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Multi-residues analysis of pre-emergence herbicides in fluvial sediments:

application to the mid-Garonne River

Damien A. Devault, Georges Merlina, Puy Lim,* Jean-Luc Probst and Eric Pinelli

Contamination of man and ecosystems by pesticides has become a major environmental concern.

Whereas many studies exist on contamination from agriculture, the effects of urban sources are

usually omitted. Fluvial sediment is a complex matrix of pollutants but little is known of its

recent herbicide content. This study proposes a method for a fast and reliable analysis of

herbicides by employing the accelerated solvent extractor (ASE). The aim of the study is to show

the impact of a major town (Toulouse) on the herbicide content in the river. In this study, three

herbicide families (i.e. s-triazine, substituted ureas and anilides) were analysed in fluvial sediment

fractions at 11 sampling sites along the mid-Garonne River and its tributaries. River water

contamination by herbicides is minor, except for at three sites located in urban areas. Among the

herbicidal families studied, urban and suburban areas are distinguished from rural areas and were

found to be the most contaminated sites during the study period, a winter low-water event. The

herbicide content of the coarse sediment fractions is about one third of that found in the fine

fractions and usually ignored. The distribution of pesticide concentrations across the whole range

of particle sizes was investigated to clarify the role of plant remains on the significant

accumulation in the coarse fractions.

Introduction

Contamination of man and ecosystems by pesticides has

become a major environmental concern. The impact of these

products on human health and ecosystem integrity is well

known.1 Ecosystem contamination by agricultural practices

and eradication procedures has been the subject of many

studies, and more recently some have started to outline the

impact of urban activities: Kimbrough and Litke2 in Colorado

(USA), CORPEN3 in France, Gerecke et al.4 in Switzerland,

and Blanchoud et al.5 in the surroundings of Paris (France).

Braman et al.6 showed that herbicides account for 85% of the

pesticides applied in urban environments. In France, 10% of

the pesticides consumed are used for non-agricultural uses,

especially domestic (8%) and collective (2%) uses.7 With two

percent of the surface area of the Midi-Pyrenees region being

urbanised, we can estimate that the urban ground receives

about as much pesticide per unit of area as agricultural land.

ANTEA8 estimated that 26 g of pesticide were used per year

per inhabitant in the Garonne basin. Among non-agrarian

consumers, the greatest users of herbicides are as follows,

greatest first: private individuals, municipal services (who use

half as much as private individuals) and professional garden-

ers (who use half as much as municipal services) as reported by

OPECST7 and Blanchoud et al.9 Unlike private individuals

and a fortiori farmers, professionals use herbicides on im-

permeable surfaces (asphalt, concrete, gravel, sand) where

streaming dominates (40 to 100% runoff).5,10 Most of the

herbicides used belong to s-triazine, substituted urea and

anilide families. One of their advantages is that some of them

can be used for winter treatment in agricultural or urban

practices. However, some molecules such as atrazine have

been forbidden since 2003 in France, or are under limitations

as substituted ureas, i.e. linuron and isoproturon in the

European Community (EC).

The fluvial sediment is well known to be an integrative

matrix for pollutants.11,12 Since there is little variation in the

agricultural practice, an accumulation of these pesticides is

conceivable in river bed sediment by direct agricultural and

urban dissolved effluents as well as by deposition of suspended

particulate matter (SPM)13–15 contaminated by agricultural

and urban use. However, accumulation of these molecules is

seldom studied in sediment and biota because no reliable and

easily implemented method exists.

Excluding specific sanitary reports, the pesticide concentra-

tion of the Garonne River has been the subject of only three

studies restricted to the confluence of the Garonne and its

tributaries, the Lot River16 and the Dropt River17 or to

specific pesticides, i.e. organotin.18 The upstream area of the

Malause reservoir has never been covered. The aim of this

study is to determine the herbicide levels in the water and

sediment of the Garonne River for the first time and to assess

the respective contributions of agricultural and urban areas to

different herbicide concentrations in the sediments. For this

purpose, a broad spectrum multi-residue analysis method

based on ASE extraction coupled with mini column solid

purification has been developed.
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1. Characteristics of the Garonne River basin

The Garonne River has an uncommonly ‘‘wild’’ character for

a river in a developed country. Its hydrological regime is still

natural, with an unstable river bed, easily creating oxbows

and side-arms. This river is the least fitted, large French

river.19 Most of the smaller towns lie outside of its flood plain

i.e. uphill or on the tributaries, especially between Toulouse

and the Malause reservoir where the Garonne River over-

flows. The mean annual river discharge in Toulouse and

Tonneins (last measurement site before the tidal part) is 191

m3 s�1 and 613 m3 s�1, respectively. The lowest daily tem-

perature is 5.4 1C (January) and the average yearly tempera-

ture is 13.3 1C.20 The studied area concerns the middle part of

the river marked off by two dams with Mancies upstream and

Malause downstream, making a 120 km long section centred

on Toulouse, allowing the impact of the city area to be

distinguished.

The country through which the mid-Garonne River runs is a

coherent morpho-pedological, physiographical and agricultur-

al area. Mid-Garonne is characterised by a low altitude range

(100–500 m) with a smooth relief made of Quaternary flat and

alluvial terraces and steep Tertiary clay-rock slopes.21 Exclud-

ing the industrial effluent from the suburbs of Toulouse, the

expected herbicide concentration of the Garonne water and

sediment in this area could be attributed to the agricultural

activities and particularly to the use of pre-emergence herbi-

cides applied to crops: s-triazines, substituted ureas and

anilides. The mid-Garonne area is favourable to farming of

cereals (wheat, corn) and oilseed (sunflower), which are the

main crops. Their respective agricultural surface areas are

similar, at around 200 000 hectares each (data from the French

services of statistics for agriculture and forestry).22,23 In this

basin, rapeseed is distributed over a total area of 20 000

hectares. A similar area for orchards is concentrated around

the confluence of the Garonne and the Tarn Rivers, near the

Malause dam (Fig. 1). Horticulture and market gardening is

located north of Toulouse (14 000 hectares). Thus, different

samples of river water and sediments were taken along the

mid-course of this river and at the mouth of the main

tributaries. The sampling sites were chosen for the nature of

their agricultural or urban catchments, since these products

can originate from both sources.5,9

2. Material

The bottom riverside sediments were collected on the same day

at 5 sites on the Garonne River (2 urban/suburban, 3 agricul-

tural) and 4 sites on the tributaries (2 suburban, 2 agricultural)

(Table 1). Surface water samples were also collected at the

same time. Sediments were sampled (3 pooled replicates for

river sites, 6 pooled samples for reservoir M1 and 12 pooled

samples for reservoir M2) with a 0.045 m2 Eckmann bucket

and water surface samples with stainless steel and glass

equipment.

2.1 Sampling area

Sampling of sediment and the corresponding surface water

was performed in the bed of the Garonne River (Fig. 1). The

physicochemical evaluation, pedological evolution and human

activity effects of this part of the Garonne basin have been

described in other papers.24–27 The sampling sites are refer-

enced by the codes in Table 1, corresponding to the sites

shown on the map (Fig. 1).

2.2 Sampling period

All sediment and water samples were collected the same day

(16th March 2005), 54 days after the last rainfall. Sediment

samples were collected in coves during the winter low-water

event corresponding to the beginning of treatments and to

maximum sedimentation under cold water conditions. Pre-

emergence herbicides indicate recent pollution, urban as well

as agricultural, during a typical period of spreading. This was

the most marked low-water level event and the sediment to be

collected was never out of water. The Garonne has a flow

mode characterized by severe low-water levels19. The end of

the winter season was selected for sampling, taking into

consideration agricultural uses according to investigations of

the regional service for plant protection (SRPV). This period

corresponds to the beginning of spring, especially in 2005,

when spring was particularly early and dry. The last relevant

rain event induced a 568.91 m3 s�1 flow (21/01/2005).

Fig. 1 Location of the eleven sampling sites. M1: Mancies reservoir,

M2: Malause reservoir, G1: Portet-sur-Garonne, G2: Empalot, G3:

Grenade, G4: Bourret, G5: Lamagistère, A1: Aussonnelle River, A2:

Hers River, A3: Save River, A4: Tarn River.

Table 1 List of sampling sites, corresponding river, type of flow and
human environment, upstream to downstream

Code Sample site River Type Environment

M1 Mancies Garonne Reservoir Rural
G1 Portet-sur-Garonne Garonne Main river Rural
G2 Empalot Garonne Main river Urban
A1 Seilh Aussonnelle Tributary Suburban
A2 St Jory Hers Tributary Suburban
G3 Grenade Garonne Main river Suburban
A3 Grenade Save Tributary Rural
G4 Bourret Garonne Main river Rural
A4 Ste Livrade Tarn Tributary Rural
M2 Malause Garonne Reservoir Rural
G5 Lamagistère Garonne Main river Rural



2.3 Sample treatment

The different sediment fractions were dried at room tempera-

ture and separated according to the Commission of Oslo and

Paris (OSPAR) methods.28–32 The sediment components were

separated using an agate mortar and sifted with 2 mm and

63 mm mesh sieves (stainless steel sieves from Retsch GmbH

and Co. KG, Haan, Germany) to distinguish silts and clays

from sands and plant remains.

For water samples, dichloromethane (1 : 40; v/v) was added to

the unfiltered water sample at the sampling site and stored in the

dark until extraction the next day. Unfiltered water was analyzed

according to normative directives and to a better appreciation of

the exposure of the different biota to the contamination.

3. Method of analysis: multi-residue approach

3.1 Sample analysis

3.1.1 Chemicals and equipment. All solvents were of ana-

lytical grade for pesticide analysis (‘‘Pestipur’’ by SDS Solvant

Documents Synthèse, Peypin, France). Analytical grade anhy-

drous sodium sulfate was also from SDS. Pesticide standards

(Mix 44) from Dr Ehrenstorfer GmbH (Augsburg, Germany)

were purchased from C.I.L., Sainte-Foy-la-Grande, France.

Reference soil (Eurosoil7) was from Sigma–Aldrich (St Louis,

Missouri, USA). Florisil cartridges used for purification were

from Waters Corporation (Milford, Massachusetts, USA).

Extraction was performed with a Dionex accelerated solvent

extractor (ASE 200) (Dionex, Salt Lake City, Utah, USA).

Diatomaceous earth (Hydromatrixs) was from Varian, Palo

Alto, California, USA.

3.1.2 Sample extraction and purification

Sediment samples. From the initially described method for

organo-chlorine insecticides in soils and whole sediments,33re-

covered by Concha-Graña et al.34 on the Ehrenstorfer mix 20,

recommended by Dionex35 and approved by the U.S. Envir-

onmental Protection Agency, the method was adapted to the

extraction of those pre-emergence herbicides. Sediment sam-

ples collected were analysed on arrival at the laboratory. For

each sediment fraction, 10 g was extracted on an ASE 200.

Briefly, three cycles of five minutes (static phase) were carried

out for extraction. The extraction solvent was a mix of hexane

and acetone (1 : 1, v/v) under two distinct temperatures, the

first being at 50 1C and the second at 100 1C, according to

pesticide sensitivity to high temperatures. The cell was flushed

to 60% of its volume over a period of 60 s. Sediment extracts

were not directly analysed because of their high chlorophyll

content. Chlorophyll was removed on a Florisil cartridge

according to a method derived from Müller et al.36 Each

extract was evaporated until dry and the residue dissolved in

2.5 mL of hexane. Compounds of interest were eluted in three

separate fractions using 20 mL of n-hexane : diethylether

(94 : 6, v/v), followed by 10 mL of n-hexane : acetone (9 : 1,

v/v) and finally by 20 mL hexane : acetone (1 : 1, v/v). The

elution speed was 0.5 mL min�1. On the basis of spiking the

reference material (Eurosoil 7) used as a surrogate standard at

a concentration of 0.15 mg g�1, the recovery yield was estab-

lished for each compound and the efficiency was checked and

confirmed by applying the same protocol to an organo-

chlorine mix (mix 20, Dr Ehrenstorfer GmbH).

Water samples. Unfiltered water samples were liquid–liquid

extracted using the shake-flask method with dichloromethane

as a solvent for phase exchange. The total solvent : water ratio

was 1 : 6, v/v. After extraction, dichloromethane was dried on

anhydrous sodium sulfate (50 g) and evaporated under va-

cuum. The dried residue was dissolved in 2 mL of hexane.

3.1.3 Chromatographic conditions. The extracts were ana-

lysed using an HP 5890 Series II gas chromatograph coupled

to an MSD HP 5971 mass detector. Chromatographic condi-

tions in the splitless mode (injector temperature: 280 1C) were

set up at an initial temperature of 45 1C. The first step had a

temperature increase rate of 35 1C min�1 up to 180 1C, then a

second step at 8 1C min�1 up to 280 1C and, finally, a 10 min

plateau at 280 1C. The detection conditions were: temperature,

300 1C; E.M.V., 2600 V; the followed ions in SIM mode are

presented in Table 2. In these conditions, diuron could not be

detected since a cold on-column injection was not used.

3.1.4 Evaluation of the detection limit and the repeatability

of the method. The detection limit established was 0.001 mg g�1

(Table 2) except for metobromuron, methabenthiazuron and

metazachlor which showed higher detection values (0.01–

0.005 mg g�1) due to the cross contamination of some samples

by phthalates, particularly of water samples. The relative

standard deviations for four derivatives were compared to

Table 2 Studied herbicides and metabolites by family and their recovery percentage from a standard reference soil material (Eurosoil7) and the
specific ions used in GC-MS. Detection limit was established for the HP5890 equipped with 5971MSD equipment

Herbicides (Mix 44) Recovery (%) Specific ions Detection limit/mg g�1

s-Triazines Desethylatrazine (DEA) 82.4% 146 0.005–0.001
Hexazinone 102.0% 209-175-135 0.005
Simazine 91.3% 172-187-145 0.001
Atrazine 101.3% 164 0.005–0.001
Terbuthylazine 101.2% 172-201 0.001–0.0001
Sebuthylazine 96.7% 61 0.001
Cyanazine 102.2% 162 0.005–0.001

Substituted ureas Metobromuron 99.1% 172-214 0.01–0.005
Isoproturon 95.9% 68-173-201 0.001
Linuron 104.6% 61 0.001
Methabenzthiazuron 97.7% 187 0.01–0.005

Anilides Metazachlor 88.2% 132-160-209 0.01–0.005
Metolachlor 102.2% 61 0.001



that of three injections of the standards mix and varied with an

acceptable repeatability o14% as shown in Table 3.

3.1.5 Recovery on a reference material. For the studied

herbicides, the recovery percentage after sample preparation,

extraction and purification obtained for each pesticide varied

from 82.4% to 104.6% (Table 2), leading to a mean recovery

of 95.4 � 6.5%. The efficiency of this method is confirmed by

the test on organo-chlorine derivatives which gave a mean

recovery yield of 98.5% in accordance to methods used in

other studies.34

3.2 Assessment of the used method

As the extraction method was applied to organo-chlorine

pesticides with results in agreement to the previous studies of

Richter et al.33 and Concha-Graña et al.,34 this method covers

a broad spectrum of pesticides having varied physicochemical

properties with fairly good recoveries. The extracted com-

pounds can vary from quasi-insoluble residues to more soluble

ones (from endosulfan: 0.32 mg L�1 to hexazinone: 33 000 mg

L�1), for lipophily or vapour pressure the same ranges are

involved: DDT Kow: 6.19 to hexazinone’s one: 1.05, 0.2 mPa
for cyanazine to 53 000 mPa for heptachlor. This can be

attributed to the extraction solvent mixture; hexane collecting

the most lipophilic residues like OCPs while a less hydro

phobic solvent like acetone collects the least lipophilic residues

like substituted ureas. Although being air-dried, the matrix

contains a small quantity of bound water measured by a

concomitant 105 1C drying (3% of dry weight). This low level

of water does not represent a handicap in the process since

drying on sodium sulfate could be eliminated but prohibits the

use of a sole hydrophobic solvent such as hexane.

The duration of the sample treatment can be adapted to the

study’s objectives. If an overview of the contamination is

needed, the first two steps i.e. drying at room temperature

and a 2 mm sifting are convenient, but if an approach of the

fate of pesticides in sediments is aimed at, the next step of a

63 mm sifting must be taken in account, even though it is time

consuming. Since wet sifting is prohibited due to the solubility

of the studied compounds, the air drying step (2–3 days) is

sufficiently short to avoid the consideration of the decomposi-

tion of those weak half-life molecules explained by the possi-

bility of an adsorption–protection process. When lipophilic

molecules such as OCPs and PCBs are involved, the study of

the fine fraction of the sediment is sufficient11 for a global

evaluation of sediment contamination, but in the case of those

herbicidal compounds, further study is needed to evaluate the

contribution of the coarse fraction in the total contamination

of the sediment.

4. Application to the mid-Garonne River

4.1 Results

4.1.1 Herbicide content

4.1.1.1 Sediment. Herbicide concentrations of sediment are

shown in Table 4. The sediment from the reservoirs presented

the highest herbicide contamination with the most varied types

of herbicide molecules and the highest concentrations. Except

in dams, the fine fraction was more contaminated than the

coarse fraction. Five molecules made a significant contribution

to herbicide contamination: simazine (especially in the

Garonne and tributaries), cyanazine, isoproturon (especially

in reservoirs), linuron and metolachlor.

The concentrations of the herbicides in whole, unsieved

sediment for the 3 main families are presented in Fig. 2.

Malause (M2), Empalot (G2) and Mancies (M1) were the three

most contaminated sites, whereas Portet (G1), Bourret (G4),

and Save River (A3) sediments exhibited the lowest contents.

Except in dams, on examination of the herbicide distribu-

tion in the 2 subfractions (Table 4), the fine fraction was more

contaminated than the coarse one. Five molecules made a

significant contribution to herbicide contamination i.e.

simazine (especially in the Garonne and tributaries), cyana-

zine, isoproturon (especially in the M2 reservoir), linuron and

metolachlor. Total concentration range (between 2.63 mg g�1

for M1 and 2.41 mg g�1 for M2) and the highest number of

detected molecules (11) were observed in the reservoir. Fine

fractions of tributary sediment had a concentration range

between 2.42 mg g�1 and 2.02 mg g�1, except for in the Save

River (A3). Sediment sampled in the main channel showed

lower concentrations, even under the detection limit. The most

contaminated site was G2 with 3.15 mg g�1, followed by M2

and M1. Except in the reservoir sediments, only five herbicides

and the metabolite desethylatrazine (DEA) were significantly

detected in this Garonne area: isoproturon and metolachlor

reached their maximum level at G2; the cyanazine level at this

point was only exceeded by that at M2. Simazine and linuron

were also at a maximum among Garonne samples at G2. At

G1, the upstream sample site on the Garonne River, herbicides

were under the detection limit. Maximum DEA levels were

observed on the Garonne downstream from Toulouse (G3).

For all sites s-triazines were the most abundant derivatives

(54%), then substituted ureas (29%) and finally anilides

(17%). On the basis of frequency of occurrence (number of

detectable concentrations of a molecule over the total number

of analyses), anilides dominated (41%) followed by substi-

tuted ureas (39%) and triazines (36%).

For the coarse fraction (Table 4), sediment collected behind

dams showed the maximum concentration ranges (1.9 mg g�1

for M1 and 5.18 mg g�1 for M2) and the largest number of

detected molecules (12). Coarse fractions of tributary sedi-

ments held ranges between 0.75 mg g�1 (A1) and 0.28 mg g�1

(A3). Coarse sediments sampled in the Garonne River bed

showed the lowest ranges (0.01 mg g�1 for G1 to 0.72 mg g�1

for G2). The most contaminated sites were reservoirs: Malause

(M2) with 5.18 mg g�1 followed by Mancies (M1) (1.90 mg g�1)
and the urban weir G2 (3.15 mg g�1), which induced high

sedimentation levels in this area. The least contaminated

Table 3 Relative standard deviation observed on cyanazine, simazine
and metolachlor herbicides and DEA metabolite from triplicates of
sediment samples for two sites and triple injection of Mix44 standard

Cyanazine DEA Simazine Metolachlor

Site A 4.51% 7.88% 12.20% 11.86%
Site B 4.90% 7.30% 13.11% 12.51%
Standard 5.11% 9.01% 13.76% 13.50%



tributary was the Save River (A3) with 0.28 mg g�1 and the two

sampling sites (G1, G4) on the Garonne River showed a lower

level of herbicides compared with the other sites. Excepting

dams, six herbicides and DEA were significantly detected.

DEA, methabenzthiazuron and metazachlor were only located

in tributaries and dams. On the basis of abundance in the

coarse fraction, substituted ureas dominated (54%) followed

by s-triazines (39%) and anilides (7%), showing a different

profile to that obtained with the fine fractions. On the basis of

frequency, anilides dominated (50%), followed by substituted

ureas (36%) and s-triazines (35%), just like the fine fraction.

4.1.1.2 Water. Unfiltered water samples from the 11 sites

were analysed (Table 5, Fig. 3). Only four stations exhibited a

herbicide concentration higher than the detection limit (0.01

mg L�1). Average surface water herbicide concentrations for

the 4 sampling sites concerned was close to 1.17 mg L�1. For

the three urban sites, simazine, atrazine and terbuthylazine for

the s-triazine family and methabenzthiazuron and isoproturon

for substituted ureas, were present at detectable

Table 4 Herbicide concentration of fine (FF) and coarse (CF) fractions in the riverside sediment (mg g�1) of the different stations (cf. Table 1)a

Stations

M1 G1 G2 A1 A2 G3 A3 G4 A4 M2 G5

Herbicides FF CF FF CF FF CF FF CF FF CF FF CF FF CF FF CF FF CF FF CF FF CF

DEA 0.45 0.01 — — 0.12 — 0.23 — 0.12 0.02 0.62 — 0.05 0.02 — — 0.27 0.03 0.29 0.1 — —

Simazine 0.17 0.22 — — 0.66 0.05 0.93 — 0.93 0.03 0.53 — 0.01 — — — 0.77 — 0.19 T — 0.08

Atrazine 0.38 0.07 — — — — — — — — — — — — 0.06 — 0.01 0.08 — — —

Terbuthylazine 0.13 — — — — — — — 0.16 — — — — — — — — 0.16 0.1 — —

Sebuthylazine — 0.03 — — — — — — — — 0.64 — — — — — — 0.16 0.05 0.75 — —

Cyanazine 0.35 0.72 — — 0.54 0.6 0.13 — — 0.26 — 0.02 — — — — — 0.03 0.72 0.7 — 0.34

Hexazinone — — — — — — — — — — — — — — — — — — — — —

Sub-total s-triazines (1) 1.48 1.06 — — 1.32 0.65 1.28 — 1.20 0.31 1.79 0.02 0.06 0.02 — 0.06 1.05 0.24 1.48 1.66 — 0,42

Methabenzthiazuron — 0.01 — — — — — — 0.16 0.04 — — — — — — — 0.05 0.03 T — —

Metobromuron 0.43 0.05 — — — — — — — — 0.13 — — — — — — — 0.49 0.1 — —

Isoproturon — 0.01 — — 0.80 — 0.46 0.35 — — — 0.42 — 0.13 — — 0.29 — 0.06 2.3 — —

Linuron 0.48 0.64 — — 0.35 — — 0.4 0.48 0.3 0.25 0,25 0.09 — — — 0.16 — 0.49 1.06 — —

Sub-total sub. ureas (2) 0.91 0.7 — — 1.14 — 0.46 0.75 0.63 0.35 0.37 0.67 0.09 0,13 — — 0.45 0,05 1.06 3.46 — —

Metolachlor 0.07 0.11 — — 0.68 0.08 0.40 — 0.18 — 0.26 — — 0.13 — — — 0.04 0.21 0.02 — —

Metazachlor 0.17 0.4 — 0.01 — — — — — — — — — — — — 0.91 0.04 0.19 0.05 — 0.26

Sub-total anilides (3) 0.24 0.14 — 0.01 0.68 0.08 0.40 — 0,18 — 0.26 — — 0,13 — — 0.91 0.08 0.40 0.07 — 0.26

Total (1) + (2) + (3) 2.63 1.9 — 0.01 3.15 0.72 2.14 0.75 2.02 0.65 2.43 0.69 0.15 0.28 — 0.06 2.41 0.37 2.95 5.18 — 0.68

a —, under the detection limit; T, traces of herbicide (lower than 0.01 mg g�1).

Fig. 2 Herbicide concentrations observed in the bottom sediment,

grouped by family, during the sampling period of March 2005.

Table 5 Herbicide concentration in the unfiltered water (expressed in
mg L�1). For M1, G1, A3, G4, A4, M2 and G5 stations, all the
concentrations were under the detection limitsa

Stations

Herbicides G2 A1 A2 G3

DEA — — — —
Simazine — 0.03 0.05 0.01
Atrazine — 0.12 0.09 0.05
Terbuthylazine — 0.04 0.05 0.01
Sebuthylazine — — — —
Cyanazine — — 0.04 0.01
Hexazinone — — — —
Sub-total s-triazines (1) — 0.19 0.22 0.08
Methabenzthiazuron T 1.18 1.95 0.35
Metobromuron — — — —
Isoproturon 0.06 0.18 — 0.15
Linuron — 0,17 —
Sub-total sub. ureas (2) 0.06 1.36 2.12 0.51
Metolachlor — — — —
Metazachlor — — 0.05 0.07
Sub-total anilides (3) — — 0.05 0.07
Total (1) + (2) + (3) 0.06 1.54 2.39 0.65

a —, under the detection limit; T, traces of herbicide (lower than

0.01 mg g�1).



concentrations and the incriminated sites showed the same

profile, except A1 for cyanazine and metazachlor and A2 for

isoproturon. Cyanazine and metazachlor are present to a

lesser extent.

Three surface water samples (A1, A2, G3) had a total

herbicide concentration higher than the French recommenda-

tion for drinking water, which follows European directives

(EEC, 1980) (0.5 mg L�1): maximum concentration of 0.1 mg
L�1 for each molecule and 0.5 mg L�1 for all the cumulated

pesticide concentrations. Among water samples, some of them

had a total herbicide concentration higher than the allowed

threshold set by the World Health Organization given for each

molecule.

4.1.2 Statistical analysis of herbicide distribution into the

different fractions. Statistical analysis of data was run with the

SPSS 12.0 software (Microsoft Corporation, Mountain View,

California, USA). Principal component analysis (PCA) was

performed to reveal the various sources of herbicide contam-

ination. This analysis allows investigating the implications of

different parameters, either bound to the sampling site or

bound to the studied molecule parameters in the repartition

of those molecules along the Garonne River (Fig. 4). The

principal component analysis was performed considering the

concentration of each herbicide by family and by fraction at

all the sampling sites, to illustrate the relationship between

sites and the sources of pollution. Some sites, presenting a very

low concentration (traces) of herbicides, were excluded (Portet

G1, Bourret G4 and Save River A3). The first axis (45.6%)

represents the granulometric distribution, i.e. the relative

proportion of each fraction without consideration for the

participating herbicides. The second axis (29.5%) segregated

the herbicides on the basis of their physiological targets i.e.

photosystem II for s-triazines and substituted ureas and the

growth regulation enzymes for anilides. G3 (Garonne down-

stream from Toulouse), A2 and A1 sites are well correlated

and probably impacted by Toulouse suburbs. Conversely, M1

and M2 represented dams which are not correlated with this

Toulouse site group. The two weir sampling sites, G2 (site

across Toulouse city) and Tarn River (A4), are linked by these

hydrological similarities, inducing sedimentation similarities.

The G5 sampling site (Lamagistère) is located downstream

from the Malause reservoir and showed detectable concentra-

tions only in the coarse fraction.

4.2 Discussion

4.2.1 Herbicide concentration in water and sediment. Con-

sidering previous and preliminary reports,16–18 contamination

of the Garonne water and tributaries observed in this work

presented average values lower than those described in the

literature.4,5,13 According to those references about herbicide

contamination and numerous others, such as Konstantinou

et al., 37 which reviewed 20 European rivers, atrazine,

terbuthylazine, simazine and metolachlor contamination of

water in the Garonne River is comparable to the Loire, Segre,

Thames or Guadiana Rivers (0.001 and 0.437 mg L�1).37 In the

Garonne River, Dupas et al. observed higher concentrations

of pesticides in 1989 than those observed in this study, except

for 4 stations (G2, G3, A1 and A2), which exhibited the same

level of pesticide (0.1 to 1 mg L�1), particularly for DEA,

atrazine, simazine, and isoproturon.

Regarding the sediments, studies of herbicide contamina-

tion are scarce and were conducted on small basins.30,36

Müller et al.30 observed the concentration of 22 organochlori-

nated, organophosphorus substituted ureas and s-triazines in

Fig. 3 Herbicide concentrations observed in unfiltered water, by

family and by sampling site.

Fig. 4 PCA of herbicide concentration in the different fractions. M1:

Mancies reservoir, M2: Malause reservoir, G2: Empalot, G3: Gre-

nade, G5. Lamagistère, A1: Aussonnelle River, A2: Hers River, A4:

Tarn River.



11 Australian agricultural drains (sugarcane, horticulture and

cotton cultures). In these studies, the herbicide contaminations

(substituted ureas and s-triazines) present ranged in values

from 0.001 to 0.08 mg g�1. Gao et al.36 investigated s-triazines

and aminotriazoles contamination of a pond located in

southern Germany. They found a maximum herbicide content

of 0.012 mg g�1. The lowest contaminated sites presented in

our study are in agreement with the lowest contaminated sites

observed in the study mentioned above (0.01 mg g�1).

However, maximum values observed in G2, G3, A1, A2 and

A4 were 10 to 100 times as high as maximum values observed

elsewhere for sediment in smaller basins. In the Garonne

basin, in regard to s-triazine concentrations, these results

suggested a continued presence of s-triazines, even if these

molecules were not allowed in use since 2003. In this way,

sediments could constitute a possible source of storage of these

molecules.

In addition, the analysis of pesticides in sediments of the

Garonne River showed that these organic pollutants were

more concentrated in the fine fractions (FF) than in the coarse

ones (CF), as previously observed by Karickhoff et al.11 The

observed ratio FF : CF (3 : 1) is comparable to that given by

Gao et al. (3.5 : 1).30 Three molecules (cyanazine, isoproturon,

linuron) represented more than 80% of the total herbicide

content in the coarse fraction. Anilide herbicides were more

concentrated in the fine fraction (17%) than in the coarse one

(7%), showing that the repartition of those molecules in the

sediment is complex. As previously described by Karickhoff

et al.11 two parameters control this repartition: lipophilicity

and specific surface. The diversity of fraction components (on

the one hand silts and clays for the fine fraction and on the

other hand sands and in some cases plant remains for the

coarse fraction) is complemented by the physicochemical

properties of the studied herbicides (1 to 3.5 for Kow and 1

to 33 000 mg L�1 for solubility).

4.2.2 Spatial distribution of herbicide contamination. Fig. 2

and 3 show that the water contamination was not detectable

for sites where herbicidal contamination in sediment could be

found for the studied molecules.

The main values for water contamination were observed

near the urban area of Toulouse, representing only 2% of the

studied sector (Ibarra et al.).27 Critically contaminated water

samples, according to the law enforced in the European

Union,38 originated from the two tributaries (A1 and A2)

situated in this suburban area. If these results contradict the

generally accepted idea that pesticides originate mainly from

rural areas, they are in agreement with different studies out-

lining this paradoxical influence of cities.2–5 Such a significant

presence of s-triazine, urea and anilides has been previously

reported in France.4 In addition, studies about the amenity use

involved in direct urban impact are generally not taken into

account by local authorities. In the present study, the lotic

water contamination was strongly linked to the sediment

contamination.

Upstream from Toulouse (G1), the Garonne sediment pre-

sented negligible herbicide concentration. Tributaries draining

suburban areas like the Aussonnelle (A1) and Hers (A2)

Rivers, presented high herbicide levels (2.14 and 2.02 mg g�1

for the fine fraction), whereas the Save River (A3) drainage

basin is widely used for agricultural activity (wheat, corn and

sunflower) and presented a much lower (0.15 mg g�1) herbicide
concentration. Downstream from the Toulouse area, the two

tributaries of the Save (A3) and Tarn (A4) Rivers showed a

large difference in found herbicide concentrations. The Save

River (A3) profile is bound to the small variety of crops and

characterised by the presence of the metabolite DEA. The

Tarn River (A4) showed contamination due to the orchard

plantations and the inherent associated pollution risks.39–42

The observed pesticide signature (simazine in association with

metazachlor) could be in agreement with tree treatments.43

Mancies (M1) and Malause (M2) were among the most

contaminated points. Reservoir sediments contributed mostly

to the herbicide content, according to the observations of

Doggett and Rhodes.44 They showed that, for diazinon (an

organophosphorus insecticide), the concentrations in the re-

servoir were higher than along the upstream part of the river.

This can be explained by the differences in the sedimentation

process, owing to the differences in water velocities. In the

Garonne basin, two hydraulic obstacles were discriminated:

weirs (G2, A4) and dams (M1, M2). Weirs were characterized

by an overflowing regime, inducing the elimination of the

organic part of the coarse fraction. The effects of hydraulic

conditions and sedimentation similarities are illustrated by the

PCA (Fig. 4), in which sites G2 and A4 are close.

For dams, the draw off water evacuation induced a coarse

fraction accumulation all along the reservoir. However, Man-

cies (M1) and Malause (M2) were not mutually correlated by

the PCA (Fig. 4), since they have two different hydraulic

regimes. Malause (M2) is situated at the confluence of the

Garonne River and its main tributary, the Tarn River. A

comparable disturbance is absent along the Mancies site (M1).

The difference between the two dams is due to the higher

contamination of the fine fraction in M1 than in M2. M2 is

under the influence of the sedimentation of primary produc-

tion of the Tarn River. The PCA showed the exclusion of

Lamagistère (G5). This sample, with a high contribution from

plant remains, presented a C/N value of 17 for the coarse

fraction and a value of 7 for the fine one. The other coarse and

fine fractions presented C/N values of, respectively, about

14 � 2 and 6 � 1 (data not shown). This high C/N value is

due to plant fragments taken from aquatic flowering plants

(Potamogeton perfoliatus L.). The coarse fraction presented

much higher herbicide concentrations than the fine ones. The

herbicide fine fraction concentrations were undetectable.

Conclusion

The methods of extraction, purification and multi-residues

analysis herein suggested is applicable to a broad spectrum

of molecules contaminating sediment, pesticides or persistent

organic pollutants and with good recoveries (higher than

80%). The method is flexible according to the needs (mechan-

istic or monitoring) and the sample preparation.

Studies are currently being conducted to understand the

complex relationships between sediment contributors and

herbicides, in particular in the case of reservoirs and hydraulic

regimes, leading to their distribution by fraction. For this first



analysis of herbicides contamination of the Garonne basin,

water contamination by herbicides in the mid-Garonne River

was found to be minor, except at three points (A1, A2 and

G3). The analytical method presented herein allowed the

characterisation of different profiles of contamination: idled

zones with the presence of numerous derivatives in the sedi-

ment and a lack of them in the water-column, including dams,

weirs, urban zones with a concomitant notable contamination

of water and sediment, and rural zones less contaminated by

parent molecules and where metabolites can be found. For

both sediment and water, the highest concentrations of herbi-

cides occurred in urban and suburban zones, accrediting an

important impact of these contaminants in non-agricultural

areas, which has to be confirmed by an extended study with

more specific herbicides, such as glyphosate and diuron.
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2000, pp. 724.

44 S. M. Doggett and R. G. Rhodes, Effects of a Diazinon formula-
tion on unialgal growth rates and phytoplankton diversity, Bull.
Environ. Contam. Toxicol., 1991, J, 47(1), 36–42.


