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Multi-scale analysis for wave problems with
disparate propagation speeds

Mihäı BOSTAN ∗

(February 28, 2022)

Abstract

The subject matter of this work concerns the asymptotic behavior of the
wave problems, when the propagation speed in one direction is much larger than
in the other directions. We establish weak and strong convergence results. We
appeal to homogenization arguments, based on average operators with respect
to unitary groups.

Keywords: Average operators, Ergodic means, Unitary groups, Homogenization.

AMS classification: 35L05, 37A10

1 Introduction

We focus on the behavior of the solutions for wave equations whose propagation speed
becomes very large along some direction. We consider the problem

∂2t u
ε − divy(D(y)∇yu

ε)− 1

ε2
divy(b(y)⊗ b(y)∇yu

ε) = 0, (t, y) ∈ R+ × Rm (1)

uε(0, y) = uεin(y), ∂tu
ε(0, y) =

·
u
ε

in(y), y ∈ Rm (2)

where D(y) ∈ Mm(R) and b(y) ∈ Rm are given matrix and vector fields on Rm. We
use the notation ξ ⊗ η for the matrix whose entry (i, j) is ξiηj, where ξ, η ∈ Rm,
and A : B for trace(tAB) =

∑m
i=1

∑m
j=1AjiBji, with A,B ∈ Mm(R). The matrix

field D is assumed symmetric non-negative, such that D + b ⊗ b is positive definite.
We concentrate on the behavior of the family (uε)ε for 0 < ε ≤ 1, in which case(
D + 1

ε2
b⊗ b

)
0<ε≤1 remain positive definite. This study is motivated by the numerical

simulation of highly anisotropic wave problems. Indeed, the explicit methods require
small time steps, through the CFL stability condition ∆t ∼ ε|∆y|. Therefore suitable
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methods have been proposed [7, 12, 10, 13], see also [9, 11, 1, 16, 17] for elliptic and
parabolic problems.

We consider variational solutions for (1), (2). We introduce a weighted Sobolev
space H1

P see (8) and define the bounded symmetric bilinear form

aε(u, v) =

∫
Rm

D(y)∇u · ∇v dy +
1

ε2

∫
Rm

(b · ∇u)(b · ∇v) dy, u, v ∈ H1
P .

By standard results cf. [14], for any ε ∈]0, 1] and (uεin,
·
u
ε

in) ∈ H1
P × L2(Rm), there is a

unique solution uε ∈ C(R+;H1
P ), ∂tu

ε ∈ C(R+;L2(Rm)) for

uε(0) = uεin, ∂tu
ε(0) =

·
u
ε

in,
d

dt

∫
Rm

∂tu
εv(y) dy + aε(uε(t), v) = 0 in D ′(R+), v ∈ H1

P

where D(R+) is the set of infinitely many times differentiable functions, compactly
supported in R+ and D ′(R+) stands for the distributions on D(R+). We are interested
on the asymptotic behavior of the family (uε)ε, when ε ↘ 0. We prove that the limit
problem corresponds to a wave operator as well, and identify the matrix field associated
to it. The identification of the limit model relies on averaging along the characteristic
flow of the vector field b

dY

ds
= b(Y (s; y)), (s, y) ∈ R× Rm, Y (0; y) = y, y ∈ Rm.

For example, the orthogonal projection of any function u ∈ L2(Rm) over the subspace
of L2 functions which are left invariant with respect to the flow of b, writes

Projker b·∇y
u = lim

S→+∞

1

S

∫ S

0

u ◦ Y (s; ·) ds, strongly in L2(Rm).

The above orthogonal projection appears as the average along the characteristic flow
of b. Similarly, under suitable hypotheses, we introduce the average of a matrix field
A = A(y) by

〈A〉 := lim
S→+∞

1

S

∫ S

0

∂Y (−s;Y (s; ·))A(Y (s; ·)) t∂Y (−s;Y (s; ·)) ds.

The previous average operator will enter the limit model and we prove the following
convergence results, see Theorems 4.1, 4.2 for exact statements including all the hy-
potheses on the vector field b and the matrix field D. Here the notation T stands for
the operator u 7→ divy(ub), u ∈ domT .

Theorem 1.1
Assume that the initial conditions satisfy

lim
ε↘0

uεin = uin weakly in H1
P , lim

ε↘0

·
u
ε

in =
·
uin weakly in L2(Rm)

and

sup
0<ε≤1

|b · ∇uεin|L2(Rm)

ε
< +∞.

2



Then (uε)ε, (∂tu
ε)ε converge weakly ? in L∞([0, T ], H1

P ), L∞([0, T ];L2(Rm)) respectively,
T ∈ R+, toward the solution (u, ∂tu) ∈ L∞loc(R+;H1

P ∩ ker T ) × L∞loc(R+; ker T ) of the
problem

d

dt

∫
Rm

∂tu v dy +

∫
Rm

〈D〉 (y)∇u · ∇v dy = 0 in D ′(R+), v ∈ H1
P

with (u(0), ∂tu(0)) = (uin,
〈
·
uin

〉
).

When the initial conditions are well prepared, the above weak convergences become
strong.

Theorem 1.2
Assume that the initial conditions satisfy

lim
ε↘0

uεin = uin strongly in H1
P , lim

ε↘0

b · ∇uεin
ε

= 0 strongly in L2(Rm)

lim
ε↘0

·
u
ε

in =
·
uin strongly in L2(Rm), b · ∇ ·uin = 0.

Then we have the strong convergences

lim
ε↘0

uε = u in L∞loc(R+;L2(Rm)), lim
ε↘0
∇uε = ∇u in L2

loc(R+;XP )

lim
ε↘0

∂tu
ε = ∂tu in L2

loc(R+;L2(Rm)), lim
ε↘0

b · ∇uε

ε
= 0 in L2

loc(R+;L2(Rm)).

Our paper is organized as follows. In Section 2 we discuss the average operators for
functions and matrix fields, recalling their main properties. We introduce and study
the weighted Sobolev space H1

P , which will play a crucial role in our analysis. In
Section 3 we study the variational solutions of the problems (1), (2) and introduce the
limit wave problem which comes out when averaging the matrix field D. Section 4 is
devoted to the asymptotic analysis. We establish strong and weak convergence results,
provided that the initial conditions are well prepared or not. In Section 5 we estimate
the propagation speed for the solution of the limit model.

2 Preliminaries

We introduce the main functional spaces and tools which allow us to define the av-
erage operators along a characteristic flow, for functions and matrix fields. Most of
these notions are borrowed from previous works [4, 5, 6], dealing with the asymptotic
analysis of PDEs perturbed by a stiff transport operator. For the completeness of the
presentation, we detail them here (or refer to the appendix). We consider the transport
operator T = divy(· b), defined on

domT = {u ∈ L2(Rm) : divy(ub) ∈ L2(Rm)}.

The vector field b is assumed to verify the standard hypotheses

b ∈ W 1,∞
loc (Rm), divyb = 0 (3)

3



and grows at most linearly at infinity

∃ C > 0 such that |b(y)| ≤ C(1 + |y|), y ∈ Rm. (4)

Under the previous hypotheses, the vector field b possesses a global smooth character-
istic flow Y ∈ W 1,∞

loc (R× Rm)

dY

ds
= b(Y (s; y)), (s, y) ∈ R× Rm, Y (0; y) = y, y ∈ Rm.

The vector field b being divergence free, the transformation y ∈ Rm → Y (s; y) ∈ Rm

is measure preserving for any s ∈ R. We introduce the C0-group of unitary operators
(ζ(s))s∈R given by

ζ(s)u = u ◦ Y (s; ·), u ∈ L2(Rm), s ∈ R

whose infinitesimal generator is T . Sometimes we will use the notation fs(z) =
f(Y (s; z)), given a function f = f(y).
The orthogonal projection on the kernel of T coincides with the ergodic mean of the
group (ζ(s))s∈R, thanks to the following classical result in ergodic theory [15].

Theorem 2.1 (von Neumann’s ergodic mean theorem)
Let (G(s))s∈R be a C0-group of unitary operators on a Hilbert space (H, (·, ·)) and L

be its infinitesimal generator. Then for any x ∈ H, we have the strong convergence in
H

lim
S→+∞

1

S

∫ r+S

r

G(s)x ds = ProjkerLx, uniformly with respect to r ∈ R.

In particular, the orthogonal projection on ker T = {u ∈ L2(Rm) : u(Y (s; ·)) =
u, ∀ s ∈ R} writes

Proposition 2.1 (Average of L2(Rm) functions)
Assume that (3), (4) hold true. Then for any u ∈ L2(Rm) we have the strong conver-
gence in L2(Rm)

lim
S→+∞

1

S

∫ r+S

r

u(Y (s; ·)) ds = Projker T u, uniformly with respect to r ∈ R.

Proof.
Apply the von Neumann’s ergodic mean theorem to the C0-group of unitary operators
(ζ(s))s∈R.

In the sequel we use the notation 〈u〉 = limS→+∞
1
S

∫ r+S
r

u(Y (s; ·))ds, u ∈ L2(Rm), that
is 〈·〉 = Projker T . We need to introduce several weighted Lebesgue and Sobolev spaces.
For doing that we assume that there is a matrix field P such that

tP = P, P (y)ξ · ξ > 0, ξ ∈ Rm \ {0}, y ∈ Rm, P−1, P ∈ L2
loc(Rm) (5)

[b, P ] := (b · ∇y)P − ∂ybP − P t∂yb = 0, in D ′(Rm). (6)

We have the following characterization, in terms of the characteristic flow of b, for the
matrix fields A satisfying [b, A] = 0 in D ′(Rm), see Proposition 3.8 [5]. The notation
∂Y (s; y) stands for the jacobian matrix of the application y 7→ Y (s; y). Similarly, the
jacobian matrix of the vector field b is denoted by ∂yb.
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Proposition 2.2
Consider b ∈ W 1,∞

loc (Rm) (not necessarily divergence free) with at most linear growth at
infinity and A(y) ∈ L1

loc(Rm). Then [b, A] := (b · ∇y)A− ∂ybA−A t∂yb = 0 in D ′(Rm)
iff

A(Y (s; y)) = ∂Y (s; y)A(y) t∂Y (s; y), s ∈ R, y ∈ Rm.

Any vector field c in involution with b i.e., (b·∇y)c−∂ybc = 0 in D ′(Rm), or equivalently
c(Y (s; y)) = ∂Y (s; y)c(y), s ∈ R, y ∈ Rm, provides a symmetric matrix field Pc(y) =
c(y)⊗ c(y) satisfying [b, Pc] = 0 in D′(Rm). Indeed we have

Pc(Y (s; y)) = c(Y (s; y))⊗ c(Y (s; y))

= (∂Y (s; y)c(y))⊗ (∂Y (s; y)c(y))

= ∂Y (s; y)(c(y)⊗ c(y)) t∂Y (s; y)

= ∂Y (s; y)Pc(y) t∂Y (s; y), s ∈ R, y ∈ Rm.

If a family {ci}1≤i≤m of vector fields in involution with b is available, and {ci(y)}1≤i≤m
form a basis of Rm at any point y ∈ Rm, therefore the symmetric matrix field P (y) =∑m

i=1 ci(y)⊗ ci(y) is positive definite and satisfies [b, P ] = 0 in D′(Rm).
Before going further, let us give an example of a vector field b and matrix field P

satisfying (5), (6). We consider m = 2, b(y) = (y2,−y1), y = (y1, y2) ∈ R2. It is easily
seen that divyb = 0 and P = I2 satisfies (5), (6).

Let us consider the following spaces of matrix fields.

Definition 2.1 We introduce the linear space

HQ =
{
A : Rm →Mm(R) measurable : Q1/2AQ1/2 ∈ L2

}
,

where Q = P−1, which is a Hilbert space for the natural scalar product

(A, B)HQ
=

∫
Rm

Q1/2AQ1/2 : Q1/2BQ1/2 dy =

∫
Rm

QA : BQ dy, ∀A, B ∈ HQ.

The associated norm is denoted by |A|HQ
.

Similarly we introduce the Banach space

H∞Q =
{
A : Rm →Mm(R) measurable : Q1/2AQ1/2 ∈ L∞

}
,

endowed with the norm
|A|H∞

Q
:= |Q1/2AQ1/2|L∞ .

We also need a localized version of the space HQ. For that, we assume that there is
a continuous function ψ, which is left invariant by the flow of b, and goes to infinity
when |y| goes to infinity

ψ ∈ C(Rm), ψ ◦ Y (s; ·) = ψ for any s ∈ R, lim
|y|→+∞

ψ(y) = +∞. (7)

For example, when m = 2, b(y) = (y2,−y1), y = (y1, y2) ∈ R2, P = I2, we can pick the
invariant ψ(y) = |y|2, y ∈ R2, which satisfies lim|y|→+∞ ψ(y) = +∞.

We consider the local space

HQ,loc =
{
A : Rm →Mm(R) measurable : 1{ψ≤k}A ∈ HQ for any k ∈ N

}
.
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We say that a family (Ai)i ⊂ HQ,loc converges in HQ,loc toward some A ∈ HQ,loc iff
for any k ∈ N, the family (1{ψ≤k}Ai)i converges in HQ toward 1{ψ≤k}A. The space
HQ,loc, as well as the convergence in this space, are not depending on the choice of the
function ψ satisfying (7). Notice that we have the continuous inclusion HQ ⊂ HQ,loc.
We introduce the family of linear transformations (G(s))s∈R, acting on HQ and also
on HQ,loc. For any matrix field A we use the notation As = A ◦ Y (s; ·). The following
result is borrowed from [3], see Proposition 4.1. The proof details are postponed to
appendix A.

Proposition 2.3
Assume that the hypotheses (3), (4), (5), (6) hold true and that Q = P−1.

1. The family of applications

A 7→ G(s)A := ∂Y −1(s; ·)As t∂Y
−1

(s; ·) = ∂Y (−s;Y (s; ·))As t∂Y (−s;Y (s; ·))

is a C0-group of unitary operators on HQ.

2. If A is a field of symmetric matrices, then so is G(s)A, for any s ∈ R.

3. If A is a field of positive semi-definite matrices, then so is G(s)A, for any s ∈ R.

4. Let S ⊂ Rm be an invariant set of the flow of b, that is Y (s;S) = S, for any
s ∈ R. If there is d > 0 such that Q1/2(y)A(y)Q1/2(y) ≥ dIm, y ∈ S, then for any
s ∈ R we have Q1/2(y)(G(s)A)(y)Q1/2(y) ≥ dIm, y ∈ S.

5. Moreover, if (7) holds true, then the family of applications (G(s))s∈R acts on
HQ,loc, that is, if A ∈ HQ,loc, then G(s)A ∈ HQ,loc for any s ∈ R. We have

1{ψ≤k}G(s)A = G(s)(1{ψ≤k}A), A ∈ HQ,loc, s ∈ R, k ∈ N.

The infinitesimal generator of the group G is given by

L : domL ⊂ HQ → HQ, domL = {A ∈ HQ : ∃ lim
s→0

G(s)A− A
s

in HQ}

and LA = lims→0
G(s)A−A

s
for any A ∈ domL. Notice that C1

c (Rm) ⊂ domL and
LA = (b · ∇y)A − ∂ybA − A t∂yb, A ∈ C1

c (Rm) (use the hypothesis Q ∈ L2
loc(Rm) and

the dominated convergence theorem). For the main properties of the operator L we
refer to [5], Proposition 3.13 .

Proposition 2.4
Assume that the hypotheses (3), (4), (5), (6) hold true.

1. The domain of L is dense in HQ and L is closed.

2. The matrix field A ∈ HQ belongs to domL iff there is a constant C > 0 such that

|G(s)A− A|HQ
≤ C|s|, s ∈ R.

3. The operator L is skew-adjoint and we have the orthogonal decomposition HQ =

kerL
⊥
⊕ Range L.
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The transformations (G(s))s∈R also operate on H∞Q . More exactly, for any s ∈ R, and
any A ∈ H∞Q , we have G(s)A ∈ H∞Q and |G(s)A|H∞

Q
= |A|H∞

Q
. Indeed, thanks to (19)

and to the orthogonality of O(s; ·) (see the proof of Proposition 2.3 for the definition
of the matrix field O), observe that

Q1/2G(s)AQ1/2 : Q1/2G(s)AQ1/2 = tO(s; ·)Q1/2
s AsQ

1/2
s O(s; ·) : tO(s; ·)Q1/2

s AsQ
1/2
s O(s; ·)

= (Q1/2AQ1/2 : Q1/2AQ1/2)s, s ∈ R

and our claim follows immediately. Applying Theorem 2.1 to the group (G(s))s∈R,

we deduce that the average of a matrix field 〈A〉 := limS→+∞
1
S

∫ r+S
r

G(s)A ds is
well defined and coincides with the orthogonal projection on kerL. Moreover, by
Proposition 2.3, (G(s))s∈R also acts on HQ,loc, and any matrix field of H∞Q ⊂ HQ,loc

possesses an average in HQ,loc, still denoted by 〈·〉 as for the matrix fields in HQ, cf.
Theorem 3.2 [2] (see Appendix A for proof details).

Theorem 2.2 (Average of HQ,loc matrix fields)
Assume that (3), (4), (5), (6) hold true and that Q = P−1.

1. For any matrix field A ∈ HQ we have the strong convergence in HQ

〈A〉 := lim
S→+∞

1

S

∫ r+S

r

∂Y (−s;Y (s; ·))A(Y (s; ·)) t∂Y (−s;Y (s; ·)) ds = ProjkerLA

uniformly with respect to r ∈ R.

2. If A ∈ HQ is a field of symmetric positive semi-definite matrices, then so is 〈A〉.

3. Let S ⊂ Rm be an invariant set of the flow of b, that is Y (s;S) = S for any
s ∈ R. If A ∈ HQ and there is d > 0 such that

Q1/2(y)A(y)Q1/2(y) ≥ dIm, y ∈ S

therefore we have

Q1/2(y) 〈A〉 (y)Q1/2(y) ≥ dIm, y ∈ S

and in particular, 〈A〉 (y) is definite positive, y ∈ S.

4. If A ∈ HQ ∩H∞Q , then 〈A〉 ∈ HQ ∩H∞Q and

| 〈A〉 |HQ
≤ |A|HQ

, | 〈A〉 |H∞
Q
≤ |A|H∞

Q
.

5. Moreover, assume that (7) holds true. For any matrix field A ∈ HQ,loc, the family(
1

S

∫ r+S

r

∂Y (−s;Y (s; ·))A(Y (s; ·)) t∂Y (−s;Y (s; ·)) ds

)
S>0

converges in HQ,loc, when S goes to infinity, uniformly with respect to r ∈ R, for
any fixed k ∈ N. Its limit, denoted by 〈A〉, satisfies

1{ψ≤k} 〈A〉 =
〈
1{ψ≤k}A

〉
, for any k ∈ N

7



where the symbol 〈·〉 in the right hand side stands for the average operator on HQ.
In particular, any matrix field A ∈ H∞Q has an average in HQ,loc and | 〈A〉 |H∞

Q
≤

|A|H∞
Q

. If A ∈ HQ,loc is such that

Q1/2(y)A(y)Q1/2(y) ≥ αIm, y ∈ Rm,

for some α > 0, then we have

Q1/2(y) 〈A〉 (y)Q1/2(y) ≥ αIm, y ∈ Rm.

We also introduce the linear spaces of vector fields

XQ = {c : Rm → Rm measurable :

∫
Rm

Q(y) : c(y)⊗ c(y) dy < +∞}

X∞Q = {c : Rm → Rm measurable : |Q1/2c| ∈ L∞(Rm)}.

The linear space XQ, endowed with the scalar product

(·, ·)XQ
: XQ ×XQ → R, (c, d)XQ

=

∫
Rm

Q(y) : c(y)⊗ d(y) dy, c, d ∈ XQ

becomes a Hilbert space, whose norm is denoted by |c|XQ
= (c, c)

1/2
XQ
, c ∈ XQ.

The linear space X∞Q is a Banach space with respect to the norm

|c|X∞
Q

= ess supy∈Rm|Q1/2(y)c(y)|, c ∈ X∞Q .

Notice that for any c ∈ XQ ∩X∞Q , we have c⊗ c ∈ HQ ∩H∞Q and

|c⊗ c|H∞
Q

= ess supy∈Rm|Q1/2(y)c(y)|2 = |c|2X∞
Q

|c⊗ c|HQ
=

(∫
Rm

|Q1/2(y)c(y)|4 dy

)1/2

≤ |c|XQ
|c|X∞

Q
.

Replacing the matrix field Q by the matrix field P , we obtain the linear spaces XP , X
∞
P .

When applying variational methods, we need a weighted H1 space. We consider the
linear subspace made of L2(Rm) functions, whose gradient belongs to XP

H1
P = {u ∈ L2(Rm) : ∇yu ∈ XP} (8)

which is a Hilbert space, with the scalar product

(u, v)H1
P

=

∫
Rm

u(y)v(y) dy +

∫
Rm

P (y) : ∇yu⊗∇yv dy, u, v ∈ H1
P .

The C0-group (ζ(s))s∈R acts on H1
P cf. Proposition 3.5 [2] (see Appendix A for proof

details).
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Proposition 2.5 (Average of H1
P functions)

Assume that the hypotheses (3), (4), (5), (6) hold true. For any s ∈ R and u ∈ H1
P

we have us ∈ H1
P and |us|H1

P
= |u|H1

P
. The family of applications u ∈ H1

P → ζ1(s)u =

u ◦ Y (s; ·) ∈ H1
P is a C0-group of unitary operators on H1

P . In particular, for any
u ∈ H1

P we have 〈u〉 ∈ H1
P

∇y 〈u〉 = lim
S→+∞

1

S

∫ r+S

r

∇yus ds, strongly in XP , uniformly with respect to r ∈ R

u− 〈u〉 ⊥ ker T ∩H1
P in H1

P , |∇y 〈u〉 |XP
≤ |∇yu|XP

.

For further developments, we introduce the following result, borrowed from [2], Lemma
5.1 (see Appendix A for proof details).

Lemma 2.1
Assume that the hypotheses (3), (4), (5), (6), (7) hold true. For any matrix field
D ∈ H∞Q and any vector field c ∈ XP we have the convergence

lim
S→+∞

1

S

∫ r+S

r

G(s)Dc ds = 〈D〉 c, strongly in XQ, uniformly with respect to r ∈ R.

3 Variational solutions

We appeal to variational methods for solving (1), (2). Under the hypotheses (3),
(4), (5), (6), we consider the continuous embedding of separable Hilbert spaces H1

P ↪→
L2(Rm), with dense image (since C1

c (Rm) ⊂ H1
P ) and the bilinear forms aε : H1

P×H1
P →

R, 〈a〉 : H1
P ×H1

P → R given by

aε(u, v) =

∫
Rm

D(y)∇u · ∇v dy +
1

ε2

∫
Rm

(b · ∇u)(b · ∇v) dy, u, v ∈ H1
P

〈a〉 (u, v) =

∫
Rm

〈D〉 (y)∇u · ∇v dy, u, v ∈ H1
P .

We assume that D = D(y) is a field of symmetric non-negative matrices, satisfying

Q1/2(y)(D(y) + b(y)⊗ b(y))Q1/2(y) ≥ dIm, y ∈ Rm (9)

for some constant d > 0. We suppose also that

D ∈ H∞Q , b ∈ X∞Q . (10)

Proposition 3.1
Assume that the hypotheses (3), (4), (5), (6), (9), (10) hold true. The bilinear forms
aε are well defined, continuous, symmetric, non-negative. For ε ∈]0, 1], the forms aε

are coercive on H1
P , with respect to L2(Rm).

Proof. For any u, v ∈ H1
P we have

|D∇u · ∇v| = |Q1/2DQ1/2 : (P 1/2∇v)⊗ (P 1/2∇u)| ≤ |D|H∞
Q
|P 1/2∇v| |P 1/2∇u|
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and

|(b · ∇u)(b · ∇v)| = |Q1/2b⊗ bQ1/2 : (P 1/2∇v)⊗ (P 1/2∇u)|
≤ |b⊗ b|H∞

Q
|P 1/2∇v| |P 1/2∇u| = |b|2X∞

Q
|P 1/2∇v| |P 1/2∇u|.

We deduce that

|aε(u, v)| ≤

(
|D|H∞

Q
+
|b|2X∞

Q

ε2

)
|u|H1

P
|v|H1

P

saying that aε is well defined, and continuous on H1
P . It is also symmetric and non-

negative, thanks to the symmetry and non-negativity of D(y), y ∈ Rm. The coercivity
comes by (9), observing that for any u ∈ H1

P , 0 < ε ≤ 1 we have

aε(u, u) + d|u|2L2(Rm) =

∫
Rm

Q1/2

(
D +

b⊗ b
ε2

)
Q1/2 : (P 1/2∇u)⊗ (P 1/2∇u) dy + d|u|2L2(Rm)

≥ d|∇u|2XP
+ d|u|2L2(Rm) = d|u|2H1

P
.

Remark 3.1
For any u ∈ H1

P we have

|b · ∇u|2L2(Rm) =

∫
Rm

(Q1/2b · P 1/2∇u)2 dy ≤ |b|2X∞
Q
|∇u|2XP

.

Since for any test function ϕ ∈ C1
c (Rm) we have∫

Rm

u b · ∇ϕ dy =

∫
Rm

u divy(ϕb) dy = −
∫
Rm

∇u · b ϕ(y) dy

we deduce that u ∈ domT , T u = b · ∇u. Therefore we proved that the inclusion
H1
P ⊂ domT is continuous

|u|2L2(Rm) + |T u|2L2(Rm) ≤ |u|2L2(Rm) + |b|2X∞
Q
|∇u|2XP

≤ max{1, |b|2X∞
Q
}|u|2H1

P
, u ∈ H1

P .

By standard results we obtain the following proposition.

Proposition 3.2

Assume that the hypotheses of Proposition 3.1 hold true. Let (uεin,
·
u
ε

in) ∈ H1
P ×L2(Rm).

For any ε ∈]0, 1] there is a unique variational solution of (1), (2) i.e., uε ∈ L∞loc(R+;H1
P ),

∂tu
ε ∈ L∞loc(R+;L2(Rm))

(uε(0), ∂tu
ε(0)) = (uεin,

·
u
ε

in),
d

dt

∫
Rm

∂tu
εv(y) dy + aε(uε(t), v) = 0 in D ′(R+), v ∈ H1

P .

Moreover we have uε ∈ C(R+;H1
P ), ∂tu

ε ∈ C(R+;L2(Rm)) and for any t ∈ R+, 0 <
ε ≤ 1

|∂tuε(t)|2L2(Rm) + d|∇uε(t)|2XP
+

(
1

ε2
− 1

)
|b · ∇uε(t)|2L2(Rm) ≤ |

·
u
ε

in|2L2(Rm) + |D|H∞
Q
|∇uεin|2XP

+
1

ε2
|b · ∇uεin|2L2(Rm)

and

|uε(t)|2L2(Rm) ≤ 2|uεin|2L2(Rm) + 2t2
[
| ·u
ε

in|2L2(Rm) + |D|H∞
Q
|∇uεin|2XP

+
1

ε2
|b · ∇uεin|2L2(Rm)

]
.
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Proof. This is a direct consequence of [8] chapter XVIII, section 5, see also [14]. By
Proposition 3.1 we know that, for any ε ∈]0, 1], the bilinear form aε is coercive on H1

P

with respect to L2(Rm). We deduce that, for any (uεin,
·
u
ε

in) ∈ H1
P × L2(Rm), there is

a unique variational solution uε for (1), (2). By the energy balance we obtain for any
t ∈ R+, ε ∈]0, 1]

|∂tuε(t)|2L2(Rm) + aε(uε(t), uε(t)) = | ·u
ε

in|2L2(Rm) + aε(uεin, u
ε
in)

implying that

|∂tuε(t)|2L2(Rm) + d|∇uε(t)|2XP
+

(
1

ε2
− 1

)
|b · ∇uε(t)|2L2(Rm)

≤ | ·u
ε

in|2L2(Rm) + |D|H∞
Q
|∇uεin|2XP

+
1

ε2
|b · ∇uεin|2L2(Rm), t ∈ R+.

As we know that ∂tu
ε ∈ C(R+;L2(Rm)), we can write

uε(t) = uε(0) +

∫ t

0

∂tu
ε(s) ds, t ∈ R+

implying that for any t ∈ R+

|uε(t)|2L2(Rm) ≤
(
|uεin|L2(Rm) +

∫ t

0

|∂tuε(s)|L2(Rm) ds

)2

≤ 2|uεin|2L2(Rm) + 2t

∫ t

0

|∂tuε(s)|2L2(Rm) ds

≤ 2|uεin|2L2(Rm) + 2t2
[
| ·u
ε

in|2L2(Rm) + |D|H∞
Q
|∇uεin|2XP

+
1

ε2
|b · ∇uεin|2L2(Rm)

]
.

The bilinear form 〈a〉 will enter the variational formulation of the limit model, and
corresponds to a wave operator as well. As the average matrix field 〈D〉 inherits the
properties of the matrix field D, we prove the following result.

Proposition 3.3
Assume that the hypotheses (3), (4), (5), (6), (7), (9), (10) hold true. The bilinear

form 〈a〉 is well defined, continuous, symmetric, non-negative and coercive on H1
P , with

respect to domT ⊂ L2(Rm).

Proof. The embedding H1
P ↪→ domT is continuous cf. Remark 3.1 and has dense

image (since C1
c (Rm) is dense in domT ). For any u, v ∈ H1

P we have∫
Rm

| 〈D〉 (y)∇u · ∇v| dy ≤ | 〈D〉 |H∞
Q
|∇u|XP

|∇v|XP
≤ |D|H∞

Q
|u|H1

P
|v|H1

P

saying that 〈a〉 is continuous. By Theorem 2.2 we know that 〈D〉 is symmetric and
non-negative, implying that 〈a〉 is symmetric and non-negative. The coercivity of 〈a〉
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comes easily, thanks to the last statement in Theorem 2.2, by noticing that for any
u ∈ H1

P we can write

〈a〉 (u, u) + d|u|2L2(Rm) + |T u|2L2(Rm) =

∫
Rm

〈D〉∇u · ∇u dy + d|u|2L2(Rm) + |T u|2L2(Rm)

=

∫
Rm

(〈D〉+ b⊗ b)∇u · ∇u dy + d|u|2L2(Rm)

=

∫
Rm

Q1/2(〈D〉+ b⊗ b)Q1/2 : P 1/2∇u⊗ P 1/2∇u dy + d|u|2L2(Rm)

≥ d|∇u|2XP
+ d|u|2L2(Rm) = d|u|2H1

P
.

We inquire now about the well posedness of the problem

∂2t u− divy(〈D〉 (y)∇u) = 0, (t, y) ∈ R+ × Rm (11)

u(0, y) = uin(y), ∂tu(0, y) =
·
uin(y), y ∈ Rm. (12)

Proposition 3.4

Assume that the hypotheses of Proposition 3.3 hold true. For any (uin,
·
uin) ∈ H1

P ×
domT there is a unique variational solution of (11), (12) i.e., u ∈ L∞loc(R+;H1

P ), ∂tu ∈
L∞loc(R+; domT )

(u(0) = uin, ∂tu(0) =
·
uin),

d

dt

∫
Rm

∂tu v(y) dy + 〈a〉 (u(t), v) = 0 in D ′(R+), v ∈ H1
P .

Moreover we have u ∈ C(R+;H1
P ), ∂tu ∈ C(R+; domT ) and for any t ∈ R+

|∂tu(t)|2domT ≤ |
·
uin|2domT + |D|H∞

Q
|∇uin|2XP

d|u(t)|2H1
P
≤ max{1, d}

[
2 max{1, |b|2X∞

Q
}|uin|2H1

P
+ 2t2(| ·uin|2domT + |D|H∞

Q
|∇uin|2XP

)
]

+ | ·uin|2domT + |D|H∞
Q
|∇uin|2XP

.

If (uin,
·
uin) ∈ (H1

P ∩ ker T )× ker T , then (u(t), ∂tu(t)) ∈ (H1
P ∩ ker T )× ker T for any

t ∈ R+.

Proof. It is enough to apply the standard results [14, 8] with the bilinear form
〈a〉 : H1

P ×H1
P → R and the embedding H1

P ⊂ domT . By the energy conservation we
have

|∂tu(t)|2domT ≤ |∂tu(t)|2domT + 〈a〉 (u(t), u(t))

= | ·uin|2domT + 〈a〉 (uin, uin)

≤ | ·uin|2domT + |D|H∞
Q
|∇uin|2XP

.
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But we can write, cf. Theorem 2.2

d|∇u(t)|2XP
≤
∫
Rm

(〈D〉+ b⊗ b)∇u(t) · ∇u(t) dy

= |T u(t)|2L2(Rm) + 〈a〉 (u(t), u(t))

≤ |T u(t)|2L2(Rm) + | ·uin|2L2(Rm) + |T ·uin|2L2(Rm) + |D|H∞
Q
|∇uin|2XP

.

It remains to observe that

u(t) = uin +

∫ t

0

∂tu(s) ds in domT

and therefore

|u(t)|2domT ≤ 2|uin|2domT + 2t

∫ t

0

|∂tu(s)|2domT ds

≤ 2|uin|2domT + 2t2[| ·uin|2domT + |D|H∞
Q
|∇uin|2XP

].

Finally one gets for any t ∈ R+

d|u(t)|2H1
P
≤ max{1, d}|u(t)|2domT + | ·uin|2domT + |D|H∞

Q
|∇uin|2XP

≤ max{1, d}
[
2|uin|2domT + 2t2(| ·uin|2domT + |D|H∞

Q
|∇uin|2XP

)
]

+ | ·uin|2domT + |D|H∞
Q
|∇uin|2XP

and we are done because the embedding H1
P ↪→ domT is continuous cf. Remark 3.1.

We claim that if (u, ∂tu) ∈ L∞loc(R+;H1
P ) × L∞loc(R+; domT ) is the solution of (11),

(12) associated to the initial conditions (uin,
·
uin) ∈ H1

P × domT , then (us, (∂tu)s) ∈
L∞loc(R+;H1

P ) × L∞loc(R+; domT ) is the solution of (11), (12) associated to the initial

conditions ((uin)s, (
·
uin)s) ∈ H1

P × domT . Indeed, for any v ∈ H1
P we have

d

dt
(u(t)s, v)domT =

d

dt
(u(t), v−s)domT = (∂tu(t), v−s)domT = ((∂tu(t))s, v)domT in D ′(R+)

saying that ∂tus = (∂tu)s ∈ L∞loc(R+; domT ). Moreover, for any v ∈ H1
P we have

d

dt
((∂tu(t))s, v)domT +

∫
Rm

〈D〉∇u(t)s · ∇v dy

=
d

dt
((∂tu(t)), v−s)domT +

∫
Rm

〈D〉 t∂Y (s; y)(∇u(t))s · t∂Y (s; y)(∇v−s)s dy

=
d

dt
((∂tu(t)), v−s)domT +

∫
Rm

∂Y (s; y) 〈D〉 (y) t∂Y (s; y)(∇u(t))s · (∇v−s)s dy

=
d

dt
((∂tu(t)), v−s)domT +

∫
Rm

G(−s) 〈D〉∇u(t) · ∇v−s dy

=
d

dt
((∂tu(t)), v−s)domT + 〈a〉 (u(t), v−s) = 0

since v−s ∈ H1
P . Therefore (us, (∂tu)s) is the solution of (11), (12) corresponding to the

initial condition ((uin)s, (
·
uin)s). In particular, if (uin,

·
uin) ∈ (H1

P ∩ ker T )× ker T , then

((uin)s, (
·
uin)s) = (uin,

·
uin) and by the uniqueness of the solution, one gets (us, (∂tu)s) =

(u, ∂tu), saying that (u, ∂tu) ∈ (H1
P ∩ ker T )× ker T .
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4 Asymptotic behavior

We investigate the be havior of the family of solutions (uε)ε when ε becomes small. We
assume that the energy of the initial conditions are uniformly bounded, that is

sup
0<ε≤1

{
|uεin|H1

P
+ | ·u

ε

in|L2(Rm) +
|b · ∇uεin|L2(Rm)

ε

}
< +∞. (13)

In particular we deduce that the limit u when ε↘ 0, of the family (uε)ε, satisfies the
constraint b · ∇u = 0. When (14) is not verified, oscillations in time may appear, that
is uε(t, y) ≈ u(t, t/ε, y), where the profile u satisfies the constraint

∂2su− divy(b(y)⊗ b(y)∇u) = 0, (s, y) ∈ R× Rm.

In this study we neglect the time oscillations and assume that (14) holds true. Appeal-
ing to compactness arguments, we prove that the limit, when ε ↘ 0, of the family of
solutions (uε)ε solves a wave problem as well.

Theorem 4.1
Assume that (3), (4), (5), (6), (7), (9), (10) hold true and that the initial conditions

satisfy
lim
ε↘0

uεin = uin weakly in H1
P

lim
ε↘0

·
u
ε

in =
·
uin weakly in L2(Rm)

and

sup
0<ε≤1

|b · ∇uεin|L2(Rm)

ε
< +∞. (14)

Then (uε)ε, (∂tu
ε)ε converge weakly ? in L∞([0, T ], H1

P ), L∞([0, T ];L2(Rm)) respectively,
T ∈ R+, toward the solution (u, ∂tu) ∈ L∞loc(R+;H1

P ∩ ker T ) × L∞loc(R+; ker T ) of the
problem

d

dt

∫
Rm

∂tu v dy +

∫
Rm

〈D〉 (y)∇u · ∇v dy = 0 in D ′(R+), v ∈ H1
P

with (u(0), ∂tu(0)) = (uin,
〈
·
uin

〉
).

Proof. We have

sup
ε>0
{|uεin|H1

P
+ | ·u

ε

in|L2(Rm) +
1

ε
|b · ∇uεin|L2(Rm)} < +∞

and therefore, by Proposition 3.2, there is a sequence (εk)k ⊂]0, 1], limk→+∞ εk = 0,

and two functions u ∈ L∞loc(R+;H1
P ),

·
u ∈ L∞loc(R+;L2(Rm)) such that, for any T ∈ R+

we have
uεk ⇀ u weakly ? in L∞([0, T ];H1

P )

∂tu
εk ⇀

·
u weakly ? in L∞([0, T ];L2(Rm)).
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For any v ∈ L2(Rm) and η ∈ C1
c (R+) we have

η(0)(uεkin , v)L2(Rm) +

∫
R+

η(t)(∂tu
εk(t), v)L2(Rm) dt+

∫
R+

η′(t)(uεk(t), v)L2(Rm) dt = 0.

Passing to the limit when k → +∞, yields

η(0)(uin, v)L2(Rm) +

∫
R+

η(t)(
·
u(t), v)L2(Rm) dt+

∫
R+

η′(t)(u(t), v)L2(Rm) dt = 0

saying that
·
u is the time derivative of u

u(0) = uin,
d

dt
(u(t), v)L2(Rm) = (

·
u(t), v)L2(Rm) in D ′(R+).

We claim that b · ∇u = 0. Indeed, we have, thanks to the estimate in Proposition 3.2

lim
k→+∞

|b · ∇uεk |C([0,T ];L2(Rm)) = 0

and thus, for any η ∈ Cc(R+) and ϕ ∈ C1
c (Rm) we obtain∫

R+

η(t)

∫
Rm

b·∇ϕ uεk(t, y) dy dt = −
∫
R+

η(t)

∫
Rm

ϕ(y) b·∇uεk(t) dy dt→ 0 as k → +∞.

By the convergence

lim
k→+∞

∫
R+

η(t)

∫
Rm

b · ∇ϕ uεk(t, y) dy dt =

∫
R+

η(t)

∫
Rm

b · ∇ϕ u(t, y) dy dt

we deduce that ∫
Rm

b · ∇ϕ u(t, y) dy = 0, for a.a. t ∈ R+.

As t ∈ R+ 7→ u(t) ∈ L2(Rm) is continuous (since ∂tu =
·
u ∈ L∞loc(R+;L2(Rm))), the

previous equality holds true for any t ∈ R+ and ϕ ∈ C1
c (Rm) saying that b · ∇u = 0.

In particular we have b · ∇uin = 0. Notice also that for any ϕ ∈ C1
c (Rm) we can write∫

Rm

∂tu b · ∇ϕ dy =
d

dt

∫
Rm

u b · ∇ϕ dy = 0, in D ′(R+)

implying that ∂tu ∈ domT , T ∂tu = 0.
We appeal now to the variational formulation of (1), (2) with v ∈ H1

P ∩ ker T

d

dt

∫
Rm

∂tu
εkv(y) dy +

∫
Rm

D(y)∇uεk(t) · ∇v dy = 0 in D ′(R+).

For any η ∈ C1
c ([0, T [) we write

−η(0)

∫
Rm

·
u
εk

in v dy −
∫ T

0

η′(t)

∫
Rm

∂tu
εk v dydt+

∫ T

0

η(t)

∫
Rm

D(y)∇uεk(t) · ∇v dydt = 0.
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Thanks to the convergences of (
·
u
εk

in )k weakly in L2(Rm), of (∂tu
εk)k weakly ? in L∞([0, T ];L2)

and of (uεk)k weakly ? in L∞([0, T ];H1
P ) we deduce for any v ∈ H1

P ∩ ker T

−η(0)

∫
Rm

·
uinv dy−

∫ T

0

η′(t)

∫
Rm

∂tu v dydt+

∫ T

0

η(t)

∫
Rm

D(y)∇u(t)·∇v dydt = 0. (15)

Clearly we have

η(0)

∫
Rm

·
uin(y)v(y) dy = η(0)

∫
Rm

〈
·
uin

〉
(y)v(y) dy.

We concentrate now on the term
∫
RmD(y)∇u(t) · ∇v dy. We know that u(t), v ∈

H1
P ∩ ker T and therefore we can write for any s ∈ [0, S], S ∈ R+∫
Rm

D(y)∇u(t) · ∇v dy =

∫
Rm

D(y)∇(u(t))−s · ∇v−s dy

=

∫
Rm

D(y) t∂Y (−s; y)(∇u(t))−s · t∂Y (−s; y)(∇v)−s dy

=

∫
Rm

∂Y (−s; y)D(y) t∂Y (−s; y)(∇u(t))−s · (∇v)−s dy

=

∫
Rm

∂Y (−s;Y (s; z))D(Y (s; z)) t∂Y (−s;Y (s; z))∇u(t, z) · ∇v(z) dz

=

∫
Rm

G(s)D∇u(t) · ∇v dy.

Averaging with respect to s we obtain∫
Rm

D(y)∇u(t) · ∇v dy =

∫
Rm

1

S

∫ S

0

G(s)D ds∇u(t) · ∇v dy.

As ∇u(t) ∈ XP , we have by Lemma 2.1 the convergence

lim
S→+∞

1

S

∫ S

0

G(s)D∇u(t) ds = 〈D〉∇u(t), in XQ.

Since ∇v ∈ XP we obtain

lim
S→+∞

∫
Rm

1

S

∫ S

0

G(s)D ds∇u(t) · ∇v dy =

∫
Rm

〈D〉∇u(t) · ∇v dy

and thus we have∫
Rm

D(y)∇u(t) · ∇v dy =

∫
Rm

〈D〉 (y)∇u(t) · ∇v dy, v ∈ H1
P ∩ ker T .

Coming back in (15) we deduce

−η(0)

∫
Rm

〈
·
uin

〉
v dy −

∫ T

0

η′(t)

∫
Rm

∂tu v dydt+

∫ T

0

η(t)

∫
Rm

〈D〉∇u(t) · ∇v dydt = 0

(16)
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for any η ∈ C1
c (R+), v ∈ H1

P ∩ ker T . Actually, the above formulation holds true for
any v ∈ H1

P . Indeed, for any v ∈ H1
P , we have v = v1 + v2, v1 = v − 〈v〉 ∈ H1

P , v2 =
〈v〉 ∈ H1

P ∩ ker T , cf. Proposition 2.5. Clearly, (16) is satisfied when considering v2.
We are done if we justify that (16) holds true when taking v1 ∈ H1

P , 〈v1〉 = 0. We have

η(0)

∫
Rm

〈
·
uin

〉
(y)v1(y) dy = η(0)

∫
Rm

〈
·
uin

〉
(y) 〈v1〉 (y) dy = 0

and since ∂tu ∈ ker T we can write∫ T

0

η′(t)

∫
Rm

∂tu v1(y) dydt =

∫ T

0

η′(t)

∫
Rm

∂tu 〈v1〉 (y) dydt = 0.

As before, we have for any s ∈ [0, S], S ∈ R+∫
Rm

〈D〉∇u(t) · ∇v1 dy =

∫
Rm

〈D〉∇u(t)−s · ∇(v1s)−s dy

=

∫
Rm

〈D〉 (y) t∂Y (−s; y)(∇u(t))−s · t∂Y (−s; y)(∇v1s)−s dy

=

∫
Rm

∂Y (−s; y) 〈D〉 (y) t∂Y (−s; y)(∇u(t))−s · (∇v1s)−s dy

=

∫
Rm

G(s) 〈D〉∇u(t) · ∇v1s dy

=

∫
Rm

〈D〉∇u(t) · ∇v1s dy

=

∫
Rm

〈D〉∇u(t) · 1

S

∫ T

0

∇v1s ds dy.

By Proposition 2.5 we know that

lim
S→+∞

1

S

∫ S

0

∇v1s ds = ∇〈v1〉 = 0 strongly in XP .

Notice that 〈D〉∇u(t) belongs to XQ

| 〈D〉∇u(t)|XQ
≤ | 〈D〉 |H∞

Q
|∇u(t)|XP

≤ |D|H∞
Q
|∇u(t)|XP

and therefore we deduce

lim
S→+∞

∫
Rm

〈D〉∇u(t) · 1

S

∫ S

0

∇v1s ds dy = 0

implying that
∫
Rm〈D〉∇u(t) · ∇v1 dy = 0. Finally (16) is trivially satisfied for any

v1 ∈ H1
P , 〈v1〉 = 0, and thus for any v ∈ H1

P we have

d

dt

∫
Rm

∂tu v(y) dy +

∫
Rm

〈D〉 (y)∇u(t) · ∇v dy = 0 in D ′(R+)

and (u(0), ∂tu(0)) = (uin,
〈
·
uin

〉
). The convergence of all the family (uε, ∂tu

ε)ε follows

by the uniqueness of the solution of the above variational formulation.
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We investigate now strong convergence results. It happens that the previous weak ?
convergences become strong if the initial conditions are well prepared

lim
ε↘0

uεin = uin strongly in H1
P , lim

ε↘0

b · ∇uεin
ε

= 0 strongly in L2(Rm)

lim
ε↘0

·
u
ε

in =
·
uin strongly in L2(Rm), b · ∇ ·uin = 0.

We are using the following easy lemma.

Lemma 4.1
Let (Aε)ε>0, (B

ε)ε>0 be two families of real numbers and A,B ∈ R such that

lim sup
ε↘0

(Aε +Bε) ≤ A+B, A ≤ lim inf
ε↘0

Aε, B ≤ lim inf
ε↘0

Bε.

Then we have
lim
ε↘0

Aε = A, lim
ε↘0

Bε = B.

Proof. We have the inequalities

A+B ≥ lim sup
ε↘0

(Aε +Bε) ≥ lim sup
ε↘0

Aε + lim inf
ε↘0

Bε ≥ lim sup
ε↘0

Aε +B

saying that
A ≤ lim inf

ε↘0
Aε ≤ lim sup

ε↘0
Aε ≤ A.

Therefore (Aε)ε>0 converges toward A as ε ↘ 0. Similarly, (Bε)ε>0 converges toward
B as ε↘ 0.

We appeal to the following standard result which allows us to transform weak conver-
gence in strong convergence.

Proposition 4.1
Assume that A ∈ H∞Q and that (wε)ε converges weakly in L2([0, T ];XP ) toward w0,

when ε↘ 0.

1. If A = A(y) are non-negative, then∫ T

0

∫
Rm

A(y)w0(t) · w0(t) dydt ≤ lim inf
ε↘0

∫ T

0

∫
Rm

A(y)wε(t) · wε(t) dydt.

2. If there is d > 0 such that Q1/2AQ1/2 ≥ dIm and

lim sup
ε↘0

∫ T

0

∫
Rm

A(y)wε(t) · wε(t) dydt ≤
∫ T

0

∫
Rm

A(y)w0(t) · w0(t) dydt

then the family (wε)ε converges strongly in L2([0, T ];XP ) toward w0, when ε↘ 0.

18



Proof.
1. By the inequality∣∣∣∣∫

Rm

A(y)ξ(y) · η(y) dy

∣∣∣∣ ≤ |A|H∞
Q
|ξ|XP

|η|XP
, ξ, η ∈ XP

we deduce that the bilinear form (ξ, η)→
∫ T
0

∫
RmA(y)ξ(t, y) · η(t, y) dydt is continuous

on L2([0, T ];XP )× L2([0, T ];XP ). The non-negativity of A allows us to write

0 ≤
∫ T

0

∫
Rm

A(y)[wε(t, y)− w0(t, y)] · [wε(t, y)− w0(t, y)] dydt

=

∫ T

0

∫
Rm

A(y)wε(t, y) · wε(t, y) dydt+

∫ T

0

∫
Rm

A(y)w0(t, y) · w0(t, y) dydt

−
∫ T

0

∫
Rm

A(y)wε(t, y) · w0(t, y) dydt−
∫ T

0

∫
Rm

A(y)w0(t, y) · wε(t, y) dydt

and our conclusion follows immediately by taking lim infε↘0.
2. In this case, the hypothesis Q1/2AQ1/2 ≥ dIm implies

d|wε − w0|2XP
≤
∫ T

0

∫
Rm

A(y)wε(t, y) · wε(t, y) dydt+

∫ T

0

∫
Rm

A(y)w0(t, y) · w0(t, y) dydt

−
∫ T

0

∫
Rm

A(y)wε(t, y) · w0(t, y) dydt−
∫ T

0

∫
Rm

A(y)w0(t, y) · wε(t, y) dydt.

Taking lim supε↘0 yields

d lim sup
ε↘0

|wε − w0|2XP
≤ lim sup

ε↘0

∫ T

0

∫
Rm

A(y)wε · wε dydt−
∫ T

0

∫
Rm

A(y)w0 · w0 dydt ≤ 0

saying that the family (wε)ε>0 converges strongly in L2([0, T ];XP ) toward w0 when
ε↘ 0.

We are ready now to improve the asymptotic behavior stated in Theorem 4.1. When
the initial conditions are well prepared, we expect strong convergence results.

Theorem 4.2
Assume that (3), (4), (5), (6), (7), (9), (10) hold true and that the initial conditions

satisfy

lim
ε↘0

uεin = uin strongly in H1
P , lim

ε↘0

b · ∇uεin
ε

= 0 strongly in L2(Rm)

lim
ε↘0

·
u
ε

in =
·
uin strongly in L2(Rm), b · ∇ ·uin = 0.

Then we have the strong convergences

lim
ε↘0

uε = u in L∞loc(R+;L2(Rm)), lim
ε↘0
∇uε = ∇u in L2

loc(R+;XP )

lim
ε↘0

∂tu
ε = ∂tu in L2

loc(R+;L2(Rm)), lim
ε↘0

b · ∇uε

ε
= 0 in L2

loc(R+;L2(Rm)).
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Proof. The arguments rely on the energy conservations

|∂tuε(t)|2L2(Rm) +

∫
Rm

D(y)∇uε(t) · ∇uε(t) dy +
1

ε2
|b · ∇uε(t)|2L2(Rm)

= | ·u
ε

in|2L2(Rm) +

∫
Rm

D(y)∇uεin · ∇uεin dy +
1

ε2
|b · ∇uεin|2L2(Rm), t ∈ R+, 0 < ε ≤ 1

and

|∂tu(t)|2L2(Rm) +

∫
Rm

〈D〉 (y)∇u(t) ·∇u(t) dy = |
〈
·
uin

〉
|2L2(Rm) +

∫
Rm

〈D〉 (y)∇uin ·∇uin dy.

As b · ∇u = 0, we have already seen (cf. proof of Theorem 4.1) that∫
Rm

〈D〉 (y)∇u(t) · ∇u(t) dy =

∫
Rm

D(y)∇u(t) · ∇u(t) dy, t ∈ R+

and thus, for any T ∈ R+ we write∫ T

0

|∂tuε(t)|2L2(Rm) dt+

∫ T

0

∫
Rm

(D(y) + b(y)⊗ b(y))∇uε(t) · ∇uε(t) dydt (17)

=

∫ T

0

|∂tu(t)|2L2(Rm) dt+

∫ T

0

∫
Rm

(D(y) + b(y)⊗ b(y))∇u(t) · ∇u(t) dydt

+ T
[
| ·u
ε

in|2L2(Rm) − |
〈
·
uin

〉
|2L2(Rm)

]
+ T

(∫
Rm

(D(y) + b(y)⊗ b(y))∇uεin · ∇uεin dy −
∫
Rm

(D(y) + b(y)⊗ b(y))∇uin · ∇uin dy

)
+ T

(
1

ε2
− 1

)
|b · ∇uεin|2L2(Rm) −

(
1

ε2
− 1

)∫ T

0

|b · ∇uε(t)|2L2(Rm) dt.

We deduce that

lim sup
ε↘0

[∫ T

0

|∂tuε(t)|2L2(Rm) dt+

∫ T

0

∫
Rm

(D(y) + b(y)⊗ b(y))∇uε(t) · ∇uε(t) dydt

]
≤
∫ T

0

|∂tu(t)|2L2(Rm) dt+

∫ T

0

∫
Rm

(D(y) + b(y)⊗ b(y))∇u(t) · ∇u(t) dydt.

The weak ? convergences of (uε)ε, (∂tu
ε)ε in L∞([0, T ];H1

P ), L∞([0, T ];L2(Rm)) respec-
tively, imply the weak convergences of (uε)ε, (∂tu

ε)ε in L2([0, T ];H1
P ), L2([0, T ];L2(Rm))

respectively and therefore

∂tu
ε ⇀ ∂tu weakly in L2([0, T ];L2(Rm)) as ε↘ 0

∇uε ⇀ ∇u weakly in L2([0, T ];XP ) as ε↘ 0.

We have, thanks to the first statement in Proposition 4.1, applied with wε = ∇uε and
A = D + b⊗ b, |A|H∞

Q
≤ |D|H∞

Q
+ |b|2X∞

Q∫ T

0

|∂tu(t)|2L2(Rm) dt ≤ lim inf
ε↘0

∫ T

0

|∂tuε(t)|2L2(Rm) dt
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∫ T

0

∫
Rm

(D + b⊗ b)∇u(t) · ∇u(t) dydt ≤ lim inf
ε↘0

∫ T

0

∫
Rm

(D + b⊗ b)∇uε(t) · ∇uε(t) dydt.

Applying Lemma 4.1 yields

lim
ε↘0

∫ T

0

|∂tuε(t)|2L2(Rm) dt =

∫ T

0

|∂tu(t)|2L2(Rm) dt

lim
ε↘0

∫ T

0

∫
Rm

(D + b⊗ b)∇uε(t) · ∇uε(t) dydt =

∫ T

0

∫
Rm

(D + b⊗ b)∇u(t) · ∇u(t) dydt

and therefore (∂tu
ε)ε converges strongly toward ∂tu in L2([0, T ];L2(Rm)) and (∇uε)ε

converges strongly toward ∇u in L2([0, T ];XP ), thanks to the second statement in
Proposition 4.1. Coming back in (17) we deduce that (use the hypothesis limε↘0 ε

−1|b ·
∇uεin|L2(Rm) = 0)

lim
ε↘0

1

ε2

∫ T

0

|b · ∇uε(t)|2L2(Rm) dt = 0, T ∈ R+.

Notice also that

uε(t)− u(t) = uε(0)− u(0) +

∫ t

0

(∂tu
ε(s)− ∂tu(s)) ds

implying that

|uε(t)− u(t)|2L2(Rm) ≤ 2|uεin − uin|2L2(Rm) + 2t

∫ t

0

|∂tuε(s)− ∂tu(s)|2L2(Rm) ds

≤ 2|uεin − uin|2 + 2T |∂tuε − ∂tu|2L2([0,T ];L2(Rm)), t ∈ [0, T ].

Therefore (uε)ε converges strongly toward u in L∞loc(R+;L2(Rm)), as ε↘ 0.

Remark 4.1
By the above arguments we know that

lim
ε↘0

∫ T

0

∫
Rm

D∇uε(t) · ∇uε(t) dydt =

∫ T

0

∫
Rm

D∇u(t) · ∇u(t) dydt

and
lim
ε↘0
∇uε = ∇u in L2([0, T ];XP ).

As we have

|D∇u · (∇uε −∇u)| = |D(∇uε −∇u) · ∇u| ≤ |D|H∞
Q
|∇u|XP

|∇uε −∇u|XP

we deduce∣∣∣∣∫ T

0

∫
Rm

D∇u(t) · (∇uε(t)−∇u(t)) dydt

∣∣∣∣ ≤ |D|H∞
Q
|∇u|L2([0,T ];XP )|∇uε−∇u|L2([0,T ];XP ) →

ε↘0
0.

We obtain

lim
ε↘0

∫ T

0

∫
Rm

D(∇uε(t)−∇u(t)) · (∇uε(t)−∇u(t)) dydt = 0.
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We also have limε↘0 ∂tu
ε = ∂tu in L2([0, T ];L2(Rm)) and

lim
ε↘0

1

ε2

∫ T

0

∫
Rm

(b · ∇uε(t))2 dydt = 0

and therefore

lim
ε↘0

∫ T

0

∫
Rm

{
(∂tu

ε − ∂tu)2 +D(∇uε −∇u) · (∇uε −∇u) +
(b · ∇uε)2

ε2

}
dydt = 0.

5 Finite speed propagation

It is well known that the solution of the wave equation propagates at finite speed.
Observe that the spectral radius of the matrix D+ b⊗b

ε2
is of order 1

ε2
and therefore the

solutions (uε)ε propagate at speeds of order 1
ε
, going to infinity as ε↘ 0. Nevertheless

the limit of the family (uε)ε propagates at finite speed, given by the spectral radius of
〈D〉 (not depending on ε). More exactly, in the case of the limit model, we have the
following result.

Proposition 5.1
Under the hypotheses of Proposition 3.4, let us consider the unique variational solution

of (11), (12) corresponding to the initial conditions (uin,
·
uin) ∈ H1

P × domT . Let c > 0
be a real number such that

〈D〉 (y) ≤ c2Im, y ∈ Rm.

Assume that for some R > 0, the initial conditions satisfy

uin(y) = 0,
·
uin(y) = 0, |y| > R.

Then we have
u(t, y) = 0, ∂tu(t, y) = 0, |y| > R + ct.

Proof. Pick a non-decreasing function θ ∈ C1
b (R) such that θ(r) = 0 if r ≤ 0, θ(r) > 0

if r > 0. Using the variational formulation with the function

(t, y)→ θ(
√
|y|2 + δ2 −R− ct)∂tu, δ > 0

yields

1

2

d

dt

∫
Rm

(∂tu)2θ(
√
|y|2 + δ2 −R− ct) dy +

c

2

∫
Rm

[
(∂tu)2 + 〈D〉∇u · ∇u

]
θ′ dy

+
1

2

d

dt

∫
Rm

〈D〉∇u · ∇u θ(
√
|y|2 + δ2 −R− ct) dy +

∫
Rm

〈D〉∇u · y√
|y|2 + δ2

∂tu θ
′ dy = 0.

Notice that we have for any (t, y) ∈ R+ × Rm

2

∣∣∣∣∣〈D〉∇u · y√
|y|2 + δ2

∂tu

∣∣∣∣∣ ≤ c(∂tu)2 +
1

c

(
〈D〉∇u · y√

|y|2 + δ2

)2

≤ c(∂tu)2 +
1

c
(〈D〉∇u · ∇u)

(
〈D〉 y√

|y|2 + δ2
· y√
|y|2 + δ2

)

≤ c(∂tu)2 +
〈D〉∇u · ∇u

c

c2|y|2

|y|2 + δ2

≤ c
[
(∂tu)2 + 〈D〉∇u · ∇u

]
.
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As θ′ ≥ 0, we deduce

d

dt

∫
Rm

[(∂tu)2 + 〈D〉∇u · ∇u] θ(
√
|y|2 + δ2 −R− ct) dy ≤ 0

implying that∫
Rm

[(∂tu(t, y))2 + 〈D〉∇u(t, y) · ∇u(t, y)] θ(
√
|y|2 + δ2 −R− ct) dy

≤
∫
Rm

[(
·
uin)2 + 〈D〉∇uin · ∇uin] θ(

√
|y|2 + δ2 −R) dy.

As θ is non-decreasing, we have∫
Rm

[(∂tu(t, y))2 + 〈D〉∇u(t, y) · ∇u(t, y)] θ(|y| −R− ct) dy

≤
∫
Rm

[(∂tu(t, y))2 + 〈D〉∇u(t, y) · ∇u(t, y)] θ(
√
|y|2 + δ2 −R− ct) dy

and thus ∫
Rm

[(∂tu(t, y))2 + 〈D〉∇u(t, y) · ∇u(t, y)] θ(|y| −R− ct) dy

≤
∫
Rm

[(
·
uin)2 + 〈D〉∇uin · ∇uin] θ(

√
|y|2 + δ2 −R) dy.

By dominated convergence, letting δ ↘ 0, we obtain∫
Rm

[(∂tu(t, y))2 + 〈D〉∇u(t, y) · ∇u(t, y)] θ(|y| −R− ct) dy

≤
∫
Rm

[(
·
uin)2 + 〈D〉∇uin · ∇uin] θ(|y| −R) dy = 0

implying that
∂tu(t, y) = 0, ∇u(t, y) = 0, |y| > R + ct.

Moreover, for any (t, y) ∈ R+ × Rm such that |y| > R + ct, we have

u(t, y) = uin(y) +

∫ t

0

∂tu(s, y) ds = uin(y) = 0

since |y| > R + ct ≥ R + cs ≥ R for any s ∈ [0, T ].

Remark 5.1
Under the hypotheses of Theorem 4.2 we can show that the energy of the solutions (uε)ε
outside the propagation cone of the limit solution u is negligible. Indeed, by Remark
4.1, using the notations in Proposition 5.1 we write∫ T

0

∫
|y|≤R+ct

{
(∂tu

ε − ∂tu)2 +D(∇uε −∇u) · (∇uε −∇u) +
(b · ∇uε)2

ε2

}
dydt

+

∫ T

0

∫
|y|>R+ct

{
(∂tu

ε)2 +D∇uε · ∇uε +
(b · ∇uε)2

ε2

}
dydt = o(1) as ε↘ 0

which implies that∫ T

0

∫
|y|>R+ct

{
(∂tu

ε)2 +D∇uε · ∇uε +
(b · ∇uε)2

ε2

}
dydt = o(1) as ε↘ 0.
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It may happen that an explicit expression for the average matrix field 〈D〉 is not
available, and therefore we can not compute the spectral radius of 〈D〉. Nevertheless
we can estimate the propagation speed of the solution for the limit model in terms of
the spectrum of D.

Proposition 5.2
Let us consider

Λ(y) := sup
ξ∈Rm\{0}

D(y)ξ · ξ
|ξ|2

, c2(y) := sup
ξ∈Rm\{0}

〈D〉 (y)ξ · ξ
|ξ|2

, y ∈ Rm.

Then we have the inequality

c(y) ≤ 〈Λ〉1/2 (y)|Q1/2|L∞ |P 1/2|L∞ , y ∈ Rm.

In particular, if Λ ∈ L∞(Rm), then c ∈ L∞(Rm) and

|c|L∞ ≤ |Λ|1/2L∞|Q1/2|L∞|P 1/2|L∞ .

Proof. By the hypothesis, we have for any y ∈ Rm, ξ ∈ Rm

Q1/2(y)D(y)Q1/2(y) : ξ ⊗ ξ ≤ Λ(y)|Q1/2(y)ξ|2 ≤ Λ(y)|Q1/2(y)|2|ξ|2.

As in the proof of Proposition 2.3, we write

Q1/2G(s)DQ1/2 : ξ ⊗ ξ = tO(s; y)Q1/2
s DsQ

1/2
s O(s; y) : ξ ⊗ ξ

= (Q1/2DQ1/2)s : O(s; y)ξ ⊗O(s; y)ξ

≤ Λ(Y (s; y))|Q1/2
s |2|ξ|2

≤ Λ(Y (s; y))|Q1/2|2L∞|ξ|2

implying that
Q1/2 〈D〉Q1/2 : ξ ⊗ ξ ≤ 〈Λ〉 |Q1/2|2L∞ |ξ|2.

Replacing ξ by P 1/2ξ yields

〈D〉 : ξ ⊗ ξ ≤ 〈Λ〉 |Q1/2|2L∞|P 1/2|2L∞ |ξ|2.

Therefore we obtain

c2(y) = sup
ξ∈Rm\{0}

〈D〉 (y)ξ · ξ
|ξ|2

≤ 〈Λ〉 (y)|Q1/2|2L∞|P 1/2|2L∞

and thus
c(y) ≤ 〈Λ〉1/2 (y)|Q1/2|L∞|P 1/2|L∞ .
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A Proofs of Proposition 2.3, Theorem 2.2, Propo-

sition 2.5, Lemma 2.1

We indicate here some proof details concerning the properties of the average operators
for matrix fields and functions.

Proof. (of Proposition 2.3)
1. By the characterization in Proposition 2.2 we know that

Ps = ∂Y (s; ·)P t∂Y (s; ·), s ∈ R. (18)

For any s ∈ R we consider the matrix field O(s; ·) = Q
1/2
s ∂Y (s; ·)Q−1/2. Observe that

O(s; ·) is a field of orthogonal matrices, for any s ∈ R. Indeed we have, thanks to (18)

tO(s; ·)O(s; ·) = Q−1/2 t∂Y (s; ·)Q1/2
s Q1/2

s ∂Y (s; ·)Q−1/2

= Q−1/2
(
∂Y −1(s; ·)Ps t∂Y −1(s; ·)

)−1
Q−1/2

= Q−1/2P−1Q−1/2

= Im

implying that for any matrix field A we have

Q1/2G(s)AQ1/2 = Q1/2∂Y −1(s; ·)As t∂Y −1(s; ·)Q1/2 = tO(s; ·)Q1/2
s AsQ

1/2
s O(s; ·).

(19)

It is easily seen that if A ∈ HQ, then for any s ∈ R

|G(s)A|2Q =

∫
Rm

Q1/2G(s)AQ1/2 : Q1/2G(s)AQ1/2 dy

=

∫
Rm

tO(s; ·)Q1/2
s AsQ

1/2
s O(s; ·) : tO(s; ·)Q1/2

s AsQ
1/2
s O(s; ·) dy

=

∫
Rm

Q1/2
s AsQ

1/2
s : Q1/2

s AsQ
1/2
s dy

=

∫
Rm

Q1/2AQ1/2 : Q1/2AQ1/2 dy = |A|2HQ

proving that G(s) is a unitary transformation for any s ∈ R. The group property of
the family (G(s))s∈R follows easily from the group property of the flow (Y (s; ·))s∈R

G(s)G(t)A = ∂Y −1(s; ·)(G(t)A)s
t∂Y −1(s; ·)

= ∂Y −1(s; ·)∂Y −1(t;Y (s; ·))(At)s t∂Y −1(t;Y (s; ·)) t∂Y −1(s; ·)
= ∂Y −1(t+ s; ·)At+s t∂Y −1(t+ s; ·) = G(t+ s)A, A ∈ HQ.

The continuity of the group, i.e., lims→0G(s)A = A strongly in HQ, comes by standard
arguments.
2. Notice that G(s) commutes with transposition

t(G(s)A) = t
(
∂Y −1(s; ·)As t∂Y −1(s; ·)

)
= ∂Y −1(s; ·) tAs

t∂Y −1(s; ·)
= G(s) tA.
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In particular, if tA = A, then t(G(s)A) = G(s)A.
3. We use the formula (19). For any ξ ∈ Rm we have

G(s)A : Q1/2ξ ⊗Q1/2ξ = Q1/2G(s)AQ1/2 : ξ ⊗ ξ
= tO(s; ·)Q1/2

s AsQ
1/2
s O(s; ·) : ξ ⊗ ξ

= Q1/2
s AsQ

1/2
s : O(s; ·)(ξ ⊗ ξ) tO(s; ·)

= Q1/2
s AsQ

1/2
s : (O(s; ·)ξ)⊗ (O(s; ·)ξ)

= As : (Q1/2
s O(s; ·)ξ)⊗ (Q1/2

s O(s; ·)ξ).

As A is a field of positive semi-definite matrices, therefore G(s)A is a field of positive
semi-definite matrices as well.
4. Assume that there is α > 0 such that Q1/2AQ1/2 ≥ αIm on S. As before we write
for any ξ ∈ Rm, y ∈ S

Q1/2G(s)AQ1/2 : ξ ⊗ ξ = (Q1/2AQ1/2)s : (O(s; ·)ξ)⊗ (O(s; ·)ξ) ≥ α|O(s; ·)ξ|2 = α|ξ|2

saying that Q1/2G(s)AQ1/2 ≥ αIm on S.
5. Here G(s) stands for the application A→ ∂Y (−s;Y (s; ·))A(Y (s; ·)) t∂Y (−s;Y (s; ·))
independently of A being in HQ or in HQ,loc. As ψ is left invariant by the flow of b, so
is 1{ψ≤k}, for any k ∈ N. If A belongs to HQ,loc, we have

1{ψ≤k}G(s)A = G(s)(1{ψ≤k}A) ∈ HQ, k ∈ N, s ∈ R

saying that G(s)A ∈ HQ,loc, s ∈ R. Moreover, the applications (G(s))s∈R preserve
locally the norm of HQ∣∣1{ψ≤k}G(s)A

∣∣
HQ

=
∣∣G(s)(1{ψ≤k}A)

∣∣
HQ

=
∣∣1{ψ≤k}A∣∣HQ

, k ∈ N, s ∈ R.

Proof. (of Theorem 2.2)
The first and second statements are immediate.
3. For any ξ ∈ Rm, χ ∈ C0

c (S), χ ≥ 0 we have χ(·)P 1/2ξ ⊗ P 1/2ξ ∈ HQ and we can
write, thanks to (19)

(G(s)A,χ(·)P 1/2ξ ⊗ P 1/2ξ)Q =

∫
Rm

χ(y)Q1/2G(s)AQ1/2 : ξ ⊗ ξ dy

=

∫
Rm

χ(y) tO(s; y)Q1/2
s AsQ

1/2
s O(s; y)ξ · ξ dy

=

∫
Rm

χ(y)Q1/2
s AsQ

1/2
s : O(s; y)ξ ⊗O(s; y)ξ dy

≥ α

∫
Rm

|O(s; y)ξ|2χ(y) dy

= α|ξ|2
∫
Rm

χ(y) dy.

Taking the average over [0, S] and letting S → +∞ yield∫
Rm

χ(y)Q1/2 〈A〉Q1/2 : ξ ⊗ ξ dy = (〈A〉 , χP 1/2ξ ⊗ P 1/2ξ)Q ≥
∫
Rm

α|ξ|2χ(y) dy
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implying that
Q1/2(y) 〈A〉 (y)Q1/2(y) ≥ αIm, y ∈ S.

4. For any A ∈ HQ, we have by the properties of the orthogonal projection on kerL
that | 〈A〉 |HQ

= |ProjkerLA|HQ
≤ |A|HQ

. For the last inequality, consider M ∈Mm(R)

a fixed matrix, χ ∈ C0
c (Rm), χ ≥ 0 and, as before, observe that χP 1/2MP 1/2 ∈ HQ,

which allows us to write

(G(s)A,χP 1/2MP 1/2)Q =

∫
Rm

Q1/2G(s)AQ1/2 : χM dy

=

∫
Rm

tO(s; y)Q1/2
s AsQ

1/2
s O(s; y) : χM dy

=

∫
Rm

Q1/2
s AsQ

1/2
s : O(s; y)M tO(s; y)χ dy

≤
∫
Rm

√
Q

1/2
s AsQ

1/2
s : Q

1/2
s AsQ

1/2
s

√
O(s; y)M tO(s; y) : O(s; y)M tO(s; y)χ dy

≤ |A|H∞
Q

(M : M)1/2
∫
Rm

χ(y) dy.

Taking the average over [0, S] and letting S → +∞, lead to∫
Rm

Q1/2 〈A〉Q1/2 : Mχ(y) dy = (〈A〉 , χP 1/2MP 1/2)Q ≤ |A|H∞
Q

(M : M)1/2
∫
Rm

χ(y) dy.

We deduce that

Q1/2(y) 〈A〉 (y)Q1/2(y) : M ≤ |A|H∞
Q

(M : M)1/2, y ∈ Rm, M ∈Mm(R)

saying that

| 〈A〉 |H∞
Q

= ess supy∈Rm

√
Q1/2(y) 〈A〉 (y)Q1/2(y) : Q1/2(y) 〈A〉 (y)Q1/2(y) ≤ |A|H∞

Q
.

5. Let A be a matrix field in HQ,loc. For any k ∈ N, 1{ψ≤k}A belongs to HQ, and by
the first statement we know that

lim
S→+∞

1

S

∫ r+S

r

G(s)(1{ψ≤k}A) ds =
〈
1{ψ≤k}A

〉
∈ HQ

uniformly with respect to r ∈ R, for any fixed k ∈ N. Observe that for any k, l ∈ N we
have

lim
S→+∞

1

S

∫ S

0

G(s)(1{ψ≤k}A) ds = lim
S→+∞

1

S

∫ S

0

G(s)(1{ψ≤l}A) ds

almost everywhere on {ψ ≤ min(k, l)}, and thus, there is a matrix field denoted by
〈A〉, whose restriction on {ψ ≤ k} coincides with

〈
1{ψ≤k}A

〉
for any k ∈ N. Notice also

that for any k ∈ N we have
〈
1{ψ≤k}A

〉
= 0 almost everywhere on {ψ > k} and thus

we obtain
1{ψ≤k} 〈A〉 =

〈
1{ψ≤k}A

〉
, k ∈ N.

Observe that for any k ∈ N, we have the uniform, with respect to r ∈ R, convergence
in HQ

lim
S→+∞

1{ψ≤k}
1

S

∫ r+S

r

G(s)(A) ds = lim
S→+∞

1

S

∫ r+S

r

G(s)(1{ψ≤k}A) ds =
〈
1{ψ≤k}A

〉
= 1{ψ≤k} 〈A〉
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saying that limS→+∞
1
S

∫ r+S
r

G(s)A ds = 〈A〉 in HQ,loc (uniformly with respect to r ∈ R,
for any fixed k ∈ N). The inclusion H∞Q ⊂ HQ,loc follows by the compactness of
{ψ ≤ k}, k ∈ N. By the fourth statement we have

| 〈A〉 |H∞
Q

= sup
k∈N
|1{ψ≤k} 〈A〉 |H∞

Q
= sup

k∈N
|
〈
1{ψ≤k}A

〉
|H∞

Q
≤ sup

k∈N
|1{ψ≤k}A|H∞

Q
= |A|H∞

Q
.

Let A be a matrix field of HQ,loc, such that Q1/2(y)A(y)Q1/2(y) ≥ αIm, y ∈ Rm, for
some α > 0. For any k ∈ N we have 1{ψ≤k}A ∈ HQ and

Q1/2(y)1{ψ≤k}A(y)Q1/2(y) ≥ αIm, y ∈ {ψ ≤ k}.

By the third statement we deduce that for any k ∈ N

Q1/2(y)1{ψ≤k} 〈A〉 (y)Q1/2(y) = Q1/2(y)
〈
1{ψ≤k}A

〉
(y)Q1/2(y) ≥ αIm, y ∈ {ψ ≤ k}

saying that Q1/2(y) 〈A〉 (y)Q1/2(y) ≥ αIm, y ∈ Rm.

Proof. (of Proposition 2.5)
Let u = u(y) be a function in H1

P . As the flow satisfies Y ∈ W 1,∞
loc (R × Rm), we have

∇us = t∂Y (s; ·)(∇u)s. By Proposition 2.2 we know that Ps = ∂Y (s; ·)P t∂Y (s; ·), and
therefore we can write

|us|2H1
P

=

∫
Rm

(us(y))2 dy +

∫
Rm

P (y)∇us · ∇us dy

=

∫
Rm

(u(y))2 dy +

∫
Rm

∂Y (s; y)P (y) t∂Y (s; y)︸ ︷︷ ︸
Ps

: (∇u)s ⊗ (∇u)s dy

= |u|2L2(Rm) + |∇u|2XP
= |u|2H1

P
.

The group property of (ζ1(s))s∈R comes by the group property of (ζ(s))s∈R. In order
to check the continuity of (ζ1(s))s∈R, observe that for any u ∈ H1

P , we have

|ζ1(s)u− u|2H1
P
− |ζ(s)u− u|2L2(Rm) = |∇us −∇u|2XP

= 2|∇u|2XP
− 2(∇us,∇u)XP

= 2|∇u|2XP
− 2

∫
Rm

P 1/2(y) t∂Y (s; y)︸ ︷︷ ︸
tO(s;y)P 1/2

s

(∇u)s · P 1/2(y)∇u dy

= 2|∇u|2XP
− 2

∫
Rm

tO(s; y)(P 1/2∇u)s · P 1/2∇u dy

= |(P 1/2∇u)s − P 1/2∇u|2L2(Rm) − 2

∫
Rm

(P 1/2∇u)s · (O − Im)P 1/2∇u dy.

Thanks to the continuity of (ζ(s))s∈R, we are done provided that the last integral terms
converges to 0, as s → 0. The convergence lims→0 ∂Y (s; y) = Im, y ∈ Rm, implies the
convergences

lim
s→0

P (Y (s; y)) = lim
s→0

∂Y (s; y)P (y) t∂Y (s; y) = P (y), lim
s→0

P 1/2(Y (s; y)) = P 1/2(y)

lim
s→0

Q(Y (s; y)) = lim
s→0

t∂Y −1(s; y)Q(y) ∂Y −1(s; y) = Q(y), lim
s→0

Q1/2(Y (s; y)) = Q1/2(y)
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lim
s→0
O(s; y) = lim

s→0
Q1/2(Y (s; y))∂Y (s; y)Q−1/2(y) = Im, y ∈ Rm.

Since the matrix O(s; y) is orthogonal, we have |O(s; y)| = 1 for any s ∈ R, y ∈ Rm,
and by the dominated convergence theorem we obtain

lim
s→0

∫
Rm

P 1/2∇u · (O(s; y)− Im)P 1/2∇u dy = 0

implying that

lim
s→0

∫
Rm

(P 1/2∇u)s · (O(s; y)− Im)P 1/2∇u dy

= lim
s→0

∫
Rm

[
(P 1/2∇u)s − P 1/2∇u

]
· (O(s; y)− Im)P 1/2∇u dy = 0.

In the last limit we have used the convergence lims→0(P
1/2∇u)s = P 1/2∇u in L2(Rm),

and the upper bound |O(s; y) − Im| ≤ 2, s ∈ R, y ∈ Rm. By Theorem 2.1 we deduce
the strong convergence in H1

P

lim
S→+∞

1

S

∫ r+S

r

ζ1(s)u ds = Projker T ∩H1
P
u

implying that 〈u〉 = Projker T u = Projker T ∩H1
P
u ∈ H1

P , (∇u−∇〈u〉 ,∇v)XP
= 0 for any

v ∈ ker T ∩H1
P , and the strong convergence in XP , uniformly with respect to r ∈ R

lim
S→+∞

1

S

∫ r+S

r

∇us ds = ∇〈u〉 .

For the last statement use |∇us|XP
= |∇u|XP

, s ∈ R and the above convergence.

Proof. (of Lemma 2.1)
We proceed in two steps.
1. Assume for the moment that D ∈ HQ ∩H∞Q . We know by Theorem 2.2 that

lim
S→+∞

1

S

∫ r+S

r

G(s)D ds = 〈D〉 strongly in HQ, uniformly with respect to r ∈ R.

We define the sequence ck = 1{|P 1/2c|≤k}c, k ∈ N. Any vector field ck belongs to X∞P
and we have the convergence limk→+∞ ck = c in XP . For any k ∈ N we have

lim
S→+∞

1

S

∫ r+S

r

G(s)Dck ds = 〈D〉 ck, strongly in XQ, uniformly with respect to r ∈ R

thanks to the inequality∣∣∣∣ 1S
∫ r+S

r

G(s)Dck ds− 〈D〉 ck
∣∣∣∣
XQ

≤
∣∣∣∣ 1S
∫ r+S

r

G(s)D ds− 〈D〉
∣∣∣∣
HQ

|ck|X∞
P
.
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Observe that∣∣∣∣ 1S
∫ r+S

r

G(s)Dc ds− 〈D〉 c
∣∣∣∣
XQ

≤
∣∣∣∣ 1S
∫ r+S

r

G(s)D(c− ck) ds

∣∣∣∣
XQ

+

∣∣∣∣ 1S
∫ r+S

r

G(s)Dck ds− 〈D〉 ck
∣∣∣∣
XQ

+ | 〈D〉 (ck − c)|XQ

≤
∣∣∣∣ 1S
∫ r+S

r

G(s)D ds

∣∣∣∣
H∞

Q

|c− ck|XP

+

∣∣∣∣ 1S
∫ r+S

r

G(s)Dck ds− 〈D〉 ck
∣∣∣∣
XQ

+ | 〈D〉 |H∞
Q
|ck − c|XP

≤ 2|D|H∞
Q
|ck − c|XP

+

∣∣∣∣ 1S
∫ r+S

r

G(s)Dck ds− 〈D〉 ck
∣∣∣∣
XQ

which implies that for any k ∈ N

lim sup
S→+∞

sup
r∈R

∣∣∣∣ 1S
∫ r+S

r

G(s)Dc ds− 〈D〉 c
∣∣∣∣
XQ

≤ 2|D|H∞
Q
|ck − c|XP

.

Our conclusion follows by letting k → +∞.
2. Assume now that D ∈ H∞Q . For any k ∈ N we consider Dk = 1{ψ≤k}D. Since
D ∈ H∞Q ⊂ HQ,loc, we deduce that Dk ∈ HQ ∩H∞Q , and by the previous statement, we
have for any k ∈ N

lim
S→+∞

sup
r∈R

∣∣∣∣ 1S
∫ r+S

r

G(s)Dkc ds− 〈Dk〉 c
∣∣∣∣
XQ

= 0.

Observe that∣∣∣∣ 1S
∫ r+S

r

G(s)Dc ds− 〈D〉 c
∣∣∣∣
XQ

−
∣∣∣∣ 1S
∫ r+S

r

G(s)Dkc ds− 〈Dk〉 c
∣∣∣∣
XQ

≤
∣∣∣∣ 1S
∫ r+S

r

G(s)(D −Dk)c ds

∣∣∣∣
XQ

+ | 〈Dk −D〉 c|XQ

=

∣∣∣∣ 1S
∫ r+S

r

G(s)D1{ψ>k}c ds

∣∣∣∣
XQ

+
∣∣〈D〉1{ψ>k}c∣∣XQ

≤ 1

S

∫ r+S

r

|G(s)D|H∞
Q
|1{ψ>k}c|XP

ds+ | 〈D〉 |H∞
Q
|1{ψ>k}c|XP

≤ 2|D|H∞
Q
|1{ψ>k}c|XP

which implies that

lim sup
S→+∞

sup
r∈R

∣∣∣∣ 1S
∫ r+S

r

G(s)Dc ds− 〈D〉 c
∣∣∣∣
XQ

≤ 2|D|H∞
Q
|1{ψ>k}c|XP

.

Our conclusion follows by letting k → +∞.
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