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Abstract
River embankments are one of the main causes of a loss in active channel movement. The
knock-on effects of river channel stabilization include important shifts in the ecohydrological
conditions in the protected zone behind embankments, which has already been well exempli-
fied. However, few authors have attempted to investigate changes to pioneer units of vegeta-
tion colonizing the active channel following the construction of dikes. As a consequence we
studied the structure, composition and diversity of pioneer vegetation units dominated by
willow and poplar along the River Drôme in two adjacent, but contrasting, river reaches: an
embanked reach and an unconstrained reach, each subject to the same flow regime, but
offering very different hydrogeomorphological contexts for vegetation colonization. Our
results clearly demonstrate that river embankments affect channel geometry. A reduction in
channel width (from between 200 and 500 m to less than 100 m) leads to steeper elevational
gradients with an overall coarser grain size and consequently drier overall conditions on
colonizable landforms in the channelized reach. Pioneer vegetation responded by colonizing
landforms at higher elevations above the low water mark and by occurring in smaller units
within the channelized study reach. There was also a reduction in species diversity, a homo-
genization in vegetation unit structure and a predominance of more drought-tolerant ligneous
species (P. nigra) in pioneer vegetation units in the channelized study reach. Copyright ©
2007 John Wiley & Sons, Ltd.

Keywords: riparian pioneer vegetation; channel geometry; braided river; Populus; Salix;
sedimentation; embankment

Introduction

The nature conservation and socio-economic values of riparian forests have been increasingly recognized, since the
1970s, by both the scientific community and river managers. The services they provide and functional roles they play
are multiple and include (i) flood buffering, (ii) landscape improvement, (iii) positive contributions to water quality,
(iv) wood production, with related benefits for aquatic fauna, and (v) important contributions as a unique ecotone to
both in-stream and riverside biological diversity (Décamps, 1996; Naiman et al., 2005). Along many European rivers
embankments are constructed to prevent arable and urbanized land from flooding. This leads to a loss in channel
shifting and important environmental changes in the riparian zone, with notable consequences for the regeneration,
growth and structural development of riparian forests.

Pioneer vegetation units colonizing the riparian zone are typically dominated by species that are well adapted to
intermittent flood disturbances and most of these are members of the Salicaceae family (willows and poplars) (Karrenberg
et al., 2002). The successful recruitment and growth of these pioneer woody riparian vegetation species depend on
very specific soil–water conditions that relate to their positions along a river. Successful colonization depends on



Effects of river embankments on pioneer vegetation communities

riparian vegetation situation in relation to water levels, the frequency and intensity of water level fluctuations and also
surface sediment grain sizes at any given location (McBride & Strahan, 1984; Bradley & Smith, 1986; Van Splunder
et al., 1995; Hughes et al., 1997; Barsoum & Hughes, 1998; Shafroth et al., 1998; Johnson, 2000; Rood & Mahoney,
2000; Kalischuk et al., 2001; Barsoum, 2001; Guilloy-Froget et al., 2002).

The appropriate conditions for the regeneration of pioneer woody riparian vegetation species tend to disappear
behind embankments. Species replacing the willows and poplars (and occasionally, alder) in these embankment-
protected areas are typical of later successional stages such as ash, maple and oak. These species have greater
tolerance of drier conditions and do not rely on flood disturbances to create ideal conditions for regeneration (Bravard
et al., 1986; Pautou & Girel, 1994; Girel et al., 1997; Mendonça-Santos et al., 1997; Van Looy et al., 2003). The
construction of embankments leads, therefore, to a significantly reduced and much more spatially confined area along
the river where pioneer woody riparian vegetation can regenerate under ‘ideal’ environmental conditions.

Moreover, between dikes, the concentration in river flow results in an increase in water depths and shear stresses
across all flows. It also leads to an increased frequency of sediment entrainment (Ricks, 1995), which generates a
higher turnover of bedform material (Shafroth et al., 1998). Together, these act to significantly modify the channel
geometry of embanked reaches compared with the unconstrained, unembanked situation (Brooks, 1988), with possible
consequences for the structure and composition of pioneer vegetation colonizing the active channel areas. The channel
planform in embanked reaches demonstrates a different pattern compared with the pre-embankment situation (Peiry,
1988; Poinsart, 1994; Landon, 1999). The channel can be expected to contain a succession of riffle features. Along
dikes, deep pools are typically associated with gravel bars on the opposite bank (Richards, 1976; Thompson, 1986;
Peiry, 1988).

Predicting how vegetation might respond to shifting ecohydrological conditions is of interest not only to the
conservationist, but equally to the river manager. Both seek to understand better not only how riparian forest species
composition, structure and recruitment is affected by embankment construction, but also how hydrogeomorphological
parameters influence vegetation in these riparian ecosystems, especially in terms of the implications these have for the
production of large wood. Unfortunately, despite a good understanding of the conditions required by key riparian
vegetation species for regeneration (which helps to explain species presence/absence), limited research attention has
been focused on understanding shifts in vegetation community composition and structure (Merigliano, 1998; Kollmann
et al., 1999), particularly where hydrogeomorphic conditions have been altered by human pressures. Our understand-
ing of shifts in the composition and structure of pioneer units of vegetation in channelized river reaches is especially
limited (see Peeters and Tachet, 1989, for macro-invertebrates).

The main aim of this paper is to analyse the impacts of hydrological and sedimentological changes caused by
channel confinement on pioneer vegetation community composition, structure and diversity. We investigated the
impacts of an artificial narrowing of the river channel on water levels (for the same discharge) and cross-sectional
geometry (and thus, elevational differences in patches of vegetation along the river). We tested the hypothesis that
channel narrowing following the construction of embankments leads to (i) an increase in grain size, notably within
vegetated patches, (ii) a decrease in sediment thickness within vegetated patches (following an augmentation of shear
stress) and (iii) a decrease in pioneer patch sizes (due to the more dynamic context of the embanked reach). We
studied two contrasting river reaches along the River Drôme: an embanked reach and an unconstrained reach. Each is
subject to the same flow regime, but offers very different hydromorphological contexts for vegetation colonization.
We, therefore, do not analyse the effect of inter-annual flow variability, but we focus on channel geometry as the main
control factor.

Methods and Materials

Study site
The study was pursued in two adjacent downstream reaches of the River Drôme – a sixth order (Strahler, 1957) free-
flowing piedmont river located in the south-east of France. The River Drôme is a tributary of the River Rhône and
drains a catchment of 1640 km2 (Figure 1(A)). Daily mean discharge is 18 m3 s−1 (Q2 – 160 m3 s−1; Q50 – 370 m3 s−1)
as recorded at the Saillans station (20 km upstream of the study reaches, Figure 1(B)) over the 1910–2005 period. The
combination of a steep slope (3–28 m km−1), abundant bed load and a hydrological regime characterized by high flood
peaks (generally in the early spring and autumn), define the braided pattern of this gravel bed river. The summer
months are generally periods of exceptionally low flow (2–3 m3 s−1).

Fieldwork was undertaken 15 km upstream of the Drôme River’s confluence with the River Rhône (Figure 1(B)).
Two contrasting 2 km reaches were selected: (i) an unconstrained reach in which there is free lateral migration of the



Figure 1. Location of (A) the Drôme catchment in France as situated within the hydrographic network of the River Rhône, (B)
the study reaches within the lower Drôme valley, (C) cross-sections in the embanked study reach (T1–T5) (photography: IGN)
and (D) cross-sections in the unconstrained study reach (T1–T5) (photography: IGN).

river across the floodplain (Figure 1(D)) and (ii) an embanked reach, constrained along its entire length by dikes on
both banks (Figure 1(C)). The major structures along the embanked reach were constructed gradually over a period of
49 years, as funds permitted, between 1775 and 1824 (Landon, 1999). The River Drôme was subject to intensive
gravel mining and related channel degradation (Landon and Peigay, 1994). But gravel mining activities ceased in the
1980s and since then the river channel has settled into a new equilibrium state; gravel mining is thus no longer a
relevant influence on current geomorphological conditions (Landon, 1999).

Along the two contrasting study reaches, surveys of vegetation units were confined to the active floodplain. In the
embanked reach, the active zone extended from the inside edge of the dike on the left bank to the inside edge of
the dike on the right bank, a distance of no more than 110 m. The maximum width of the active floodplain in the
unconstrained reach was approximately 500 m in the 2005 field season and here the edges were defined by mature,
established forest, or a major terrace (ground level ≥ 3·0 m above base flow river level).

Physical and structural differences between study reaches
Topographical survey. Five cross-sections were surveyed under base flow conditions in the embanked and unconstrained
study reaches in August of 2000, 2001 and 2005 (Figure 1(C) and (D)). Each cross-section ran in a straight line
following a fixed compass bearing across the active floodplain from a marked point on the left bank to a marked point



on the right bank. Two of the five cross-sections in each reach were purposely set to run across the upstream and 
downstream tips of established pioneer vegetation units to include zones of island degradation and aggradation, 
respectively. Placement of the remaining three cross-sections was otherwise regular in an attempt to spread the points 
of cross-sections at regular intervals along each 2 km study reach.

Elevation along the transects was recorded using DGPS at 1 m intervals in the embanked reach and at 1 and 2 m 
intervals (according to rapid shifts in elevation) along the cross-sections in the unconstrained reach.

Hydrological survey. Hydrological conditions in both reaches were compared during high flows through the collec-
tion of flood marks at 30 points in each study reach following a high flow event (89 m3 s−1 recorded at the Saillans 
station in April 2005). The frequency of flows higher than this particular event is 1·9% over the 1990–2005 period 
(annual flood = 120 m3 s−1). The elevations of measured flood marks in the embanked study reach were confirmed by 
an automatic water monitoring level fitted with a pressure sensor (model CTD-Diver).

Number and sizes of pioneer units. Within the active floodplain, in both the embanked and unconstrained study 
reaches, distinct landform units were identified: a main low flow channel, secondary channels, unvegetated bars, bars 
occupied solely by herbaceous species and units occupied by a mixture of herbaceous and pioneer ligneous species 
such as willow, alder and/or poplar. Our study focuses on the last one of these identified landform units, which are 
referred to in this paper interchangeably as ‘pioneer vegetation units’ or ‘pioneer patches’. The pioneer vegetation 
units or pioneer patches are considered to be islands (‘pioneer islands’) where they (1) form a discrete patch of 
ligneous vegetation occupied mainly by willow and poplar and (2) are surrounded entirely by water and/or unvegetated 
bar surfaces (Osterkamp, 1998; Ward et al., 2000). These islands correspond well to phase II island types described by 
Edwards et al. (1999) along the River Tagliamento, a similar gravel bed river located in northeastern Italy.

Pioneer patches were identified and surface areas measured at the reach scale in both contexts by using aerial ortho-
rectified photos acquired in 2001 by the Institut Géographique National at the scale of 1/17 000; 10 m2 was used as a 
minimum size for pioneer patches.

Characteristics of pioneer woody vegetation units
The characterization of vegetation communities in the embanked and unconstrained study reaches proceeded with 
field survey work in August 2001. Two of the largest ‘pioneer islands’ in each study reach were selected for assess-
ment. These larger pioneer islands were considered to be among the longest-established woody pioneer vegetation 
units on the active floodplain. The surface areas of each island were determined using mapped points collected at 
regular intervals around the perimeter of each island.

The age of each island was determined through tree-ring analysis of the five tallest trees present in each of the 
pioneer islands studied (P. nigra cored 50 cm from ground level).

Vegetation community characteristics. In order to determine the degree of between- and within-patch variability, 
vegetation was surveyed in numerous widely placed quadrats within each unit. Vegetation was sampled along seven 
2 m wide belt transects, each positioned in a direction that was perpendicular to the central lengthwise axis of each 
island. An initial measurement of island length guided the positioning of the seven belt transects at regularly spaced 
intervals across the lengths of each island. Within each island, floristic data were collected in 4 m2 quadrats placed at 
regular intervals along the length of the seven belt transects (Table I). The downstream and upstream extremities of 
each island were excluded over a length equal to 10% of the total island length. This was in order to avoid the 
disproportionate influences on vegetation composition of recently heavily disturbed areas, significant piles of large 
wood at the upstream tips of islands and aggradation at the downstream ends of the islands.

Table I. Characteristics of vegetated islands that were surveyed

A B C D

Reach type unconstrained unconstrained embanked embanked
Length (m) 215 188 46 68
Island surface (m2) 6800 8700 300 1000
Elevation above summer baseflow 0·9–1·4 0·8–1·2 2·0–2·2 1·9–2·2
river levels (m)
Number of quadrats (vegetation survey) 34 37 13 24
Number of sediment cores 22 26 6 10



The number of quadrats sampled along each belt transect depended on transect length. That is, vegetation was 
sampled in one quadrat where the transect length was 6 m or less, in two quadrats if transects were 10 m or less, in 
three quadrats if 20 or less, in five quadrats if 50 or less and in six quadrats if more than 50 m. Each quadrat measured 
4 m2 (2 m × 2 m). For ligneous species, stem diameters were measured 5 cm above ground level (n = 2240 stems). The 
presence/absence of other species (mostly herbaceous) was also noted within each quadrat. The ecological preferences 
of individual species were determined based on available descriptions in the scientific literature and notably the work 
of Rameau et al. (1989) and Girel and Manneville (1998).

Patterns of sedimentation. Patterns of sedimentation were described through measurements of over-bank sediment 
(sand and finer sediment) thickness at 64 points located every 5 m along transects (the same points that were selected 
for placement of the vegetation quadrats). At each measurement point, sediment cores were collected to a depth 
of 10 cm. Grain size was then evaluated by measuring the relative proportions of sand (%) and finer sediment 
(sediment finer than 0·5 mm) (Dufour, 2005). Rates of sedimentation were derived by dividing overbank sediment 
thickness by pioneer island age (an estimate based on dendrochronological cores and a chrono-sequence of aerial 
photographs).

Statistical analyses
Descriptive metrics and statistical tests of independence were applied to datasets using StatView software (Version 5)
(Baron and Vang, 1996). In those instances where data sets were ‘small’ (less than 20), or where data sets did not have 
a normal distribution, non-parametric tests were used. Significant differences in the species composition of vegetation 
between quadrats were tested using a non-parametric analysis of similarity (ANOSIM) available through PAST 
software (Version 1·27). This test of similarity is based on rank comparisons of quadrat distances (Sorensen index)
(Clarke, 1993; Hammer et al., 2004). PAST software was also used for detrended correspondence analysis (DCA) and 
calculations of floristic similarities (Sorensen index).

Results

Physical and structural differences between study reaches
Channel geometry differed between the embanked and unconstrained study reaches principally in terms of active 
channel width. In the embanked reach, active channel width ranged from 70 to 110 m, while in the unconstrained 
reach active channel width ranged from 200 to 500 m. In the embanked reach there was typically a pool on one side of 
the transversal cross-section, always complemented by a high sediment bar in the remaining portion of the cross-section 
(Figure 2). This configuration is a pattern that has developed since engineering works were completed 200 years 
previously (Landon, 1999). Pioneer units of vegetation were thus always located along the right or left bank rather than 
in the middle of the channel. In the unconstrained reach, erosion and the location of pioneer units of woody vegetation 
demonstrated a scattered distribution across profiles. In some cases there were many side-channels in addition to the 
main channel, contributing to several localized areas of erosion along each of the transversal cross sections.

Differences in channel geometry between the embanked and unconstrained reaches can also be observed in terms of 
elevation along the channel profiles. Median relative elevations above the deepest point for each cross section were 
highest in the embanked study reach (1·3 m versus 1·1 m). Relative elevations reaching 2 m along each of the cross 
sections in the embanked reach were more frequent compared with the unconstrained reach (9·2–26·7% of constrained 
transect lengths in comparison with 5·7–18·2% of unconstrained transects). In both study reaches, pioneer units of 
woody vegetation occupied the highest points along cross sections. Because of the distributional differences in eleva-
tion between the two contrasting channel reaches, pioneer units of vegetation were invariably located at elevations that 
were twice as high in the embanked study reach (Table I).

During a discharge of 89 m3 s−1 (Saillans station, 18/19 April 2005), water levels were significantly higher in the 
embanked study reach compared with the unconstrained study reach with respective median elevations of 101 and 
74 cm above the summer baseflow water level (Mann–Whitney test, p < 0·001). This difference corresponds to a 35%
difference in water heights between reaches for this same discharge.

The number and surface areas of pioneer islands were significantly greater in the unconstrained reach compared 
with the embanked reach (i.e. the area of islands in the unconstrained reach were on average 25 m2 larger than in 
the constrained reach; Mann–Whitney test, p = 0·0017) (Figure 3). Pioneer island density per unit area was, on the 
other hand, lower in the unconstrained reach compared with the embanked reach (0·5 vegetated patches ha−1 versus 
1·1 vegetated patches ha−1).



Figure 2. Examples of two cross-sections: (A) in embanked study reach; (B) in unconstrained study reach.

Characteristics of pioneer woody vegetation units
In both study reaches, all trees cored in 2001 suggested ages of between 6 and 7 years. Tree ages must, however, be
interpreted with caution since significant burial by sediment may lead to an underestimate of true tree ages (i.e. where
tree age is determined for a side-branch rather than the main tree trunk). Evidence to support the estimated timing of
colonization of the trees that have been cored is provided by aerial photographs, which also indicate a likely initial
colonization of the active channel in 1994 or 1995, possibly after a major flood during January 1994 (discharge of
387 m3 s−1 at Saillans, equivalent to a Q50 event).

There were only three plant species that occurred uniquely in the pioneer woody vegetation units of the embanked
reach (Poa annua, Parthenocissus inserta and Trifolium pratense). These had relative frequency values of 8·1, 2·7 and
2·7, respectively. This contrasts with 33 vegetation species encountered uniquely within the unconstrained reach.
These results are confirmed by a within-reach analysis of floristic similarity. Vegetation sampled in quadrats within the
embanked reach had a greater index of similarity than vegetation sampled in quadrats within the unconstrained reach
(similarity index of 0·43 versus 0·37, p < 0·001).

A factorial analysis (DCA) on the complete set of vegetation samples in both study reaches (108 quadrats with a
total of 64 species; Figure 4) demonstrates that (i) pioneer vegetation units in the embanked and unconstrained reaches

Figure 3. Size distribution of pioneer islands (in m2 for islands greater than 10 m2).



Figure 4. Plots of (A) samples and (B) species with respect to the first two axes of a detrended correspondence analysis (DCA).
Axis limits are indicated in the corner of each plot. In (B) the area shaded in grey denotes the common pool of species found in
the two study reaches, whereas the unshaded area includes species that were only found in the unconfined reach.



Table II. Species richness, density and growth in pioneer woody vegetation units. The median and inter-quartile range of 
vegetation species is given for the quadrats in the embanked or unconstrained study reaches

Embanked reach Unconstrained reach p

Specific richness Ligneous species 2 (1) 3 (2) <0·001
(No. of species per quadrat, 4 m2) Herbaceous species 5 (3) 6 (3) <0·01

All species 6 (2) 9 (3·5) <0·001
Density Populus nigra 15 (20) 5 (9) <0·001
(No. of stems per quadrat, 4 m2) Salix eleagnos 0 (3) 3 (8) <0·01

Salix purpurea 0 (1) 1 (6·5) <0·05
All species 19 (15) 14 (18) NS

Mean diameter Populus nigra 1·9 (1·3) 1·1 (1·2) <0·01
(cm) Salix eleagnos 0 (2) 1·4 (2·6) <0·01

Salix purpurea 0 (1·2) 0·8 (1·5) NS
All species 2·2 (1·1) 1·7 (1·3) NS

have similar, but non-identical, vegetation communities (ANOSIM, p < 0·001 but R = 0·1628) and (ii) some quadrats
in the embanked reach are very different from those in the unconstrained reach (Figure 4(A)). Thus, we can distin-
guish a common pool of species present in the pioneer woody vegetation units present along the downstream sections
of the Drôme River (the area shaded in grey in Figure 4(B)) and a relatively high number of vegetation species that
are unique to the unconstrained reach (the unshaded area in Figure 4(B)), occurring in several (but not all) of the
quadrats.

At the scale of each pioneer island, vegetation species richness was lower in the embanked reach compared with the
unconstrained reach (24 and 23 versus 43 and 49 species). Even when we adjust for the positive association between
species richness and sampling area by estimating a corrected value of species richness, TSR (the number of species
divided by the logarithm of the sampling area) (Whittaker, 1975), species richness is still lower in the embanked reach
compared with the unconstrained reach (14·0 and 11·6 versus 20·2 and 22·6). At the quadrat scale, richness is also
significantly lower in the embanked reach for both ligneous and herbaceous species and for all species combined
(Table II).

Three ligneous species made up 90% of stems present in quadrats along belt transects in both study reaches:
Populus nigra (46·9%), Salix eleagnos (22·9%) and Salix purpurea (17·3%). Total stem density was highest in
quadrats situated in the embanked reach (median value of 19 stems per m2 compared with 14 stems per m2 in the
unconstrained reach), although this difference was not statistically significant (Table II). The relative densities of the
three most common ligneous species were significantly different between the contrasting study reaches. There were
significantly more P. nigra stems per unit area in the embanked reach, while stem densities of S. eleagnos and S.
purpurea were significantly greater in the unconstrained reach. The higher local densities of Populus nigra and Salix
eleagnos in the embanked and unconstrained reaches, respectively, were complemented by significantly (p < 0·01)
larger stem diameters, which is indicative of comparatively good conditions for growth in either reach. Thus, the
structure and composition of woody pioneer vegetation species differs between the two study reaches. P. nigra
dominates pioneer woody vegetation units in the embanked reach, while in the unconstrained reach there is a more
heterogeneous composition of ligneous vegetation species (the dominance index for ligneous species is 0·36 and 0·39
in the unconstrained reach versus 0·79 and 0·94 in the embanked reach).

Patterns of sedimentation
Fine sediment (sand and finer) thickness was significantly lower in the pioneer units of the embanked reach, where
maximum sediment thickness was 24 cm compared with 96 cm in the pioneer vegetation units of the unconstrained
reach. As islands of pioneer vegetation were thought to be age equivalent in both study reaches, sedimentation rates of
sand and finer sediment in pioneer woody vegetation units in the embanked reach were estimated to be lower than
in pioneer woody vegetation units of the unconstrained reach (median value of 0·93 versus 2·43 cm yr−1, p < 0·01)
(Figure 5). Median values of the percentage of sand in these sand and finer sediment samples indicate a further
significant difference ( p < 0·001) between the contrasting study reaches, with a value of 90·1% sand in the embanked
reach and 60·6% sand in the unconstrained reach. Heterogeneity values for sedimentation rates and for relative
proportions of sand in sediment samples were lowest in the embanked reach (Figure 5). Estimates of annual sedi-
mentation rates obtained from sampled sites in the embanked reach varied from 0·2 cm yr−1 (10th percentile) to 2·8 cm yr−1



Figure 5. Box and whisker plots of (left) estimates of the annual rate of deposition of sand and finer sediments on pioneer
vegetated patches in the two study reaches and (right) the percentage sand content of the sand and finer sediment.

(90th percentile) in comparison with 0·2 (10th percentile) to 10·1 cm yr−1 (90th percentile) in the unconstrained reach,
whereas the 10th and 90th percentile estimates of percent sand in the samples varied from 78 to 91% in the embanked
reach and from 60 to 90% in the unconstrained reach.

Discussion

Previous studies have demonstrated that river embankments limit the re-working of alluvial sediments and favour the
establishment of hardwood species out side the embanked area (Bravard et al., 1986; Mendonça-Santos et al., 1997).
This field study along the River Drôme has shown how river embankments also generate significant topographical
and hydrological changes within the embanked reach. The important changes in hydrogeomorphic conditions have a
significant knock-on effect on pioneer units of woody vegetation colonizing the river-bed. The structure, composition
and diversity of vegetation are altered in response to shifts in the elevation of colonizable landforms and patterns of
sedimentation on these landforms.

Channel geometry as a factor influencing pioneer woody vegetation structure and composition
Differences in hydraulic conditions between the embanked and unconstrained river reaches contribute to a narrower
active zone and greater contrasts in the elevations of colonizable landforms in the embanked reach compared with the
unconstrained reach. For an equivalent discharge, water levels in the embanked reach are also higher relative to the
lowest level of the river-bed and there is evidence that this affects the relative abundance and growth of woody
species.

First, pioneer vegetation units in the embanked reach occurred at higher relative elevations in the active channel
with respect to the baseflow water surface level than pioneer vegetation units in the unconstrained reach. This suggests
that there are likely to be more hydrological constraints on vegetation in the embanked reach, with comparatively
rapid water level drawdown rates following the abatement of flood flows. A faster drawdown may, however, be
compensated for by higher water levels during floods. Second, higher water levels for the same flow may produce
greater shear stress in the active zone between dikes. This could make the riverbed less stable and lead to a relative
coarsening of sediment in the embanked reach. Within pioneer vegetation units, fine sediments (sand and finer) are
significantly coarser and thinner, most likely resulting in poorer moisture retention and thus drier conditions. Hydro-
logy seems to be the key factor controlling sediment deposition since there is no evidence of a relationship between
woody vegetation density (equivalent in both contexts, Table II) and sedimentation rates (higher rates in the unconstrained
reach, Figure 5).

The higher frequency of P. nigra in the embanked reach is explained by its greater tolerance of rapid water table
drawdown rates compared with the willow species commonly found along the River Drôme (Foussadier, 1998). The
distribution of P. nigra is also more frequently linked to higher elevations within the active channel than, for example,
Salix eleagnos (Francis et al., 2006). Moreover, P. nigra also has the advantage of good anchorage and, consequently,
significant resistance to uprooting (Karrenberg et al., 2003). Where all the evidence is combined, P. nigra appears to
have a clear competitive advantage over other woody species in the embanked context in comparison with the
unconstrained reach, which may further explain its better growth.



In the recruitment stages of its lifecycle, P. nigra would be expected to occur in greater densities in the embanked 
reach, where P. nigra seedlings seem to have a greater chance of surviving flood disturbances at their higher elevations 
in the active channel than seedling recruits in the unconstrained reach. There was some evidence of this, where 
established pioneer stands in the embanked reach were frequently very densely and widely populated by P. nigra 
saplings of even height. Established pioneer stands in the unconstrained reach were also densely populated in some 
areas, but evidence of occasional stand dissection by ephemeral channels contributed to what appeared to be a greater 
overall mix in the age structure of these young stands.

Along the Drôme River, previous phyto-ecological characterization of pioneer islands recognized pioneer vegeta-
tion units simply as ‘shrubby units’ dominated by Salix eleagnos, Salix purpurea and Populus nigra (Franchon, 1996; 
Bonnefon-Craponne, 1996; Foussadier, 1998). Our results provide evidence of a ‘dry island variant’ dominated by 
P. nigra in the embanked reach and a comparatively ‘mesic island variant’ in the unconstrained reach with a more 
diverse species composition, including numerous Salix sp. and Alnus glutinosa. Each of these ‘variants’ appears to 
have evolved in direct response to the contrasting hydrogeomorphic conditions in the two study reaches.

Size and heterogeneity of pioneer woody vegetation units as factors influencing vegetation
composition and structure
Several differences observed among pioneer woody vegetation units (e.g. species richness) were linked to differences 
in active channel planform and notably island size. Islands in the embanked reach were always smaller than those 
in the unconstrained reach, probably due to flow concentration between channel embankments. Higher water levels 
(for the same discharge) are likely to reduce the amount of sediment deposited within the embanked reach compared 
with the unconstrained reach, where the area occupied by the river channel itself is comparatively small relative to the 
surface area of the active channel. The positive effect of patch size on species richness has been extensively discussed 
and debated by previous authors (MacArthur & Wilson, 1967; Connor & McCoy, 1979; Wu & Vankat, 1995; Holt et 
al., 1999; Kollmann et al., 1999; Lomolino, 2001). Along the Drôme River, isolation of islands as a factor affecting 
vegetation species richness does not appear to be relevant in either study reach. This may be explained by the 
surrounding landscape matrix, which is likely to provide ample supplies of seed and vegetative propagules from both 
upstream sources and the surrounding forests in close proximity to islands. On the other hand, our results clearly 
indicate reduced environmental heterogeneity in the embanked reach compared with the unconstrained reach, which 
may explain lower vegetation species diversity (Williams, 1964; Huston, 1994; Bose, 2001). Kollmann et al. (1999) 
observed the same relationship between pioneer riparian vegetation patch size and species richness and attributed this 
to the larger sampling areas and related, higher habitat variability within vegetation units of larger surface areas. 
Microtopography is often cited as an important source of variability (Bratton, 1976; Tweedy et al., 2001). Patterns of 
sedimentation along the River Drôme contribute to subtle yet seemingly important variations in the colonization 
potential of landforms. In the embanked reach of the River Drôme there was lower local variability of fine sediments 
(grain size and abundance) and pioneer islands were smaller and narrower than in the unconstrained reach. Other 
evidence of greater heterogeneity in the pioneer vegetation units located in the unconstrained reach is given by the 
vegetation species that occur uniquely in this context. Species occurring here collectively require a broader range of 
ecohydrological conditions compared with vegetation in the embanked reach. For example, species typical of wetter 
conditions (e.g. Alnus glutinosa, Carex pendula, Phragmites australis etc.) occurred alongside vegetation species that 
are associated with drier conditions (e.g. Cirsium arvense, Echium vulgare etc.). Furthermore, in the unconstrained 
reach we encountered vegetation species that are associated with (i) coarse, gravelly substrates (e.g. Xanthium 
strumarium, Setaria viridis and Polygonum persicaria), (ii) grasslands and fallow fields (e.g. Lolium perenne, Pastinaca 
sativa, Torilis arvensis etc.) and (iii) mature woodlands (e.g. Geum urbanum, Humulus lupulus, Clematis vitalba etc.).

Heterogeneity of pioneer vegetation units appears, furthermore, to be directly linked to island type. Islands in the 
unconstrained study reach were dissected by small ephemeral channels (probably generated at different points in time) 
to create a mixture of bars and dense vegetation patches. Considering the three pioneer vegetation unit types described 
by Gurnell et al. (2001), the two islands in the embanked reach might be classified as ‘building islands’. In the 
unconstrained reach, they are ‘complex islands’ generated from components of ‘building islands’. In our case, island 
dissection by shifting river channels creates a similar level of complexity to ‘island coalescence’ as described by 
Gurnell et al. (2001).

Perspectives for the conservation and rehabilitation of pioneer woody riparian vegetation units
Along many western European rivers, pioneer woody vegetation units have strongly regressed over the past two 
centuries, notably in response to civil engineering works. As a result, the question of the long-term conservation of



these fleeting vegetation units and of their associated genetic resource is of increasing relevance (Lefèvre et al., 2001; 
Douhovnikoff et al., 2005).

At the scale of pioneer woody vegetation units in active river channels, further scientific work is needed especially 
regarding (i) the effects, not integrated into the present study, of living and dead vegetation on patterns of sedimenta-
tion and habitat variability (i.e. the relative influence of high concentrations of large wood deposited in an unconstrained 
reach compared with an embanked reach) (Tabacchi et al., 2000; Gurnell et al., 2001), (ii) our understanding of the 
physical conditions defining vegetation community and species divergences, such as spatial segregation of genders 
due to differences in water and/or nutrient availability (Hughes et al., 2000), and (iii) the accurate quantification of 
riparian vegetation species thresholds (i.e hydrological, disturbance and other theresholds), inclusive of the implica-
tions these thresholds have for wood production (i.e. dead/live wood biomass ratios) and different modes of reproduc-
tion (sexual/vegetative) etc. (Francis et al., 2006).

The preservation of functional sites for pioneer species conservation must be managed at the river basin scale. Our 
results highlight the need for flow management (Cordes et al., 1997; Johnson, 2000; Hughes & Rood, 2003) to be 
coupled with the management of channel dynamics (lateral erosion and sediment deposition processes). This can be 
achieved through the combined management of bedload transport and river corridors: i.e. encouraging the construction 
of an ‘erodible corridor’ (Dufour, 2005; Piégay et al., 2005), rehabilitation practices involving the setting back of 
levees or local dike removal (Rohde, 2004). We can expect that channel widening would offer a positive restoration 
strategy in terms of an increase in riparian species richness, where a range of physical conditions (i.e. variable 
hydraulic patterns and water availability across the active channel) are created.

While there is no single solution for managing embanked reaches along gravel bed rivers (Piégay et al., 2006), our 
results indicate how pioneer communities can be used as relevant indicators (sensus Water Framework Directive) of 
the hydrogeomorphic functional status of a river and thus of restoration practices that can be considered successful in 
terms of habitat diversification and increases in riparian species richness following embankment removal.
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