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Abstract

Models of inflation in which the Higgs field is non-minimally coupled to gravity lead,
after a recaling of the metric, to a complicated expression for the potential of the in-
flaton field. Nevertheless, this potential produces the desired features, both theoretical
and experimental, after some approximations are made. In this note, we also allow for
a modification of the Higgs kinetic term in such a way that the resulting potential for
the inflaton field is, without any approximation, of the simplest form after the rescaling
of the metric.
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1 Introduction

The Standard Model of particles physics has proved to be a robust theory in describing the
observed interactions between particles at the level of particle accelerators. However, this
successful theory does not seem to answer questions related to the cosmological evolution
of the Universe. In particular, the nature of dark matter or dark energy as well as the
early inflationary regime of the Universe remain a mystery. In this note we will be mostly
concerned with the problem of inflation. Introductory reviews of cosmic inflation can be
found in [1, 2, 3, 4, 5, 6].

It is widely accepted now that inflation might be driven by a scalar field moving slowly
in a certain potential. The discovery of the Higgs field has completed the Standard Model
and opened a new window in cosmology. It is therefore tempting to identify the Higgs field
with the scalar field needed for inflation.

The issue now is how to couple the Standard Model to gravity in order to account for
inflation through the Higgs field. Various models can be constructed depending on what
kind of coupling one chooses. Accounts of the Higgs field in cosmology can be found in
[7, 8, 9, 10]. Here we will mention only what is called the non-minimal Higgs inflation model
as it is relevant to our study. In this theory, the coupling of the Higgs field to gravity is
given by the action [11, 12, 13]

S =

∫
d4x
√
−g
[
−1

2

(
M2 + 2ξ H†H

)
R + LSM

]
. (1.1)

The quantity LSM is the full Standard Model Lagrangian written in curved space-time and
H is the Higgs doublet. We will return to this model of inflation in some details in section 3.
It suffices to say for the moment that under a certain approximation (see later), this theory
gives a viable explanation of inflation.

In order to get the standard term
∫
d4x
√
−gR for the gravitational sector, the authors of

refs.[11, 12, 13] carried out a conformal rescaling of the metric field. This operation induced
a complicated expression for the potential of the Higgs field (or equivalently, gave a non-
canonical kinetic term for the Higgs field). Nevertheless, this complication disappears under
the above cited approximation [12, 13] .

The aim of this note is to provide a model of Higgs inflation where no approximation
is needed. We have simply modified the Higgs kinetic term in the Standard Model non-
minimally coupled to gravity. More specifically, we propose the model described by the
action

S =

∫
d4x
√
−g
[
−1

2

(
M2 + 2ξ H†H

)
R + F

(
H†H

)
(DµH)† (DµH) + L′SM

]
(1.2)

to account for inflation of the early Universe. Here L′SM is the Standard Model Lagrangian
without the gauge covariant kinetic term and the function F

(
H†H

)
is determined in such a

way that the resulting kinetic term of the inflaton field, after a rescaling of the metric, is in
the usual canonical form. This theory could be seen as an improvement of the proposition
of ref.[12]. It is also crucial to mention that the two models coincide for a large Higgs field
(which is precisely the approximation made in ref.[12]).

2



The article is organised as follows: In the next section we review the Starobinsky model
of inflation [14] as there are similarities between this model and non-minimal Higgs inflation
[15]. Some details of the non-minimal coupling of the Higgs field to gravity are given in
section 3. Our modification of the non-minimally coupled Higgs field is presented in section
4. We have also included, in section 5, a short study of Higgs-dilaton gravity with modified
kinetic terms. The last section is dedicated to some conclusions.

2 The Starobinsky model of inflation : An inspiration

Various models dealing with the issue of the rapid expansion of the early Univers have been
inspired by the Starobinsky model of inflation [15]. This is described by the action [14]

S0 =

∫
d4x
√
−g
[
−
M2

p

2
R +

1

12M2
S

R2

]
. (2.1)

As it is well-known, the quadratic term in the scalar curvature can be traded for a scalar
field [16]. One starts by writing the equivalent action

S1 =

∫
d4x
√
−g
[
−
M2

p

2

(
1 +

X

3M2
pM

2
S

)
R− X2

12M2
S

]
, (2.2)

where X is an auxiliary field whose equation of motion is X = −R. Upon replacing this in
the last action we recover the Starobinsky model (2.1).

The action (2.2) can be cast in a more familiar form by going to the Einstein frame
through the field redefinition

gµν −→ eωϕ(x) gµν with

(
1 +

X

3M2
pM

2
S

)
eωϕ(x) = 1 , ω = −

√
2

3

1

Mp

. (2.3)

With this conformal rescaling of the metric, the action (2.2) yields (up to a total derivative)

S2 =

∫
d4x
√
−g
[
−
M2

p

2
R +

1

2
gµν∂µϕ∂νϕ−

3

4
M4

pM
2
S (1− eωϕ)2

]
. (2.4)

The two actions (2.1) and (2.4) could be thought of as dual to each other.
We see that the field ϕ(x) is moving in a potential which is almost flat for very large

values of ϕ(x). This is the most sought feature which realises the slow-roll condition needed
for inflationary models. In this case the kinetic term of the field ϕ(x) is negligeable and the
cosmological evolution of the Universe is dominated by the constant term 3

4
M4

pM
2
S (playing

the role of a cosmological constant). The Starobinsky model is compatible with cosmological
measurements for MS ≈ 10−5 (see, for instance, refs.[8, 15] for the estimation of MS).

It is essentially the theory in (2.4) which was reached by the non-minimally coupled Higgs
field of ref.[12]. It was also shown in [15] that other models of inflation could be thought of,
under certain assumptions, as descendants of the Starobinsky model.
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3 The Higgs field non-minimally coupled to gravity

Here and in the rest of this note, we will assume that the Higgs doublet is in the unitary
gauge

H (x) =
1√
2

(
0
h (x)

)
. (3.1)

The Higgs field non-minimally coupled to gravity is described, in the Jordan frame, by the
action [11, 12, 13]

SJ =

∫
d4x
√
−g
[
−1

2

(
M2 + ξ h2

)
R +

1

2
∂µh∂

µh− λ

4

(
h2 − v2

)2]
. (3.2)

We have written down only the terms relevant to our study. The constant M and the reduced
Planck mass Mp = 1√

8πG
= 2.4335× 1018 GeV are related by

Mp
2 = M2 + ξ v2 (3.3)

with the Higgs field expectation value v = 246 GeV. We are assuming that ~ = c = 1.
This theory, however, is best studied in the Einstein frame by performing the conformal

transformation

gµν −→ eωϕ gµν with ω = −
√

2

3

1

Mp

. (3.4)

The fields ϕ and h are related by(
M2 + ξh2

)
eωϕ = M2

p . (3.5)

Therefore one can use either one of the two fields to explore the cosmological properties of
the theory. We find it more convenient to keep the field ϕ instead of the field h as it makes
the various approximations more transparent.

In terms of the field ϕ and up to a total derivative, the action in the Einstein frame is
given by

SE =

∫
d4x
√
−g
{
−
M2

p

2
R +

3

4
M2

pω
2

1 +
1

6ξ

1(
1− M2

M2
p
eωϕ
)
 gµν∂µϕ∂νϕ

− λ

4

(
M2

p

ξ

)2(
1− eωϕ

)2}
. (3.6)

We have used Mp
2 = M2 + ξ v2 in the last term. We notice that the potentiel terms is

readily in the much sought exponentiel form (as in the Starobinsky model). This is precisely
what one needs for inflation. However, the kinetic term for the scalar field ϕ is not standard.
Nevertheless, in the case when

M2

M2
p

eωϕ � 1 , ξ � 1 (3.7)
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the second term in the kinetic energy can be neglected and one arrives at the action1

SE '
∫
d4x
√
−g
{
−
M2

p

2
R +

1

2
gµν∂µϕ∂νϕ−

λ

4

(
M2

p

ξ

)2(
1− eωϕ

)2}
. (3.8)

This theory looks then very much like the Starobinsky model (2.4) with the identification
3M2

S = λ
ξ2

. The observed cosmological data requires ξ = 1.8× 104 for a Higgs self-coupling2

λ = 15× 10−2 (see [12, 13]). These values are also compatible with MS ≈ 10−5.
The authors of refs.[11, 12, 13] have adopted another route in studying the model in (3.2).

There, a standard kinetic term was obtained by introducing a new field χ through(
dχ

dϕ

)2

=
3

2
M2

pω
2

1 +
1

6ξ

1(
1− M2

M2
p
eωϕ
)
 . (3.9)

The action (3.6) becomes then

SE =

∫
d4x
√
−g
{
−
M2

p

2
R +

1

2
gµν∂µχ∂νχ− U (χ)

}
. (3.10)

The potential term U (χ) for the new field χ(x) is extracted from

U (χ) =
λ

4

(
M2

p

ξ

)2(
1− eωϕ

)2

(3.11)

by first integrating (3.9) and then expressing ϕ in terms of χ. This results in a quite
involved expression for U (χ). However, when M2

M2
p
eωϕ � 1 and ξ � 1 one sees from (3.9)

that ωϕ ' −
√

2
3

1
Mp

χ. In this case the actions (3.10) and (3.8) are the same after the

exchange ϕ↔ χ.

4 A scalar-tensor gravity with the Higgs field

In this section, we propose another modification of the coupling of the Standard Model to
gravity. The Higgs field is still non-minimally coupled to gravity. However, the Higgs kinetic
term is in a non-standard form3. In this way, we obtain (in the Einstein frame) a scalar field
with a canonical kinetic term moving in a potential having the desired exponential behaviour.
The important feature we should emphasise here is that no approximation is needed.

We start from the action

SJ =

∫
d4x
√
−g
[
−1

2

(
M2 + ξ h2

)
R +

1

2

ξ h2

(M2 + ξ h2)
∂µh∂

µh− λ

4

(
h2 − v2

)2]
. (4.1)

1The approximation M2

M2
p
eωϕ � 1 is the slow-roll condition and corresponds to h2 � M2

ξ as can be seen

from (3.5).
2The constant λ is related to the Higgs mass mH and the Higgs expectation value v by the relation

λ =
m2

H

2v2 '
(126)2

2×(246)2 ' 0.13.
3Modifications of the scalar kinetic term have been used in the context of attractor cosmology and chaotic

inflation. See refs.[17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] for a selection of articles on the subject.
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This means that the gauged kinetic term for the Higgs fields is modified as

2ξ
(
H†H

)
[M2 + 2ξ (H†H)]

(DµH)† (DµH) . (4.2)

Here Dµ is the usual SU (2) × U (1) gauge covariant derivative. It is important to notice

that in the limit h2 � M2

ξ
, the two models (4.1) and (3.2) coincide.

We reach the Einstein frame by rescaling the metric as

gµν −→ eωϕ gµν with
(
M2 + ξh2

)
eωϕ = M2

p . (4.3)

Keeping as our variable the scalar field ϕ, we arrive at the action (up to a total derivative)

SE =

∫
d4x
√
−g
{
−
M2

p

2
R +

1

2
gµν∂µϕ∂νϕ−

λ

4

(
M2

p

ξ

)2(
1− eωϕ

)2}
. (4.4)

The constant ω is fixed by the relation

ω = − 2

Mp

√
ξ

(1 + 6ξ)
' −

√
2

3

1

Mp

(for ξ � 1) . (4.5)

Again, the relation Mp
2 = M2 + ξ v2 has been used. The potential of the scalar field ϕ varies

slowly (the slow-roll condition) when eωϕ � 1. That is, inflation takes place for a large Higgs
field h as deduced from (M2 + ξh2) eωϕ = M2

p .
The theory defined by the action (4.4) has been obtained without any approximation.

On the contrary, for the inflationary model defined by (3.8) the approximations M2

M2
p
eωϕ � 1

and ξ � 1 are assumed [12, 13].
As usual, the first and second slow-roll parameters are defined by [1, 2, 3, 4, 5, 6]

ε =
M2

p

2

(
V ′

V

)2

, η = M2
p

V ′′

V
, (4.6)

where a prime stands for the derivative with respect to ϕ of the potential

V (ϕ) =
λ

4

(
M2

p

ξ

)2(
1− eωϕ

)2

. (4.7)

Moreover, the primordial power spectra of scalar perturbation and tensor perturbations
generated during inflation are characterised by three observables: the scalar power spectrum
amplitude As, the scalar spectral index (or tilt) ns and the tensor-to-scalar power ratio r.
In terms of the potential V (ϕ), these inflationary observables are given by (see, for example,
[29])

As =
1

24π2M4
p

V

ε
, ns = 1 + 2η − 6ε , r = 16ε . (4.8)
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Explicitly, we have

As =
1

192π2M2
pω

2

λ

ξ2
(1− eωϕ)4

e2ωϕ
,

ns = 1− 4M2
pω

2 e
ωϕ (1 + eωϕ)

(1− eωϕ)2
,

r = 32M2
pω

2 e2ωϕ

(1− eωϕ)2
. (4.9)

The quantities As, r and ns are evaluated at ϕ = ϕ∗ defined through

N∗ =
1

Mp

∫ ϕ∗

ϕend

dϕ√
2ε

=
1

2M2
pω

2

[ (
e−ωϕ∗ + ωϕ∗

)
−
(
e−ωϕend + ωϕend

) ]
. (4.10)

Here N∗ is the number of e-folds and ϕend is the value of the field at which inflation ends.
This is determined by the condition ε (ϕend) = 1 and is found to be given by

ϕend = − 1

ω
ln
(

1−
√

2Mpω
)
. (4.11)

If one uses the approximation Mpω ' −
√

2
3
, as given in (4.5), then ϕend ' 0.9402Mp.

The computation of ϕ∗ follows from (4.10) and we found

ωϕ∗ = W
(
−e−c

)
+ c ,

c ≡ 2M2
pω

2N∗ +
(
e−ωϕend + ωϕend

)
' 4

3
N∗ + 1.3870 . (4.12)

Here W is the Lambert functions satisfying W (x)eW (x) = x. The constant c ' 81.3870 for
N∗ = 60.

Since in our case the constant c is real and we have −e−1 < −e−c < 0 then W (−e−c)
could be either the principal branch W0 or the branch W−1. Using the defining relation of
W one gets

eωϕ∗ = − 1

W (−e−c)
. (4.13)

This is what one needs for the determination of the parameters ε, η and As given in (4.9).
See also [9] for a semilar treatment.

As −e−c is of the order of −10−36, the two branches of the Lambert function W (−e−c)
have, around zero, the expansions [30, 31, 32]

W0

(
−e−c

)
= −e−c −

(
−e−c

)2
+ . . . ,

W−1
(
−e−c

)
= −c− ln (c) + . . . . (4.14)

Choosing the branch W0 leads to an extremely big value for eωϕ∗ . Therefore, we take eωϕ∗ =
−1/W−1 (−e−c) and to first order we have eωϕ∗ ' 1/c.
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Substituting eωϕ by approximately 1/c in (4.9) and assuming that c� 1, we find that

As '
1

192π2M2
pω

2

λ

ξ2
c2 ' 1

72π2

λ

ξ2
N2
∗ . (4.15)

In the last expression we have taken c ' 4
3
N∗. The measured value for As is around [33]

As ' 10−10 e3.094 . (4.16)

This fixes the value of the parameter ξ as

ξ ' 600 c
√
λ ' 800N∗

√
λ . (4.17)

Taking N∗ ' 60 [33] and assuming that the Higgs self-coupling is λ = 0.15, we get the value

ξ ' 1.86× 104 . (4.18)

In the same way and for N∗ = 60, the quantities ns and r are approximately given by

ns ' 1− 2

N∗
' 0.9667 ,

r ' 12

N2
∗
' 0.0033 . (4.19)

These nicely agree with the measured values [33].
Before leaving this section, let us explore how does the field ϕ couple to the other fields

of the Standard Model. In the unitary gauge and according to (4.2), a generic coupling
between the Higgs field and any gauge field is of the form4

√
−g ξ h2

(M2 + ξ h2)
h2AµAνg

µν . (4.20)

Under the rescalings gµν −→ eωϕ gµν , Aµ −→ Aµ with (M2 + ξh2) eωϕ = M2
p , this coupling

term becomes

√
−g ξ h2

(M2 + ξ h2)
h2AµAνg

µν −→
M2

p

ξ

(
1− M2

M2
p

eωϕ
)2√

−g AµAνgµν . (4.21)

We see that in the inflationary phase when M2

M2
p
eωϕ � 1 a decoupling between the fields ϕ

and Aµ takes place.
The Yukawa terms have not been modified in this model. A generic mass generating

Yukawa interaction is still given by
√
−g h

(
ψ̄L χR + χ̄RψL

)
, (4.22)

where ψL is a left-handed fermion and χR is a right-handed fermion. Under the rescalings
gµν −→ eωϕ gµν , (ψL, χR) −→ e−

3
4
ωϕ(ψL, χR) together with (M2 + ξh2) eωϕ = M2

p , this
fermionic coupling term transforms into

√
−g h

(
ψ̄L χR + χ̄RψL

)
−→ Mp√

ξ

(
1− M2

M2
p

eωϕ
) 1

2 √
−g
(
ψ̄L χR + χ̄RψL

)
. (4.23)

The interaction between the field ϕ and the fermions is highly suppressed during inflation.

4When the Standard Model is coupled to gravity, all the fermionic kinetic terms as well as the gauge
kinetic terms are invariant under the local rescalings gµν −→ eωϕ gµν , Aµ −→ Aµ, ψL,R −→ e−

3
4ωϕ ψL,R.

The spacetime dependent Dirac γµ matrices are also rescaled as γµ −→ e−
1
2ωϕ γµ.
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5 Higgs-dilaton gravity

Our study could be extended to the Higgs-dilaton models of gravity [34, 35, 36, 37]. For
this, we consider the action

SJ =

∫
d4x
√
−g
[
−1

2

(
τ σ2 + ξ h2

)
R +

A

2
∂µσ∂

µσ +
B

2
∂µh∂

µh+ C ∂µσ∂
µh

− λ

4

(
h2 − ασ2

)2 − βσ4

]
. (5.1)

The quantities A, B and C are functions of the two scalar fields σ and h. The Higgs-dilaton
model correspond to A = B = 1 and C = 0 [34, 35, 36, 37].

As usual, we rescale the metric as

gµν −→ eωϕ gµν with
(
τ σ2 + ξh2

)
eωϕ = M2

p . (5.2)

The aim now is to find the functions A, B and C such that two of the scalar fields have
canonical kinetic terms and their corresponding potential is simple. As the three fields σ,
h and ϕ are related by the last relation, we choose to keep the two fields σ and ϕ. The
functions A, B and C that fulfill these requirements are

A =
τ σ2 + ξ h2

M2
p

+
4τ 2

(
1− 2

3
ω2M2

p

)
ω2M2

p

σ2

τ σ2 + ξ h2
,

B =
4ξ2
(
1− 2

3
ω2M2

p

)
ω2M2

p

h2

τ σ2 + ξ h2
,

C =
4τ ξ

(
1− 2

3
ω2M2

p

)
ω2M2

p

σ h

τ σ2 + ξ h2
. (5.3)

With these expression for A, B and C, the above rescaling of the metric yields the action

SE =

∫
d4x
√
−g
[
−
M2

p

2
R +

1

2
∂µσ∂

µσ +
1

2
∂µϕ∂

µϕ

− λ

4

(
M2

p

ξ

)2 [
1− ξ

M2
p

(
α +

τ

ξ

)
σ2 eωϕ

]2
− β

(
σ2 eωϕ

)2]
. (5.4)

Although the first term in the expression of A breaks the global scale invariance, the resulting
action in the Einstein frame is simple. It is appealing to investigate the cosmological conse-
quences of this theory along the lines of ref.[38]. We will report on this project elsewhere.
It is also worth treating the case A = B = 1 and C = constant, which preserves the global
scale invariance.

6 Conclusions

There is a freedom when it comes to coupling the Standard Model of particle physics to
gravity. Since the inclusion of gravity leads to non-renormalisability of the theory, the
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Standard Model coupled to gravity might therefore be viewed as an effective theory. In this
note we have exploited this freedom and proposed a viable effective theory for describing
the inflationary regime of the early Universe. We have modified the model, advocated in
ref.[12], where the Higgs field is non-minimaly coupled to gravity. The guiding principle to
this modification is that it results in i) a canonical kinetic term for the inflaton field and ii)
a simple slow-roll potential for this field. We have indeed succeeded in meeting these two
requirements without any approximation. This is achieved by modifying the Higgs kinetic
term. Our model is therefore a completion of the effective theory proposed in [12]. It totally
agrees with its cosmological findings as far as inflation is concerned. It is also in accordance
with the predictions of the Starobinsky model of inflation (R2-inflation) since one goes from
the theory in (2.4) to the one in (4.4) by the simple identification 3M2

S = λ
ξ2

.

A natural question5 arises now of how to distinguish between the theory of Higgs inflation
with a canonical kinetic term [12] from the model presented in this note ? There is in fact
a clear signature that could differentiate the two models. It resides in the way that the
inflaton field ϕ couples to the other fields of the Standard Model. In Higgs inflation with
the canonical kinetic term (DµH)† (DµH), a typical coupling between the field ϕ and any
gauge field Aµ is, in the unitary gauge, of the form

√
−g h2AµAνgµν −→

M2
p

ξ

(
1− M2

M2
p

eωϕ
)√
−g AµAνgµν . (6.1)

The second expression is obtained after the rescaling of the metric. This is to be compared

to (4.21) where the factor
(

1− M2

M2
p
eωϕ
)

is to the power 2. The coupling of the field ϕ to the

fermions is the same in both models and is as given in (4.23).
The coupling of the inflaton field ϕ to the massive gauge fields (the gauge bosons W+,

W− and Z) and to the fermions is relevant to the physics of the preheating that follows
inflation. The details of the preheating mechanism in the Standard Model non-minimally
coupled to gravity could be found in refs.[39, 40] with a summary in [13]. As a matter
of fact it is precisely this preheating which distinguishes Higgs inflation from R2-inflation
[41, 42, 43].

After the end of inflation (around ϕ = ϕend ' 0.9402Mp) and for small values of the
inflaton field ϕ, the potential is expanded as

V (ϕ) =
λ

4

(
M2

p

ξ

)2 [
ω2ϕ2 + ω3ϕ3 +

7

12
ω4ϕ4 + . . .

]
. (6.2)

To first approximation, only the quadratic term is maintained and the inflaton field ϕ in-
evitably oscillates around the minimum of the potential. This oscillatory energy is used to
create the heavy particles of the Standard Model which would then decay into light particles
[39, 40]. In a cosmological context, the field ϕ is a function of time. This implies that the
masses would also depend on time as can be seen from (4.21) and (4.23). To first order, the

5I thank an anonymous referee for insisting on this important point.
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masses of the gauge bosons in our model are

MW± =
g2
2

Mp√
ξ

(
1− M2

M2
p

eωϕ
)
' g2

2

Mp√
ξ

(
ξv2

M2
p

− M2

M2
p

ωϕ

)
,

MZ =
1

2

√
g21 + g22

Mp√
ξ

(
1− M2

M2
p

eωϕ
)
' 1

2

√
g21 + g22

Mp√
ξ

(
ξv2

M2
p

− M2

M2
p

ωϕ

)
. (6.3)

Here g1 and g2 are the gauge coupling constants associated to the gauge groups U(1)

and SU(2), respectively. Of course, the quantity ξv2

M2
p

is negligeable. On the other hand,

the gauge masses of ref.[12] are given by the same expressions but with the replacement(
ξv2

M2
p
− M2

M2
p
ωϕ
)
−→

(
ξv2

M2
p
− M2

M2
p
ωϕ
)1/2

. We would expect this difference to show up in the

preheating regime.
The evolution of the Universe after inflation (the preheating) is of importance in the

precise determination of the number of e-foldings N∗. This in turn leads to a better estimates
of the scalar spectral index ns and the tensor-to-scalar power ratio r. The complete analyses
of the preheating scenario (following the steps of [39, 40]) of the model presented here is out
of the scope of this note and we hope to treat it in the near future.
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