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The three dimensional Maxwell equations with
strongly anisotropic electric permittivity

Mihäı BOSTAN ∗

(February 28, 2022)

Abstract

The subject matter of this work concerns the propagation of the electro-
magnetic fields through strongly anisotropic media, in the three dimensional
setting. We concentrate on the asymptotic behavior for the solutions of the
Maxwell equations when the electric permittivity tensor is strongly anisotropic.
We derive limit models and prove their well-posedness. We appeal to the vari-
ational framework and study the propagation speed of the solutions. We prove
that almost all the electro-magnetic energy concentrates inside the propagation
cone of the limit model.

Keywords: Maxwell equations, Evolution second order problems, Variational solu-
tions, Asymptotic behavior.

AMS classification: 35Q61, 35L45

1 Introduction

We study the evolution of the electro-magnetic fields, described by the Maxwell equa-
tions [10, 8, 13, 7]

∂tD − rotH = 0, ∂tB + rotE = 0, (t, x) ∈ R× R3 (1)

divD = 0, divB = 0, (t, x) ∈ R× R3. (2)

Here the vector fields D,B stand for the electric induction and magnetic induction
respectively and the vector fields E,H are the electric intensity and magnetic intensity
respectively. We assume linear constitutive relations between inductions and intensities

D = εE, B = µH
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where ε = ε(x) ∈ M3(R) is the electric permittivity and µ > 0 is the magnetic
permeability. We supplement the Maxwell equations (1), (2) by the initial conditions
(D(0), B(0)) = (Din, Bin). Thanks to the identity

div(E ∧H) = rotE ·H − rotH · E

we deduce
∂tD · E + ∂tB ·H + div(E ∧H) = 0.

When the electric permittivity tensor is symmetric, we obtain the energy conservation

1

2

d

dt

∫
R3

{ε−1D ·D+µ−1|B|2} dx =

∫
R3

{∂tD ·E+∂tB ·H} dx =

∫
R3

div(H ∧E) dx = 0

provided that the initial energy is finite

1

2

∫
R3

{ε−1Din ·Din + µ−1|Bin|2} dx < +∞.

Moreover, it is well known that if initially Din, Bin are divergence free, then D(t), B(t)
are divergence free for any t ∈ R.

In this work we study the asymptotic behavior of (1), (2) when the electric permit-
tivity possesses disparate eigenvalues

εδ = n2
1 e1 ⊗ e1 + n2

2 e2 ⊗ e2 + δ2n2 e⊗ e.

Here for any x ∈ R3, {e1(x), e2(x), e(x)} is a direct orthonormal basis of R3 and
n1(x), n2(x), δn(x) are the medium indexes at the point x (i.e. n2

1, n
2
2, (δn)2 are the

eigenvalues of εδ) and δ > 0 is a small parameter. The relation between the medium
indexes characterizes the materials. When the indexes are all different, we talk about
biaxial media. When two of them are the same and the other one is different, the
medium is called uniaxial. Many important materials are uniaxial : calcite, mica,
quartz. We focus on the asymptotic behavior when one of the eigenvalues is negligible
with respect to the other eigenvalues, that is, when δ ↘ 0. See [3, 1, 2] for similar stud-
ies, concerning parabolic or transport problems. The behavior of the solutions for the
wave equation whose propagation speed becomes very large along some direction has
been studied recently [5]. It was shown that the limit model is a wave equation, coming
out through averaging with respect to the characteristic flow along the direction of fast
propagation. The motivation concerns the efficient numerical resolution of multi scale
problems, involving strong anisotropy [6, 4, 9, 11, 12, 14, 15]. Another application is
the study of strongly anisotropic uniaxial and biaxial media. If the case of uniform
electric permittivity tensor can be handled by propagating plane waves accordingly to
Fresnel relation, see Section 2, in the case of non uniform electric permittivity tensor,
an asymptotic analysis based on variational formulations is required, cf. Sections 4, 5.
Concerning the Maxwell system, we prove the following weak convergence result, to-
ward a constrained formulation of the Maxwell equations.

Theorem 1.1
Assume that the electric permittivity tensor writes

εδ = n2
1 e1 ⊗ e1 + n2

2 e2 ⊗ e2 + δ2n2 e⊗ e
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where e = ∇ϕ
|∇ϕ| ,∇ϕ(x) 6= 0 for a.a. x ∈ R3, ϕ ∈ C2(R3) and n1, n2, n are locally bounded

from below and above : for any compact set K ⊂ R3, there are 0 < mK ≤ MK < +∞
such that

mK ≤ min{n1, n2, n} ≤ max{n1, n2, n} ≤MK , x ∈ K.
We consider the family of initial conditions (Dδ,in, Bδ,in)δ verifying

sup
δ>0

∫
R3

[ε−1δ Dδ,in ·Dδ,in + µ−1|Bδ,in|2] dx < +∞, divDδ,in = 0, divBδ,in = 0, δ > 0.

Then there is a sequence (δk)k converging to 0 such that the variational solutions
(Dδk , Bδk) of (1), (2) with the electric permittivity εδk , corresponding to the initial
conditions (Dδk,in, Bδk,in), converge weakly ? in L∞(R;L2

ε−1
1

(R3)) × L∞(R;L2
µ−1(R3))

toward the solution (D,B) ∈ C(R;L2
ε−1
1

(R3))× C(R;L2
µ−1(R3)) of the problem

D · ∇ϕ = 0,
d

dt

∫
R3

D · Φ dx−
∫
R3

µ−1B · rotΦ dx = 0 in D ′(R), Φ ∈ C1
c (R3)3 (3)

div(B∧∇ϕ) = 0,
d

dt

∫
R3

B·Ψ dx+

∫
R3

ε−11 D·rotΨ dx = 0 in D ′(R),Ψ ∈ C1(R3)3∩L2(R3)3

(4)
such that div(Ψ ∧∇ϕ) = 0,

∫
R3 ε

−1
1 rotΨ · rotΨ dx < +∞, with the initial conditions

D(0) = Din, B(0) = P (Bin)

where Dδk,in ⇀ Din weakly in L2
ε−1
1

(R3), Bδk,in ⇀ Bin weakly in L2
µ−1(R3). Moreover,

we have divD = 0, divB = 0. Here P is the orthogonal projection in L2(R3)3 on the
closed subspace {Ψ ∈ L2(R3)3 : div(Ψ ∧∇ϕ) = 0} and

L2
ε−1
1

(R3) = {D : R3 → R3 measurable :

∫
R3

ε−11 D ·D dx < +∞}

L2
µ−1(R3) = {B : R3 → R3 measurable :

∫
R3

µ−1|B|2 dx < +∞}.

The variational formulation in Theorem 1.1 involves two constraints : D · ∇ϕ = 0,
div(B ∧∇ϕ) = 0. It would be very interesting to find an equivalent variational formu-
lation after eliminating these constraints. This is the object of the next result. When
the vector field e is uniform, that is ϕ(x) = x · e, x ∈ R3, for some unitary vector
e ∈ R3, we show that the previous limit model appears like a Maxwell system in which
the electric field in the Faraday equation is replaced by its orthogonal projection over
the L2 divergence free vector fields, orthogonal to e.

Theorem 1.2
Assume that the electric permittivity tensor writes

ε1 = n2
1 e1 ⊗ e1 + n2

2 e2 ⊗ e2 + n2 e⊗ e

where e is a unitary vector in R3 and n1, n2, n are bounded from below and above :
there are 0 < m ≤M < +∞ such that

m ≤ min{n1, n2, n} ≤ max{n1, n2, n} ≤M, x ∈ R3.
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Let us consider (D,B) ∈ C(R;L2
ε−1
1

(R3)) × C(R;L2
µ−1(R3)) the variational solution of

the problem

D · e = 0,
d

dt

∫
R3

D · Φ dx−
∫
R3

µ−1B · rotΦ dx = 0 in D ′(R), Φ ∈ C1
c (R3)3 (5)

div(B∧e) = 0,
d

dt

∫
R3

B·Ψ dx+

∫
R3

ε−11 D·rotΨ dx = 0 in D ′(R),Ψ ∈ C1(R3)3∩L2(R3)3

(6)
such that div(Ψ ∧ e) = 0,

∫
R3 ε

−1
1 rotΨ · rotΨ dx < +∞, with the initial conditions

D(0) = Din ∈ L2
ε−1
1

(R3), B(0) = Bin ∈ L2
µ−1(R3), Din · e = 0, div(Bin ∧ e) = 0. (7)

Then the problem (5), (6), (7) is equivalent to the variational problem

D · e = 0, ∂tD − rot(µ−1B) = 0, (t, x) ∈ R× R3 (8)

div(B ∧ e) = 0, ∂tB + rot(Q(ε−11 D)) = 0, (t, x) ∈ R× R3 (9)

D(0) = Din, B(0) = Bin, Din · e = 0, div(Bin ∧ e) = 0 (10)

where Q is the orthogonal projection in L2(R3)3 on the closed subspace {ξ ∈ L2(R3)3 :
divξ = 0, ξ · e = 0}.

The weak convergence result in Theorem 1.1 becomes a strong convergence result, for
well prepared initial conditions. This result relies on the conservation of the electro-
magnetic energy.

Theorem 1.3
Assume that the electric permittivity tensor writes

εδ = n2
1 e1 ⊗ e1 + n2

2 e2 ⊗ e2 + δ2n2 e⊗ e

where e = ∇ϕ
|∇ϕ| ,∇ϕ(x) 6= 0 for a.a. x ∈ R3, ϕ ∈ C2(R3) and n1, n2, n are locally bounded

from below and above : for any compact set K ⊂ R3, there are 0 < mK ≤ MK < +∞
such that

mK ≤ min{n1, n2, n} ≤ max{n1, n2, n} ≤MK , x ∈ K.
We suppose that the initial conditions (Dδ,in, Bδ,in)δ>0 are well prepared

lim
δ↘0

Dδ,in = Din strongly in L2
ε−1
1

(R3), lim
δ↘0

Dδ,in · e
δn

= 0 strongly in L2(R3)

lim
δ↘0

Bδ,in = Bin strongly in L2
µ−1(R3), div(Bin ∧∇ϕ) = 0.

Then we have the convergences

lim
δ↘0

Dδ = D in L2
loc(R;L2

ε−1
1

(R3)), lim
δ↘0

Bδ = B in L2
loc(R;L2

µ−1(R3))

lim
δ↘0

Dδ · e
δn

= 0 in L2
loc(R;L2(R3))

where (Dδ, Bδ)δ>0 are the variational solutions of (1), (2) with the electric permittiv-
ity (εδ)δ>0, corresponding to the initial conditions (Dδ,in, Bδ,in)δ>0, and (D,B) is the
variational solution of (3), (4), corresponding to the initial condition (Din, Bin).
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It is interesting to estimate the propagation speed of the solutions. While the solutions
of the Maxwell equations (1), (2) with the electric permittivity εδ propagate with the

speed cδ = µ−1/2‖ε−1/2δ ‖∞ = O(1/δ), we prove that the solutions of the limit model,

when δ ↘ 0, propagate with the speed c∞ = limδ→+∞ cδ = µ−1/2 limδ→+∞ ‖ε−1/2δ ‖∞.
Nevertheless, the energy of the solutions (Dδ, Bδ) outside the propagation cone of the
limit model, that is {(t, x) ∈ R × R3 : |x| ≥ R + c∞|t|}, becomes negligible, when
δ ↘ 0.

Theorem 1.4
Assume that the hypotheses of Theorem 1.3 hold true, with ϕ(x) = |x|, x ∈ R3. Let
us denote by (Dδ, Bδ), (D,B) the unique variational solutions of the problems (1), (2)
with the electric permittivity εδ, initial conditions (Dδ,in, Bδ,in) and (3), (4) with the
initial conditions (Din, Bin). We assume that there is R > 0 such that

Din(x) = 0, Bin(x) = 0, |x| > R

and we denote by c∞ the speed µ−1/2 limδ→+∞ ‖ε−1/2δ ‖∞. For any T ∈ R+ we have

lim
δ↘0

∫ T

−T

∫
R3

ε−1δ Dδ(t, x) ·Dδ(t, x) + µ−1|Bδ(t, x)|2

2
1{|x|>R+c∞|t|} dxdt = 0.

Our paper is organized as follows. In Section 2 we discuss the case of uniform electric
permittivity tensor and perform the asymptotic analysis for uniaxial and biaxial media.
In Section 3 we recall the variational framework of the Maxwell system. In Section
4 we establish the weak convergence result. In Section 5 we investigate the strong
convergence. The propagation speed of the solutions is analyzed in Section 6.

2 Uniform electric permittivity

The study of the electro-magnetic waves depends on the propagation medium. We
distinguish between biaxial media, i.e., indexes all different, and uniaxial media i.e.,
two equal indexes, but different with respect to the third one. The main issue of
this work is to understand the propagation of the electro-magnetic waves when one of
the indexes is negligible with respect to the other indexes. We investigate the media
characterized by the indexes {n1, n2, δn}, δ ↘ 0 when n1 6= n2 (biaxial media) and
when n1 = n2 (uniaxial media). When the electric permittivity tensor is uniform, the
analysis is standard : we are looking for plane waves described by vector fields of the
form A cos(k · x − ωt), A, k ∈ R3 \ {0}, ω ∈ R. This approach leads to the dispersion
relation (Fresnel equation) relating ω, k and the medium indexes. The asymptotic
behavior δ ↘ 0 follows easily, by direct computations, in that case (uniform electric
permittivity tensor). We indicate the limit Fresnel equation and the limit electro-
magnetic field, when δ ↘ 0. The general case (non uniform electric permittivity
tensor) is more difficult and cannot be reduced to plane waves. It will be discussed
in the next sections, by appealing to variational formulations. We present the limit
problem satisfied by the electro-magnetic field when one medium index is negligible
with respect to the other indexes. In particular we estimate the propagation speed
with respect to the medium indexes, providing a formula which is compatible with the
Fresnel equation.
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Let us concentrate first on the Maxwell equations with uniform electric permittivity
tensor

ε = n2
1e1 ⊗ e1 + n2

2e2 ⊗ e2 + n2
3e3 ⊗ e3

where {e1, e2, e3} is a fixed direct orthonormal basis of R3 and n1, n2, n3 > 0 are
constant medium indexes. As usual, for any k ∈ R3 \ {0}, we are looking for ω = ω(k)
such that there is a non trivial solution for the Maxwell equations of the form

D cos(k · x− ωt), B cos(k · x− ωt), E cos(k · x− ωt), H cos(k · x− ωt)

with D,B,E,H ∈ R3. In that case, the Maxwell system (1), (2) reduces to

ωD + k ∧H = 0, ωB − k ∧ E = 0, D = εE, B = µH.

We are not in the framework of solutions with finite total electro-magnetic energy, as
considered in Theorems 1.1, 1.3. But we can work in the setting of periodic solutions,
with finite electro-magnetic energy over one period domain.
By straightforward manipulations one gets(

I3 −
ω2µ

|k|2
ε− k ⊗ k

|k|2

)
E = 0.

Using the notations αi = 1 − ω2µ
|k|2 n

2
i , ki = k · ei, i ∈ {1, 2, 3}, we obtain the Fresnel

equation.

Proposition 2.1
There is E ∈ R3 \ {0} such that(

I3 −
ω2µ

|k|2
ε− k ⊗ k

|k|2

)
E = 0 (11)

iff
k21
|k|2

α2α3 +
k22
|k|2

α3α1 +
k23
|k|2

α1α2 = α1α2α3. (12)

Proof. For the sake of completeness, we give here some proof details. Assume that
(11) holds true and let us deduce (12). Taking the scalar product with e1, e2, e3, the
linear system (11) is equivalent to

αiEi =
k · E
|k|2

ki, Ei = E · ei, i ∈ {1, 2, 3}. (13)

We have

α1α2α3(k · E) = α1α2α3

3∑
i=1

(k · ei)(E · ei) = (k · E)

(
k21
|k|2

α2α3 +
k22
|k|2

α3α1 +
k23
|k|2

α1α2

)
.

If k · E 6= 0, we obtain (12). If k · E = 0, we have α1E1 = 0, α2E2 = 0, α3E3 = 0. As
E ∈ R3 \{0}, we can assume that E1 6= 0, implying that α1 = 0. We are done provided
that k1α2α3 = 0. Indeed, if α2α3 6= 0, then E2 = 0, E3 = 0 and 0 = E · k = E1k1
implies k1 = 0, because E1 6= 0.
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Conversely, assume now that (12) holds true, and let us determine E ∈ R3 \ {0}
satisfying (11), or equivalently (13). If α1α2α3 6= 0 we take E =

∑3
i=1

ki
αi|k|2 ei. Thanks

to (12), we have k ·E =
∑3

i=1
k2i

αi|k|2 = 1 and therefore E =
∑3

i=1Eiei ∈ R3\{0} satisfies

(11). Assume now that α1 = 0, α2α3 6= 0. By (12), we deduce that k1 = 0 and we can
take E = e1. In the case α1 = 0, α2 = 0, α3 6= 0 we can take E = E1e1 + E2e2 such
that (E1, E2) 6= (0, 0) and k1E1 + k2E2 = 0. In the case α1 = α2 = α3 = 0, take any
E ∈ R3 \ {0} such that E · k = 0.

Remark 2.1
In the isotropic case, n1 = n2 = n3 = n > 0, ε = n2I3, we have α1 = α2 = α3 =
α = 1 − ω2µ

|k|2 n
2 < 1. In that case, the Fresnel equation becomes α2 = α3 whose unique

solution in ]−∞, 1[ is α = 0, leading to the well known formula ω2 = |k|2
µn2 .

Consider now the strongly anisotropic permittivity tensor

εδ = n2
1e1 ⊗ e1 + n2

2e2 ⊗ e2 + δ2n2e⊗ e, δ > 0 (14)

where {e1, e2, e} is a fixed direct orthonormal basis of R3 and n1, n2, n > 0. Thanks to
Proposition 2.1, the formula for ωδ comes by

k21
|k|2

α2δα3δ +
k22
|k|2

α3δα1δ +
k23
|k|2

α1δα2δ = α1δα2δα3δ (15)

where

α1δ = 1− ω2
δµ

|k|2
n2
1, α2δ = 1− ω2

δµ

|k|2
n2
2, α3δ = 1− ω2

δµ

|k|2
δ2n2.

We investigate the limit of ωδ, for δ ↘ 0, when the electro-magnetic energy is bounded
with respect to δ > 0, see the hypotheses of Theorem 1.1, and non vanishing when
δ ↘ 0. By (11) we know that

ω2
δµ

|k|2
εδE

δ =

(
I3 −

k ⊗ k
|k|2

)
Eδ

implying that εδE
δ · k = 0. Decomposing with respect to the basis {e1, e2, e}

Eδ = Eδ
1e1 + Eδ

2e2 + Eδ
3e, k = k1e1 + k2e2 + k3e

we obtain
n2
1E

δ
1k1 + n2

2E
δ
2k2 + δ2n2Eδ

3k3 = 0, δ > 0. (16)

By the boundedness of the electro-magnetic energy

sup
δ>0

(
εδE

δ · Eδ +
|Bδ|2

µ

)
< +∞

we deduce
sup
δ>0

[
n2
1(E

δ
1)2 + n2

2(E
δ
2)2 + δ2n2(Eδ

3)2
]
< +∞ (17)
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implying that limδ↘0(δ
2n2Eδ

3k3) = 0 and thus

n2
1E1k1 + n2

2E2k2 = 0, E1 = lim
δ↘0

Eδ
1 , E2 = lim

δ↘0
Eδ

2 . (18)

By (13) and (16) we obtain(
1− ω2

δµ

|k|2
n2
1

)
Eδ

1 = α1δE
δ
1 =

k · Eδ

|k|2
k1

=

[
k1E

δ
1 + k2E

δ
2 −

n2
1k1E

δ
1 + n2

2k2E
δ
2

δ2n2

]
k1
|k|2

=

[
k1E

δ
1

(
1− n2

1

δ2n2

)
+ k2E

δ
2

(
1− n2

2

δ2n2

)]
k1
|k|2

.

Multiplying both sides by δ2 and passing to the limit when δ ↘ 0 yield, thanks to (18)

− lim
δ↘0

(ω2
δδ

2)
µn2

1

|k|2
E1 = − k1

|k|2
k1E1n

2
1 + k2E2n

2
2

n2
= 0.

We obtain E1 limδ↘0(ω
2
δδ

2) = 0 and similarly E2 limδ↘0(ω
2
δδ

2) = 0. We assume also
that (Dδ = εδE

δ, Bδ) are well-prepared, see the hypotheses of Theorem 1.3

lim
δ↘0

Dδ · e
δn

= lim
δ↘0

εδE
δ · e
δn

= lim
δ↘0

(Eδ · e)δn = n lim
δ↘0

(δEδ
3) = 0.

We deduce that E2
1+E2

2 > 0, since otherwise, the limit electro-magnetic energy vanishes

lim
δ↘0

[n2
1(E

δ
1)2 + n2

2(E
δ
2)2 + δ2n2(Eδ

3)2] = 0.

We obtain that limδ↘0(ω
2
δδ

2) = 0. We have to solve (15) in order to determine ωδ.

With the notations λδ =
ω2
δµ

|k|2 , n3 = δn, we obtain

k21(1− λδn2
2)(1− λδn2

3) + k22(1− λδn2
3)(1− λδn2

1) + k23(1− λδn2
1)(1− λδn2

2)

= |k|2(1− λδn2
1)(1− λδn2

2)(1− λδn2
3).

The above equation also writes

λδ(aδλ
2
δ + bδλδ + cδ) = 0, δ > 0

with
aδ = n2

1n
2
2n

2
3|k|2 = δ2n2

1n
2
2n

2|k|2

bδ = −
∑

(k21 + k22)n2
1n

2
2 = −[(k21 + k22)n2

1n
2
2 + δ2(k22 + k23)n2

2n
2 + δ2(k23 + k21)n2n2

1]

cδ =
3∑
i=1

k2i n
2
i = k21n

2
1 + k22n

2
2 + δ2k23n

2.

The non trivial solutions are given by

λδ =
−bδ ±

√
b2δ − 4aδcδ

2aδ
.
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Recall that we are searching for solutions satisfying limδ↘0(ω
2
δδ

2) = 0, or equivalently
limδ↘0(λδδ

2) = 0. Therefore the sign in front of the square root of the discriminant
should be minus

λδ =
−bδ −

√
b2δ − 4aδcδ

2aδ
=

2cδ

−bδ +
√
b2δ − 4aδcδ

.

Letting δ ↘ 0 implies

lim
δ↘0

ω2
δµ

|k|2
=

k21n
2
1 + k22n

2
2

(k21 + k22)n2
1n

2
2

, k21 + k22 > 0

saying that (ω2
δ )δ>0 converges when δ ↘ 0 and ω2 = limδ↘0 ω

2
δ is given by

ω2

|k|2
=

k21n
2
1 + k22n

2
2

µ(k21 + k22)n2
1n

2
2

, k21 + k22 > 0. (19)

It is easily seen that the wave propagation speed is bounded by

|ω|
|k|
≤ µ−1/2 max

{
1

n1

,
1

n2

}
. (20)

Introducing the formula of ω2

|k|2 cf. (19) in the expressions for

α1 = lim
δ↘0

α1δ = 1− ω2µ

|k|2
n2
1, α2 = lim

δ↘0
α2δ = 1− ω2µ

|k|2
n2
2

one gets

α1 =
k21

k21 + k22

n2
2 − n2

1

n2
2

, α2 =
k22

k21 + k22

n2
1 − n2

2

n2
1

. (21)

The limit uniaxial model n1 = n2 > 0, k21 + k22 > 0

First of all (19) becomes ω2

|k|2 = limδ↘0
ω2
δ

|k|2 = 1
µn2

1
= 1

µn2
2
. As n1 = n2 > 0, we have by

(18) E1k1 + E2k2 = 0. Coming back to (13), we know that

α1δE
δ
1 =

k · Eδ

|k|2
k1, α2δE

δ
2 =

k · Eδ

|k|2
k2, α3δE

δ
3 =

k · Eδ

|k|2
k3

where limδ↘0 α1δ = α1 = 0, limδ↘0 α2δ = α2 = 0, thanks to (21) with n1 = n2, and
limδ↘0 α3δ = 1. Letting δ ↘ 0 we obtain, by using E1k1 + E2k2 = 0

0 =
k1
|k|2

lim
δ↘0

(k3E
δ
3), 0 =

k2
|k|2

lim
δ↘0

(k3E
δ
3), lim

δ↘0
Eδ

3 =
k3
|k|2

lim
δ↘0

(k3E
δ
3).

Finally, since k21 + k22 > 0, we have E1k1 + E2k2 = 0, E3 = 0. For the electric and
magnetic inductions we write

D = lim
δ↘0

εδE
δ = n2

1E1e1 + n2
2E2e2 = ε1E, ωB = lim

δ↘0
(k ∧ Eδ) = k ∧ E.

It is easily seen that the vector fields D cos(k · x − ωt), B cos(k · x − ωt) with ω2 =
|k|2
µn2

1
= |k|2

µn2
2

solve the limit model in Theorem 1.2 (notice that the tangent vector field

9



ε−11 D cos(k · x− ωt) is divergence free, because k ·E = 0, and thus Q(ε−11 D cos(k · x−
ωt)) = ε−11 D cos(k · x− ωt)).

The limit biaxial model n1 6= n2, n1 > 0, n2 > 0, k21 + k22 > 0
As before we have εδE

δ · k = 0, implying

n2
1E

δ
1k1 + n2

2E
δ
2k2 + δ2n2Eδ

3k3 = 0, δ > 0.

Passing to the limit when δ > 0, one gets, thanks to (17)

n2
1E1k1 + n2

2E2k2 = 0, E1 = lim
δ↘0

Eδ
1 , E2 = lim

δ↘0
Eδ

2 .

Letting δ ↘ 0 in (13) we obtain

α1E1 =
k1
|k|2

lim
δ↘0

(k · Eδ), α2E2 =
k2
|k|2

lim
δ↘0

(k · Eδ), E3 = lim
δ↘0

Eδ
3 =

k3
|k|2

lim
δ↘0

(k · Eδ)

where α1, α2 are given in (21). The electric induction writes

D = lim
δ↘0

εδE
δ = lim

δ↘0
(n2

1E
δ
1e1 +n2

2E
δ
2e2 + δ2n2Eδ

3e) = n2
1E1e1 +n2

2E2e2 = ε1(E1e1 +E2e2)

and the magnetic induction is

ωB = lim
δ↘0

(k ∧ Eδ) = k ∧ E.

We claim that the vector fields D cos(k · x − ωt), B cos(k · x − ωt), with ω satisfying
(19), solve the limit model in Theorem 1.2. Clearly we have D cos(k · x − ωt) · e = 0
and

div(B cos(k · x− ωt) ∧ e) = rot(B cos(k · x− ωt)) · e
= − sin(k · x− ωt)(k ∧B) · e

= −sin(k · x− ωt)
ω

[k ∧ (k ∧ E)] · e.

Notice that

−[k ∧ (k ∧ E)] · e = −|k|2
(
k ⊗ k
|k|2

− I3
)
E · e

= ω2µ(n2
1e1 ⊗ e1 + n2

2e2 ⊗ e2)E · e = 0

and therefore both constraints of the limit model are satisfied. The Ampère law in
(8) comes easily. In order to check the Faraday law in (9), we need to compute the
orthogonal projection of ε−11 D cos(k · x − ωt) = (E1e1 + E2e2) cos(k · x − ωt) on the
subspace of tangent, that is orthogonal to e, free divergence vector fields. We introduce
the tangent vector field ξ, given by

(E1e1 + E2e2) cos(k · x− ωt) = ξ(t, x) +
E1k1 + E2k2
k21 + k22

cos(k · x− ωt)(k1e1 + k2e2)

= ξ(t, x) + ∂x1

[
E1k1 + E2k2
k21 + k22

sin(k · x− ωt)
]
e1 + ∂x2

[
E1k1 + E2k2
k21 + k22

sin(k · x− ωt)
]
e2.

10



A direct computation shows that ξ is free divergence, implying that

Q(ε−11 D cos(k · x− ωt)) =
E1k2 − E2k1
k21 + k22

(k2e1 − k1e2) cos(k · x− ωt).

We are done provided that

ωB − k ∧ E1k2 − E2k1
k21 + k22

(k2e1 − k1e2) = 0.

As ωB = k ∧ E we have to check that E − E1k2−E2k1
k21+k

2
2

(k2e1 − k1e2) is parallel to k.

Indeed, observe that

E − E1k2 − E2k1
k21 + k22

(k2e1 − k1e2) = k1
E1k1 + E2k2
k21 + k22

e1 + k2
E1k1 + E2k2
k21 + k22

e2 + E3e

=
E1k1 + E2k2
k21 + k22

k

where we have used the equality

E3 = k3
E1k1 + E2k2
k21 + k22

coming from the formula, see (21)

k21
α1

+
k22
α2

k21 + k22
= 1.

Actually we have

k3
E1k1 + E2k2
k21 + k22

= k3

k21
|k|2α1

+
k22
|k|2α2

k21 + k22
lim
δ↘0

(k · Eδ) =
k3
|k|2

lim
δ↘0

(k · Eδ) = E3.

3 The Maxwell equations

We recall briefly the well posedness of the Maxwell system. We appeal to variational
formulations cf. [8, 13, 7]. We assume that ε is a measurable field of symmetric definite
positive matrices, locally bounded from below and above : for any compact set K ⊂ R3

there are 0 < mK ≤MK < +∞ such that

mKI3 ≤ ε1/2(x) ≤MKI3, x ∈ K.

We consider the Hilbert spaces

L2
ε−1(R3) = {D = (D1, D2, D3) measurable :

∫
R3

ε−1D ·D dx < +∞}

L2
µ−1(R3) = {B = (B1, B2, B3) measurable :

∫
R3

µ−1|B|2 dx < +∞}

11



endowed with the scalar products

(D, D̃)L2
ε−1

=

∫
R3

ε−1D · D̃ dx, D, D̃ ∈ L2
ε−1(R3)

(B, B̃)L2
µ−1

=

∫
R3

µ−1B · B̃ dx, B, B̃ ∈ L2
µ−1(R3).

Notice that for any compact K ⊂ R3 we have∫
K

|D| dx =

∫
K

|ε1/2ε−1/2D| dx ≤MK

∫
K

|ε−1/2D| dx

≤MK

(∫
K

dx

)1/2(∫
R3

ε−1D ·D dx

)1/2

, D ∈ L2
ε−1(R3)

and∫
K

|B| dx = µ1/2

∫
K

µ−1/2|B| dx ≤ µ1/2

(∫
K

dx

)1/2(∫
R3

µ−1|B|2 dx

)1/2

, B ∈ L2
µ−1(R3)

saying that L2
ε−1(R3) ⊂ L1

loc(R3)3, L2
µ−1(R3) ⊂ L1

loc(R3)3. Therefore the following vari-
ational formulation makes sense.

Definition 3.1
We say that (D,B) ∈ C(R;L2

ε−1(R3))×C(R;L2
µ−1(R3)) is a variational solution of (1),

(2) if for any (Φ,Ψ) ∈ C1
c (R3)3 × C1

c (R3)3 we have

d

dt

∫
R3

D(t, x) · Φ(x) dx−
∫
R3

µ−1B(t, x) · rotΦ dx = 0 in D ′(R)

d

dt

∫
R3

B(t, x) ·Ψ(x) dx+

∫
R3

ε−1D(t, x) · rotΨ dx = 0 in D ′(R).

Notice that ε−1D is locally integrable, since∫
K

|ε−1D| dx ≤
∫
K

|ε−1/2||ε−1/2D| dx ≤ 1

mK

(∫
K

dx

)1/2(∫
R3

ε−1D ·D dx

)1/2

or by observing that ε−1 is locally bounded and D is locally integrable. Thus the above
definition makes sense.
The uniqueness of the variational solution comes by the following standard result.

Proposition 3.1
Let θ = θ(t, x) be a function in C1

c (R×R3). Then any variational solution of (1), (2)
satisfies in D ′(R)

1

2

d

dt

∫
R3

θ
[
ε−1(x)D(t, x) ·D(t, x) + µ−1|B(t, x)|2

]
dx =

∫
R3

(ε−1D ∧ µ−1B) · ∇θ dx

+
1

2

∫
R3

∂tθ
[
ε−1(x)D(t, x) ·D(t, x) + µ−1|B(t, x)|2

]
dx.

12



In particular we have the energy conservation

d

dt

∫
R3

[
ε−1(x)D(t, x) ·D(t, x) + µ−1|B(t, x)|2

]
dx = 0.

For any (Din, Bin) ∈ L2
ε−1(R3) × L2

µ−1(R3), there is at most one variational solution

(D,B) ∈ C(R;L2
ε−1(R3))× C(R;L2

µ−1(R3)) satisfying (D,B)(0) = (Din, Bin).

For the existence of variational solution we appeal to the following well known result
[13, 7].

Theorem 3.1
Let us consider two separable Hilbert spaces V,H and i : V → H a bounded linear

injective application, whose image i(V ) is dense in H. Consider also a bounded bilinear
symmetric application a : V × V → R, which is coercive on V with respect to H, that
is, there are α > 0, C ≥ 0 such that for any v ∈ V

a(v, v) + C|i(v)|2H ≥ α‖v‖2V

and a bounded linear application l : V → R. Then for any u0 ∈ V, u1 ∈ H there is a
unique function u ∈ C(R, V ) with u′ ∈ C(R, H) such that for any v ∈ V

d

dt
(u′(t), i(v))H + a(u(t), v) + l(v) = 0 in D ′(R)

and u(0) = u0, u′(0) = u1. Moreover we have the conservation

1

2
|u′(t)|2H +

1

2
a(u(t), u(t)) + l(u(t)) =

1

2
|u1|2H +

1

2
a(u0, u0) + l(u0), t ∈ R.

Remark 3.1
The notation u′ stands for the time derivation of t→ iu(t) i.e.,

d

dt
(iu(t), z)H = (u′(t), z)H in D ′(R), for any z ∈ H.

As a direct consequence of Theorem 3.1, we obtain the existence of variational solution
for (1), (2).

Theorem 3.2
For any (Din, Bin) ∈ L2

ε−1(R3) × L2
µ−1(R3) there is a unique variational solution

(D,B) ∈ C(R;L2
ε−1(R3)) × C(R;L2

µ−1(R3)) for (1), (2). This solution satisfies the
energy conservation∫
R3

(ε−1D(t, x) ·D(t, x) + µ−1|B(t, x)|2) dx =

∫
R3

(ε−1Din ·Din + µ−1|Bin|2) dx, t ∈ R.

If Din, Bin are divergence free, so are D(t), B(t) for any t ∈ R.
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Proof.
We apply Theorem 3.1 with the separable Hilbert spaces

H = L2(R3)3, V = {Ψ ∈ L2(R3)3 :

∫
R3

ε−1rotΨ · rotΨ dx < +∞}

endowed with the scalar products

(Ψ, Ψ̃)H =

∫
R3

Ψ·Ψ̃ dx,Ψ, Ψ̃ ∈ H, ((Ψ, Ψ̃))V =

∫
R3

(Ψ·Ψ̃+ε−1rotΨ·rotΨ̃) dx,Ψ, Ψ̃ ∈ V.

We consider the imbedding i : V → H, i(Ψ) = Ψ,Ψ ∈ V , the bilinear form

a : V × V → R, a(Ψ, Ψ̃) = µ−1
∫
R3

ε−1rotΨ · rotΨ̃ dx, Ψ, Ψ̃ ∈ V

and the linear form

l : V → R, l(Ψ) =

∫
R3

ε−1Din · rotΨ dx, Ψ ∈ V.

The fact that ε1/2 is locally bounded from above allows us to establish that V is a Hilbert
space. As ε−1/2 is also locally bounded from above, we deduce that C1

c (R3)3 ⊂ V and
C1
c (R3)3 = i(C1

c (R3)3) ⊂ H, implying that i(V ) is dense in H. Obviously a(·, ·) is a
bounded bilinear symmetric application. It is also coercive on V with respect to H

a(Ψ,Ψ) + µ−1|i(Ψ)|2H = µ−1‖Ψ‖2V , Ψ ∈ V.

Observe that l(·) is a bounded linear application

|l(Ψ)| ≤
(∫

R3

ε−1Din ·Din dx

)1/2(∫
R3

ε−1rotΨ · rotΨ dx

)1/2

≤
(∫

R3

ε−1Din ·Din dx

)1/2

‖Ψ‖V , Ψ ∈ V.

Therefore, by Theorem 3.1, there is a unique function U ∈ C(R, V ), with ∂tU ∈
C(R, H) verifying for any Ψ ∈ V

d

dt

∫
R3

∂tU(t, x) ·Ψ(x) dx+µ−1
∫
R3

ε−1rotU(t, x) · rotΨ(x) dx+

∫
R3

ε−1Din · rotΨ dx = 0

in D ′(R) and U(0) = 0 ∈ V, ∂tU(0) = Bin ∈ H. We claim that D = Din + µ−1rotU ∈
C(R;L2

ε−1(R3)), B = ∂tU ∈ C(R;L2
µ−1(R3)) is a variational solution for (1), (2). Indeed,

for any Φ ∈ C1
c (R3)3 we have in D ′(R)

d

dt

∫
R3

D(t, x) · Φ(x) dx =
d

dt

∫
R3

µ−1rotU · Φ dx =
d

dt

∫
R3

µ−1U · rotΦ dx

=

∫
R3

µ−1∂tU · rotΦ dx =

∫
R3

µ−1B · rotΦ dx.
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For any Ψ ∈ V we obtain in D ′(R)

d

dt

∫
R3

B(t, x) ·Ψ(x) dx =
d

dt

∫
R3

∂tU ·Ψ dx = −µ−1
∫
R3

ε−1rotU · rotΨ dx

−
∫
R3

ε−1Din · rotΨ dx

= −
∫
R3

ε−1(Din + µ−1rotU) · rotΨ dx

= −
∫
R3

ε−1D · rotΨ dx.

We know that

1

2

d

dt

{
|∂tU |2H + a(U(t), U(t)) + 2l(U(t))

}
= 0, t ∈ R

implying that

d

dt

{∫
R3

|B|2 dx+ µ−1
∫
R3

ε−1rotU · rotU dx+ 2

∫
R3

ε−1Din · rotU dx

}
= 0.

We deduce the energy conservation

d

dt

{∫
R3

[µ−1|B(t, x)|2 + ε−1D(t, x) ·D(t, x)] dx

}
= 0, t ∈ R.

Using the Ampère equation (1) with Φ = ∇θ, θ ∈ C2
c (R3) yields

d

dt

∫
R3

D(t, x) · ∇θ dx =

∫
R3

µ−1B(t, x) · rot∇θ dx = 0

and thus div(D(t) − Din) = 0. Similarly, thanks to the Faraday equation (1) one
gets div(B(t) − Bin) = 0. If Din, Bin are divergence free, so are D(t), B(t) for any
t ∈ R. The uniqueness of the solution (D,B) follows by Proposition 3.1 or thanks to
the uniqueness part in Theorem 3.1.

4 Weak convergence result

We analyze the behavior of the variational solutions of (1), (2) when the medium
indexes, appearing in the electric permittivity tensor take disparate values

εδ = n2
1 e1 ⊗ e1 + n2

2 e2 ⊗ e2 + δ2n2 e⊗ e.

We assume that the unitary vector field e writes

e =
∇ϕ
|∇ϕ|

(22)

for some function ϕ ∈ C2(R3), ∇ϕ(x) 6= 0 a.a. x ∈ R3. We prove now the weak
convergence result for the variational solutions of (1), (2) when δ ↘ 0. We expect
that the limit, when δ ↘ 0, of the solutions (Dδ, Bδ)δ>0, satisfies another variational
problem, see Theorem 1.1.
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Proof. (of Theorem 1.1)
Notice that for any 0 < δ ≤ 1 we have

ε−1δ =
e1 ⊗ e1
n2
1

+
e2 ⊗ e2
n2
2

+
e⊗ e
δ2n2

≥ e1 ⊗ e1
n2
1

+
e2 ⊗ e2
n2
2

+
e⊗ e
n2

= ε−11

implying that

sup
0<δ≤1

∫
R3

[ε−11 Dδ,in·Dδ,in+µ−1|Bδ,in|2] dx ≤ sup
0<δ≤1

∫
R3

[ε−1δ Dδ,in·Dδ,in+µ−1|Bδ,in|2] dx < +∞.

The boundedness of the family (Dδ,in, Bδ,in)0<δ≤1 in L2
ε−1
1

(R3) × L2
µ−1(R3) allows us to

extract a sequence (δk)k ⊂]0, 1], converging toward 0 such that

Dδk,in ⇀ Din weakly in L2
ε−1
1

(R3)

Bδk,in ⇀ Bin weakly in L2
µ−1(R3).

We also have

sup
k

1

δ2k

∫
R3

(Dδk,in · e)2

n2
dx < +∞

and therefore, for any θ ∈ Cc(R3) we obtain∫
R3

(Din · e)θ(x) dx = lim
k→+∞

∫
R3

(Dδk,in · e)θ(x) dx = 0

saying that Din · e = 0. By the energy conservation we have

sup
0<δ≤1,t∈R

∫
R3

[ε−11 Dδ(t, x) ·Dδ(t, x) + µ−1|Bδ(t, x)|2] dx (23)

≤ sup
0<δ≤1,t∈R

∫
R3

[ε−1δ Dδ(t, x) ·Dδ(t, x) + µ−1|Bδ(t, x)|2] dx

= sup
0<δ≤1

∫
R3

[ε−1δ Dδ,in(x) ·Dδ,in(x) + µ−1|Bδ,in(x)|2] dx < +∞.

After a new extraction, there is a sequence, still denoted by (δk)k ⊂]0, 1] such that

Dδk ⇀ D weakly ? in L∞(R;L2
ε−1
1

(R3)), Bδk ⇀ B weakly ? in L∞(R;L2
µ−1(R3))

when k → +∞. By (23) we have

sup
t∈R,k

1

δ2k

∫
R3

(Dδk(t, x) · e)2

n2
dx < +∞

and therefore we obtain
D · e = 0.

As divDδk,in = 0, divBδk,in = 0, we also have divDδk(t) = 0, divBδk(t) = 0, t ∈ R, and
thus

divD = 0, divB = 0.
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For any Φ ∈ C1
c (R3)3 and k ∈ N we have

d

dt

∫
R3

Dδk · Φ dx−
∫
R3

µ−1Bδk · rotΦ dx = 0 in D ′(R). (24)

After passing to the limit when k → +∞ one gets

d

dt

∫
R3

D · Φ dx−
∫
R3

µ−1B · rotΦ dx = 0 in D ′(R)

saying that
∂tD − µ−1rotB = 0. (25)

In order to pass to the limit in the Faraday equation (1) we consider Ψ ∈ C1(R3)3 ∩
L2(R3)3 such that div(Ψ ∧ ∇ϕ) = 0,

∫
R3 ε

−1
1 rotΨ · rotΨ dx < +∞. The variational

formulation of (2) writes

d

dt

∫
R3

Bδk(t, x) ·Ψ(x) dx+

∫
R3

ε−1δk D
δk(t, x) · rotΨ dx = 0 in D ′(R). (26)

By the formula rotΨ · ∇ϕ = div(Ψ ∧ ∇ϕ) = 0, we deduce that e⊗e
n2 D

δk · rotΨ = 0.
Therefore we can write ε−1δk D

δk(t, x) · rotΨ = ε−11 Dδk(t, x) · rotΨ and (26) becomes

d

dt

∫
R3

Bδk(t, x) ·Ψ(x) dx+

∫
R3

ε−11 Dδk(t, x) · rotΨ dx = 0 in D ′(R). (27)

Passing to the limit when k → +∞, we obtain

d

dt

∫
R3

B(t, x) ·Ψ(x) dx+

∫
R3

ε−11 D(t, x) · rotΨ dx = 0 in D ′(R) (28)

for any Ψ ∈ C1(R3)3∩L2(R3)3 such that div(Ψ∧∇ϕ) = 0,
∫
R3 ε

−1
1 rotΨ·rotΨ dx < +∞.

Actually the previous formula holds true for any Ψ ∈ L2(R3)3 such that
∫
R3 ε

−1
1 rotΨ ·

rotΨ dx < +∞ and div(Ψ ∧∇ϕ) = 0. We claim that div(B ∧∇ϕ) = 0. Coming back
to the Ampère equation (25), we obtain for any χ ∈ C1

c (R3)

d

dt

∫
R3

(D(t, x) · ∇ϕ)χ(x) dx−
∫
R3

µ−1B(t, x) · rot(χ∇ϕ) dx = 0.

But we know that D · e = 0, implying that∫
R3

∇χ · (B ∧∇ϕ) dx = −
∫
R3

B(t, x) · (∇χ ∧∇ϕ) dx = 0, χ ∈ C1
c (R3)

and therefore div(B ∧ ∇ϕ) = 0. By standard arguments we check that (D,B) have
traces in C(R;L2

ε−1
1

(R3)) × C(R;L2
µ−1(R3)). We concentrate now on the initial condi-

tions. For any Φ ∈ C1
c (R3)3, t ∈ R we have by (24)∫

R3

Dδk(t, x) · Φ(x) dx−
∫
R3

Dδk,in(x) · Φ(x) dx−
∫ t

0

∫
R3

µ−1Bδk(s, x) · rotΦ dxds = 0.
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Letting k → +∞ yields∫
R3

D(t, x) · Φ(x) dx−
∫
R3

Din(x) · Φ(x) dx−
∫ t

0

∫
R3

µ−1B(s, x) · rotΦ dxds = 0

implying that∫
R3

Din(x) · Φ(x) dx = lim
t→0

∫
R3

D(t, x) · Φ(x) dx =

∫
R3

D(0, x) · Φ(x) dx, Φ ∈ C1
c (R3)3.

We deduce that D(0) = Din. Similarly, by (27), we write for any Ψ ∈ C1(R3)3 ∩
L2(R3)3, div(Ψ ∧∇ϕ) = 0,

∫
R3 ε

−1
1 rotΨ · rotΨ dx < +∞∫

R3

Bδk(t, x) ·Ψ(x) dx−
∫
R3

Bδk,in(x) ·Ψ(x) dx+

∫ t

0

∫
R3

ε−11 Dδk(s, x) · rotΨ dxds = 0.

Letting k → +∞ gives∫
R3

B(t, x) ·Ψ(x) dx−
∫
R3

Bin(x) ·Ψ(x) dx+

∫ t

0

∫
R3

ε−11 D(s, x) · rotΨ dxds = 0.

Recall that P stands for the orthogonal projection in L2(R3)3 on {Ψ̃ ∈ L2(R3)3 :
div(Ψ̃ ∧∇ϕ) = 0} and therefore we obtain∫
R3

P (Bin)·Ψ(x) dx =

∫
R3

Bin(x)·Ψ(x) dx = lim
t→0

∫
R3

B(t, x)·Ψ(x) dx =

∫
R3

B(0, x)·Ψ(x) dx.

As we know that div(B(0) ∧∇ϕ) = 0, it follows that B(0) = P (Bin).

Remark 4.1
The well posedness of the model (3), (4) follows by Theorem 3.1 when considering the

separable Hilbert spaces

H = {Ψ ∈ L2(R3)3 : div(Ψ ∧∇ϕ) = 0}

V = {Ψ ∈ L2(R3)3 :

∫
R3

ε−11 rotΨ · rotΨ dx < +∞, div(Ψ ∧∇ϕ) = 0}

endowed with the scalar products

(Ψ, Ψ̃)H =

∫
R3

Ψ · Ψ̃ dx, Ψ, Ψ̃ ∈ H

((Ψ, Ψ̃))V =

∫
R3

Ψ · Ψ̃ dx+

∫
R3

ε−11 rotΨ · rotΨ̃ dx, Ψ, Ψ̃ ∈ V .

We consider the imbedding i : V → H, i(Ψ) = Ψ,Ψ ∈ V, the bilinear form

a : V × V → R, a(Ψ, Ψ̃) = µ−1
∫
R3

ε−11 rotΨ · rotΨ̃ dx, Ψ, Ψ̃ ∈ V
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and the linear form

l : V → R, l(Ψ) =

∫
R3

ε−11 Din · rotΨ dx, Ψ ∈ V .

It is easily seen that a(·, ·) is a bounded bilinear symmetric application, coercive on V
with respect to H

a(Ψ,Ψ) + µ−1|i(Ψ)|2H = µ−1‖Ψ‖2V , Ψ ∈ V
and l(·) is a bounded linear application on V. Appealing to Theorem 3.1 there is a
unique function U ∈ C(R,V) with ∂tU ∈ C(R,H) verifying for any Ψ ∈ V

d

dt

∫
R3

∂tU ·Ψ dx+ µ−1
∫
R3

ε−11 rotU · rotΨ dx+

∫
R3

ε−11 Din · rotΨ dx = 0 in D ′(R)

and U(0) = 0 ∈ V , ∂tU(0) = P (Bin) ∈ H. As before we check that D = Din+µ−1rotU ∈
C(R;L2

ε−1
1

(R3)) and B = ∂tU ∈ C(R;L2
µ−1(R3)) give a variational solution for (3), (4).

The conservation

1

2

d

dt

{
|∂tU|2H + a(U(t),U(t)) + 2l(U(t))

}
= 0, t ∈ R

leads to the energy conservation

1

2

d

dt

∫
R3

{ε−11 D(t, x) ·D(t, x) + µ−1|B(t, x)|2} dx = 0, t ∈ R.

The uniqueness of the solution of (3), (4) comes by the uniqueness part in Theorem
3.1. It is easily seen that the constraint D · e = 0 is propagated in time. For any
χ ∈ C1

c (R3) one gets, thanks to the constraint div(B ∧∇ϕ) = 0

d

dt

∫
R3

(D · ∇ϕ)χ(x) dx =

∫
R3

µ−1B · rot(χ∇ϕ) dx

=

∫
R3

µ−1B · (∇χ ∧∇ϕ) dx

= −
∫
R3

µ−1∇χ · (B ∧∇ϕ) dx = 0

saying that (D(t) · e) = (D(0) · e) = 0, t ∈ R. The divergence constraints are preserved
as well divD(t) = divD(0), divB(t) = divB(0), t ∈ R.

Solving for the variational formulation (3), (4) while testing against vector fields Ψ
satisfying the constraint div(Ψ ∧ ∇ϕ) = 0 is a difficult task. Instead, we investigate
equivalent formulations, by getting rid of this constraint, cf. Theorem 1.2. We prove
now Theorem 1.2, assuming that ϕ(x) = x · e, x ∈ R3, for some unitary vector e ∈ R3.
We establish several preliminary lemmas.

Lemma 4.1
Let e ∈ R3 be a unitary vector. We consider the vector fields ξ,Ψ ∈ L2(R3)3 satisfying

divξ = 0, ξ · e = 0, div(Ψ ∧ e) = 0.

Then we have
∫
R3 ξ(x) ·Ψ(x) dx = 0.
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Proof.
We fix a direct orthonormal basis {ẽ1, ẽ2, e} of R3. For any vector field η on R3, we
denote η̃ the vector field given by

η̃(ỹ1, ỹ2, z) = ( (η(x) · ẽ1), (η(x) · ẽ2), (η(x) · e) ), x = ỹ1ẽ1 + ỹ2ẽ2 + ze, (ỹ1, ỹ2, z) ∈ R3.

Obviously we have∫
R

∫
R2

|ξ̃|2(ỹ1, ỹ2, z) d(ỹ1, ỹ2)dz =

∫
R3

|ξ|2(x) dx < +∞

∫
R

∫
R2

|Ψ̃|2(ỹ1, ỹ2, z) d(ỹ1, ỹ2)dz =

∫
R3

|Ψ|2(x) dx < +∞

implying that (ξ̃1, ξ̃2)(·, ·, z), (Ψ̃1, Ψ̃2)(·, ·, z) ∈ L2(R2)2 for almost all z ∈ R. We claim
that (ξ̃1, ξ̃2)(·, ·, z) is a divergence free vector field in R2. Let us consider α̃ = α̃(z) ∈
C1
c (R), θ̃ = θ̃(ỹ1, ỹ2) ∈ C1

c (R2) and we introduce α(x) = α̃(x · e), θ(x) = θ̃(x · ẽ1, x · ẽ2).
Obviously we have αθ ∈ C1

c (R3) and therefore

0 =

∫
R3

ξ(x) · ∇(αθ) dx

=

∫
R
α̃(z)

∫
R2

[ξ̃1(ỹ1, ỹ2, z)∂ỹ1 θ̃(ỹ1, ỹ2) + ξ̃2(ỹ1, ỹ2, z)∂ỹ2 θ̃(ỹ1, ỹ2)] d(ỹ1, ỹ2)dz

saying that divỹ(ξ̃1, ξ̃2)(·, ·, z) = 0. Similarly we have

0 =

∫
R3

(Ψ(x) ∧ e) · ∇(αθ) dx

=

∫
R3

[−(Ψ(x) · ẽ1)ẽ2 + (Ψ(x) · ẽ2)ẽ1] · [∂zα̃ θ̃e+ α̃(∂ỹ1 θ̃ẽ1 + ∂ỹ2 θ̃ẽ2)] dx

=

∫
R
α̃(z)

∫
R2

[Ψ̃2(ỹ1, ỹ2, z)∂ỹ1 θ̃ − Ψ̃1(ỹ1, ỹ2, z)∂ỹ2 θ̃] d(ỹ1, ỹ2)dz

and thus divỹ(Ψ̃2,−Ψ̃1)(·, ·, z) = 0. Combining divỹ(ξ̃1, ξ̃2)(·, ·, z) = 0, divỹ(Ψ̃2,−Ψ̃1)(·, ·, z) =
0 we deduce that ∫

R2

(ξ̃1Ψ̃1 + ξ̃2Ψ̃2)(ỹ1, ỹ2, z) d(ỹ1, ỹ2) = 0, z ∈ R

and by noticing that ξ̃3 = 0, we obtain∫
R3

ξ(x) ·Ψ(x) dx =

∫
R

∫
R2

(ξ̃1Ψ̃1 + ξ̃2Ψ̃2)(ỹ1, ỹ2, z) d(ỹ1, ỹ2)dz = 0.

Lemma 4.2
Let us consider the set Ce = {Ψ ∈ L2(R3)3 : div(Ψ∧ e) = 0} ⊂ L2(R3)3, where e ∈ R3

is a unitary vector. The orthogonal of Ce in L2(R3)3 is given by

C⊥e = {ξ ∈ L2(R3)3 : divξ = 0, ξ · e = 0}.
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Proof.
By Lemma 4.1 we know that

{ξ ∈ L2(R3)3 : divξ = 0, ξ · e = 0} ⊂ C⊥e . (29)

Consider now ξ ∈ C⊥e . For any function u ∈ C2
c (R3), we have

∇u ∈ L2(R3)3, div(∇u ∧ e) = rot∇u · e = 0

saying that ∇u ∈ Ce. Therefore
∫
R3 ξ ·∇u dx = 0, that is divξ = 0. For any α ∈ C1

c (R3)
we have

αe ∈ L2(R3)3, div(αe ∧ e) = 0

saying that αe ∈ Ce. We deduce that
∫
R3 α(x)e · ξ(x) dx = 0 and thus ξ · e = 0. We

obtain
C⊥e ⊂ {ξ ∈ L2(R3)3 : divξ = 0, ξ · e = 0}. (30)

Our conclusion follows by (29), (30).

We denote by P the orthogonal projection in L2(R3)3 over the closed subspace Ce. For
further developments we need the following regularity result.

Lemma 4.3
Let ψ be a vector field in L2(R3)3 and Ψ ∈ Ce, ξ ∈ C⊥e such that ψ = Ψ + ξ. If
rotψ ∈ L2(R3)3, then rotΨ, rotξ ∈ L2(R3)3 and we have

‖rotψ‖2L2 = ‖rotΨ‖2L2 + ‖rotξ‖2L2 .

Proof.
We consider ρ ∈ C∞c (R3), ρ ≥ 0,

∫
R3 ρ(x) dx = 1 and ρk = k3ρ(k·), k ∈ N?. Let us

introduce the vector fields

ψk = ψ ? ρk, Ψk = Ψ ? ρk, ξk = ξ ? ρk, k ∈ N?.

We have

ψk = Ψk + ξk, Ψk ∈ Ce, ξk ∈ C⊥e , rotψk = rotψ ? ρk ∈ L2(R3)3

rotΨk =

∫
R3

∇ρk(·−y)∧Ψ(y) dy ∈ L2(R3)3, rotξk =

∫
R3

∇ρk(·−y)∧ξ(y) dy ∈ L2(R3)3.

Notice that
div rotΨk = 0, rotΨk · e = div(Ψk ∧ e) = 0

saying that rotΨk ∈ C⊥e . The notation ∂ξk stands for the jacobian matrix of the vector
field ξk. Observing that

rotξk ∧ e = (∂ξk − t∂ξk)e = (e · ∇)ξk −∇(e · ξk) = (e · ∇)ξk

we obtain
div(rotξk ∧ e) = div((e · ∇)ξk) = (e · ∇)divξk = 0

saying that rotξk ∈ Ce. We deduce that
∫
R3 rotΨk · rotξl dx = 0, k, l ∈ N? and therefore∫

R3

|rotψk − rotψl|2 dx =

∫
R3

|rotΨk − rotΨl|2 dx+

∫
R3

|rotξk − rotξl|2 dx, k, l ∈ N?.
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As (rotψk)k converges toward rotψ in L2(R3)3, we deduce that (rotΨk)k, (rotξk)k are
Cauchy sequences, and thus convergent sequences in L2(R3)3. Therefore we obtain

rotΨ = lim
k→+∞

rotΨk ∈ L2(R3)3, rotξ = lim
k→+∞

rotξk ∈ L2(R3)3

and

‖rotψ‖2L2 = lim
k→+∞

‖rotψk‖2L2 = lim
k→+∞

{‖rotΨk‖2L2 + ‖rotξk‖2L2} = ‖rotΨ‖2L2 + ‖rotξ‖2L2 .

In the next lemma we observe that the rot operator maps Ce to C⊥e and C⊥e to Ce.

Lemma 4.4
1. For any vector field Ψ ∈ Ce such that rotΨ ∈ L2(R3)3, we have rotΨ ∈ C⊥e .
2. For any vector field ξ ∈ C⊥e such that rotξ ∈ L2(R3)3, we have rotξ ∈ Ce.

Proof.
1. If Ψ ∈ Ce such that rotΨ ∈ L2(R3)3, then we have rotΨ · e = div(Ψ ∧ e) =
0, div rotΨ = 0, saying that rotΨ ∈ C⊥e .
2. Consider a vector field ξ ∈ C⊥e such that rotξ ∈ L2(R3)3. For any compactly
supported smooth function θ ∈ C2

c (R3) we have

〈div(rotξ ∧ e), θ〉D′(R3),D(R3) = −
∫
R3

(rotξ ∧ e) · ∇θ dx (31)

=

∫
R3

(∇θ ∧ e) · rotξ dx

=

∫
R3

ξ · rot(∇θ ∧ e) dx

=

∫
R3

[∇(e · ∇θ)−∆θ e] · ξ dx

= 0

since divξ = 0 and ξ · e = 0. Therefore we obtain div(rotξ ∧ e) = 0, saying that
rotξ ∈ Ce.

We are ready to prove Theorem 1.2.

Proof. (of Theorem 1.2)
We show the equivalence between (6) and (9). The operator Q : L2(R3)3 → L2(R3)3

is the orthogonal projection on C⊥e cf. Lemma 4.2. Therefore we have Q = Id − P ,
where P is the orthogonal projection on Ce. Assume that (9) holds true. For any
Ψ ∈ C1(R3)3 ∩ L2(R3)3 such that

div(Ψ ∧ e) = 0,

∫
R3

ε−11 rotΨ · rotΨ dx < +∞

we have

rotΨ · e = div(Ψ ∧ e) = 0, div rotΨ = 0, rotΨ = ε
1/2
1 (ε

−1/2
1 rotΨ) ∈ L2(R3)3
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saying that rotΨ ∈ C⊥e . We deduce that Q(rotΨ) = rotΨ. Noticing that ε−11 D =

ε
−1/2
1 (ε

−1/2
1 D) belongs to L2(R3)3, we obtain in D ′(R)

d

dt

∫
R3

B ·Ψ dx+

∫
R3

ε−11 D · rotΨ dx =
d

dt

∫
R3

B ·Ψ dx+

∫
R3

ε−11 D ·Q(rotΨ) dx

=
d

dt

∫
R3

B ·Ψ dx+

∫
R3

Q(ε−11 D) · rotΨ dx

= 0.

Thus (6) holds true. Conversely, assume now that (6) holds true and let us check that
(9) holds also true. Consider ψ ∈ L2(R3)3 such that rotψ ∈ L2(R3)3. By Lemma 4.3,
we have

ψ = Ψ + ξ, Ψ = Pψ ∈ Ce, ξ = Qψ ∈ C⊥e , rotΨ, rotξ ∈ L2(R3)3.

We are done if we establish (9) when using the test vector fields Ψ and ξ. Concerning
the vector field Ψ we have in D ′(R), thanks to (6), and by noticing that rotΨ ∈ L2(R3)3

belongs to C⊥e
d

dt

∫
R3

B ·Ψ dx+

∫
R3

Q(ε−11 D) · rotΨ dx =
d

dt

∫
R3

B ·Ψ dx+

∫
R3

ε−11 D ·Q(rotΨ) dx

=
d

dt

∫
R3

B ·Ψ dx+

∫
R3

ε−11 D · rotΨ dx

= 0.

When considering the vector field ξ, observe that the constraint div(B∧e) = 0 implies,
by Lemma 4.1 ∫

R3

B · ξ dx = 0. (32)

By the second statement in Lemma 4.4 we know that rotξ ∈ L2(R3)3 belongs to Ce.
By the orthogonality of the elements in Ce, C⊥e , we deduce that∫

R3

Q(ε−11 D) · rotξ dx = 0 (33)

and combining (32), (33) yields

d

dt

∫
R3

B · ξ dx+

∫
R3

Q(ε−11 D) · rotξ dx = 0 in D ′(R).

Remark 4.2
If the initial conditions (Din, Bin) satisfy the constraints in (10), then these constraints
propagate in time. Indeed, let us consider a vector field ξ ∈ C⊥e such that rotξ ∈
L2(R3)3. By the second statement in Lemma 4.4 we know that rotξ ∈ Ce. Therefore
we have

∫
R3 Q(ε−11 D) · rotξ dx = 0 and thanks to Faraday equation in (9), one gets

d

dt

∫
R3

B(t, x) · ξ(x) dx =
d

dt

∫
R3

B(t, x) · ξ(x) dx+

∫
R3

Q(ε−11 D) · rotξ dx = 0.
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We deduce that
∫
R3(B(t, x) − Bin(x)) · ξ(x) dx = 0 for any ξ ∈ C⊥e such that rotξ ∈

L2(R3)3. Actually the previous equality holds true for any ξ ∈ C⊥e , implying that B(t)−
Bin ∈ Ce. Therefore we have

div(B(t) ∧ e) = div(Bin ∧ e) = 0, t ∈ R.

Using now Ampère equation in (8) with the vector field Φ(x) = α(x)e, α ∈ C1
c (R3)

yields

d

dt

∫
R3

D(t, x) · e α(x) dx =

∫
R3

µ−1B(t, x) · (∇α ∧ e) dx

= −µ−1
∫
R3

(B ∧ e) · ∇α dx

= µ−1〈div(B ∧ e), α〉D′(R3),D(R3) = 0.

We deduce that D(t) · e = Din · e = 0, t ∈ R.

5 Strong convergence result

As usual, when the initial conditions are well prepared, strong convergences occur. The
key point is to combine weak convergences with the energy conservation. The following
standard results will be used.

Lemma 5.1
Let (Aδ)δ>0, (B

δ)δ>0 be two families of real numbers and A,B ∈ R such that

lim sup
δ↘0

(Aδ +Bδ) ≤ A+B, A ≤ lim inf
δ↘0

Aδ, B ≤ lim inf
δ↘0

Bδ.

Then we have
lim
δ↘0

Aδ = A, lim
δ↘0

Bδ = B.

Proof.
We have the inequalities

A+B ≥ lim sup
δ↘0

(Aδ +Bδ) ≥ lim sup
δ↘0

Aδ + lim inf
δ↘0

Bδ ≥ lim sup
δ↘0

Aδ +B

saying that
A ≤ lim inf

δ↘0
Aδ ≤ lim sup

δ↘0
Aδ ≤ A.

Therefore (Aδ)δ>0 converges toward A as δ ↘ 0. Similarly, (Bδ)δ>0 converges toward
B as δ ↘ 0.

The next proposition is well known. It allows us to deduce strong convergence when
the sequence of the norms is bounded by the norm of the weak limit. Its proof is left
to the reader.

Proposition 5.1
Assume that A : R3 →M3(R) is a measurable field of symmetric non negative matrices

and that (A1/2wδ)δ converges weakly in L2([−T, T ];L2(R3)3) toward A1/2w0, when δ ↘
0, where wδ : R× R3 → R3, δ > 0 and w0 : R× R3 → R3 are measurable vector fields.
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1. Then we have∫ T

−T

∫
R3

A(x)w0(t, x) · w0(t, x) dxdt ≤ lim inf
δ↘0

∫ T

−T

∫
R3

A(x)wδ(t, x) · wδ(t, x) dxdt.

2. If

lim sup
δ↘0

∫ T

−T

∫
R3

A(x)wδ(t, x) · wδ(t, x) dxdt ≤
∫ T

−T

∫
R3

A(x)w0(t, x) · w0(t, x) dxdt

then the family (A1/2wδ)δ converges strongly in L2([−T, T ];L2(R3)3) toward A1/2w0,
when δ ↘ 0.

Proof. (of Theorem 1.3)
We already know by Theorem 1.1 that

Dδ ⇀ D weakly ? in L∞(R, L2
ε−1
1

(R3)) and weakly in L2
loc(R, L2

ε−1
1

(R3))

Bδ ⇀ B weakly ? in L∞(R, L2
µ−1(R3)) and weakly in L2

loc(R, L2
µ−1(R3))

where (D,B) ∈ C(R;L2
ε−1
1

(R3))× C(R;L2
µ−1(R3)) is the unique variational solution of

the problem (3), (4), satisfying the initial condition

(D(0), B(0)) = (Din, P (Bin)) = (Din, Bin).

By the energy conservation we obtain for any t ∈ R∫
R3

[ε−11 Dδ(t, x) ·Dδ(t, x) + µ−1|Bδ(t, x)|2] dx+ (δ−2 − 1)

∫
R3

(Dδ(t, x) · e)2

n2
dx

=

∫
R3

[ε−11 Dδ(0, x) ·Dδ(0, x) + µ−1|Bδ(0, x)|2] dx+ (δ−2 − 1)

∫
R3

(Dδ(0, x) · e)2

n2
dx

and∫
R3

[ε−11 D(t, x) ·D(t, x)+µ−1|B(t, x)|2] dx =

∫
R3

[ε−11 D(0, x) ·D(0, x)+µ−1|B(0, x)|2] dx.

We have the uniform convergences with respect to t ∈ R

lim
δ↘0

{∫
R3

[ε−11 Dδ(t, x) ·Dδ(t, x) + µ−1|Bδ(t, x)|2] dx+ (δ−2 − 1)

∫
R3

(Dδ(t, x) · e)2

n2
dx

}
= lim

δ↘0

∫
R3

[ε−11 Dδ(0, x) ·Dδ(0, x) + µ−1|Bδ(0, x)|2] dx

=

∫
R3

[ε−11 D(0, x) ·D(0, x) + µ−1|B(0, x)|2] dx

=

∫
R3

[ε−11 D(t, x) ·D(t, x) + µ−1|B(t, x)|2] dx.

25



We deduce for any T ∈ R+

lim sup
δ↘0

∫ T

−T

∫
R3

[ε−11 Dδ(t, x) ·Dδ(t, x) + µ−1|Bδ(t, x)|2] dxdt (34)

≤ lim
δ↘0

∫ T

−T

{∫
R3

[ε−11 Dδ ·Dδ + µ−1|Bδ|2] dx+ (δ−2 − 1)

∫
R3

(Dδ · e)2

n2
dx

}
dt

=

∫ T

−T

∫
R3

[ε−11 D(t, x) ·D(t, x) + µ−1|B(t, x)|2] dxdt.

By weak convergence we also have∫ T

−T

∫
R3

ε−11 D(t, x) ·D(t, x) dxdt ≤ lim inf
δ↘0

∫ T

−T

∫
R3

ε−11 Dδ(t, x) ·Dδ(t, x) dxdt

∫ T

−T

∫
R3

µ−1|B(t, x)|2 dxdt ≤ lim inf
δ↘0

∫ T

−T

∫
R3

µ−1|Bδ(t, x)|2 dxdt

and by Lemma 5.1 we deduce

lim
δ↘0

∫ T

−T

∫
R3

ε−11 Dδ(t, x) ·Dδ(t, x) dxdt =

∫ T

−T

∫
R3

ε−11 D(t, x) ·D(t, x) dxdt

lim
δ↘0

∫ T

−T

∫
R3

µ−1|Bδ(t, x)|2 dxdt =

∫ T

−T

∫
R3

µ−1|B(t, x)|2 dxdt.

Thanks to Proposition 5.1 we obtain the strong convergences, when δ ↘ 0

Dδ → D in L2
loc(R, L2

ε−1
1

(R3)), Bδ → B in L2
loc(R, L2

µ−1(R3)).

Coming back to (34), we deduce as well the convergence

lim
δ↘0

1

δ2

∫ T

−T

∫
R3

(Dδ(t, x) · e)2

n2
dxdt = 0, T ∈ R+.

6 Propagation speed

It is well known that the solutions of the Maxwell equations (1), (2) propagate with
finite speed c = µ−1/2‖ε−1/2‖∞. When the electric permittivity possesses disparate
eigenvalues

εδ = n2
1e1 ⊗ e1 + n2

2e2 ⊗ e2 + δ2n2e⊗ e
we obtain cδ = µ−1/2‖max{1/n1, 1/n2, 1/(δn)}‖∞ = O(1/δ) when δ ↘ 0. Neverthe-
less, the solutions of the limit model (5), (6) propagate with finite speed, not depending
on δ > 0. We prove that this speed is given by

c∞ = lim
δ→+∞

cδ = µ−1/2 lim
δ→+∞

‖ε−1/2δ ‖∞ = µ−1/2‖max{1/n1, 1/n2}‖∞.

Moreover we establish that the energy of the solutions (Dδ, Bδ), outside the propagation
cone associated to the limit model, is negligible when δ ↘ 0, that is, almost all energy
of (Dδ, Bδ) concentrates inside the propagation cone of speed c∞. For simplifying our
computations, we consider ϕ(x) = |x|, e = x

|x| , x ∈ R3 \ {0}.
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Proposition 6.1
Assume that the electric permittivity tensor writes

ε1 = n2
1e1 ⊗ e1 + n2

2e2 ⊗ e2 + n2e⊗ e, e =
x

|x|
, x ∈ R3 \ {0}

and n1, n2, n are locally bounded from below and above : for any compact set K ⊂ R3,
there are 0 < mK ≤MK < +∞ such that

mK ≤ min{n1, n2, n} ≤ max{n1, n2, n} ≤MK , x ∈ K.

Let us consider (D,B) ∈ C(R;L2
ε−1
1

(R3)) × C(R;L2
µ−1(R3)) the unique variational so-

lution of the problem

D · e = 0,
d

dt

∫
R3

D · Φ dx−
∫
R3

µ−1B · rotΦ dx = 0 in D ′(R), Φ ∈ C1
c (R3)3 (35)

div(B∧e) = 0,
d

dt

∫
R3

B·Ψ dx+

∫
R3

ε−11 D·rotΨ dx = 0 in D ′(R),Ψ ∈ C1(R3)3∩L2(R3)3

(36)
such that div(Ψ ∧ e) = 0,

∫
R3 ε

−1
1 rotΨ · rotΨ dx < +∞, with the initial conditions

D(0) = Din ∈ L2
ε−1
1

(R3), B(0) = Bin ∈ L2
µ−1(R3), Din · e = 0, div(Bin ∧ e) = 0.

Assume that for some R > 0, the initial conditions satisfy

Din(x) = 0, Bin(x) = 0, |x| > R.

Then we have
D(t, x) = 0, B(t, x) = 0, |x| > R + c∞|t|

where c∞ = µ−1/2‖max{ 1
n1
, 1
n2
}‖∞.

Proof.
Pick a non decreasing function θ ∈ C1

b (R) such that θ(r) = 0 if r ≤ 0, θ(r) > 0 if r > 0.
Using (35) with Φ = θ(|x| −R− c1|t|)ε−11 D and (36) with Ψ = θ(|x| −R− c1|t|)µ−1B,
we obtain in D ′(R), after standard manipulations (including regularization)

d

dt

∫
R3

θ(|x| −R− c1|t|)
ε−11 D ·D + µ−1|B|2

2
dx

+ sgn(t)

∫
R3

θ ′(|x| −R− c1|t|)
[
ε−11 D ·D + µ−1|B|2

2
c1 − (ε−11 D ∧ µ−1B) · e sgn(t)

]
dx = 0.

Notice that Ψ = θ(|x| −R− c1|t|)µ−1B is allowed as test vector field in (36) since

div(θ(|·|−R−c1|t|)B∧e) = θ(|x|−R−c1|t|)div(B∧e)+θ ′(|x|−R−c1|t|)
(
x

|x|
∧B

)
·e = 0.

It is easily seen that

(ε−11 D ∧ µ−1B) · e sgn(t) ≤ |ε−11 D| |µ−1B| ≤ ‖ε−1/21 ‖ µ−1/2 |ε−1/21 D| |µ−1/2B|

≤ c1
ε−11 D ·D + µ−1|B|2

2
.
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Therefore we obtain

sgn(t)
d

dt

∫
R3

θ(|x| −R− c1|t|)
ε−11 D ·D + µ−1|B|2

2
dx ≤ 0

implying that∫
R3

θ(|x|−R−c1|t|)
ε−11 D ·D + µ−1|B|2

2
dx ≤

∫
R3

θ(|x|−R)
ε−11 Din ·Din + µ−1|Bin|2

2
dx

and thus, for any |x| > R + c1|t| we have D(t, x) = 0, B(t, x) = 0.
As D · e = 0, we have ε−11 D = ε−1δ D. Similarly, for any Ψ ∈ C1(R3)3 ∩ L2(R3)3 such
that div(Ψ ∧ e) = rotΨ · e = 0, we have∫

R3

ε−1δ rotΨ · rotΨ dx =

∫
R3

ε−11 rotΨ · rotΨ dx.

Therefore (D,B) solves (35), (36) with ε−11 replaced by ε−1δ , for any δ > 0. By the
previous arguments, we obtain

D(t, x) = 0, B(t, x) = 0, |x| > R + cδ|t|, cδ = µ−1/2‖ε−1/2δ ‖∞, δ > 0

implying that
D(t, x) = 0, B(t, x) = 0, |x| > R + c∞|t|

where
c∞ = µ−1/2 lim

δ→+∞
‖ε−1/2δ ‖∞ = µ−1/2‖max{1/n1, 1/n2}‖∞.

We investigate now how much energy of the solutions (Dδ, Bδ) concentrates inside the
propagation cone of the limit model. Although, when δ ↘ 0, the propagation cone
{(t, x) ∈ R×R3 : |x| < R+cδ|t|} is much larger than {(t, x) ∈ R×R3 : |x| < R+c1|t|},
we will see that almost all the energy of the solution (Dδ, Bδ) lies inside the propagation
cone of the limit model.

Proof. (of Theorem 1.4)
By Theorem 1.3 we have

lim
δ↘0

∫ T

−T

∫
R3

ε−11 (Dδ −D) · (Dδ −D) + µ−1|Bδ −B|2

2
dxdt = 0

lim
δ↘0

∫ T

−T

∫
R3

(
1

δ2
− 1

)(
Dδ · e
n

)2

dxdt = 0.

As we know, by Proposition 6.1, that D(t, x) = 0, B(t, x) = 0 for |x| > R + c∞|t|, we
obtain

lim
δ↘0

∫ T

−T

∫
R3

ε−1δ Dδ(t, x) ·Dδ(t, x) + µ−1|Bδ(t, x)|2

2
1{|x|>R+c∞|t|} dxdt

= lim
δ↘0

∫ T

−T

∫
R3

[
ε−11 Dδ ·Dδ + µ−1|Bδ|2

2
+

1

2

(
1

δ2
− 1

)(
Dδ · e
n

)2
]

1{|x|>R+c∞|t|} dxdt

= 0.
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