List of Figures

List of Tables

GIS framework

The NUTS nomenclature is the official division of the EU for regional statistics. Sometimes national interests require changing the regional breakdown of a country. When this happens, the concerned country informs the European Commission about the changes. The Commission in turn amends the classification at the end of period of stability according the rules of the NUTS Regulation.

The ESPON Database project proposes the following typology of changes 1 :

 Change of name: two cases can be distinguished. If the unit in question belongs to two levels (it is at the same time a NUTS 2 and a NUTS 3) the change of name can concern either one or the two levels.

 Change of code: This may result either from a political decision or from a territorial reorganisation.

 Change of geometry: This is the most complicated change type. Generally, the shape of a spatial unit can change in three different ways: a loss of area, a gain of area, or a redistribution of boundaries even while keeping the same area value.

 Change of hierarchy: This imply that the higher level units to which a given unit belongs are modified. As shown by Figure 1 -1, Italian Nuts 2 level have been assigned to new Nuts 1 units because of a reform of the nuts 1 level in 2003.

1 Ben Rebah M., Plumejeaud C., Ysebaert R., Peeters D., 2011, Modeling territorial changes and time series database building process: empirical approach and applications, Technical Report, ESPON Database Project.

ESPON 2020 1 The GREAT update consists in managing these territorial changes in the following perspectives:

(1) Ensure the quality and relevance of the geometries (boundaries and cartographic generalisation).

(2) Ensure the relevance of the layers codes (compliant with official nomenclatures)

(3) Document the data sources and the territorial nomenclature created in this context.

The section below proposes a step-by-step procedure to update the GREAT layer consequently. This update is systematically realised by UMS RIATE, out of project activities.

ESPON 2020

1.2

Step by step procedure to update GREAT Europe layers

Reference resources to be considered (Eurostat)

Reference documentation useful for managing the GREAT Europe update is provided by Eurostat. Three resources should be considered:

 The Regions of European Union report provides a map of each levels and versions2 of the NUTS nomenclature, together with the codes, and official names of its territorial units. The same publication is available for EFTA and Candidate Countries. This report is particularly useful to check the quality and validity of the GREAT Europe layer.

Mapping territorial changes using reference document

With a simple join between the GREAT layer of the previous version (here, 2013) and the table provided by Eurostat, it is possible to map territorial changes occurring between two

NUTS versions (Map 1 -1).

This map makes it easier to plan the work required when updating the GREAT layer. For example, most of the changes between the NUTS 2013 abd 2016 nomenclatures will concern code changes (France, Poland, Lithuania, UK and Hungary). There are two mergers (Germany). The most complicated types of change (territorial split, in orange) will occur in Finland, Ireland, Germany, and the Netherlands.

Map 1-1: NUTS 3 units to be updated in the NUTS 2016 nomenclature

ESPON 2020

Update of the NUTS3 layer (new version)

Following the typology of NUTS change (Figure 1 -1), 4 cases must be considered: code change (C1), aggregation of territorial units (C2), Split of territorial units / boundary change (C3), and new country to be georeferenced (C4).

To highlight the methodology to be followed, the example of the NUTS2010 update into the NUTS2013 version is taken. In February 2017, the reference layers required for managing the When splitting a territory in the GIS, levels of generalisation must correspond to those used in the rest of the map. A 1:2 000 000 scale is acceptable for the GREAT layer.

Nevertheless, the process of manual boundary creation and map generalization requires specific knowledge in layers creation and map harmonization. Several principles shall be considered: territories selection, territories schematisation, territories harmonisation (Lambert, Zanin, 2017) to create an adapted generalised layers.

ESPON 2020

Case 4 -New country to be georeferenced

This section describes the procedure to be followed to include new countries in the GREAT Europe layer. It has previously been applied when creating the SNUTS layer for Serbia within the ITAN and M4D project (Figure 123456789). First, a layer at country level for all the countries of the World was created. This layer needed to be seamless with the GREAT layer (on the left).

Then, GADM 4 data source were used to display the territorial division in Serbia. Finally, the polygon of Serbia was split using the same level of map generalization as the GREAT. ESPON 2020

Quality check

Resulting layers are finally compared wto the Regions of European Union (Figure 1 -12). One needs to check that:

-It is possible to recognize territories in the map (level of generalization is not too important).

-NUTS codes are correct.

-No geometric and topological problems remains in the layer. This is done for each level of the NUTS nomenclature and for each country.

Documentation of territorial nomenclatures and geometries

The study area of the ESPON Program for regional analysis is EU28+4 (EFTA Countries), plus possibly Candidate Countries. This makes it necessary to combine several ESPON 2020 nomenclatures: the official ones (EU28 territorial units), and regional nomenclatures coming from gentlemen agreement with authorities of EFTA and Candidate Countries. On top of that, some Candidate Country nomenclatures and geometries are not documented (Bosnia-Herzegovina, Serbia, etc.). Consequently, regional nomenclatures included in the ESPON MapKits combine "official" and "non-official" regional nomenclatures, documented in metadata (metadata folder of the delivery, as displayed in Figure 1 -13).

It is necessary to ensure the lineage of this information. This is the reason why metadata are systematically added when a new nomenclature is created, as displayed in Figure 1 -13 for the NUTS 2013 nomenclature. This file also makes it possible to provide the official names of these territorial units, in national alphabets (Cyrillic, Greek) or in Latin alphabet (as provided by Eurostat). Most of GIS systems offer nowadays automatic functions that allow tiling a set of points into areas using Voronoi operators.

Why should one use Voronoi diagram in ESPON Mapkits?

There are several advantages that have pledge in favour of Voronoi diagrams for displaying local statistical units (LAU) at regional level and above:

-Generating seamless terrestrial borders to maps of regional and local units is relatively easy.

-Far from adding accuracy, excessive level of details generates visually counterproductive 'noise' to maps above a certain level. In that sense the Voronoi diagram is best appropriate to generate cartographic message due to its "pixelisation effect".

ESPON 2020 -Because of its high level of generalisation, only a small amount of computing power is required when processing these files in a GIS or in Adobe Illustrator. This makes the production of maps faster and easier.

-For the same reason, 'on the fly' production of maps, e.g. on an online mapping portal becomes feasible, even when displaying all of Europe.

-Based on Creative Commons license (CC-BY-NC-SA), the mapping layer can be distributed, used and updated by the potential users such as European institutions, students, academics, etc. In that sense, a seamless geographical layer, adapted to cartographic needs and matching with EU statistics fills an identified need.

Creation of the Voronoi mapping layer

In view of making it possible to update the Voronoi layer -as a whole or for some countriesthis chapter describes the process of generating such a map step by step.

Preliminary work to the creation of the LAU Voronoi

This part describes the preparatory work required to generate Voronoi2 layers. Basically it consists of two steps:

1) Crafting the nomenclature upon which the Voronoi2 mapping layer will be based The detailed version of the Eurostat map of LAU2 units that is supposed to use the same nomenclature and codes as in the 2011 census data at a scale of 1: 100 000 was used. This shapefile was first adapted from EuroBoundaryMap versions 6.0 and , 6.2 by GISCO. In order to make this modified file fully compatible with census data, the ESPON MapKit project then made some manual adjustments to this map when this was possible (e.g. merging units in BG, splitting parishes that crossed NUTS borders in the UK), and used elements from EuroBoundaryMap v6 and v10 in other cases (e.g. Danish municipalities).

Also, for countries where no geometries or non-matching geometries in the 2011 census files were provided, different versions of the EuroBoundaryMaps were used either as reference or as full source of information (i.e. EL). This information is also specified in the corresponding metadata.

ESPON 2020

In the Danish case, 4 uninhabited church parishes ('Sogn') could not be associated with any geometry. Therefore, these 4 records were deleted (further information is provided in the metadata file).

The resulting shapefile has been named 'ESPON LAU2 Census 2011'.

b) Generating the centroids from the resulting mapping layer

Centroids are points that GIS create at the centre of a polygon. They are the starting point for generating a Voronoi mapping layer.

There are many cases where centroids are placed outside the geographic object they represent and "fall" in the neighbouring object or in the sea (green dot in Figure 2 -15). This is the reason why the command "inner centroid" has to be used in order to guaranty that centroid computed are forced to fall within their original geographic object (orange square in As a reminder, the degree of generalisation depends on the scale at which the mapping layer will be used. The Voronoi layer may for example be used to represent local data at macroregional level. It has to be neither too precise nor not too coarse, in order to map to convey its message in the most efficient way.

While the Natural Earth 50m map fullfills has an appropriate level of generalisation, some problems occur because its generalised national borders in some cases position centroids that have been generalised at LAU2 level in the wrong wountry. This national border is shown in black in Figure 2 -18.

ESPON 2020 The UNIGE coastline is based on GADM map. In order to generalise the coast line, improve visibility for small islands and facilitate the creation of Voronoi polygons, a buffer of 1'500 meters was applied to the original GADM coastline. Major estuaries and fjords that were closed by this buffering) were drawn manually. As a consequence, costalines are located a bit further into the sea when compared to their actual geographical position. ESPON 2020

Due to the substantial number of LAU units of the census 2011 (117'709 objects), it has been decided not to generate the Voronoi layer as a whole, but country by country. This will also make future updates of the Voronoi LAU2 layer easier, as each country can be processed separately to reflect significant changes in LAU2 boundaries.

f) Generating the Voronoi diagram

The Voronoi diagram is generated from the centroids obtained as the result of the process exposed in step b). The Voronoi areas are computed by using the appropriate GIS command (the name of the command is specific to each software). As the result of the process of generating Voronoi polygons, a municipality that is contiguous to a coast, a major lake or a national border in the EuroBoundaryMap may lose this feature in the resulting geometry. Inversely, a municipality that is not contiguous to a coast or border a national in the EuroBoundaryMap may be assigned a coastline or a portion of national border.

In order to ensure that the output map is topological consistent with the actual situation with regards to coastlines, major laes and national borderlines, manual adjustments have been carried on so far as possible. In a few cases, manual corrections have not been possible, e.g.

LAU2 bordering long and narrow fjords. In the case of Europe's largest municipalities (e.g. in the Nordic countries, Iceland and Guyana) the generation of the Voronoi diagram led to differences that are so obvious that they disturb the cartographic message, even at a macro-regional level. At a much narrower scale, the same is true for small islands with only few municipalities.

In both cases manual adjustment is necessary so as to ensure minimum congruence between the Voronoi layer and the original geometry in order not to convey the desired the cartographic message. ESPON 2020

Lakes and estuaries are easily identifiable geographical structures as well. Bordering municipalities therefore require particular attention so as to ensure minimum coherence with regard to their relative position in relation with the lake.

When adjusting municipalities that are contiguous to a major lake, small fragments (so-called "branched objects") may result from the clipping of the Voronoi polygons with the lake. These fragments must be reattributed to the polygon that makes the most sense, from a geographic perspective. With regard to cartographic message, it is therefore essential to reproduce manually this type of territorial structure that is blurred when generating the Voronoi. Oppositely, the urban structure is in other cases composed by a large central municipality surrounded by small peripheral municipalities. In such a case, owing to the nature of the Voronoi (closer to the point around which it is drawn than to any other point), the central unit will become much smaller, while the surrounding units will be crafted much larger than they really are. Resulting effect is that important territorial structure -because often referring to metropolitan areas -is lost. Once again it is necessary to reproduce manually this type of territorial structure that is blurred when generating the Voronoi. -First, errors may have been introduced when making the manual adjustments listed above (steps h), i), j)). Topology control will be run only within the Voronoi mapping layer itself.

-Second, topological errors are generated along national border when Voronoi mapping layers from two contiguous countries are merged into a single shapefile. In the initial shapefile of each country, straight lines along their external border will be subdivided in as many segments are there are LAU2 units bordering the neigbouring country. The position and length of these segments will not coincide along the two countries' shared border, as they will in each case reflect each country's respective LAU2 delineation. When the shared border is transformed into a single line in the merged file, one therefore has to subdivide it into new segments, that take into account both countries' LAU2 delineation along the border. This is done in the following way:

1) compose a single shapefile with all elements (Voronoi diagrams, lakes, microstates, neighbouring countries and other if relevant)

2) run a topological tool with best precision on this file 3) correct (if the tool does not make it automatically) all topological errors ESPON 2020 4) select elements by type (Voronoi diagrams, lakes, microstates, neighbouring countries and other if relevant) and to export them in distinct file Even if few topological errors are visible on output maps, one should not underestimate the importance of this task. Indeed, cleaning topological errors is essential for further processing of the resulting GIS file, such as R automatized treatments, running cartograms software, etc.

Updating Voronoi mapping layer

The ESPON 2020 programme may in the future need to adapt the Voronoi thematic mapping layer for some countries, to present data in updated territorial nomenclature. In order to do so, the project team is invited to follow some of the steps detailed previously:

1) Adjusting EuroBoundaryMap units (a)

2) Generating the centroids from the resulting mapping layer (b)

3

Input layers preparation

Layout creation

Starting from a template designed in a CAD (Computer Aided Drafting, such as Adobe Illustrator), the template creation is designed with a R programme in order to be sure that the layout (ESPON blue stripes) will always have the same width, whatever the geographical extent of the Mapkit.

Layers and territories selection / intersection with the layout

Irrespective of the template, a four steps procedure needs to be followed when creating a MapKit: (a.) selection of layers, (b.) selection of territories, (c.) intersection of layers intersection and (d.) definition of scale value.

In the ESPON 2020 MapKit project, all this process has been designed in a R Programme.

This programming technology allows to reproduce easily the MapKits using systematically the same parameters. Annex 2 provides the code used for the Alpine Space MapKit. It is important to remind that these four steps could also be fully realised using a GIS, but it would be more time-consuming ("click-button" procedure).

a) Selection of layers

The document specifies all the layers that should be included in the ESPON MapKits. First step consists in selecting in the "input" folder all the relevant layers (1 in Figure 3 -35).

b) Selection of territories

This second step is adapted for ESPON Transnational MapKits, where not all LAU2 units of the bounding box are displayed in the map. In such cases, it implies to select territorial units to be included in the MapKit (2 in Figure 3 -35).

In the ESPON 2020 MapKits project, it is done with the R programme (prg folder of the delivery). But it could be done also directly within a GIS environment. NUTS0-1-2-3 codes must be specified for each LAU2 territorial unit.

ESPON 2020

Layer organisation and styles definition in the GIS

Whatever the software used, it is compulsory to import all layers to be included in the ESPON MapKit in the GIS. It is also mandatory to define their graphic styles.

Layers are imported and superposed as follow, from the top to the bottom of the map template, with their associated styles (Table 3 -1, Table 3 -2, Table 3 -3) Due to software implementation and bounding box extent, it is possible that minor differences occur between software implementations. The table below summarizes the styles of all the layers and font implemented in ESPON MapKits. These styles (in particular line/dot width) fit with a A4 templated map (with 20 mm margins on the top, on the left and on the right).

ESPON 2020 In QGIS, layer styles and fonts are managed in the layer properties (Figure 3 -36, on the left for QGIS and on the right for ArcGIS). One has to print a new Map Composer (named " mapkit"). Firstly, the map must be imported and the bounding box must be adjusted to the A4 page (point 1 in the Figure above).

Secondly, all the requested elements of the map template must be imported/created (ESPON logos and European Commission in a vector format, title, data sources, point 2 in the figure above). Finally, the styles, sizes and position in the map template must be fixed.

ESPON Template design in ArcGIS

In ArcGIS, the process consists in defining the size and the position of the A4 page (Data Frame Properties -> Size and Positions 5). Then, it requires specifying the extent of the map template (Data Frame Properties -> Data Frame). Note that all the MapKits delivered to the ESPON EGTC in .ai format are carefully checked in this way.

ESPON 2020 Annex 1 -R Programme -Build a ESPON Map template correctly sized # Main frame id <-1 type <-"mainframe" rect.sp <-rgeos::readWKT(paste("POLYGON((",xmin," ",ymin,",",xmin," ",ymax,",",xmax," ",ymax,",",xmax," ",ymin,",",xmin," ",ymin,"))",sep="")) x1 <-xmin -width ; x2 <-xmin ; y1 <-ymin + lengthbottomleft ; y2 <-ymax -lengthtopleft r.sp <-rgeos::readWKT(paste("POLYGON((",x1," ",y1,",",x1," ",y2,",",x2," ",y2,",",x2," ",y1,",",x1," ",y1,"))",sep="")) rect.sp <-gUnion(rect.sp, r.sp) rect.spdf <-SpatialPolygonsDataFrame(rect.sp, data.frame(id=id, type=type)) # Band right id <-id + 1 type <-"stripe" x1 <-xmax ; x2 <-xmax + width ; y1 <-ymin -extralength; y2 <-ymax r.sp <-rgeos::readWKT(paste ("POLYGON((",x1," ",y1,",",x1," ",y2,",",x2," ",y2,",",x2," ",y1,",",x1," ",y1,"))",sep="")) r.spdf <-SpatialPolygonsDataFrame(r.sp, data.frame(id=id, type=type)) row.names(r.spdf) <-as.character(id) rect.spdf <-rbind(rect.spdf,r.spdf) # Band top left id <-id + 1 type <-"stripe" x1 <-xmin -width ; x2 <-xmin ; y1 <-ymax -lengthtopleft; y2 <-ymax + extralength r.sp <-rgeos::readWKT(paste ("POLYGON((",x1," ",y1,",",x1," ",y2,",",x2," ",y2,",",x2," ",y1,",",x1," ",y1,"))",sep="")) r.spdf <-SpatialPolygonsDataFrame(r.sp, data.frame(id=id, type=type)) row.names(r.spdf) <-as.character(id) rect.spdf <-rbind(rect.spdf,r.spdf) # Band bottom left id <-id + 1 type <-"stripe" x1 <-xmin -width ; x2 <-xmin ; y1 <-ymin ; y2 <-ymin + lengthbottomleft r.sp <-rgeos::readWKT(paste ("POLYGON((",x1," ",y1,",",x1," ",y2,",",x2," ",y2,",",x2," ",y1,",",x1," ",y1,"))",sep="")) r.spdf <-SpatialPolygonsDataFrame(r.sp, data.frame(id=id, type=type)) row.names(r.spdf) <-as.character(id) rect.spdf <-rbind(rect.spdf,r.spdf) # Small line (top) id <-id+1 type <-"line" x1 <-xmin -width*2 ; x2 <-xmin -width*2 + linesize ; y1 <-ymax -linewidth/2 ; y2 <-ymax -linewidth/2 l.sp <-rgeos::readWKT(paste("LINESTRING(",x1," ",y1,",",x2," ",y2,")",sep="")) r.sp <-gBuffer(l.sp, byid=FALSE, id=NULL, width=linewidth/2, quadsegs=5, capStyle="ROUND",joinStyle="ROUND", mitreLimit=1.0) row.names(r.sp) <-"1" r.spdf <-SpatialPolygonsDataFrame(r.sp, data.frame(id=id, type=type)) row.names(r.spdf) <-as.character(id) rect.spdf <-rbind(rect.spdf,r.spdf) # Small line (bottom) id <-id+1 type <-"line" x1 <-xmax + width*2 -linesize ; x2 <-xmax + width*2 ; y1 <-ymin + linewidth/2 ; y2 <-ymin + linewidth/ 2 l.sp <-rgeos::readWKT(paste("LINESTRING(",x1," ",y1,",",x2," ",y2,")",sep="")) r.sp <-gBuffer(l.sp, byid=FALSE, id=NULL, width=linewidth/2, quadsegs=5, capStyle="ROUND",joinStyle="ROUND", mitreLimit=1.0) row.names(r.sp) <-"1" r.spdf <-SpatialPolygonsDataFrame(r.sp, data.frame(id=id, type=type)) row.names(r.spdf) <-as.character(id) rect.spdf <-rbind(rect.spdf,r.spdf) Annex 2 -R Programme -Select the layers and intersect with the template layer -Alpine Space example # This R Programme build the ESPON Transnational MapKit for the Alpine Space # Aim of the Programme # 1 -Build the template shapefile using the bounding box parameters # 2 -Select the territories to be displayed in the MapKit (SQL request) # 3 -Build the layout (cf Annex 1) # 4 -Create the folder architecture to export the shapefiles correctly # 5 -Import input layers and intersect with the template in the appropriate cartographic projection system # 6 -Create a scale shapefile after having specified the scale value # Requires R librairies library("rgdal") library("mapinsetr") library("rgeos") library("maptools") library("foreign") library("sqldf") library("reshape2") # Set working directory and import the BuildEmptyTemplate function for creating the template shapefile setwd("/home/nlambert/Documents/ESPON/ESPON-MapKits-2016/prg") source("sources/BuildEmptyTemplate.R") folder <-"Transnat-Alpine" prj <-"+proj=laea +lat_0=52 +lon_0=10 +x_0=4321000 +y_0=3210000 +ellps=GRS80 +units=m +no_defs" # folder dir.create(paste("../Mapkits/",folder,sep="")) shpfolder <-paste("../Mapkits/",folder,"/shp",sep="") dir.create(shpfolder) # template template.spdf <-buildTemplate (xmin, xmax, ymin, ymax, prj) writeOGR(obj=template.spdf, dsn=shpfolder, layer="template", driver="ESRI Shapefile",overwrite_layer=TRUE,verbose=F) # Voronoi voronoi.spdf <-readOGR(dsn = "../input/Voronoi(new)/Census2011_LAU", layer = "Vor2_Census2011_Su_v3", verbose = TRUE) voronoi.spdf@data$SN3_2013 <-voronoi.spdf@data$NUTS_3_202 voronoi.spdf@data$SN2_2013 <-substr(voronoi.spdf@data$NUTS_3_202,1,4) voronoi.spdf@data$SN1_2013 <-substr(voronoi.spdf@data$NUTS_3_202,1,3) voronoi.spdf@data$SN0_2013 <-substr(voronoi.spdf@data$NUTS_3_202,1,2) com.spdf <-voronoi.spdf tb <-as.data.frame(com.spdf@data) result <-sqldf(sql) result$area <-1 com.spdf@data <-data.frame (com.spdf@data, result[match(com.spdf@data[,"CENS_ID"], result[,"CENS_ID"]),]) com.spdf <-com.spdf [!is.na(com.spdf@data$area) # Lakes lakes.spdf <-readOGR(dsn = "../input/Voronoi(new)/Lakes", layer = "Vor2_Lakes_Su", verbose = TRUE) sr <-gIntersection(lakes.spdf, template.spdf[template.spdf@data$type=="mainframe",], byid=TRUE) if(!is.null(sr)){ ids <-(do.call ('rbind', (strsplit(as.character(row.names(sr))," "))))[,1] row.names(sr) <-ids data <-as.data.frame(lakes.spdf@data[row.names(lakes.spdf@data) %in% ids,]) colnames(data) <-colnames(lakes.spdf@data) row.names(data) <-ids lakes.spdf <-sp::SpatialPolygonsDataFrame(Sr = sr, data = data, match.ID = TRUE) writeOGR(obj=lakes.spdf, dsn=shpfolder, layer="lakes", driver="ESRI Shapefile",overwrite_layer=TRUE,verbose=F) }else {rm(lakes.spdf)} # NUTS 2013 nuts3_2013.spdf <-readOGR(dsn = "../input/Voronoi(new)", layer = "NUTS3_2013", verbose = TRUE) sr <-gIntersection(nuts3_2013.spdf, template.spdf[template.spdf@data$type=="mainframe",], byid=TRUE) if(!is.null(sr)){ ids <-(do.call ('rbind', (strsplit(as.character(row.names(sr))," "))))[,1] row.names(sr) <-ids data <-as.data.frame(nuts3_2013.spdf@data[row.names(nuts3_2013.spdf@data) %in% ids,]) colnames(data) <-colnames(nuts3_2013.spdf@data) row.names(data) <-ids nuts3_2013.spdf <-sp::SpatialPolygonsDataFrame(Sr = sr, data = data, match.ID = TRUE) writeOGR(obj=nuts3_2013.spdf, dsn=shpfolder, layer="nuts3_2013", driver="ESRI Shapefile",overwrite_layer=TRUE,verbose=F) } # NUTS 2010 nuts3_2010.spdf <-readOGR(dsn = "../input/Voronoi(new)", layer = "NUTS3_2010", verbose = TRUE) sr <-gIntersection(nuts3_2010.spdf, template.spdf[template.spdf@data$type=="mainframe",], byid=TRUE) if(!is.null(sr)){ ids <- (do.call('rbind', (strsplit(as.character(row.names(sr))," "))))[,1] row.names(sr) <-ids data <-as.data.frame(nuts3_2010.spdf@data[row.names(nuts3_2010.spdf@data) %in% ids,]) colnames(data) <-colnames(nuts3_2010.spdf@data) row.names(data) <-ids nuts3_2010.spdf <-sp::SpatialPolygonsDataFrame(Sr = sr, data = data, match.ID = TRUE) writeOGR(obj=nuts3_2010.spdf, dsn=shpfolder, layer="nuts3_2010", driver="ESRI Shapefile",overwrite_layer=TRUE,verbose=F) } # FUA FUA.spdf <-readOGR(dsn = "../input/Voronoi(new)", layer = "FUA", verbose = TRUE) all <-FUA.spdf studyarea <-gBuffer(com.spdf,width=0,byid = F) studyarea <-gBuffer(studyarea,width=-1000,byid = F) tmp <-gWithinDistance(FUA.spdf, spgeom2 = studyarea, dist=0,byid=TRUE, hausdorff=FALSE, densifyFrac = NULL) tmp <-melt(tmp) head(tmp) FUA.spdf@data <-data.frame(FUA.spdf@data, tmp[match(row.names(FUA.spdf), tmp[,"Var2"]),"value"]) FUA.spdf <-FUA.spdf [FUA.spdf@data[,3],] FUA.spdf@data <-FUA.spdf@data[,c(1,2)] writeOGR(obj=FUA.spdf, dsn=shpfolder, layer="FUA", driver="ESRI Shapefile",overwrite_layer=TRUE,verbose=F) # Borders nuts0.spdf <-readOGR(dsn = "../input/Voronoi(new)", layer = "NUTS0_2013", verbose = TRUE) sr <-gIntersection(nuts0.spdf, template.spdf[template.spdf@data$type=="mainframe",], byid=TRUE) ids <- (do.call('rbind', (strsplit(as.character(row.names(sr))," "))))[,1] row.names(sr) <-ids data <-as.data.frame(nuts0.spdf@data[row.names(nuts0.spdf@data) %in% ids,]) colnames(data) <-colnames(nuts0.spdf@data) row.names(data) <-ids nuts0.spdf <-sp::SpatialPolygonsDataFrame(Sr = sr, data = data, match.ID = TRUE) borders.spdf <-getBorders(nuts0.spdf) writeOGR(obj=borders.spdf, dsn=shpfolder, layer="borders", driver="ESRI Shapefile",overwrite_layer=TRUE,verbose=F) # CoastLine poly <-gBuffer(nuts3_2013.spdf,byid=F,width=1) if (exists("neighbour.spdf")){poly <-gUnion(poly,neighbour.spdf)} poly <-gBuffer(poly,byid=F,width=100) sr <-as(poly , 'SpatialLines') sr2 <-gBuffer(as(template.spdf[template.spdf@data$type=="mainframe",] , 'SpatialLines'),width=2000) sr <-gDifference(sr, sr2, byid=FALSE, id=NULL, drop_lower_td=FALSE,unaryUnion_if_byid_false=TRUE, checkValidity=FALSE) row.names(sr) <-"1" data <-as.data.frame(c("id","name")) data <-as.data.frame("id") data[1]<-"coastline" coastline.spdf <-sp::SpatialLinesDataFrame(sr, data = data, match.ID = TRUE) writeOGR(obj=coastline.spdf, dsn=shpfolder, layer="coastline", driver="ESRI Shapefile",overwrite_layer=TRUE,verbose=F) # SCale bb <-template.spdf[template.spdf@data$type=="mainframe",]@bbox xmax <-bb[3] ymin <-bb[2] w <-bb[3] -bb[1] h <-bb[4] -bb[2] xpos <-xmax -scaleVal -w/50 ypos <-ymin + h/50 scale.sp <-rgeos::readWKT(paste("LINESTRING(",xpos," ",ypos,",",xpos+scaleVal," ",ypos,")",sep="")) scale.spdf <-SpatialLinesDataFrame(scale.sp, data.frame(id="main", value=paste((scaleVal/1000),"km",sep=" "))) proj4string(scale.spdf) <-prj writeOGR(obj=scale.spdf, dsn=shpfolder, layer="scale", driver="ESRI Shapefile",overwrite_layer=TRUE,verbose=F) # Capital cities cities.spdf <-readOGR(dsn = "../input/world", layer = "capital", verbose = TRUE,encoding = " ISO-8859-1") cities.spdf <-spTransform(x = cities.spdf, CRSobj = prj) sr <-gIntersection(cities.spdf, template.spdf[template.spdf@data$type=="mainframe",], byid=TRUE) ids <- (do.call('rbind', (strsplit(as.character(row.names(sr))," "))))[,1] row.names(sr) <-ids data <-as.data.frame(cities.spdf@data[row.names(cities.spdf@data) %in% ids,]) row.names(data) <-ids cities.spdf <-sp::SpatialPointsDataFrame(coords = sr@coords, data = data, match.ID = TRUE) proj4string(cities.spdf) <-prj #cities.spdf <-cities.spdf[!cities.spdf@data$NAME %in% c("Dublin","Luxembourg"),] writeOGR(obj=cities.spdf, dsn=shpfolder, layer="capital-cities", driver="ESRI Shapefile",overwrite_layer=TRUE,verbose=F) # bbox for QGIS Print Composer template.spdf@bbox ESPON 2020 50

Install required librairies # ## library("rgeos") library("rgdal") ### # Function BuildTemplate # ###
proj4string(rect.spdf) <-prj return (rect.spdf) } ### # EXAMPLE -ESPON NARROW MAPKIT # ### # Set

 ..13 2.1.2Why using Voronoi diagram in ESPON Mapkit?...13 2.2 Creation of the Voronoi mapping layer...14 2.2.1Preliminary work to the creation of the LAU Voronoi..14 2.2.2Steps to generate the Voronoi diagrams, country per country................................18 2.3 Updating Voronoi mapping layer...26 3 Creating a MapKit in QGIS, ArcGIS and Adobe Illustrator formats.................................27 3.1 Input layers preparation.. 27 3.2 Layout creation... 28 3.3 Layers and territories selection / intersection with the layout..28 3.4 Layer organisation and styles definition in the GIS...29 3.5 Labels (capital cities) edition and exceptions..31 3.6 ESPON Template design in QGIS..33 3.7 ESPON Template design in ArcGIS...34 3.8 Apply relative paths, duplicate MapKit folder and copy-paste .qgs and .mxd documents .. 35 3.9 ESPON Template design in Adobe Illustrator...36 References... 38 ESPON 2020

Figure 1 - 1 :

 11 Figure 1-1: Formalisation of NUTS changes (Source : ESPON Database Project, 2011)........2 Figure 1-2: Regions in the European Union, a useful document to check the validity of NUTS changes.. 3 Figure 1-3: List of changes between the NUTS versions 2013 and 2016.................................4 Figure 1-4: Official geometries of NUTS units provided by Eurostat...4 Figure 1-5: Update of the NUTS3 layer / Step 1 : Upload useful reference NUTS3 layer in a GIS.. 6 Figure 1-6: Update of the NUTS3 layer / Step 2 : Manage the code changes in the attribute table of the new NUTS layer... 7 Figure 1-7: Update of the NUTS3 layer / Step 3 : Manage territorial merge.............................7 Figure 1-8: Update of the NUTS3 layer / Step 4 : Manage boundary changes by firstly splitting territorial units (on the left) and secondly merging territorial units belonging to the same territorial units (on the right).. 8 Figure 1-9: Using GADM reference to add new countries without Eurostat reference in the GREAT World layer (work done within M4D and ITAN projects for the European Neighbourhood).. 9 Figure 1-10: In the NUTS3 attribute table, create NUTS2, NUTS1 and NUTS0 fields..............9 Figure 1-11: Dissolve the NUTS3 layer by attribute of the NUTS2 field and correction of topological problems afterwards...10 Figure 1-12: Quality check of the NUTS2 in Poland using the Regions of European Union document.. 11 Figure 1-13: Metadata for the ESPON NUTS nomenclatures...12 Figure 2-1: Voronoi diagram methodology..13 Figure 2-2: Forcing centroids to fall within their geographical objects.....................................15 Figure 2-3: LAU2 centroids for the Voronoi layer..15 Figure 2-4: Ensuring coherent degree of generalisation for neighbouring countries...............16 Figure 2-5: Adaptation of the national borders following the centroid structure of the country .. 16 Figure 2-6: Creation of a dedicated coastline for the Voronoi layer..17

Figure 2 - 7 :

 27 Figure 2-7: Insert lakes of more than 250 km² in the Voronoi layer..18 Figure 2-8: Voronoi diagram creation..18 Figure 2-9: Clip the Voronoi diagram with the polygon of its respective country.....................19 ESPON 2020 iv

Figure 1 - 1 :

 11 Figure 1-1: Formalisation of NUTS changes (Source : ESPON Database Project, 2011)

Figure 1 - 2 :

 12 Figure 1-2: Regions in the European Union, a useful document to check the validity of NUTS changes

Figure 1 - 3 :

 13 Figure 1-3: List of changes between the NUTS versions 2013 and 2016

 NUTS2016 division have not yet been published. The screenshots displayed below use QGIS software, but the process would be exactly the same using ArcGIS. The first step consists in uploading the NUTS3 layer in the previous NUTS version (nuts3geo-2010 in this example) of the GREAT Europe layer in a chosen GIS and in duplicating it with the new name of the NUTS version (nuts3-geo-2013 if the update is for the NUTS 2013 version). The official layer provided by Eurostat is also uploaded in the GIS (NUTS_RG_01M_2013). It will be useful to process C3-type changes. Finally when adding new countries in the GREAT layer (C4-type change), GADM layers provide useful information 3 . All edits that are described in this part will be applied to nuts3-geo-2013 layer. The other layers are useful to check the quality of the process.

Figure 1 - 5 :

 15 Figure 1-5: Update of the NUTS3 layer / Step 1 : Upload useful reference NUTS3 layer in a GIS

Figure 1 - 6 :

 16 Figure 1-6: Update of the NUTS3 layer / Step 2 : Manage the code changes in the attribute table of the new NUTS layer

Figure 1 - 7 :

 17 Figure 1-7: Update of the NUTS3 layer / Step 3 : Manage territorial merge

Figure 1 - 8 :

 18 Figure 1-8: Update of the NUTS3 layer / Step 4 : Manage boundary changes by firstly splitting territorial units (on the left) and secondly merging territorial units belonging to the same territorial units (on the right).

Figure 1

 1 Figure 1-9: Using GADM reference to add new countries without Eurostat reference in the GREAT World layer (work done within M4D and ITAN projects for the European Neighbourhood).

Figure 1 -

 1 Figure 1-10: In the NUTS3 attribute table, create NUTS2, NUTS1 and NUTS0 fields

Figure 1 -

 1 Figure 1-12: Quality check of the NUTS2 in Poland using the Regions of European Union document

Figure 1 -A

 1 Figure 1-13: Metadata for the ESPON NUTS nomenclatures

Figure 2 -

 2 Figure 2-14: Voronoi diagram methodology

(

 steps a) and b)). The objective is to use a nomenclature that is fully compatible with the Eurostat Census 2011. 2) Generating the NUTS0 geometries that are seamlessly compatible both with the rest of the world countries as proposed by the Natural Earth 50m mapping layer and with the coastline created by UNIGE for the original Voronoi map (c, d and e) a) Adjusting EuroBoundaryMap units and versions to the Census 2011 nomenclature

Figure

 Figure 2 -15).

Figure 2 -

 2 Figure 2-15: Forcing centroids to fall within their geographical objects

Figure 2 -

 2 Figure 2-16: LAU2 centroids for the Voronoi layer

Figure 2 -

 2 Figure 2-17: Ensuring coherent degree of generalisation for neighbouring countries

Figure 2 -

 2 Figure 2-18: Adaptation of the national borders following the centroid structure of the country

Figure 2 -

 2 Figure 2-19: Creation of a dedicated coastline for the Voronoi layer

Figure 2 -

 2 Figure 2-20: Insert lakes of more than 250 km² in the Voronoi layer

Figure 2 -

 2 Figure 2-21: Voronoi diagram creation

Figure 2 -

 2 Figure 2-22: Clip the Voronoi diagram with the polygon of its respective country

Figure 2 -

 2 Figure 2-24: Example of manual adjustment to re-establish contiguity to a coast or a border

Figure 2 -

 2 Figure 2-25: Example of manual adjustment to re-establish discontinuity to a coast or a border

Figure 2 -

 2 Figure2-26: Manual adjustment of the LAU2 layer for large municipalies(French Guyane)

Figure

 Figure 2-27: Fix "branched objects"

Figure 2 -

 2 Figure 2-29: Manual adjustments in the Voronoi layer for urban object surrounded by rural territories

Figure 2 -

 2 Figure 2-30: Large central municipalities surrounded by "small" peripheral municipalities

Figure 2 -

 2 Figure 2-31: Manual adjustment in the Voronoi layer for large central municipalities surrounded by "small" peripheral municipalities

Figure 2 -

 2 Figure 2-32: Fragments to be unified

Figure 2 -

 2 Figure 2-33: Reattribute fragments to the polygon that makes the most sense

) Generating the Voronoi diagram (f) 4) Clipping the Voronoi diagram with the Voronoi NUTS0 polygon for the country concerned (g) 5) Adjusting manually the geographical coherence (contiguity) (h) 6) Adjusting manually the geographical coherence (geographical characteristics) (i) 7) Adjusting manually remaining blunders (j) 8) Cleaning topological errors (k)However before going into such a process, one should be informed that the method is quite the MapKit creation process for the ESPON EGTC. It is not intended to be disseminated to ESPON Projects in that form (cf Using ESPON MapKits guidance document).

 When creating a MapKit, the most time-consuming task consists in preparing all the requested geographical layers and checking their topologic validity and codes. All geographical layers used by ESPON 2020 MapKits are located in the "input" folder. All are plotted using the World Geodetic System (WGS84) reference system. It corresponds to the reference coordinate system used by the Global Positioning System.

Figure 3 -

 3 Figure 3-34: Input layers used by ESPON 2020 MapKits

 This R Programme displayed in Annex 1 is quite simple to use. In an R environment, one first needs to install the required packages (rgeos and rgdal), and then to to execute the function 'BuildTemplate'. The function is designed in a way to be fully compatible with the layout provided in an Adobe Illustrator format. The 'BuildTemplate' function takes in entry the bounding box parameters of the desired layout(xmin, xmax, ymin, ymax) and the cartographic projection parameters (prj). It returns a shapefile (template.shp) with the layout correctly sized in the desired cartographic projection.

Figure 3 -

 3 Figure 3-35: From the input layers to the MapKits, a GIS process to follow

Figure 3 -

 3 Figure 3-36: Layer properties in QGIS and ArcGIS

Figure 3 -

 3 Figure 3-37: Rule-based labeling in QGIS : Vienna and Ljubljana labels are placed 1 mm from the left of the dot instead of from the top

Figure 3 -

 3 Figure 3-39: Implementation process of the ESPON 2020 MapKit in QGIS

Figure 3 -

 3 Figure 3-40: Implementation process of the ESPON 2020 MapKit in ArcGIS

Figure 3 -

 3 Figure 3-41: Set the size and position properties of all the graphical elements in ArcGIS

Figure 3 -

 3 Figure 3-44 -Adjust graphic styles in Adobe Illustrator Environment

 This function has been designed following a template designed in Adobe Illustrator and provided by ESPON EGTC # It takes in entry the geographical coordinates (xmin, xmax, ymin, ymax) of the bounding box required and the cartographic projection system buildTemplate <-function(xmin, xmax, ymin, ymax, prj){ # Template parameters width <-(xmax -xmin) / 60 # Blue stripes width extralength <-width * 3 # Height of the extra length on the top and on the bottom of the template lengthtopleft <-(ymax -ymin) / 5 # Height of the stripe exceeding in top left lengthbottomleft <-(ymax -ymin) / 3 # Height of the strip exceeding in bottom left linewidth <-(xmax -xmin) / 300 # Width of the little horizontal stripes linesize <-(xmax -xmin) / 2.5 # Length of the little horizontale stripes

 selection sql <-"select CENS_ID from tb where SN0_2013 = 'AT' OR SN0_2013 = 'CH' OR SN0_2013 = 'Sl' OR SN2_2013 = 'FR42' OR SN2_2013 = 'FR43' OR SN2_2013 = 'FR71' OR SN2_2013 = 'FR82' OR SN2_2013 = 'ITC1' OR SN2_2013 = 'ITC2' OR SN2_2013 = 'ITC3' OR SN2_2013 = 'ITC4' OR SN2_2013 = 'ITH1' OR SN2_2013 = 'ITH2' OR SN2_2013 = 'ITH3' OR SN2_2013 = 'ITH4' OR SN2_2013 = 'DE13' OR SN2_2013 = 'DE14' OR SN2_2013 = 'DE27' OR SN2_2013 = 'DE21'" ## Bounding box of the layout xmin <-3819145 ymin <-2192065 xmax <-4867673 ymax <-2902955

Table of contents

 of 1 Updating GREAT-Europe layer... 1 1.1 Relevant data sources and formalization of NUTS change within a GIS framework.........1 1.2 Step by step procedure to update GREAT Europe layers..3 1.2.1Reference resources to be considered (Eurostat)..3 1.2.2Mapping territorial changes using reference document..5 1.2.3Update of the NUTS3 layer (new version)..5 1.2.4Aggregation of the NUTS3 into NUTS2, 1 and 0 and correction of topological mistakes... 9 1.2.5Quality check.. 10

1.2.6Documentation of territorial nomenclatures and geometries..................................11 2 Updating Voronoi.. 13 2.1 Introduction... 13 2.1.1What is a Voronoi?.

Table 3 -

 3 1: Layer styles -Layout (top)...30 Table 3-2: Layer styles -Statistical layers used to create ESPON thematic maps.................30 Table 3-3: Layer styles -Layout (bottom)...30

	ESPON 2020

Updating GREAT-Europe layer 1.1 Relevant data sources and formalization of NUTS change within a

Table 3 -

 3 1: Layer styles -Layout(top)

	Layer	Background	Line	colour
		colour (RGB)	(RGB)	

Line/dot width in mm Line /dot width in pixels

	Capital cities (dots)	(53, 53, 53)		1 mm	2,835 pt
	Frames (blue stripes)	(3, 78, 162)	None	None	None
	Frames (boxes)	None	(187, 189, 192)	0,2 mm	0,567 pt
	Scales	None	(76, 80, 81)	0,15 mm	0,425 pt
	Coastline	None	(210, 219, 232)	0,3 mm	0,85 pt
	North Cyprus	(255, 255, 255)	None	None	None
	National Borders	None	(255, 255, 255)	0,3 mm	0,85 pt
	Regional Borders (Transnational MapKits)	None	(255, 255, 255)	0,1 mm	0,2835 pt
	Disputed Borders	None	(200, 200, 200)	0,2 mm	0,567 pt
	Lakes	(247, 252, 254)	None	None	None
	Remote areas (non ESPON Space)	(230, 230, 230)	None	None	None

Table 3 -

 3

	Layer	Background	Line	colour	Line/dot width in	Line/dot width in
		colour (RGB)	(RGB)		mm	pixels
	LAU2-Voronoi / GREAT Europe GREAT World layers	(194, 232, 247)	Optional -If displayed (255, 255, 255)	Optional -if displayed 0,1 mm	Optional -if displayed 0,2835 pt
	FUA polygons (for transnational Mapkits)	(3, 78, 162)	Optional -If displayed (255, 255, 255)	Optional -if displayed 0,1 mm	Optional -if displayed 0,2835 pt

2: Layer styles -Statistical layers used to create ESPON thematic maps

Table 3

 3

		-3: Layer styles -Layout (bottom)		
	Layer	Background	Line	colour
		colour (RGB)	(RGB)	

Line/dot width in mm Line/dot width in pixels

 The table below summarizes the font to be used in the ESPON MapKits. For the readability of the map, elements must be graphically hierarchised.

	Frames (boxes) Countries Frames (main / sea) Title Legend title Legend values ESPON copyright Metadata box Capital cities Scale (main) Overseas territories + Malta and (247, 252, 254) (30, 230, 230) (247, 252, 254) (3, 78, 162) None None None Font colour (RGB) (0, 0, 0) (0, 0, 0) (53, 53, 53) (26, 23, 23) (0, 0, 0) (76, 80, 81) Liechtenstein names (0, 0, 0) ESPON 2020 Name Legend (overseas territories + Malta and Liechtenstein) (0, 0, 0)	None None None	None None None Font and size Arial, 14, bold Arial, 8, bold Arial, 6, normal Arial, 8, bold Arial, 6, normal Arial, 5.5, normal Arial, 5.5, normal Arial, 4 , normal Arial, 3.5 , normal

In May 2017, this document is not yet available for the NUTS2016 version.ESPON 2020

Serbia is taken as an example in this guidance document. However, in the ESPON 2020 MapKit project, Serbian NUTS3 have been imported from the ITAN project (the layer is seamless with GREAT Europe layers.ESPON 2020