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SHAPE DERIVATIVE FOR SOME EIGENVALUE FUNCTIONALS IN
ELASTICITY THEORY*

FABIEN CAUBET!, MARC DAMBRINE!, AND RAJESH MAHADEVANS$

Abstract. This work is the second part of a previous paper which was devoted to scalar
problems. Here we study the shape derivative of eigenvalue problems of elasticity theory for various
kinds of boundary conditions, that is Dirichlet, Neumann, Robin, and Wentzell boundary conditions.
We also study the case of composite materials, having in mind applications in the sensitivity analysis
of mechanical devices manufactured by additive printing.

The main idea, which rests on the computation of the derivative of a minimum with respect to
a parameter, was successfully applied in the scalar case in the first part of this paper and is here
extended to more interesting situations in the vectorial case (linear elasticity), with applications in
additive manufacturing. These computations for eigenvalues in the elasticity problem for generalized
boundary conditions and for composite elastic structures constitute the main novelty of this paper.
The results obtained here also show the efficiency of this method for such calculations whereas the
methods used previously even for classical clamped or transmission boundary conditions are more
lengthy or, are based on various simplifying assumptions, such as the simplicity of the eigenvalue or
the existence of a shape derivative.

Key words. eigenvalues of elasticity operators, shape derivatives, shape sensitivity analysis,
generalized boundary conditions

AMS subject classifications. 49Q10, 35P15, 49R05

1. Introduction.

1.1. Motivations and generalities on shape derivatives. Many problems
ranging from engineering to physics deal with questions of optimal shapes or designs.
An important class of these problems involves eigenvalues of elliptic operators since
they are important in understanding the vibrating modes of a mechanical structure. A
famous example is the so-called Rayleigh-Faber-Krahn inequality for the first vibrating
mode of a clamped membrane. In recent years, additive manufacturing, or the so-
called 3D printing, has been used in the manufacturing of machine parts with complex
geometries or even having a heterogeneous structure. The structural properties of
these parts depend on two important features: the distribution of the materials and
the effect of thin coatings on the boundary of the device. Of course, engineers would
like to optimize the performance of such a printed device by means of an optimal
layout of the materials. One of the criteria to consider in the performance of the
device are its vibrational properties. In this work, we study the shape sensitivity of
eigenvalue problems in linear elasticity for a wide variety of boundary conditions and
for both homogeneous and heterogeneous materials with the above applications in
mind.

Let O,q be a family of admissible open sets in R%, d = 1, 2, 3, which is stable
with respect to a family of diffeomorphisms (I 4 ¢V), that is, for a given § > 0, we
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2 FABIEN CAUBET, MARC DAMBRINE, AND RAJESH MAHADEVAN

have (I+tV)(Q2) € O,q whenever Q € O,q for all t € [0, 6] and for all V' smooth vector
fields with compact support in a neighborhood of €. Previously and in what follows, I
denotes the identity vector field. The semi-derivative a shape functional F' : O,q — R,
in the sense of J. Hadamard [17], at Q € O,q in the direction of a vector field V, is
defined as

(1.1) F'(Q;V):= lim
where

Q=0 (Q), being ¥y(z) :=z +tV(x),

whenever the limit in (1.1) exists. This is called a shape derivative if it exists and is
a linear functional with respect to V.

1.2. Aim of this work. In the first part of the present work exposed in [§],
we have shown how to compute efficiently the semi-derivative of eigenvalue function-
als in the scalar case by following a procedure developed initially by M. Delfour and
J.P. Zolesio for dealing with the sensitivity with respect to a parameter in minimiza-
tion problems. In this paper, we focus on vector case and, to be specific, on the study
of the semi-derivatives for several families of eigenvalue problems in linear elasticity
problems for various kinds of boundary conditions. Whether or not this is linear and
continuous with respect to the vector field will not be addressed here. Indeed, the
fact that eigenvalues in elasticity problems are not simple makes it very little probable
that we could go beyond establishing the existence of a semi-derivative.

OUR STRATEGY. For establishing the existence of a semi-derivative in the prob-
lems of our interest we shall adopt the following approach. This approach starts with
the application of the following version of Theorem 2.1, Chapter 10, M. Delfour and
J.P. Zolesio [14] for proving the existence and for obtaining an initial expression for
the semi-derivative.

THEOREM 1.1. Let X be a Banach space and let G : [0,8] x X — R be a given
functional and we set

g(t) = igl(fG(t,:v) and X(t)={zeX : G(t,z)=g(t)}.

If the following hypotheses hold,

(H1) X(t) #0 for allt € [0,0],

(H2) 0:G(t,x) exists in [0,0] at all x € Usepo,5 X (1),

(H3) there exists a topology T on X such that, for every sequence {t,} CJ0,0]
tending to 0 and x,, € X (t,,), there exists xg € X(0) and a subsequence {t,, }
of {t,}, for which

(i) @, —> xo with respect to T
(i) Uminfy_ o O.G(tn,, Tn,) > 0:G(0, z0),

(H{) for all x € X(0), the function t — ;G (¢t,x) is upper semi-continuous at
t=0,

then we have that

"(0) = inf .
g'(0) $é§(0)0tG(0,x)

In our setting, the functional G(¢,-) will be chosen to be the Rayleigh quotient as-
sociated to the original eigenvalue problem on the perturbed domain €, after it is

This manuscript is for review purposes only.
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SHAPE DERIVATIVE FOR SOME EIGENVALUE FUNCTIONALS 3

transported back to €. We then follow the procedure used in the scalar case [8], for
a step-by-step verification of the hypotheses which guarantee the applicability of the
theorem. Is follows that we break up the different terms which constitute the Rayleigh
quotient and calculate their contributions to the shape derivative through Proposi-
tions 3.1 and 3.2 proved below. Then the rather complicated obtained expressions are
simplified thanks to a systematic choice of test functions in the variational formula-
tion of the eigenvalue problem. By following this methodical approach, we are able to
rigorously establish the existence of the Eulerian semi-derivatives in these problems
and obtain the corresponding boundary representations in a simplified manner.

MAIN NOVELTIES OF THIS WORK. Now a word about some existing results for
such derivatives in the elasticity case. Previously, the shape sensitivity of eigenvalue
problems of elasticity has been considered for example by J. Sokolowski and J.P.
Zolesio in [23] and G. Allaire and F. Jouve in [2]. In these works, the computation for
this shape derivative in the presence of Dirichlet and Neumann boundary conditions
is given while assuming that the eigenvalue in consideration is simple (and this may
be the case for certain domains although not true in general). The arguments therein
are based on a suitable adjoint formulation.

In the present work, we avoid the hypothesis of the simplicity of the eigenvalue
and, by following our unified and systematic approach, we do not only recover the
earlier results but also are able to extend it with a fair amount of ease to other
boundary value problems of interest, especially in additive printing, like the so-called
Wentzell boundary conditions. Let us emphasize that such boundary conditions are
not a mathematical curiosity but appear naturally in the context of linear elasticity
as soon as the configuration presents discontinuities on the material properties on
a submanifold (see, e.g., [9] for a crusted body or [20] for an interface problem).
In particular, the Wentzell boundary conditions, coming from asymptotic analysis
(see [20, 21, 9] for the mechanical and theoretical justification of such conditions),
permit to model coating or membrane effects. Notice that this approximation of an
original structure with a thin layer by adhering to another domain with new boundary
conditions, called generalized impedance boundary conditions, is a classical method in
order to avoid huge difficulties in the theoretical and numerical analysis of a thin
structure (for instance a mesh refinement adapted to the thickness of the layer).

We also underline that we consider two types of eigenvalues problems: the volume
and surface types. If the volume type is more classical, at least for classical bound-
ary conditions, the study of shape sensitivity of surface type eigenvalues problem is,
up to our knowledge, much less studied although this permits to study transmission
problems. Let us emphasize that the surface eigenvalue problems do not model ei-
genvalues of thin structures like shells. They have been introduced to justify that the
asymptotic models derived by M. David, J.J. Marigo and C. Pideri in [20, 21] are well
posed in the sense that the problems are of Fredholm type (see [4] for the scalar case
and [5] for the elastic case in dimension two). This is why we also deal with these
problems in this paper, in order to be as complete as possible.

Motivated by structural optimization of multi-phase material, we consider, in a
second step, the eigenvalue problem for a mixture of two isotropic elastic materials.
We specify that we use the terminology composite to refer to this case. In addition to
considering such piecewise constant material properties in the interior of the domain,
the effect of a thin coating is also taken into account by allowing a Robin or Wentzell
boundary condition.

This manuscript is for review purposes only.
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4 FABIEN CAUBET, MARC DAMBRINE, AND RAJESH MAHADEVAN

1.3. Organization of the paper. To conclude this introduction, the paper is
organized as follows. The main results of the paper are stated in Section 2. We present
first the result in the case of a single isotropic elastic material and, then in the case
of a mixture of two phases. The proofs are gathered in Section 3: we first provide the
derivatives of the elementary terms arising in Rayleigh quotient in Section 3.2, and
then give the proof of the main theorems in Sections 3.3 and 3.4. Finally, we recall
(classical) background and technical results in Appendix A.

2. The results.

2.1. Notations. We consider a bounded open subset € of R? with a C** bound-
ary 0Q. Firstly, at each point of 92, we consider an orthonormal frame (7,n) consist-
ing of a family of orthonormal tangential vectors, denoted by 7, and the unit normal
vector, denoted by n. Then the tangential projection is given by

IIg:=I;—n®n
and, in the local frame, has the representation
_(li=1 O
Hd - ( 0 0) )

where I and I;_1 are respectively the identity matrices of size dxd and (d—1)x(d—1).
More generally, any dxd matrix M has the following representation in the frame (7, n):

MTT MTn
MHT MI]H ’
with the components M, := Iy MTlz, My = g M Iy — Uy), My, = (Ig —

Hd) M Hd and Mnn = (Id — Hd) M (Id - Hd).
Secondly, in the whole paper, we use

o= 2 (0 +40)

to denote the symmetric part of a square matrix C'. For any vector field u =
(W;)i=1,..d € Hl(Q)7 the strain tensor

e(u) == % (Vu+'Vu) = (Vu)™™

is the symmetric part of the Jacobian matrix Vu whose rows are *Vu; fori =1,...,d.
We also introduce, for a scalar function ¢ € H(9), the tangential gradient

Vr¢ =114V,

and, for all vectorial functions ¥ € Hl(aﬂ), the tangential strain

er() 1= 5 (Ve + V1) = (Vrep)™™,

where the rows of V) are the tangential gradients of the components ¢;,i =1,...,d.
Notice that we have Vi = Vi II; since
Vi VIl
Vry = : = : = Vapllg,
"Vriba Vially

This manuscript is for review purposes only.
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SHAPE DERIVATIVE FOR SOME EIGENVALUE FUNCTIONALS 5

and thus
er () = Iae()1la.

Therefore, in the local frame, it is of the form (667 8) Then, we denote by

divpe := Tr(e. (¥))

the surface or tangential divergence. The tangential divergence of a matrix field C
will be the vector field obtained by taking the tangential divergence of the rows of C,
that is, for alli =1,...,d,
(diVFO)i = dinCzn

Remark 2.1. We should keep in mind the following basic differences with respect
to the scalar case. On the one hand, in the scalar case, we have Vry = I3V,
whereas, on the other hand, in the case of elasticity, we have Vpip = Vi I1,;. Also,
in this case, the tangential strain e () is obtained by reducing the strain e(t) to
the tangent space by multiplying by the projection Il on either side. This leads to
substantial differences in the formulae for shape derivatives in the scalar case and in
the case of elasticity.

Then we introduce the signed distance to the boundary 0f2 defined by

ba) = d(z,09), ifz e,
YT —d(z,09), ifreRI\Q,

and the mean curvature at any point on 952, defined by
H := divrn.

Finally, as mentioned in the introduction, given a C*! vector field V' with compact
support in a neighborhood of © and a (small) real number § > 0, we consider the one
parameter family of deformations

for all t € [0,0], which are in fact diffeomorphisms if § is sufficiently small. Then we
define the perturbed domain by

We also use the following notation for the normal component of the vector field V':
Vo=V - n.

2.2. Shape derivative for eigenvalue problems of linear elasticity-single
phase isotropic materials. We assume that €2 is an elastic body and we consider
an isotropic elastic medium with Lamé coefficients p > 0 and A > 0, and associated
elastic or Hooke tensor A given by

A& :=2pu&+ ATr(€) 1y, for all symmetric matrices €.

We also assume that the body {2 is surrounded by a thin layer with an elasticity tensor
given by

(2.3) Al =2 pc &+ AN Tr(§) Iy,

This manuscript is for review purposes only.
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6 FABIEN CAUBET, MARC DAMBRINE, AND RAJESH MAHADEVAN

where p. > 0 and A\. > 0 are some (modified) Lamé constants which correspond to
a coating (the thin layer). Then, given «, 8 > 0 two real numbers, we are interested
in the following kinds of eigenvalues problems: of wvolume type, where the spectral
parameter is in the domain,

(2.4) —div (Ae(u)) = Ag(Qu inQ,

’ —pdivp (Acer(u)) + au + Ae(uyn = 0 on 01,
and of surface type, where the spectral parameter is on the boundary,
(2.5) —div (Ae(u)) =0 in Q,

’ —Bdivr (Acer(u)) + au+ Ae(u)n = Apa(Q)u  on 9.

For different regimes of the parameter, we have different kinds of eigenvalue prob-
lems. For the choice § = 0 and o = 0 in (2.4), we obtain Neumann (pure traction)
eigenvalues. The Dirichlet (clamped) eigenvalue problem is obtained from (2.4) in
the limiting case @ — +o00. The Robin eigenvalue problem is obtained from (2.4) by
taking § = 0. If we take f = 0 and a = 0 in (2.5), we obtain the Steklov eigenvalue
problem. Finally, for the choice 8 > 0, we have the Wentzell eigenvalue problem
(see [9] for the model and the derivation of the Wentzell boundary conditions in the
elasticity case).

These eigenvalues problems arise as minimization of the associated Rayleigh quo-
tient given by

(26) Ao(®)= inf /|1|2d( /Q Ae(u) : e(u) dz
Q

+a /89 ) ds () + 5/89 Aceru:eru dg(x)) } :

and

(2.7) Apa(R2) = inf 1(/52Ae(u):e(u) dz

wEH(Q) /|u|2dx
o0

ta /89 ul® de(z) + ﬁ/m Aceru:eru dg(x)) } .

Notice that, in the various eigenvalue problems, an appropriate choice of a subspace
of H'(Q) has to be made for H(Q). For example, in the case of the first Dirichlet
eigenvalue, we may choose 8 = 0 and H(Q) = H{(Q) in (2.6). In the case of the
first non-trivial Neumann or Steklov eigenvalue, we may choose o = 0 and 8 = 0
and take #(Q) to be the quotient space of H*(Q) modulo the rigid transformations.
In the case of the Wentzell eigenvalue problem, we are in the situation where g > 0
and we need to choose H(Q) to be {u € H*(Q); uiaq € H(9Q)} with the associated

1/2
norm (HuH%l(Q) + ||u||%11(am) (quotiented over the subspace of rigid transforma-

tions if a = 0).

We now state the results for these problems.

This manuscript is for review purposes only.
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SHAPE DERIVATIVE FOR SOME EIGENVALUE FUNCTIONALS 7

THEOREM 2.2. Given a C*' domain Q and V' a smooth vector field, the semi-
derivative AG(; V') of Aq(2) in the direction of the vector field V' exists and is given

by

AG(Q; V) = inf { /aQ (Ae(u) re(u) — 4Ae(u)n - Tze(u)n

+au - (Hu + 20,u — 411ze(u)n)
+ B (HAcer (u) s er(u) — Acer(u) : 11y (VuD?b + D?b'Vu) I1,)

+ ZB(ACep((?nu) cer(u) — 2Acer (u) : Vi (Lze(uw)n) ) ~ A(Q) |uf? ) v, dg(x)}.

In the above, the inf is taken with respect to all functions u € H(QY) for which the
value Aq(QY) is attained in (2.6).

THEOREM 2.3. Given a C*' domain Q and V' a smooth vector field, the semi-
derivative Ny, (V') of Aoa(§2) in the direction of the vector field V' exists and is
given by

hQ(Q; V) = inf { /BQ <Ae(u) re(u) — 4Ae(u)n - Mze(u)n

+ au (Hu + 20,u — 4114e(u)n)
+ B (HAcer (u) s er(u) — Acer(u) : 11y (Vu D?b + D?b'Vau) I,)

+23 (Acep(anu) rer(u) — 2Acer(u) : Vi (Ize(uw)n) )
- Aaﬁ(Q) u- (Hu + 2611“ - 4Hde(u)n) ) an dg(‘r)}v

where the inf is taken with respect to all functions uw € H(Q) for which the value
Aoa(Q) is attained in (2.7).

Apart from the case of Dirichlet and Neumann boundary conditions for the volume
case stated in Theorem 2.2, the remaining others results are, completely new to our
best knowledge, new even in the case of a simple eigenvalue. We finally underline
that, even if it is not the same expression, the given formula given above coincides
with the known expression in the corresponding to Dirichlet and Neumann case: this
can be done with checked by direct a computation.

2.3. Shape derivative for eigenvalue problems of linear elasticity - com-
posite materials. Consider now a subset Q; of Q with a C>! boundary and set
Dy = Q\ Q. We assume that there exists p > 0 such that ||z — y|| > p for
all x € Qp and y € 0f2. We consider two isotropic elastic materials, with elastic-
ity tensors A; # As given by (for i = 1,2)

A€ =2 €+ N Tr(€) 1a,

with Lamé coefficients p; > 0 and A; > 0, which occupy respectively the domains
and o with respective densities p1 > 0 and pa > 0 (with p; # p2). We set

p = p1Xa, + P2X0, and A= Aixa, + Aaxa,-

This manuscript is for review purposes only.



8 FABIEN CAUBET, MARC DAMBRINE, AND RAJESH MAHADEVAN

As previously, n denotes the exterior unit normal to Q2. Moreover I' stands for the
interface between 21 and ()5, that is

' =00 NN, = an,

and, on I', the notation n will represent the unit normal pointing outward from €,
that is
n=mn; = -—-no

(where n;, ¢ = 1,2, represent the exterior unit normal to 9€2;). We summarize the
notations in Figure 1. We also use the notation [-] in order to represent the jump on
the interface I', that is, for a function u and a point x € T,

[u] (x) :== Elirng (u(z —en(z)) —u(z +en(x))) = w1 — ug.

Fi1G. 1. Notations

We consider the eigenvalue problem of volume type

{ —div (A(z)e(u)) = Ma(Q)p(x)u in Q,

(2.8) —pdivr (Acer(u)) + au + Ae(u)n = 0 on 09,

and of surface type

—div (A(z)e(u)) = 0 in Q,
(2.9) { —pdivr (Acer(u)) + au + Ae(u)n = Moo (Q)u on 9.

As previsouly, for different regimes of the parameters o and 3, we obtain different
kinds of boundary conditions and the eigenvalues are associated to minimization of
the Rayleigh quotients

(2.10) Ma(Q) = inf 1( /Q A(z)e(w) : e(u) dz

wEH(Q) / p|u|2
Q

ta /8 P @)+ [ Acer(u)zer(u) dg(x))},

This manuscript is for review purposes only.
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SHAPE DERIVATIVE FOR SOME EIGENVALUE FUNCTIONALS 9

and

1
(2.11) Moq(Y) = inf _ A(z)e(u) e(u) dz
aQ

ra [ R+ [ dcrtwiertu) asto) ) .

where H (1) is an appropriate subspace of H'(Q) as discussed above.

We now state the results for these problems.

THEOREM 2.4. Let Q be a C>' domain and V a smooth vector field. Let u
be a normalized eigenfunction corresponding to Mo (Q). Then the semi-derivative
MG (V) of Ma(Q) in the direction of the vector field V' exists and is given by

M, (2 V) = inf { /m ([Ae(u) ce(u)] — 2Ae(u)n - [Oyu] — zmQ(Q)[pnuR)vn de ()

+ / (Ae(u) re(u) — 4Ae(u)n - Ize(u)n + au - (Hu + 20,u — 411e(u)n)
a0

+ B (HACep(u) cer(u) — Acer(u) : 11,4 (Vu Db+ Dztiu) Hd)

+2ﬂ(AC6r(anu) cer(u) —2Acer (u) : Vi (Ilge(w)n) ) — Mo ()2 |ul? ) Vi dq(z)) }

where the inf is taken over all functions uw € H(QY) for which the value Aq(S2) is
attained in (2.10).

THEOREM 2.5. Let Q be a C*' domain and V' a smooth vector field. Let u be a
normalized eigenfunction corresponding to Maq. Then the semi-derivative My, (V)
of Mo () in the direction of the vector field V' exists and is given by

Mo (Q; V) = inf { /(‘39 ([Ae(u) ce(u)] — 24e(u)n - [5‘nu])Vn de(x)

+ / (Ae(u) re(u) —4Ae(u)n - Ige(u)n + au - (Hu + 20,u — 4114e(u)n)
a0
+ B (HAcer (u) s er(u) — Acer(u) : 11y (Vu D?b + D?b'Vau) I,
+28(Acer(uu) s er(u) - 24cer(u): Vr (Mae(un) )
— Mo (Q)p2u - (Hu + 20,u — 411 e(u)n) ) Va dg(z)) },
where the inf is taken over all w € H(Q) for which the value Maq () is attained

in (2.11).

Obviously, Theorem 2.2 (respectively Theorem 2.3) can be obtained as a par-
ticular case of Theorem 2.4 (respectively Theorem 2.5) by letting A; = Ay = A

This manuscript is for review purposes only.



10 FABIEN CAUBET, MARC DAMBRINE, AND RAJESH MAHADEVAN

and p; = p2 = 1. Even so, we present the proofs of Theorem 2.2 (respectively The-
orem 2.3) since the main ideas can be illustrated more clearly in these particular
cases.

Remark 2.6. We can notice that the formulae of the above Theorems 2.2, 2.3, 2.4
and 2.5 are a little bit different and more complicated that the scalar case exposed
in [8]. Indeed, in the scalar case, some simplifications occur, which is not the case in
the elasticity case: this is linked with the differences underlined in Remark 2.1 (see
also Remark 3.4 below).

3. Proofs. The shape derivative results stated in the previous section will be
established in this section in the framework of Theorem 1.1 by following a general
strategy which we employed in the scalar problems (see [8]) and is recalled below for
the benefit of the reader.

3.1. General strategy. The first step is to reformulate the eigenvalue problem
for the perturbed domain €, which is obtained by the minimization of a Rayleigh
quotient, as a minimization problem for a functional G(t, ) in a space H(f2) which is
independent of the parameter t.

The next step consists in verifying that the assumptions of Theorem 1.1 are
satisfied. For verifying the hypothesis (H3), in the class of eigenvalue problems, we
usually need to show the I'-convergence (see Appendix A for some reminders on this
notion) of G(t,-) to G(0,-) as t — 0T in the weak topology of H(Q2) and later the
strong convergence of a sequence of minimizers.

Then, Theorem 1.1 allows us to immediately calculate the shape derivative by
evaluating inf,,c x (0) 9:G (0, u) where X (0) is, generally, an eigenspace for the problem
on ). In the case of a simple eigenfunction, it is enough to evaluate at a normalized
eigenfunction. An initial expression for 9;G(0,u) is obtained by using the propositions
given in the following subsection and this gives an integral over the domain 2.

As alast step, we transform and simplify the initial calculation of 9;G(0, u), to get
a boundary expression for ;G (0, w). This can be usually achieved by choosing —VuV
as a test function in the governing equation, provided that it has enough regularity.

3.2. Preliminary computations. Before computing the shape derivatives, we
first prove some preliminary results. We compute the separate contributions of the
different terms of the Rayleigh quotient to the derivatives 0;G(0,u) in the various
problems. For this, we rely on the classical formulae in the calculation of shape
derivatives which are recalled in Lemma A.1 and Lemma A.2 in the appendix.

PROPOSITION 3.1. For uw € H'(Q), we have

(3.1) o ( o Ae(uo ¥ ) e(uo Wt dx)

t=0

= / Ae(u):e(u) V;, de(x) + 2/ Ae(u):e(—VuV) dz,
09 Q

(3.2) O (/Q |(uo \1/;1)|2da:>
(3.3) O (/m |(u o \Ilt1)|2da;>

:/ |u|? Vi ds(z) + 2/ u- (—VuV) dr
t=0 Joo )

t=0
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/m <H|u|2 + 0y |u|2) Vi, ds(z) + Q/agzu. (—=VuV) ds(z).

11

Proof. The above formulae are obtained by a straighforward application of the
formulae for derivatives of domain and boundary integrals given in Lemma A.1 and
Lemma A.2 in the appendix and the fact that 9;(uo ¥;')|,_, = —VuV since
0¥y e = =V (see [19, equation (5.7)]).

PROPOSITION 3.2. For u € H*(Q), we have

(3.4) 8t< Acer,(wo U, M) rer, (uwo W, t) dm)
o9,

t=0

= / <H Acer(u) :er(u) + 2Acer(Ohu) er(u)
o0
— Acer(u) :11q (VuD?b + D?b'Vu) Hd) Va ds(x)
+ 2/ Acer(u): (ep(—VuV) + Hge(u)(n® VrVy, + ViV, @ n)
o0

+(n® VeV, + ViV ® n)e(u)Hd) de(z).

d

Proof. By applying the classical derivation formula recalled in Lemma A.2, we

get

O¢ </ Acer, (u o \Ilt_l) cer,(uo \I!t_l) dx>
a0,

t=0

N /69 (HAcer(u) :er(u) + On(Acer (u) ser(u))) Va ds(z)

+2 Acer(u): 0y (er, (uo <I>t_1)) |,—ods(@).
o

We conclude using the fact (see respectively Lemma A.3 and Lemma A.4)

On (Acer(u):er(u)) = 2Acer(Ophu) :er(u) — Acer(u) : I, (Vu Db + DthVu) I,

and

O (er,(wo ¥ M) |,_, = er(~VuV)

+Me(u)(n@ VrVa + VrVa ®@n) + (n @ VrVy, + ViV, @ n)e(u)Il,.

|

We also need the following proposition concerning the case of eigenvalue problems
for composites. Let € and Q5 be a subdivision of € as presented in Section 2.3 with
the corresponding notations for normal vectors and for the jumps of functions. Then
we define following perturbed elasticity tensor and density

with

Ay = A1xa,, + A2x0,, and Pt = P1XQ ¢ T P2X s

Ql7t = \I/t(Ql) and Qg’t = \I’t(Qg)
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PROPOSITION 3.3. For u € H'(Q), we have

(3.5) 0 </Q Are(uo U ) re(uo Wt dz)

t=0

= /[Ae(u) re(w)|Vay ds(z) +2 | Aje(u):e(—VuV) dz
r o

+2 [ Ase(u):e(—VuV) dz + Ase(u) :e(u)V;, dg(x)
Qo o0

and

o o [ | pl(wo ;e )

+ 2/ pru - (=VuV) dx+2/
(o Q

= [Py dsta)

p2u - (=VuV) dx +/ polul*Vy, dg(z).
o0

2

Proof. The above formulae are obtained by an application of Lemma A.1 to each
of the terms on the right hand side after writing

/ Are(uo ¥ ) e(uo U, t) do
Q¢
:/ Are(uo ;) e(uo ¥t d:r+/ Ase(uo U, N :e(uo W, ) dx O
Ql,t QZ,t

and

/ prl(wo U7 ) Pda = / prl(wo Uy Pdr + / pal(u o Wy ) dz.
Q

1,¢ Qo ¢

3.3. Semi-derivatives for single phase isotropic materials.

3.3.1. Proof of Theorem 2.2. The considered eigenvalue functional on the
perturbed domain is

1
(3.7) Aq(f) = inf —_ Ae(v):e(v) dx + a/ lv|? dg(z)
vEH () |’U|2 dr Q4 00

Q

+8 Acer(v):er(v) dg(m)) } ,

o

where H(£2;) is a suitable subspace of H*(€;) as discussed in Section 2.2. Since the
function space H(€);) gets mapped to a function space H () which is independent
of t under the isomorphism v — v o ¥y, the above functional can be obtained as a
minimization problem over #(2) as follows

AQ(Qt) = uei%f(g) GQ (t, ’LL)

where the functional Gq is defined by
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1

/Q |uo\IJt_1|2dJ:

+a/ ‘uo\IJ;1’2d§(w) —I—,B/ Acer(uo W) rep(uo Uyt dc(x)).
09, 09,

(3.8) Golt,u) =

< Ae(uo U ) e(uo U, t) da
Q

EXISTENCE OF THE SEMI-DERIVATIVE. First, we check that the assumptions of
Theorem 1.1 are satisfied for the above functional Gg,.

Let us start by Assumption (H1). The arguments to show that the set of mini-
mizers of (3.7) is non-empty for each ¢ is classical and is based on the direct method
of calculus of variations. In fact, the functional is lower semi-continuous for the weak
topology on (), since the numerator is convex and continuous for the strong
topology on () (and therefore weakly lower semi-continuous), and since the de-
nominator is continuous due to the compact inclusion of H'(£,) into L?(Q;). As
concerns the coercivity of the functional for given t, it is enough to show that the
numerator dominates square of the norm or a quotient norm on H(€;). In the case of
Dirichlet eigenvalue problem, this can be obtained from the coercivity of the tensor A
and by the use of Korn’s inequality (see, e.g., [1, Lemma 2.25] or [16, Theorem 3.1]).
In the case of the first non-trivial Neumann eigenvalue problem, one uses the coerciv-
ity of the tensor A and the generalized Korn’s inequality, that is, Korn’s inequality
modulo rigid transformations. When « > 0 it is enough, once again, to use Korn’s
inequality without quotienting. The set X (¢), defined in Theorem 1.1, of minimizers
for Gq(t,-) is obtained by transporting the minimizers in (3.7) to £ by composition
with W;. Therefore Assumption (H1) is satisfied.

Let us now check Assumption (H2). Since V(uo ;') = (Vu DU ') o U, we
have

e(wo ;') = (Vu DI, oy,

and
er(uo ¥ ') = (Iy — n; ®ny) (Vu DY) o 0! (I; — ny @ my),

where n; the normal vector field on 0€2;. Therefore,

Gq(t,u)

- ! </ A(Vu DT ) owt: (Va DY 0¥t da
Q4

/Q |uo\I!;1|2dx

+a/ |uo\Il;1|2 dc(ﬂc)+6/ Ac(Ig—n,@mn;) (Va DU o0t (I;—n,@ny)
0N 00

:(Ig — 0y @ny) (Vau DI 0 U7 (I; — ny @ ny) dg(x)).
Then, by a change of variables, this can be written as

1

(3.9) Galtu)=
/Q 2 () de

</ A(Vu DT )™ (Va DU ()
Q
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+ oz/ lu|?w(t)ds(x) + [3/ Ac(lg — v @vy) (Vu D\Pt_l)sym (Ig — v ®@uy)
o0 00
‘(g —vi @) (Vu D\Ilt_l)sym (Ig—v: ® Vt)w(t)dg(x)>,

where
J(t) = det(DWy(x))  and  w(t) i= det(DW, (@))]|(D¥; ) (@)n(a)]
are respectively the Jacobian and the surface Jacobian and where
v :=n; o Uy,

Clearly, by the definition (2.1), ¥; depends smoothly on ¢ and, for ¢ small enough, ¥, is
a diffeomorphism by which we have that j(¢) and w(t) are smooth functions of ¢. Also,
since 0f) is smooth, it follows that €2; has the same smoothness of 2 and therefore, n,
is differentiable with respect to ¢ for ¢ small enough (see, e.g., [19, Proposition 5.4.14]).
Therefore, we are able to conclude from the previous expression (3.9) that Gq(-,u) is
derivable for all ¢ small enough, for all u € #(f2), and this gives the hypothesis (H2)
of Theorem 1.1.

Before proving Assumption (H3), let us focus briefly on Assumption (H4). The
derivative 9;Gq (-, u) may be obtained by deriving under the integral sign in the previ-
ous equation and since all the integrands are C! functions of ¢, it follows that 8;Gq (-, u)
is also continuous with respect to ¢, for ¢ small enough. This gives Assumption (H4).

We now proceed to show that the hypothesis (H3) holds for the strong topol-
ogy on H(). This will be achieved through the following steps. First, we show
that Gq(t,-) converges, in the sense of I-limit, to Gqo(0,-) as t — 07, in the weak
topology on H () (see Definition A.6 and Proposition A.7 in the Appendix for some
reminders on this notion; also refer to [11]).

(i) Consider a sequence {u'} which converges weakly to a w in (). We obtain
the estimate

Ga(t,u") = Go(0,u') + (Ga(t,u') — Go(0,u")) > Ga(0,u’) + O(t).

Indeed, since any weakly convergent sequence {u'} is bounded in () and the
coefficients in both the numerator and denominator of Gg given by (3.9) are
continuous in ¢, we obtain that Gq(t, u') — Go(0,u?) is O(t) (that is, goes to 0
as t — 0%). Then, to conclude the I'—liminf inequality of Definition A.6, it is
enough to use the already observed fact that Gq(0,-) is lower semi-continuous
for the weak topology on H(Q).

(ii) The T'—limsup inequality of Definition A.6 is obtained by taking the con-
stant sequence wu, for any given w € H(2), and observing as previously that
Ga(t,u) = Gq(0,u) as t — 0T,

Having obtained the I'-convergence of G (t, -), Proposition A.7 ensures that Aq(2:) —
Aq(R2) as t — 0T since the minimum of Gq(t, -) converges to the minimum of G (0, -).
Moreover, the 0-homogeneity of the Rayleigh quotients G (¢, -) means that, for each ¢,
it is enough to consider a minimizer u’ for which the denominator is 1. Under this
normalization, we have the equi-coercivity of Gq(t,-) using the coercivity of the ten-
sor A and Korn’s inequality by the same arguments used during the verification of
the hypothesis (H1): there exists constant a positive constant C' such that

C||ut||3_t(9) < Gq(t,u"), forallt.
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SHAPE DERIVATIVE FOR SOME EIGENVALUE FUNCTIONALS 15

This implies, by Proposition A.7, that {u'} converges weakly in H () to a mini-
mizer u of Go(0,-). To conclude this part, we will prove the strong convergence
of {u'} to u in H(Q). The equi-coercivity can be used once again to give us the
following inequality:

Cllut — “”3—1(9) < Gq(t,u’ —u).

It remains to prove that Gq(t,u’ —u) — 0 when ¢t — 0. Expanding the quadratic
function Gq(t,-) on the right hand side we get

Go(t,u' —u) = Go(t,u') + Go(t,u)
- 2(/ A (Vu! Di!;l)sym : (Vu D\Il{l)symj(t)dm + a/ ulu w(t)ds(z)
Q o0
+ 5 Ay —vi®@uy) (Vut D\Il;l)sym (Ig — v @uy)
o0
((la—ve@vy) (Vu DI7H (Ig - v @ Vt)w(t)dg(x))
Then we use the uniform convergence of the coefficients, the weak convergence of {u'}
to w and the convergence of Aq(€2;) to Aq(€2) to obtain that
Gq (tu —’u)—)AQ +AQ(Q)
—2{/ Ae(u dx—i—a/ 2|u|?ds(x —1—/3/ Acer(u):er(u)ds(x )}
oQ
= )+ A () — 2A(R2) = 0.

Hence {u'} converges strongly to w in H(f2) and, since we have seen that 9;Gq(-,u)
is continuous with respect to ¢, this proves hypothesis (H3).

The existence of the semi-derivative Ag, (€; V') follows from Theorem 1.1 since we
have proved above that the four assumptions of the theorem are satisfied for Gg.

COMPUTATION OF THE DIRECTIONAL SHAPE DERIVATIVES. We want to obtain a
suitable expression for ;G (0, u) whenever u is a normalized eigenfunction for Ag(€2)
since, by the theorem,

A V) = inf{0;Gq(0,u); Aq(Q) is attained at u}.

First, using the expressions (3.1)-(3.4) evaluated at ¢t = 0, we get

9,G(0, ) = /8 Aew):e(w)V ds(o) +2 [ Aelw)se(-uV) da

Q

ta </m (H ul? + 0, |u|2) Vi de(z) + 2/89 u- (—VuV) dg(x))
+ 6 <H Acer(u):er(u) + 2Acer(Ohu) : er(u)
o0

— Acer(u) :11g (VuD?b + D*b'Vu) Hd) Vi ds(z)

128 [ Acer(u): (ep(fVuV) + Mge(uw)(n ® ViV, + ViV @ n)
o
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+ (e VrV,+ VrVy ® n)e(U)Hd) d¢(x)
—Aa(Q) </ |u|? V;, ds(x) + 2/ u - (=VuV) dz> .
o0 Q
Using —VuV as a test function in (2.4), we observe that
/ Ae(u) e(=VuV) + a/ u- (=VuV)+j Acer(u) :er(—VuV)
Q o0 a9
= AQ(Q)/ u- (=VuV).
Q
Notice that the function —VuV belongs to H'(Q). Indeed V is assumed to be
smooth and the boundary 9 has a C?! regularity and then u € H? (©2) by usual a
priori estimates (see [5, Theorem 1.1 and its proof]. Also, observe that for symmetric

matrix B and any square matrix C, we have B:C = B: *C and choose B = A.er(u)
along with C' = (n ® VrV, + VrV;, ®@ n) e(u)ll;. We use these to get that

3.10) 0GOW = [ Ae(w):e(u)V; ds(a) +a /a (- 2u- 0y0) Vi di)
+p (H Acer(u) :er(u) +2Acer(Ohu) er(u)
o

— Acer(u) : 11y (VuD?b + D?b'Vu) Hd> Vi, ds(z)

+458 Acer(u): ((n@VFVn+VFVn®n)e(u)Hd) dg(ac)—AQ(Q)/ lu|? Vi, dg(z).
o9 o0

Remark 3.4. Notice that we have a factor 4 as compared to 2 in the corresponding
term in the scalar case owing to the fact that the tangential strain is obtained by
multiplying the strain by II; on either side and while deriving with respect to t, we
obtain an additional term as observed in Remark A.5 (see also Remark 2.1).

We also observe that
(3.11) Acer(u): (m® Vrly) e(u)II; = 0.
Indeed, after setting, A := Acer(u), B :=n® VrV;, C := e(u) and D := II,, and

writing these in the local frame, we obtain

Acer(u):n® VirVye(u)lly = A: BCD

_ -ATT 0 . 0 0 CTT CTn Id—l 0 =0
L0 0) \Bu 0)\Cur Cun 0o o)

Next we remark that C': (v ® w) B) = v - (C''Bw) (for any matrices C and B and
any vectors v and w) and apply this to Acer(u): ViV, @ ne(u) ;. We also remark
that Acer(u) Iz e(u)n is a tangential vector since II; commutes with Acer(u) and so
we can apply the tangential Stokes formula without any curvature term (see, e.g., [14,
Equation (5.27)]) and obtain that

(3.12)

/ Acer(u): (VrV, ®@n) e(u) Il de(x) = / VirWa - (Acer(u) Iz e(u)n) ds(x)
19) I9)

This manuscript is for review purposes only.



SHAPE DERIVATIVE FOR SOME EIGENVALUE FUNCTIONALS 17

487 _ / divr (Acer (w) Tl e(w)n) Vi d(z)
o9

188 = —/ (divr (Acer(u)) - Mge(u)n + Acer(u) : Vr (Ige(u)n)) V;, de(x).

o0
489
190 Therefore, inserting (3.11) and (3.12) in (3.10), we get
491
192 0;G(0,u) = / Ae(u):e(u) Vy, ds(x) + a/ (H|u* 4+ 2u - 04u) V; ds(z)

o9 a0
193 +8 (H Acer(u):er(u) + 2Acer(Ohu) : er(u)

o0
494 — Acer(u): 1y (Vu D?%b + DthVu) Hd> Vi ds(z)
195 — 44 (divr (Acer(w)) - Ize(u)n + Acer(uw) : Vi (Ilge(u)n)) V4, de(x)
19)
496 - AQ(Q)/ [ul? Vi ds(a).
G19)

497

498 Then using the boundary condition in (2.4), to replace the term divp (Acer(u)), we
499  obtain

)1 0,G(0,u) = /69 Ae(u):e(u) Vy ds(z) + a/ém (H|ul? + 2u - dyu) Vi ds(z)

502 +4 (H Acer(u) rer(u) — Acer(u) : Iy (VuD?b + D?b'Vu) 1) V;, ds(z)
o0
503 +28 (Acer(Ogu) rep(u) — 2Acer(u) : Vi (Ige(u)n)) V, de(z)
o0
504 + 4/ (—au — Ae(u)n) - Mze(u)n 'V, dg(z) — AQ(Q)/ [u? V,, ds(x).
oQ o0
505
506 This may be further rearranged to obtain the expression announced in Theorem 2.2.
507 3.3.2. Proof of Theorem 2.3. The eigenvalue functional over the perturbed
,:)0% domain reads

1
S0 (313) Apo() = inf d—— / Ac(v) : e(v) da:+a/ v[2 de(2)
vEH () / |’U|2 dz Q o0,
00
511 +5 Acer(v):er(v) d§($)> } )
512 s

and this may be reformulated over a function space H(2) which is independent of ¢
using the isomorphism v — v o ¥; and setting u = v o ¥, as

AaQ(Qt) = uei%EQ) Gaq (t, u)
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18 FABIEN CAUBET, MARC DAMBRINE, AND RAJESH MAHADEVAN

where

1

/ ‘uo\IJ;1|2dx
o,

+ a/ luo \I/;IIQdc(x) +5 Acer(uo U, ') rer(uo W, t) d§(x)>.
00y 0

(3.14) GaQ(t,’u) =

(/ Ae(uo‘l/;l):e(uollffl) dz
Q¢

EXISTENCE OF DIRECTIONAL SHAPE DERIVATIVES. We go over the main argu-
ments needed for applying Theorem 1.1 to problem (2.7) to obtain the existence of
the directional shape derivative.

Let us start by Assumption (H1). The arguments are exactly the same as in the previ-
ous case concerning Gq, except that which is needed for the continuity of the denom-
inator. In this case, it is enough to use the compact inclusion of H'(£2;) into L*(9€;)
(for which we refer, e.g., to [3]). Then, as in the previous case, the set X (¢) of minimiz-
ers for Gaq(t, ) is obtained by transporting the minimizers in (3.13) to the domain 2
by composition with ¥;. Therefore Assumption (H1) is satisfied.

Concerning Assumption (H2), we first get the following expression for Ggo

(3.15)
1

/ fuw(t)ds ()
o0

+ a/ [u|?w(t)ds(x) + ﬁ/ Ay — v @uy) (Vu D\D[I)Sym (Ig — v @uy)
a0 aQ

Goq(t,u) = </ A(Vu D\Il;l)sym : (Vu D\Ilfl)symj(t)dx
Q

‘(g —vi®vy) (Vu D\I/;l)sym (Ig—v: ® Vt)w(t)dg(x)>.

Due to the smooth dependence in ¢ of the coefficients appearing in (3.15), we con-
clude that Gaq(-,u) is derivable with respect to ¢ for all uw € H(), which gives
Assumption (H2).

As in the previous case of Gq, the derivative of the individual terms may be
obtained by deriving under the integrals which lead to the fact that 9;Gaq (-, u) is
also continuous with respect to ¢, for all w € H(), due to the C! nature of the
coefficients. This gives Assumption (H4).

Finally we prove that assumption (H3) is also satisfied by showing, as in the case
of Gq, that Gaq(t, ) converges to Gon(0,-) as t — 0 in the sense of I'-limit in the
weak topology on H(2) and that the minimizers converge in the strong topology.

Thus the existence of the semi-derivative A%, (€Q; V') follows from Theorem 1.1.

COMPUTATION OF DIRECTIONAL SHAPE DERIVATIVES. We only need to get a
suitable expression for 9;Goq(0,u) whenever w is a normalized eigenfunction for
Ao () since, by the theorem,

50 (V) =inf{0:Gon (0, u); Aga(Q) is attained at u}.

Using the expressions (3.1)-(3.4) evaluated at t = 0, we get
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546 0Gon(0,u) = /

Ae(u) :e(w)V;, de(z) + 2/ Ae(u):e(—VuV) dx
o) Q

v [ (o) Vidso)+2 [ ue (-Tav) i)

547
548 + 4 <H Acer(u) :er(u) + 2Acer(Oqu) rer(u)
a0
549 — Acer(u) :11q (VuD?b + D*b'Vu) Hd> Vi ds(z)
550 + 20 Acer(u): (ep(—VuV) +Ige(u)(n® ViV + ViV, ® n)
a0
551 + (Ve +Vrh® n)e(u)Hd) ds(z)
552 — Ao (92) (/ (H |u‘2 + On |u|2) Vi ds(z) + 2/ u - (—VUV) dC(.%')) .
aQ a0
553
5514 Now, given u an eigenfunction in (2.5) whose L? norm is 1, we use —VuV as a test
555 function in (2.5) since w € H?(Q) by usual a priori estimates (see [5, Theorem 1.1
556 and its proof] and we observe that
557
558 / Ae(u):e(—VuV) dz + a/ u - (—VuV) ds(z)
Q a0
559 +0 Acer(u) rer(—VuV) d¢(z) = AaQ(Q)/ u- (—VuV) dz,
aQ a0
560
561 and then arguing as in the previous subsection while using the boundary condition

562 in (2.5), we get
563

564 G0, u) = / Ae(u):e(u) V;, de(x) + a/ (H|u* 4+ 2u - 0gu) V; ds(z)

o9 a0
565 + B " (H Acer(u) rer(u) — Acer(u) : Iy (VuD?b + D?b'Vu) I;) V;, ds(z)
566 +28 - (Acer (Onu) s er(u) — 2Acer(u) : Vr (ge(u)n)) Vi do(z)
567 +4 /aQ (—aw — Ae(u)n) - Ige(u)n V, d¢(z)
568 — Ao (92) /BQ (Hju|? + 2u - dyu — 4u - Hge(u)n) V, ds(z),

569

ot
1
o

and by rearranging the terms we get the desired expression.

3.4. Shape derivative for eigenvalue problems for composite materials.
We recall that we use the following notation: A; = Aixa,, + Aaxa,, and p; =
PIXQ ., + P2XQs.,> With @y = Uy (Q), Q1 = V() and Qpp = Uy (Q).

3.4.1. Proof of Theorem 2.4. The considered perturbed problem on £2; reads

ot Ot at
J 93
W o =

ot
SERS|
[SLENEN

ot C
~
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1
Mo () = inf _ Ai(z)e(v):e(v)dx + a/ lv|* ds(z)
vEH(Q) / P |’U|2 de Q. 80,
Q

o

+4 Acer(v):er(v) dg(x)) } .

The above can be formulated as

(316) mg(ﬂt) = inf GQ(t,u),

ueH(Q)
with
1
—1412
[ olwowi ) ds
Qq

Gq(t,u) := ( ; Ag(z)e(uwo T ) e(uo Uy Y)de

+a/ |(uwo \11[1)’2d§(x) +8 Acer(uo W) rep(uo Uyt dc(x)).
o

o0

We proceed as in the proofs of the previous theorems.

EXISTENCE OF DIRECTIONAL SHAPE DERIVATIVES. The existence of the semi-
derivative Mg, (Q; V') follows from Theorem 1.1 once the hypothesis of the theorem
are verified.

The verification of the hypothesis (H1) is like in the previous subsections due to
the coercivity of the tensor A;.

The differentiability of G (-, u) with respect to ¢ for any u € H(Q) is seen once
we use a change of variables to rewrite Gq (¢, u) as

(3.17)  Go(t,u) = _ (/QCt(y) (Vu DT 2 (Va DUH)™™ () dy

/ ful2j(t)dy

Q

+a / lulw(t)ds(y) + B / ALy — vy @) (Vu DU )Y (I — vy @ vy)
o0 o0

(g —ve @) (Vu DY) (1 — vy @ w)w(t)ck(y)) :

while observing that

Ci(y) == Ai(We(y)) = Aixa,, (Wi(y)) + Aaxa,, (¥i(y)) = Aixa, (¥) + A2xa, (y)

is independent of t. The differentiability with respect to ¢, that is hypothesis (H2),
then follows due to the smooth dependence of the coefficients with respect to ¢, and
also the hypothesis (H4) follows.

The hypothesis (H3) is proved by showing, similarly as in the subsection 2.2,
that Gq(t,-) converges to Gq(0,-) as ¢ — 0 in the sense of I'-limit in the weak
topology on () and that the minimizers converge in the strong topology.
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COMPUTATION OF DIRECTIONAL SHAPE DERIVATIVES. Thus, we now only need
to get a suitable expression for 9;G(0,u) given any normalized eigenfunction u
for M (2) since, by the theorem,

MG (Q; V) = inf{9,Gq(0,u); M (Q) is attained at u}.

605 Using the calculated expressions in (3.5), (3.6), (3.3) and (3.4), we get
606

607 G (0,u) = /F[Ae(u):e(u)]Vn ds(z) + 2/Q Are(u) :e(=VuV) dz
608 +2 /92 Asge(u) :e(=VuV) dz + /ém Age(u) e(u)V;, de(x)
609 + a</8 <H lu|? + 0, |u|2) Vi de(z) + 2/@ u - (=VuV) dg(x))

Q Q
610 +8 <H Acer(u) :er(u) + 2Acer(0qu) er(u)

a0

611 — Acer(u) :11q (VuD?b + D*b'Vu) Hd> Vi, dg(x)
612 +28 ” Acer(u): (ep(—VuV) + Mge(u)(n®@ Vi (V) + Vr(Va) @ n)
613 + @ Vr(Va)+ Ve (Va) ® n)e(u)ﬂd) ds(x)
614 — M () (/F[p|u| Va ds(z) + 2/Ql pu - (=VuV) dz
:t; +2 /92 pau - (=VuV) dz + /an polul*Vy, dg(as)).

617 Notice that the eigenmode u does not belong to HQ(Q) due to the jumps on the
61s interface. Therefore the function —VuV does not belong anymore to H'(€) and
619 hence cannot be used as test function directly. However the restriction of w to each €2;,
620 for i = 1,2, belongs to H?(€;) thanks to regularity assumptions on both the outer
621 boundary and the interface. Then, multiplying (2.8) by —VuV € H'(Q;) in each Q;
622 and integrating by part on €2;, for ¢ = 1,2, we obtain that

623

624 Are(u):e(—VuV) dz —1—/ Ase(u):e(—=VuV) dz

Q1 Qo

625 + /8 Acun- (~VuV)] di(@) +a /

u-(=VuV)+8 [ Acer(u):er(—VuV)
o9 00

626 — Mo () </Q pr- (—VuV) dz + /

pou - (—VuV) dz> .
627 Qs

628 Then, noticing that Vru has a continuous trace on 9€; as aslo Ae(u)n we obtain
629

630 - / [Ae(u)n - (=VuV)] ds(z) = Ae(u)n - [(VuV)] ds(z)
o0 o

631 = / Ae(u)n - [Oyu] V4, ds(),
o0,
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632

633 Using the above, we get
634

635 G (0,u) = /[Ae(u) re(u)|Vy ds(z) — 2/ Ae(u)n - [Ohu] ds(z)

r o
636 + / Ase(u):e(w)V, dg(x) + a/ (H|ul? + 2u - 9yu) V;, ds(z)
0 o0
637 + 6 (H Acer(u):er(u) + 2Acer(Ohu) :er(u)
o0
638 — Acer(u) : 1y (VuD?b + D?b'Vu) Hd> Vi ds(z)
639 + 48 Acer(u): ((n QVrVa +VrVya ® n)e(u)Hd) dg(x)
o0
640 —Ma(Q) </ [plu|?|Vy ds(x) —|—/ po|ul*Vy, dg(x)).
641 r Elo)
642 An argument which shows that Acer(u) :n®VrV,e(u)lly = 0 (see (3.11)), then leads
off to
645 hGa(0,u) = / [Ae(u):e(w)Vy] — 2 Ae(u)n - [Oqu] de(x)
o0 o0
646 + Ase(u):e(u)V; de(x) + a/ (H |ul® + 2u - 9yu) Vi, ds(z)
a0 o9
647 +8 (H Acer(u):er(u) + 2Acer(Ohu) : er(u)
oQ
648 — Acer(u): 1y (Vu D?%b + DthVu) Hd> Vi ds(z)
649 +48 [ Acer(u): ((vrvn ® n)e(u)Hd> de(z)
e}
650 —Ma(Q) (/ o] [u|?Vi ds(x) +/ palul*Vy d<(:c)>.
651 o o0

652  Then, applying the tangential Stokes formula, similarly as in (3.12), we get
3

654 Gq(0,u) = / [Ae(u) :e(w)Vy] — 2 Ae(u)n - [Ohu] de(z)

891 891
655 [ Age(w):e(w)V, do() + a / (H [uf + 2u - Byw) Vi de(a)
o0 o
656 + 5 (H Acer(u):er(u) — Acer(u) : Iy (VuD*b + D*0'Vu) I1;) V;, ds(z)
o0
657 +23 (Acep(anu) rer(u) — 2A4er(u) VF(Hde(u)n))Vn> de(x)
(o9}
658 + 4/ (—aw — Ae(u)n) - Ize(u)nVyds(z)
o
659 — Mo (Q) (/ [p] |u*V;, ds(z) +/ palul*Vy dg(x))
660 o o0

661 and after rearranging the terms we get the announced expression.
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3.4.2. Proof of Theorem 2.5. We will now calculate the sensitivity of My (£2)
with respect to variations of the domain 2 and of the interface I'. The perturbed
problem then reads

Moo () =  inf 1( At(x)e(v):e('u)dx+a/ lv]? d¢(z)
Q FloR

’UGH(Qt) / |'U|2 dg(x)
00

+3 Acer(v) :er(v) dg(m)) } .
00

The above can be formulated as

1 ) = inf
(3 8) mag( t) uel’ir-lL(Q)GaQ(t’u)7

with

1

/ |(u o \Ilt_l)
O

+a/ ‘(uo\IJ[I)Ing(x)—I—B
00

Goa(t,u) =

Ai(z)e(uo \I’t_l) ce(uo \Ilt_l)dx
’2 de Q

Acer(uo Uy rer(uo ¥t de(z) |
o0

The verification of the hypotheses of Theorem 1.1 which guarantee the existence
of the semi-derivative I, (2; V') can be shown using arguments from the previous
subsections. We now get a suitable expression for 9;Ggq(0,u) given a normalized
eigenfunction w for My (). To begin with we have

hGoa(0,u) = /F[Ae(u):e(u)]vn ds(z)+2 | Ase(u):e(—VuV) dzx

Q1

+2 [ Ase(u):e(—VuV) dx + Age(u) :e(u)V; ds(x)
Q2 19)

ta ( /m (H lul? + 0, |u|2) Vi, de(z) + 2 /m u- (—~VuV) dg(ar))

+ 4 <H Acer(u) :er(u) +2Acer(Ohu) :er(u)
o0
— Acer(u) :1Iq (VuD?b + D?b'Vu) Hd> Vy, ds(w)
+253 " Acer(u): (er(—VuV) +Ize(u)(n® Vr(Va) + Vr(Va) @ n)
+ (0@ Vr(Va) + Vr(Va Hd) de(z
Mo (Q) (/BQ (H|u\2+an|u\ ) Va ds(a +2/8

Then, multiplying (2.9) by —VuV in each €, for i = 1,2, we observe that

Qu —VuV) ds(z ))
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A Are(u) e(=VuV) dz+ 5 Ase(u) :e(—=VuV) dx — ” Ae(u)n- [Ohu] de(x)
+a/69 u-(—VuV)—i—,B/m Aer(w) e (—VuV) = Moo (Q) /mu-(—VuV) de(z).

Using the above we get

0Gq(0,u) = /F[zﬁle(u):e(u)]vrl dg(x) — 2 o Ae(u)n - [Ohu] ds(z)

+ Ase(u) re(u)Vy ds(z) + a/ (H|ul® + 2u - 9yu) Vi, ds(z)
o0 o)

+4 <H Acer(u) :er(u) +2Acer(0qu) er(u)
9]

— Acer(u):11; (VuD?*b + D?b'Vu) Hd> Vi des(x)

+48 [ Acer(u): ((n ® Vr(Va) + Vi(Va) ® n)e(u)Hd) de(x)
o0

—Ma () /aQ (H|ul* 4+ 2u - 0hu) V, ds(2).

Then, continuing as in the proof of Theorem 2.4, we obtain

G (0,u) = /aQ [Ae(u) :e(uw)V,] — 2 - Ae(u)n - [Oyu] ds(z)

+ Age(u) :e(u)V; ds(x) + a/ (H |ul® + 2u - 9yu) Vi, ds(z)
19) o9

+8 [ (HAcer(u):er(u) — Acer(u): Iy (VuD?b+ D?b'Vu) I1,) V; ds(z)
o0

+25 (Acep((f?nu) rer(u) —2Acer(u): Vp(Hde(u)n)> Vn) ds(z)
o0

+4 /BQ(—au — Ae(u)n) - Ize(u)nV;,ds(z)
- Ma(2) /89 (Hul* 4+ 2u - (8hu — 2 ze(u)n)) V, ds(z).

Appendix A. Auxiliary results on shape derivatives.
The purpose of this subsection is to recall some auxiliary results or notions used
in the calculations of the shape sensitivities.

A.1. Classical derivative formulae with respect to the domain.

LEMMA A.1 (See, e.g., [19]). Let § > 0. Let a vector field V€ WH(R?) and
let
U :te0,0)— U, =14tV e Wh(RY).

Let a bounded Lipschitz open set Q in R and let Q; = W(Q) for all t € [0,6).
We consider a function f such that t € [0,0) — f(t) € LY(RY) is differentiable at 0
with f(0) € WHY(RY). Then the function

te€0,0)— F(t) = ; f(t,z) dz
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is differentiable at 0 (we say that F admits a semi-derivative) and we have
F'(0) = (0, 2)V, ds(z) —|—/ 1(0,2) dx,
oQ Q

where V, =V - n.

LEMMA A.2 (See, e.g., [19]). Let § > 0. Let a vector field V€ C*°(R?) and
let
U :te0,0) » U, =1+tV e CH(RY).

Let a bounded open set Q in R? of classe C* and let Q; := V,(Q) for allt € [0,5). We
consider a function g such that t € [0,6) — g(t) o ¥, € Wh1(Q) is differentiable at 0
with g(0) € W*Y(Q). Then the function

t€0,0) — G(t) = /0(2 g(t,x) dz

is differentiable at 0 (we say that G admits a semi-derivative), the functiont € [0,6) —
g(t)|, € Wh(w) is differentiable at 0 for all open set w C @ C Q and the deriva-
tive g'(0) belongs to WH(Q) and we have

G'(0) = /@ 0.0 + (H9(0.2) + 0,9) Vo) (o).

where V, = V - n and where H is the mean curvature function on 0S2.

A.2. Decomposition formulse.

LEMMA A.3. Given a bounded open set Q in R? of class C? and u € H*(R?) we
have

O (Acer(u) er(u)) = 2Acer(Oyu) rer(u) — Acer(u) : g (VuD?b + Db V) I,

where b is the signed distance to the boundary 0S2.

Proof. Let us first notice that 9,114 = 0 and that II;D?*b = D?bII; = D?b, and we
underline the fact that Vru = Vu Il since

tvFul tVull_[d
Vru = = = Vull,.
thud tVude

Then we have
Oh(Vru) = 0,(Vully) = 0y (Vu) Iy and On(Vu) = D*un.
Thus V(0,u) = V(Vun) = D?un + Vu Vn = d,(Vu) + Vu D?b. Hence we obtain
Vr(0au) = V(0,u)ly = 0y (Vu)ly + VuD?b 11y = 9,(Vru) + Vu D?b.
We also obtain, noticing that D?b is symmetric,

th(ﬁnu) = 8n(thu) + Dztiu.
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724 We deduce from the previous computation that

725 B (er(w)) = 0 (Ia (Vru+ 'Vru) L) = 20, (MaVru + Vrully)
726 = & (10, (Vrw) + 8 (*Vru) TLy)

727 = % (I (Vr(0aw) — VuD?b) + (Vi (dyu) — D*b'Vu) I1y)
728 = er(Onu) — % (IIgVuD?b + D?b'Vully)

729 = er(Oau) — %Hd (VuD?b + D?b'Vu) .

30  Therefore, we obtain that
1

732 On (Acer(u)ter(u)) = 240, (er(u)) :er(u)

1
733 =24, (ep(anu) — §Hd (Vu D?%b + DthVu) Hd> cer(u),
734
735 which concludes the proof. ]
736 LEMMA A.4. Given a bounded open set Q in R? of class C?, V € C'(R%;R?)
737 and w € H*(RY), we have
738
739 O (er,(uo ;M) l,_o = er(=VuV)
749 + Hde(u)(n QRVrVy+ VrVa ® 1’1) + (Il QRVrVy+VrVa ® n)e(u)Hd,
742 where V, =V -n.

3 Proof. We first recall that, since dinyj,—g = —Vr V4, we have 0:lly|;—g = n ®
14 VrVy + ViV, @ n. Hence we obtain the result noticing that er(u) = Hge(uw)lly. O

745 Remark A.5. As compared to the scalar case dealt with in our previous paper,
746 since er(u) is obtained by mutliplying e(u) on both sides by II;, when we derive
747 er,(uo W, ) with respect to ¢ we obtain an extra term.

748 A.3. T'- convergence. For the convenience of the reader, we recall the definition
749 and the main property of the I'- convergence. For further details we refer to Dal
750 Maso [11].

751 DEFINITION A.6. (Sequential T'-convergence) A family of functionals {F;}iso de-
752 fined on a topological space X is said to be sequentially I'-convergent to a functional F
753 as t — 0T if the two following statements hold.

754 (i) T — liminf inequality. For every sequence {x;} converging to x € X, we have:

-~

ot
ot

(A1) liminf Fy(x;) > F(x).
t—0+

756 (1) T —limsup inequality. For every x € X, there exists a sequence {x;} converging
757 to x© such that

758 (A.2) limsup Fi(x:) < F(x).

t—0t

759  When properties (i) and (ii) are satisfied, we write F =T — lim+ F;.
t—0
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ProPOSITION A.7. Let Fy : X — R be a sequence of functionals on a topological

space such that:

(i) F=T— lim F},

t—0+

(ii) sup, Fi(x:) < +00 = {mz} is sequentially relatively compact in X.
Then we have the convergence: inf Fy — inf F' as t — 0% and, every cluster point of a
minimizing sequence {x;} (i.e. such that Fy(xy) = in§( Fi(x)) achieves the minimum

xTE

of F.
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