]).403

Therefore, we are able to conclude from the previous expression (3.9) that GΩ(·,u) is404

derivable for all t small enough, for all u ∈H(Ω), and this gives the hypothesis (H2)405

of Theorem 1.1.406

Before proving Assumption (H3), let us focus briefly on Assumption (H4). The407

derivative ∂tGΩ(·,u) may be obtained by deriving under the integral sign in the previ-408

ous equation and since all the integrands are C1 functions of t, it follows that ∂tGΩ(·,u)409

is also continuous with respect to t, for t small enough. This gives Assumption (H4).410

We now proceed to show that the hypothesis (H3) holds for the strong topol-411

ogy on H(Ω). This will be achieved through the following steps. First, we show412

that GΩ(t, ·) converges, in the sense of Γ-limit, to GΩ(0, ·) as t → 0+, in the weak413

topology on H(Ω) (see Definition A.6 and Proposition A.7 in the Appendix for some414

reminders on this notion; also refer to [11]).415

(i) Consider a sequence {ut} which converges weakly to a u in H(Ω). We obtain
the estimate

GΩ(t,ut) = GΩ(0,ut) + (GΩ(t,ut)−GΩ(0,ut)) ≥ GΩ(0,ut) +O(t).

Indeed, since any weakly convergent sequence {ut} is bounded in H(Ω) and the416

coefficients in both the numerator and denominator of GΩ given by (3.9) are417

continuous in t, we obtain that GΩ(t,ut)−GΩ(0,ut) is O(t) (that is, goes to 0418

as t → 0+). Then, to conclude the Γ−lim inf inequality of Definition A.6, it is419

enough to use the already observed fact that GΩ(0, ·) is lower semi-continuous420

for the weak topology on H(Ω).421

(ii) The Γ− lim sup inequality of Definition A.6 is obtained by taking the con-422

stant sequence u, for any given u ∈ H(Ω), and observing as previously that423

GΩ(t,u)→ GΩ(0,u) as t→ 0+.424

Having obtained the Γ-convergence ofGΩ(t, ·), Proposition A.7 ensures that ΛΩ(Ωt)→
ΛΩ(Ω) as t→ 0+ since the minimum of GΩ(t, ·) converges to the minimum of GΩ(0, ·).
Moreover, the 0-homogeneity of the Rayleigh quotients GΩ(t, ·) means that, for each t,
it is enough to consider a minimizer ut for which the denominator is 1. Under this
normalization, we have the equi-coercivity of GΩ(t, ·) using the coercivity of the ten-
sor A and Korn’s inequality by the same arguments used during the verification of
the hypothesis (H1): there exists constant a positive constant C such that

C‖ut‖2H(Ω) ≤ GΩ(t,ut), for all t.
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This implies, by Proposition A.7, that {ut} converges weakly in H(Ω) to a mini-
mizer u of GΩ(0, ·). To conclude this part, we will prove the strong convergence
of {ut} to u in H(Ω). The equi-coercivity can be used once again to give us the
following inequality:

C‖ut − u‖2H(Ω) ≤ GΩ(t,ut − u).

It remains to prove that GΩ(t,ut − u) → 0 when t → 0. Expanding the quadratic425

function GΩ(t, ·) on the right hand side we get426

427

GΩ(t,ut − u) = GΩ(t,ut) +GΩ(t,u)428

− 2

(∫
Ω

A
(
∇ut DΨ−1

t

)sym
:
(
∇u DΨ−1

t

)sym
j(t)dx+ α

∫
∂Ω

ut :u ω(t)dς(x)429

+ β

∫
∂Ω

Ac(Id − νt ⊗ νt)
(
∇ut DΨ−1

t

)sym
(Id − νt ⊗ νt)430

: (Id − νt ⊗ νt)
(
∇u DΨ−1

t

)sym
(Id − νt ⊗ νt)ω(t)dς(x)

)
.431

432

Then we use the uniform convergence of the coefficients, the weak convergence of {ut}433

to u and the convergence of ΛΩ(Ωt) to ΛΩ(Ω) to obtain that434

GΩ(t,ut − u) −→ ΛΩ(Ω) + ΛΩ(Ω)435

−2

{∫
Ω

Ae(u) : e(u)dx+ α

∫
∂Ω

2|u|2dς(x) + β

∫
∂Ω

AceΓ(u) : eΓ(u)dς(x)

}
436

= ΛΩ(Ω) + ΛΩ(Ω)− 2ΛΩ(Ω) = 0.437

Hence {ut} converges strongly to u in H(Ω) and, since we have seen that ∂tGΩ(·,u)438

is continuous with respect to t, this proves hypothesis (H3).439

The existence of the semi-derivative Λ′Ω(Ω;V ) follows from Theorem 1.1 since we440

have proved above that the four assumptions of the theorem are satisfied for GΩ.441

Computation of the directional shape derivatives. We want to obtain a
suitable expression for ∂tGΩ(0,u) whenever u is a normalized eigenfunction for ΛΩ(Ω)
since, by the theorem,

Λ′Ω(Ω;V ) = inf{∂tGΩ(0,u); ΛΩ(Ω) is attained at u}.

First, using the expressions (3.1)-(3.4) evaluated at t = 0, we get442

443

∂tG(0,u) =

∫
∂Ω

Ae(u) : e(u)Vn dς(x) + 2

∫
Ω

Ae(u) : e(−∇uV ) dx444

+ α

(∫
∂Ω

(
H |u|2 + ∂n |u|2

)
Vn dς(x) + 2

∫
∂Ω

u · (−∇uV ) dς(x)

)
445

+ β

∫
∂Ω

(
HAceΓ(u) : eΓ(u) + 2AceΓ(∂nu) : eΓ(u)446

−AceΓ(u) : Πd

(
∇uD2b+ D2b t∇u

)
Πd

)
Vn dς(x)447

+ 2β

∫
∂Ω

AceΓ(u) :
(
eΓ(−∇uV ) + Πde(u)(n⊗∇ΓVn +∇ΓVn ⊗ n)448
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+ (n⊗∇ΓVn +∇ΓVn ⊗ n)e(u)Πd

)
dς(x)449

− ΛΩ(Ω)

(∫
∂Ω

|u|2 Vn dς(x) + 2

∫
Ω

u · (−∇uV ) dx

)
.450

451

Using −∇uV as a test function in (2.4), we observe that452

453 ∫
Ω

Ae(u) : e(−∇uV ) + α

∫
∂Ω

u · (−∇uV ) + β

∫
∂Ω

AceΓ(u) : eΓ(−∇uV )454

= ΛΩ(Ω)

∫
Ω

u · (−∇uV ).455
456

Notice that the function −∇uV belongs to H1(Ω). Indeed V is assumed to be457

smooth and the boundary ∂Ω has a C2,1 regularity and then u ∈ H2(Ω) by usual a458

priori estimates (see [5, Theorem 1.1 and its proof]. Also, observe that for symmetric459

matrix B and any square matrix C, we have B :C = B : tC and choose B = AceΓ(u)460

along with C = (n⊗∇ΓVn +∇ΓVn ⊗ n) e(u)Πd. We use these to get that461

462

(3.10) ∂tG(0,u) =

∫
∂Ω

Ae(u) : e(u)Vn dς(x) + α

∫
∂Ω

(
H |u|2 + 2u · ∂nu

)
Vn dς(x)463

+ β

∫
∂Ω

(
HAceΓ(u) : eΓ(u) + 2AceΓ(∂nu) : eΓ(u)464

−AceΓ(u) : Πd

(
∇uD2b+ D2b t∇u

)
Πd

)
Vn dς(x)465

+4β

∫
∂Ω

AceΓ(u) :
(

(n⊗∇ΓVn+∇ΓVn⊗n)e(u)Πd

)
dς(x)−ΛΩ(Ω)

∫
∂Ω

|u|2 Vn dς(x).466
467

Remark 3.4. Notice that we have a factor 4 as compared to 2 in the corresponding468

term in the scalar case owing to the fact that the tangential strain is obtained by469

multiplying the strain by Πd on either side and while deriving with respect to t, we470

obtain an additional term as observed in Remark A.5 (see also Remark 2.1).471

We also observe that472

(3.11) AceΓ(u) : (n⊗∇ΓVn) e(u) Πd = 0.473

Indeed, after setting, A := AceΓ(u), B := n ⊗ ∇ΓVn, C := e(u) and D := Πd, and474

writing these in the local frame, we obtain475

476

AceΓ(u) : n⊗∇ΓVne(u)Πd = A :BCD477

=

(
Aττ 0

0 0

)
:

(
0 0
Bnτ 0

)(
Cττ Cτn

Cnτ Cnn

)(
Id−1 0

0 0

)
= 0.478

479

Next we remark that C : ((v ⊗w)B) = v · (C tBw) (for any matrices C and B and480

any vectors v and w) and apply this to AceΓ(u) :∇ΓVn ⊗ n e(u) Πd. We also remark481

that AceΓ(u) Πd e(u)n is a tangential vector since Πd commutes with AceΓ(u) and so482

we can apply the tangential Stokes formula without any curvature term (see, e.g., [14,483

Equation (5.27)]) and obtain that484

485

(3.12)∫
∂Ω

AceΓ(u) : (∇ΓVn ⊗ n) e(u) Πd dς(x) =

∫
∂Ω

∇ΓVn · (AceΓ(u) Πd e(u)n) dς(x)486
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= −
∫
∂Ω

divΓ (AceΓ(u) Πd e(u)n)Vn dς(x)487

= −
∫
∂Ω

(divΓ (AceΓ(u)) ·Πde(u)n +AceΓ(u) :∇Γ (Πde(u)n))Vn dς(x).488

489

Therefore, inserting (3.11) and (3.12) in (3.10), we get490

491

∂tG(0,u) =

∫
∂Ω

Ae(u) : e(u)Vn dς(x) + α

∫
∂Ω

(
H |u|2 + 2u · ∂nu

)
Vn dς(x)492

+ β

∫
∂Ω

(
HAceΓ(u) : eΓ(u) + 2AceΓ(∂nu) : eΓ(u)493

−AceΓ(u) : Πd

(
∇uD2b+ D2b t∇u

)
Πd

)
Vn dς(x)494

− 4β

∫
∂Ω

(divΓ (AceΓ(u)) ·Πde(u)n +AceΓ(u) :∇Γ (Πde(u)n))Vn dς(x)495

− ΛΩ(Ω)

∫
∂Ω

|u|2 Vn dς(x).496

497

Then using the boundary condition in (2.4), to replace the term divΓ (AceΓ(u)), we498

obtain499
500

∂tG(0,u) =

∫
∂Ω

Ae(u) : e(u)Vn dς(x) + α

∫
∂Ω

(
H |u|2 + 2u · ∂nu

)
Vn dς(x)501

+ β

∫
∂Ω

(
HAceΓ(u) : eΓ(u)−AceΓ(u) : Πd

(
∇uD2b+ D2b t∇u

)
Πd

)
Vn dς(x)502

+ 2β

∫
∂Ω

(AceΓ(∂nu) : eΓ(u)− 2AceΓ(u) :∇Γ (Πde(u)n)) Vn dς(x)503

+ 4

∫
∂Ω

(−αu−Ae(u)n) ·Πde(u)nVn dς(x)− ΛΩ(Ω)

∫
∂Ω

|u|2 Vn dς(x).504

505

This may be further rearranged to obtain the expression announced in Theorem 2.2.506

3.3.2. Proof of Theorem 2.3. The eigenvalue functional over the perturbed507

domain reads508
509

(3.13) Λ∂Ω(Ωt) = inf
v∈H(Ωt)


1∫

∂Ωt

|v|2 dx

(∫
Ωt

Ae(v) : e(v) dx+ α

∫
∂Ωt

|v|2 dς(x)510

+β

∫
∂Ωt

AceΓ(v) : eΓ(v) dς(x)

)}
,511

512

and this may be reformulated over a function space H(Ω) which is independent of t
using the isomorphism v 7→ v ◦Ψt and setting u = v ◦Ψt as

Λ∂Ω(Ωt) = inf
u∈H(Ω)

G∂Ω(t,u)
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where513
514

(3.14) G∂Ω(t,u) :=
1∫

∂Ωt

∣∣u ◦Ψ−1
t

∣∣2 dx

(∫
Ωt

Ae(u ◦Ψ−1
t ) : e(u ◦Ψ−1

t ) dx515

+ α

∫
∂Ωt

∣∣u ◦Ψ−1
t

∣∣2 dς(x) + β

∫
∂Ωt

AceΓ(u ◦Ψ−1
t ) : eΓ(u ◦Ψ−1

t ) dς(x)

)
.516

517

Existence of directional shape derivatives. We go over the main argu-518

ments needed for applying Theorem 1.1 to problem (2.7) to obtain the existence of519

the directional shape derivative.520

Let us start by Assumption (H1). The arguments are exactly the same as in the previ-521

ous case concerning GΩ, except that which is needed for the continuity of the denom-522

inator. In this case, it is enough to use the compact inclusion of H1(Ωt) into L2(∂Ωt)523

(for which we refer, e.g., to [3]). Then, as in the previous case, the set X(t) of minimiz-524

ers for G∂Ω(t, ·) is obtained by transporting the minimizers in (3.13) to the domain Ω525

by composition with Ψt. Therefore Assumption (H1) is satisfied.526

Concerning Assumption (H2), we first get the following expression for G∂Ω527
528

(3.15)

G∂Ω(t,u) =
1∫

∂Ω

|u|2ω(t)dς(x)

(∫
Ω

A
(
∇u DΨ−1

t

)sym
:
(
∇u DΨ−1

t

)sym
j(t)dx529

+ α

∫
∂Ω

|u|2ω(t)dς(x) + β

∫
∂Ω

Ac(Id − νt ⊗ νt)
(
∇u DΨ−1

t

)sym
(Id − νt ⊗ νt)530

: (Id − νt ⊗ νt)
(
∇u DΨ−1

t

)sym
(Id − νt ⊗ νt)ω(t)dς(x)

)
.531

532

Due to the smooth dependence in t of the coefficients appearing in (3.15), we con-533

clude that G∂Ω(·,u) is derivable with respect to t for all u ∈ H(Ω), which gives534

Assumption (H2).535

As in the previous case of GΩ, the derivative of the individual terms may be536

obtained by deriving under the integrals which lead to the fact that ∂tG∂Ω(·,u) is537

also continuous with respect to t, for all u ∈ H(Ω), due to the C1 nature of the538

coefficients. This gives Assumption (H4).539

Finally we prove that assumption (H3) is also satisfied by showing, as in the case540

of GΩ, that G∂Ω(t, ·) converges to G∂Ω(0, ·) as t → 0 in the sense of Γ-limit in the541

weak topology on H(Ω) and that the minimizers converge in the strong topology.542

Thus the existence of the semi-derivative Λ′∂Ω(Ω;V ) follows from Theorem 1.1.543

Computation of directional shape derivatives. We only need to get a
suitable expression for ∂tG∂Ω(0,u) whenever u is a normalized eigenfunction for
Λ∂Ω(Ω) since, by the theorem,

Λ′∂Ω(Ω;V ) = inf{∂tG∂Ω(0,u); Λ∂Ω(Ω) is attained at u}.

Using the expressions (3.1)-(3.4) evaluated at t = 0, we get544
545
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∂tG∂Ω(0,u) =

∫
∂Ω

Ae(u) : e(u)Vn dς(x) + 2

∫
Ω

Ae(u) : e(−∇uV ) dx546

+ α

(∫
∂Ω

(
H |u|2 + ∂n |u|2

)
Vn dς(x) + 2

∫
∂Ω

u · (−∇uV ) dς(x)

)
547

+ β

∫
∂Ω

(
HAceΓ(u) : eΓ(u) + 2AceΓ(∂nu) : eΓ(u)548

−AceΓ(u) : Πd

(
∇uD2b+ D2b t∇u

)
Πd

)
Vn dς(x)549

+ 2β

∫
∂Ω

AceΓ(u) :
(
eΓ(−∇uV ) + Πde(u)(n⊗∇ΓVn +∇ΓVn ⊗ n)550

+ (n⊗∇ΓVn +∇ΓVn ⊗ n)e(u)Πd

)
dς(x)551

− Λ∂Ω(Ω)

(∫
∂Ω

(
H |u|2 + ∂n |u|2

)
Vn dς(x) + 2

∫
∂Ω

u · (−∇uV ) dς(x)

)
.552

553

Now, given u an eigenfunction in (2.5) whose L2 norm is 1, we use −∇uV as a test554

function in (2.5) since u ∈ H2(Ω) by usual a priori estimates (see [5, Theorem 1.1555

and its proof] and we observe that556

557 ∫
Ω

Ae(u) : e(−∇uV ) dx+ α

∫
∂Ω

u · (−∇uV ) dς(x)558

+ β

∫
∂Ω

AceΓ(u) : eΓ(−∇uV ) dς(x) = Λ∂Ω(Ω)

∫
∂Ω

u · (−∇uV ) dx,559

560

and then arguing as in the previous subsection while using the boundary condition561

in (2.5), we get562

563

∂tG(0,u) =

∫
∂Ω

Ae(u) : e(u)Vn dς(x) + α

∫
∂Ω

(
H |u|2 + 2u · ∂nu

)
Vn dς(x)564

+ β

∫
∂Ω

(
HAceΓ(u) : eΓ(u)−AceΓ(u) : Πd

(
∇uD2b+ D2b t∇u

)
Πd

)
Vn dς(x)565

+ 2β

∫
∂Ω

(AceΓ(∂nu) : eΓ(u)− 2AceΓ(u) :∇Γ (Πde(u)n)) Vn dς(x)566

+ 4

∫
∂Ω

(−αu−Ae(u)n) ·Πde(u)nVn dς(x)567

− Λ∂Ω(Ω)

∫
∂Ω

(
H|u|2 + 2u · ∂nu− 4u ·Πde(u)n

)
Vn dς(x),568

569

and by rearranging the terms we get the desired expression.570

3.4. Shape derivative for eigenvalue problems for composite materials.571

We recall that we use the following notation: At = A1χΩ1,t + A2χΩ2,t and ρt =572

ρ1χΩ1,t
+ ρ2χΩ2,t

, with Ωt = Ψt(Ω), Ω1,t = Ψt(Ω1) and Ω2,t = Ψt(Ω2).573

3.4.1. Proof of Theorem 2.4. The considered perturbed problem on Ωt reads574

575
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MΩ(Ωt) = inf
v∈H(Ωt)


1∫

Ωt

ρt |v|2 dx

(∫
Ωt

At(x)e(v) : e(v)dx+ α

∫
∂Ωt

|v|2 dς(x)576

+β

∫
∂Ωt

AceΓ(v) : eΓ(v) dς(x)

)}
.577

578

The above can be formulated as579

(3.16) MΩ(Ωt) = inf
u∈H(Ω)

GΩ(t,u),580

with581
582

GΩ(t,u) :=
1∫

Ωt

ρt
∣∣(u ◦Ψ−1

t )
∣∣2 dx

(∫
Ωt

At(x)e(u ◦Ψ−1
t ) : e(u ◦Ψ−1

t )dx583

+ α

∫
∂Ωt

∣∣(u ◦Ψ−1
t )
∣∣2 dς(x) + β

∫
∂Ωt

AceΓ(u ◦Ψ−1
t ) : eΓ(u ◦Ψ−1

t ) dς(x)

)
.584

585

We proceed as in the proofs of the previous theorems.586

Existence of directional shape derivatives. The existence of the semi-587

derivative M′Ω(Ω;V ) follows from Theorem 1.1 once the hypothesis of the theorem588

are verified.589

The verification of the hypothesis (H1) is like in the previous subsections due to590

the coercivity of the tensor At.591

The differentiability of GΩ(·,u) with respect to t for any u ∈ H(Ω) is seen once592

we use a change of variables to rewrite GΩ(t,u) as593
594

(3.17) GΩ(t,u) =
1∫

Ω

|u|2j(t)dy

(∫
Ω

Ct(y)
(
∇u DΨ−1

t

)sym
:
(
∇u DΨ−1

t

)sym
j(t)dy595

+ α

∫
∂Ω

|u|2ω(t)dς(y) + β

∫
∂Ω

Ac(Id − νt ⊗ νt)
(
∇u DΨ−1

t

)sym
(Id − νt ⊗ νt)596

: (Id − νt ⊗ νt)
(
∇u DΨ−1

t

)sym
(Id − νt ⊗ νt)ω(t)dς(y)

)
,597

598

while observing that

Ct(y) := At(Ψt(y)) = A1χΩ1,t(Ψt(y)) +A2χΩ2,t(Ψt(y)) = A1χΩ1(y) +A2χΩ2(y)

is independent of t. The differentiability with respect to t, that is hypothesis (H2),599

then follows due to the smooth dependence of the coefficients with respect to t, and600

also the hypothesis (H4) follows.601

The hypothesis (H3) is proved by showing, similarly as in the subsection 2.2,602

that GΩ(t, ·) converges to GΩ(0, ·) as t → 0 in the sense of Γ-limit in the weak603

topology on H(Ω) and that the minimizers converge in the strong topology.604
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Computation of directional shape derivatives. Thus, we now only need
to get a suitable expression for ∂tGΩ(0,u) given any normalized eigenfunction u
for MΩ(Ω) since, by the theorem,

M′Ω(Ω;V ) = inf{∂tGΩ(0,u); MΩ(Ω) is attained at u}.

Using the calculated expressions in (3.5), (3.6), (3.3) and (3.4), we get605

606

∂tGΩ(0,u) =

∫
Γ

[Ae(u) : e(u)]Vn dς(x) + 2

∫
Ω1

A1e(u) : e(−∇uV ) dx607

+2

∫
Ω2

A2e(u) : e(−∇uV ) dx+

∫
∂Ω

A2e(u) : e(u)Vn dς(x)608

+ α

(∫
∂Ω

(
H |u|2 + ∂n |u|2

)
Vn dς(x) + 2

∫
∂Ω

u · (−∇uV ) dς(x)

)
609

+ β

∫
∂Ω

(
HAceΓ(u) : eΓ(u) + 2AceΓ(∂nu) : eΓ(u)610

−AceΓ(u) : Πd

(
∇uD2b+ D2b t∇u

)
Πd

)
Vn dς(x)611

+ 2β

∫
∂Ω

AceΓ(u) :
(
eΓ(−∇uV ) + Πde(u)(n⊗∇Γ(Vn) +∇Γ(Vn)⊗ n)612

+ (n⊗∇Γ(Vn) +∇Γ(Vn)⊗ n)e(u)Πd

)
dς(x)613

−MΩ(Ω)

(∫
Γ

[ρ|u|2]Vn dς(x) + 2

∫
Ω1

ρ1u · (−∇uV ) dx614

+2

∫
Ω2

ρ2u · (−∇uV ) dx+

∫
∂Ω

ρ2|u|2Vn dς(x)

)
.615

616

Notice that the eigenmode u does not belong to H2(Ω) due to the jumps on the617

interface. Therefore the function −∇uV does not belong anymore to H1(Ω) and618

hence cannot be used as test function directly. However the restriction of u to each Ωi,619

for i = 1, 2, belongs to H2(Ωi) thanks to regularity assumptions on both the outer620

boundary and the interface. Then, multiplying (2.8) by −∇uV ∈ H1(Ωi) in each Ωi621

and integrating by part on Ωi, for i = 1, 2, we obtain that622

623 ∫
Ω1

A1e(u) : e(−∇uV ) dx+

∫
Ω2

A2e(u) : e(−∇uV ) dx624

+

∫
∂Ω1

[Ae(u)n · (−∇uV )] dς(x) + α

∫
∂Ω

u · (−∇uV ) + β

∫
∂Ω

AceΓ(u) : eΓ(−∇uV )625

= MΩ(Ω)

(∫
Ω1

ρ1u · (−∇uV ) dx+

∫
Ω2

ρ2u · (−∇uV ) dx

)
.626

627

Then, noticing that ∇Γu has a continuous trace on ∂Ω1 as aslo Ae(u)n we obtain628

629

−
∫
∂Ω1

[Ae(u)n · (−∇uV )] dς(x) =

∫
∂Ω1

Ae(u)n · [(∇uV )] dς(x)630

=

∫
∂Ω1

Ae(u)n · [∂nu]Vn dς(x),631
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632

Using the above, we get633
634

∂tGΩ(0,u) =

∫
Γ

[Ae(u) : e(u)]Vn dς(x)− 2

∫
∂Ω1

Ae(u)n · [∂nu] dς(x)635

+

∫
∂Ω

A2e(u) : e(u)Vn dς(x) + α

∫
∂Ω

(
H |u|2 + 2u · ∂nu

)
Vn dς(x)636

+ β

∫
∂Ω

(
HAceΓ(u) : eΓ(u) + 2AceΓ(∂nu) : eΓ(u)637

−AceΓ(u) : Πd

(
∇uD2b+ D2b t∇u

)
Πd

)
Vn dς(x)638

+ 4β

∫
∂Ω

AceΓ(u) :
(

(n⊗∇ΓVn +∇ΓVn ⊗ n)e(u)Πd

)
dς(x)639

−MΩ(Ω)

(∫
Γ

[ρ|u|2]Vn dς(x) +

∫
∂Ω

ρ2|u|2Vn dς(x)

)
.640

641

An argument which shows that AceΓ(u) : n⊗∇ΓVne(u)Πd = 0 (see (3.11)), then leads642

to643
644

∂tGΩ(0,u) =

∫
∂Ω1

[Ae(u) : e(u)Vn]− 2

∫
∂Ω1

Ae(u)n · [∂nu] dς(x)645

+

∫
∂Ω

A2e(u) : e(u)Vn dς(x) + α

∫
∂Ω

(
H |u|2 + 2u · ∂nu

)
Vn dς(x)646

+ β

∫
∂Ω

(
HAceΓ(u) : eΓ(u) + 2AceΓ(∂nu) : eΓ(u)647

−AceΓ(u) : Πd

(
∇uD2b+ D2b t∇u

)
Πd

)
Vn dς(x)648

+ 4β

∫
∂Ω

AceΓ(u) :
(

(∇ΓVn ⊗ n)e(u)Πd

)
dς(x)649

−MΩ(Ω)

(∫
∂Ω1

[ρ] |u|2Vn dς(x) +

∫
∂Ω

ρ2|u|2Vn dς(x)

)
.650

651

Then, applying the tangential Stokes formula, similarly as in (3.12), we get652
653

∂tGΩ(0,u) =

∫
∂Ω1

[Ae(u) : e(u)Vn]− 2

∫
∂Ω1

Ae(u)n · [∂nu] dς(x)654

+

∫
∂Ω

A2e(u) : e(u)Vn dς(x) + α

∫
∂Ω

(
H |u|2 + 2u · ∂nu

)
Vn dς(x)655

+ β

∫
∂Ω

(
HAceΓ(u) : eΓ(u)−AceΓ(u) : Πd

(
∇uD2b+ D2b t∇u

)
Πd

)
Vn dς(x)656

+ 2β

∫
∂Ω

(
AceΓ(∂nu) : eΓ(u)− 2AceΓ(u) :∇Γ(Πde(u)n)

)
Vn

)
dς(x)657

+ 4

∫
∂Ω

(−αu−Ae(u)n) ·Πde(u)nVndς(x)658

−MΩ(Ω)

(∫
∂Ω1

[ρ] |u|2Vn dς(x) +

∫
∂Ω

ρ2|u|2Vn dς(x)

)
659

660

and after rearranging the terms we get the announced expression.661
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3.4.2. Proof of Theorem 2.5. We will now calculate the sensitivity of M∂Ω(Ω)662

with respect to variations of the domain Ω and of the interface Γ. The perturbed663

problem then reads664

665

M∂Ω(Ωt) = inf
v∈H(Ωt)


1∫

∂Ωt

|v|2 dς(x)

(∫
Ωt

At(x)e(v) : e(v)dx+ α

∫
∂Ωt

|v|2 dς(x)666

+β

∫
∂Ωt

AceΓ(v) : eΓ(v) dς(x)

)}
.667

668

The above can be formulated as669

(3.18) M∂Ω(Ωt) = inf
u∈H(Ω)

G∂Ω(t,u),670

with671
672

G∂Ω(t,u) :=
1∫

∂Ωt

∣∣(u ◦Ψ−1
t )
∣∣2 dς(x)

(∫
Ωt

At(x)e(u ◦Ψ−1
t ) : e(u ◦Ψ−1

t )dx673

+ α

∫
∂Ωt

∣∣(u ◦Ψ−1
t )
∣∣2 dς(x) + β

∫
∂Ωt

AceΓ(u ◦Ψ−1
t ) : eΓ(u ◦Ψ−1

t ) dς(x)

)
.674

675

The verification of the hypotheses of Theorem 1.1 which guarantee the existence676

of the semi-derivative M′∂Ω(Ω;V ) can be shown using arguments from the previous677

subsections. We now get a suitable expression for ∂tG∂Ω(0,u) given a normalized678

eigenfunction u for M∂Ω(Ω). To begin with we have679

680

∂tG∂Ω(0, u) =

∫
Γ

[Ae(u) : e(u)]Vn dς(x) + 2

∫
Ω1

A1e(u) : e(−∇uV ) dx681

+2

∫
Ω2

A2e(u) : e(−∇uV ) dx+

∫
∂Ω

A2e(u) : e(u)Vn dς(x)682

+ α

(∫
∂Ω

(
H |u|2 + ∂n |u|2

)
Vn dς(x) + 2

∫
∂Ω

u · (−∇uV ) dς(x)

)
683

+ β

∫
∂Ω

(
HAceΓ(u) : eΓ(u) + 2AceΓ(∂nu) : eΓ(u)684

−AceΓ(u) : Πd

(
∇uD2b+ D2b t∇u

)
Πd

)
Vn dς(x)685

+ 2β

∫
∂Ω

AceΓ(u) :
(
eΓ(−∇uV ) + Πde(u)(n⊗∇Γ(Vn) +∇Γ(Vn)⊗ n)686

+ (n⊗∇Γ(Vn) +∇Γ(Vn)⊗ n)e(u)Πd

)
dς(x)687

−M∂Ω(Ω)

(∫
∂Ω

(
H |u|2 + ∂n |u|2

)
Vn dς(x) + 2

∫
∂Ω

u · (−∇uV ) dς(x)

)
.688

689

Then, multiplying (2.9) by −∇uV in each Ωi, for i = 1, 2, we observe that690

691
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Ω1

A1e(u) : e(−∇uV ) dx+

∫
Ω2

A2e(u) : e(−∇uV ) dx−
∫
∂Ω1

Ae(u)n · [∂nu] dς(x)692

+α

∫
∂Ω

u·(−∇uV )+β

∫
∂Ω

AceΓ(u) : eΓ(−∇uV ) = M∂Ω(Ω)

∫
∂Ω

u·(−∇uV ) dς(x).693
694

Using the above we get695

696

∂tGΩ(0,u) =

∫
Γ

[Ae(u) : e(u)]Vn dς(x)− 2

∫
∂Ω1

Ae(u)n · [∂nu] dς(x)697

+

∫
∂Ω

A2e(u) : e(u)Vn dς(x) + α

∫
∂Ω

(
H |u|2 + 2u · ∂nu

)
Vn dς(x)698

+ β

∫
∂Ω

(
HAceΓ(u) : eΓ(u) + 2AceΓ(∂nu) : eΓ(u)699

−AceΓ(u) : Πd

(
∇uD2b+ D2b t∇u

)
Πd

)
Vn dς(x)700

+ 4β

∫
∂Ω

AceΓ(u) :
(

(n⊗∇Γ(Vn) +∇Γ(Vn)⊗ n)e(u)Πd

)
dς(x)701

−MΩ(Ω)

∫
∂Ω

(
H |u|2 + 2u · ∂nu

)
Vn dς(x).702

703

Then, continuing as in the proof of Theorem 2.4, we obtain704

705

∂tGΩ(0,u) =

∫
∂Ω1

[Ae(u) : e(u)Vn]− 2

∫
∂Ω1

Ae(u)n · [∂nu] dς(x)706

+

∫
∂Ω

A2e(u) : e(u)Vn dς(x) + α

∫
∂Ω

(
H |u|2 + 2u · ∂nu

)
Vn dς(x)707

+ β

∫
∂Ω

(
HAceΓ(u) : eΓ(u)−AceΓ(u) : Πd

(
∇uD2b+ D2b t∇u

)
Πd

)
Vn dς(x)708

+ 2β

∫
∂Ω

(
AceΓ(∂nu) : eΓ(u)− 2AceΓ(u) :∇Γ(Πde(u)n)

)
Vn

)
dς(x)709

+ 4

∫
∂Ω

(−αu−Ae(u)n) ·Πde(u)nVndς(x)710

−MΩ(Ω)

∫
∂Ω

(
H |u|2 + 2u · (∂nu− 2Πde(u)n)

)
Vn dς(x).711

712

Appendix A. Auxiliary results on shape derivatives.713

The purpose of this subsection is to recall some auxiliary results or notions used714

in the calculations of the shape sensitivities.715

A.1. Classical derivative formulæ with respect to the domain.716

Lemma A.1 (See, e.g., [19]). Let δ > 0. Let a vector field V ∈W1,∞(Rd) and
let

Ψ : t ∈ [0, δ) 7→ Ψt = I + tV ∈W1,∞(Rd).

Let a bounded Lipschitz open set Ω in Rd and let Ωt := Ψt(Ω) for all t ∈ [0, δ).
We consider a function f such that t ∈ [0, δ) 7→ f(t) ∈ L1(Rd) is differentiable at 0
with f(0) ∈W1,1(Rd). Then the function

t ∈ [0, δ) 7→ F (t) =

∫
Ωt

f(t, x) dx
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is differentiable at 0 (we say that F admits a semi-derivative) and we have

F ′(0) =

∫
∂Ω

f(0, x)Vn dς(x) +

∫
Ω

f ′(0, x) dx,

where Vn = V · n.717

Lemma A.2 (See, e.g., [19]). Let δ > 0. Let a vector field V ∈ C1,∞(Rd) and
let

Ψ : t ∈ [0, δ) 7→ Ψt = I + tV ∈ C1,∞(Rd).

Let a bounded open set Ω in Rd of classe C2 and let Ωt := Ψt(Ω) for all t ∈ [0, δ). We
consider a function g such that t ∈ [0, δ) 7→ g(t) ◦Ψt ∈W1,1(Ω) is differentiable at 0
with g(0) ∈W2,1(Ω). Then the function

t ∈ [0, δ) 7→ G(t) =

∫
∂Ωt

g(t, x) dx

is differentiable at 0 (we say that G admits a semi-derivative), the function t ∈ [0, δ) 7→
g(t) ω ∈ W1,1(ω) is differentiable at 0 for all open set ω ⊂ ω ⊂ Ω and the deriva-
tive g′(0) belongs to W 1,1(Ω) and we have

G′(0) =

∫
∂Ω

(g′(0, x) + (H g(0, x) + ∂ng)Vn) dς(x),

where Vn = V · n and where H is the mean curvature function on ∂Ω.718

A.2. Decomposition formulæ.719

Lemma A.3. Given a bounded open set Ω in Rd of class C2 and u ∈ H2(Rd) we720

have721

∂n (AceΓ(u) : eΓ(u)) = 2AceΓ(∂nu) : eΓ(u)−AceΓ(u) : Πd

(
∇uD2b+ D2b t∇u

)
Πd,722

where b is the signed distance to the boundary ∂Ω.723

Proof. Let us first notice that ∂nΠd = 0 and that ΠdD
2b = D2bΠd = D2b, and we

underline the fact that ∇Γu = ∇uΠd since

∇Γu =


t∇Γu1

...
t∇Γud

 =


t∇u1Πd

...
t∇udΠd

 = ∇uΠd.

Then we have

∂n(∇Γu) = ∂n(∇uΠd) = ∂n(∇u) Πd and ∂n(∇u) = D2un.

Thus ∇(∂nu) = ∇(∇un) = D2un +∇u∇n = ∂n(∇u) +∇uD2b. Hence we obtain

∇Γ(∂nu) = ∇(∂nu)Πd = ∂n(∇u)Πd +∇uD2bΠd = ∂n(∇Γu) +∇uD2b.

We also obtain, noticing that D2b is symmetric,

t∇Γ(∂nu) = ∂n(t∇Γu) + D2b t∇u.
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We deduce from the previous computation that724

∂n (eΓ(u)) =
1

2
∂n

(
Πd

(
∇Γu+ t∇Γu

)
Πd

)
=

1

2
∂n

(
Πd∇Γu+ t∇ΓuΠd

)
725

=
1

2

(
Πd∂n (∇Γu) + ∂n

(
t∇Γu

)
Πd

)
726

=
1

2

(
Πd

(
∇Γ(∂nu)−∇uD2b

)
+
(
t∇Γ(∂nu)−D2b t∇u

)
Πd

)
727

= eΓ(∂nu)− 1

2

(
Πd∇uD2b+ D2b t∇uΠd

)
728

= eΓ(∂nu)− 1

2
Πd

(
∇uD2b+ D2b t∇u

)
Πd.729

Therefore, we obtain that730

731

∂n (AceΓ(u) : eΓ(u)) = 2Ac∂n (eΓ(u)) : eΓ(u)732

= 2Ac

(
eΓ(∂nu)− 1

2
Πd

(
∇uD2b+ D2b t∇u

)
Πd

)
: eΓ(u),733

734

which concludes the proof.735

Lemma A.4. Given a bounded open set Ω in Rd of class C2, V ∈ C1(Rd;Rd)736

and u ∈ H2(Rd), we have737

738

∂t
(
eΓt(u ◦Ψ−1

t )
)
t=0

= eΓ(−∇uV )739

+ Πde(u)(n⊗∇ΓVn +∇ΓVn ⊗ n) + (n⊗∇ΓVn +∇ΓVn ⊗ n)e(u)Πd,740741

where Vn = V · n.742

Proof. We first recall that, since ∂tnt t=0 = −∇ΓVn, we have ∂tΠd t=0 = n ⊗743

∇ΓVn +∇ΓVn ⊗ n. Hence we obtain the result noticing that eΓ(u) = Πde(u)Πd.744

Remark A.5. As compared to the scalar case dealt with in our previous paper,745

since eΓ(u) is obtained by mutliplying e(u) on both sides by Πd, when we derive746

eΓt
(u ◦Ψ−1

t ) with respect to t we obtain an extra term.747

A.3. Γ- convergence. For the convenience of the reader, we recall the definition748

and the main property of the Γ- convergence. For further details we refer to Dal749

Maso [11].750

Definition A.6. (Sequential Γ-convergence) A family of functionals {Ft}t>0 de-751

fined on a topological space X is said to be sequentially Γ-convergent to a functional F752

as t→ 0+ if the two following statements hold.753

(i) Γ− lim inf inequality. For every sequence {xt} converging to x ∈ X, we have:754

(A.1) lim inf
t→0+

Ft(xt) ≥ F (x).755

(ii) Γ− lim sup inequality. For every x ∈ X, there exists a sequence {xt} converging756

to x such that757

(A.2) lim sup
t→0+

Ft(xt) ≤ F (x).758

When properties (i) and (ii) are satisfied, we write F = Γ− lim
t→0+

Ft.759
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Proposition A.7. Let Ft : X → R be a sequence of functionals on a topological760

space such that:761

(i) F = Γ− lim
t→0+

Ft,762

(ii) supt Ft(xt) < +∞ ⇒ {xt} is sequentially relatively compact in X.763

Then we have the convergence: inf Ft → inf F as t→ 0+ and, every cluster point of a764

minimizing sequence {xt} (i.e. such that Ft(xt) = inf
x∈X

Ft(x)) achieves the minimum765

of F .766
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