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A deep understanding of the solid-state phase transition processes of zirconia is a mandatory requirement 
for the development of new zirconia-based materials useful for many industrial applications. For five decades, 
the monoclinic ⇔ tetragonal phase transition is described as a martensitic one and it is well known that it 
is associated with a large unit cell volume variation that promotes the appearance of elastic strains and also 
microcracking. In the present paper, we study, through in situ high temperature x-ray diffraction experiments, 
the coupling between strain relaxation and the martensitic phase transition into a pure zirconia bulk polycrystal. 
Quantitative analysis of the diffraction signal allows us to disentangle, with respect to the temperature variation, 
the phase transition and the microcracking processes, and we demonstrate that a high temperature postelaboration 
thermal treatment induces an increase in the stored elastic energy. Finally, we show that in such polycrystals 
exhibiting a crystal size distribution and in which the crystals are under internal stresses, the tetragonal to 
monoclinic phase transition process evolves from a first order one to a second order one when the temperature 
decreases.

I. INTRODUCTION

Zirconia is one of the most used oxide compounds. It
exhibits high temperature mechanical and ionic transport
properties, and a large part of its characteristics is directly
related to the ability of zirconium to accommodate differ-
ent coordinations leading to the crystallization of zirconia
under different phases depending on the pressure and the
temperature. Under atmospheric pressure, pure zirconia free
of stress solidifies into a cubic crystal structure (space group
Fm3̄m) at about 2700 °C, transforms to tetragonal (space
group P42/nmc) upon cooling to 2300 °C, and becomes mon-
oclinic (space group P21/c) at 1170 °C [1]. Several other
phases have been evidenced under high pressure [2]. The
solid-state phase transition (SPT) between the tetragonal and
monoclinic phases (m ⇔ t) is a first order one and is of
martensitic type [3–5]. It induces a large volume expansion
that creates huge internal stresses in the material, which pro-
motes the development of a microcrack network and often
the breakage of pure zirconia based dense materials. Never-
theless, it is well known that accurate control of this phase
transition, and thus the formation of microcracks, allows
the production of materials exhibiting enhanced mechanical
properties [6]. Besides temperature and external pressure, the
m ⇔ t SPT can be controlled through mainly two different
ways, i.e., the formation of solid solutions introducing aliova-
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lent cations to substitute for zirconium [7–9] and a complex
balance between the size of the zirconia crystals and the local
stresses [10–14]. The first aspect has been extensively studied
in order to promote transformation toughening of ceramics
[15,16] as well as to develop ionic conductors [17] used as
oxygen sensors or as basic components of solid oxide fuel
cells.

The understanding of the relationships between the m ⇔ t
SPT and the crystal size is a more complex scientific topic.
Because of the strong volume variation associated with the
transition [1], local strains promote stresses that have a strong
influence on the transition temperature. Since the pioneering
work of Garvie [18], it is well known that a decrease in the
crystal size in the nanometers range induces a decrease in
the t → m transition temperature. It is usually accepted that
free pure zirconia particles with a diameter below 30 nm are
stable at room temperature under the tetragonal phase. This
feature is not fully understood, but it has been studied for
nanosized zirconia crystals free of any external constraint [14]
or zirconia based high K [19] or ferroelectric [20] very thin
films. In most of the cases, free nanosized zirconia particles or
zirconia based thin films are elaborated through processes that
avoid the use of high temperatures, and very often, zirconia
nanosized particles crystallize under the metastable tetragonal
phase [21]. This means that these crystals have never under-
gone any phase transition. Thus the influence of strains and
stresses associated with the successive phase transitions has
not been taken into account in such studies.

On the contrary, the manufacturing of zirconia-based bulk
materials usually requires high temperature processes. In

https://orcid.org/0000-0003-1184-8827
https://orcid.org/0000-0003-2773-7371
https://orcid.org/0000-0001-6880-8514
https://orcid.org/0000-0002-9469-7835
https://orcid.org/0000-0001-6826-5118
https://orcid.org/0000-0001-7422-294X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.6.013602&domain=pdf&date_stamp=2022-01-05


FIG. 1. Room temperature observations through electron microscopy of the microstructure of the studied material. (a) SEM micrograph
evidencing the global microstructure of the material. Submillimetric areas embedded in a glassy phase (dark grey) are made of a very large
number of monoclinic pure zirconia crystals (grey). (b) Twinning observed through dark field imaging by transmission electron microscopy
(TEM). (c) TEM observation of a microcrack.

fact, dense zirconia materials are most often obtained by
sintering and, in some cases, through fuse casting. Temper-
atures higher than 1200 °C are necessary, and both processes
are associated with at least the t → m SPT during the cooling
of the materials. Our goal in this paper is to study the cou-
pling between strain promoted by the volume variation linked
to t → m SPT and the occurrence of this phase transition
in dense pure zirconia polycrystals. Throughout this work,
we consider polycrystalline samples that are free of external
stresses.

We measured by in situ x-ray diffraction (XRD) experi-
ments the evolution of the monoclinic and tetragonal volume
fractions and simultaneously the crystal volume variations
over a large temperature range. This allows us to quantita-
tively analyze these size-strain-SPT coupled evolutions. The
volume expansion associated with the t → m transition in-
duces elastic strains in the zirconia crystals that promote the
appearance of x-ray diffuse scattering. We clearly show that
the strain relaxation associated with the reverse m → t SPT
results in a dramatic decrease in the diffuse scattering sig-
nal. From the experimental point of view, the implementation
of this approach encounters two main difficulties. First of
all, the temperatures under consideration are typically higher
than 1000 °C. Quantitative XRD measurements at such high
temperatures are challenging. The second point concerns the
samples themselves. Bulk pure zirconia samples are manda-
tory to investigate the effects of internal stresses. It is well
known that the t → m transition during the cooling of pure
zirconia dense samples often leads to the breakage of the
material associated with a relaxation of part of the internal
stresses and, thus, to the disappearance of the stress effect

we want to evaluate. Thanks to a collaboration with the Saint
Gobain company, we have obtained pure zirconia samples that
keep their integrity up to room temperature.

II. MATERIALS AND METHODS

The dense bulk pure zirconia samples that we studied come
from large submetric refractory blocks used for the building of
continuous ovens devoted to the industrial manufacturing of
glass. They are produced by the Saint-Gobain company using
the fused-casting method. The full description of the manu-
facturing process and the resultant microstructure is beyond of
the scope of the present paper; it has already been presented
in a previous paper [22]. The raw materials contain roughly
95 wt% zirconia and 5 wt% silicon oxide. After melting,
in the liquid state, due to the presence of a miscibility gap
in the pseudobinary ZrO2-SiO2 phase diagram [23,24], two
different compounds are present, i.e., pure zirconia crystals
and a silica based glassy phase. As shown in previous stud-
ies, the solubility of silicon in zirconia is, in fact, roughly
nil [25]. Consequently, cooling and solidification induce the
formation of a material containing large areas of pure zir-
conia embedded in a silica-based glass [22] [see scanning
electronic microscopy (SEM) image reported in Fig. 1(a)].
These submillimetric areas contain a very large number of
constituting crystals. We have already shown [26] that each
of these areas correspond to only one cubic crystal at high
temperature. It means that all the monoclinic submicrometric
crystals are all variants resulting from the two successive
SPTs, i.e,. c → t and t → m, occurring during the cooling
of the sample. All the 24 theoretically possible variants are



present [26], and the size of the coherent domains is typically
a few tens of nanometers [27]. The two SPTs are associ-
ated with an intensive twinning process that is illustrated in
Fig. 1(b). As an example, an area containing both tetragonal
(narrows) and monoclinic (wide) plates is observed under the
[1̄20]∗ zone axis. The aim of this paper is not to study the
twinning process in monoclinic zirconia that has been already
described [16]. Nevertheless, this observation illustrates the
fact that the martensitic t → m SPT is not complete even at
room temperature. The presence of microcracks, certainly due
to the release of the stresses created by the volume expansion
associated with the t → m SPT, is illustrated in Fig. 1(c) at the
nanoscale.

A volume of matter corresponding to the area observed in
Fig. 1(a) and, thus, to a unique parent cubic crystal constitutes
an ideal sample allowing the evaluation of the impact on
the SPT of elastic strains generated by the successive SPTs
associated with the volume variations and with the anisotropic
thermal expansion of monoclinic zirconia [28,29]. We re-
cently determined the strain distribution in such samples using
a local x-ray microdiffraction method [27,30]. A statistically
representative volume was scanned step by step, and each
submicrometric probed volume contained a large number of
nanosized coherently diffracting domains. At room tempera-
ture, these domains are monoclinic, and we measured local
deviatoric strains of a few percent (and up to 10%) in these
pure zirconia crystals [27]. According to the elastic proper-
ties of monoclinic zirconia [31–34], this corresponds to local
deviatoric stresses lying in the GPa range while the global
average of the stress in the full volume is at least one order of
magnitude smaller [27]. Huge stress gradients (GPa/μm) were
also measured. One of the open questions that we address
in the present article is the evolution of this strain state as
a function of temperature. For that purpose, we investigate
a specimen that has been heated in situ up to 1435 °C and
then cooled down to room temperature. During this cycle,
microcracks form and therefore the specimen microstructure
evolves.

The simultaneous evolutions of the tetragonal to mono-
clinic zirconia volume fraction and of the thermal expansion
of zirconia crystals as a function of temperature were de-
termined by in situ XRD experiments done at the D2AM
beamline [35] at the European Synchrotron Radiation Facility
(ESRF), Grenoble (France). The XRD patterns were collected
at 17.9 keV just below the zirconium absorption edge using
a two-dimensional (2D)-pixel hybrid detector (XPAD 3.2,
560 × 960 pixels, pixel size 130 μm [36]) located ∼420
mm away from the sample, allowing for the entire part of
the reciprocal space of interest to be recorded without any
rotation of the detector. Each of the 2D diffraction patterns
was recorded in 30 s. The Q space was calibrated according
to the measurement of a diffraction pattern of the NIST SRM
660c LaB6 powder. All 2D XRD images were radially inte-
grated using the pyFAI library [37] in order to reconstruct 1D
diffraction patterns. Quantitative analyses of the diffraction
signal were done on these integrated 1D patterns. Taking into
account both the energy and the incidence angle (6°) of the
x-ray beam, the penetration depth of the x rays was close to
100 μm. The optics of the beamline were optimized in order
to get a monochromatic parallel beam with a width of 200 μm

and a height of 20 μm such that the imprint of the beam on
the sample was a square with an area of roughly 200 μm ×
200 μm. Finally, the probed volume was roughly equal to
that of one dendrite. Consequently, all the diffracting crystals
come from the same cubic parent crystal. The cell parame-
ters were determined through full pattern matching using the
FULLPROF software [38], while the evolution of the monoclinic
to tetragonal ratio was followed by peak by peak diffraction
line fitting of the 1̄11m, 111m, and 111t Bragg reflections
using a pseudo-Voigt function and taking into account all the
structural and geometrical parameters [39].

On the experimental point of view, the key point was to
be able to record the diffraction patterns in situ at temper-
atures high enough to promote the m → t SPT of all the
zirconia crystals. For that purpose, we used the QMAX fur-
nace installed on the D2AM beamline which allows for the
realization of x-ray scattering experiments at temperatures
up to 1700°C [29]. The bulk samples were put on the top
of the furnace, which is designed in such a way that all the
diffuse or diffracted x-ray beams emitted in the half space
above the sample surface can be recorded by the detector.
Temperature variations induce thermal expansion not only of
the sample but also of some parts of the heating sample holder;
consequently the sample surface shifts. Therefore, the entire
furnace is located on top of the goniometer head so that after
reaching each target temperature, the sample surface was fully
realigned prior to the measurement of the diffraction patterns.
This allows the well-known sample displacement problem to
be solved [40]. More information concerning this procedure
can be found in [29].

Another challenging point during the in situ high temper-
ature measurements is the determination of the true value
of the temperature. The actual temperature of interest is, of
course, not the temperature of the resistor nor the expected
temperature with respect to the applied electrical power but
the temperature of the sample. Before the experiment, a thin
layer of NIST SRM 676a alumina powder was spread onto the
bulk sample surface and we determined the sample tempera-
ture according to the thermal evolution of both the a and c cell
parameters of α alumina [41].

III. RESULTS AND DISCUSSION

A. Phenomenological description of the m ⇔ t
phase transition process

We study the phase transition process in a constant volume
probed by the x-ray beam. Considering that the x-ray penetra-
tion depth is close to 100 μm, according to the geometrical
characteristics of the primary beam (see above), the probed
volume during the XRD measurements is roughly 200 μm
× 200 μm × 100 μm = 4 × 106 μm3. According to the
submicrometric size of the diffracting crystals, their num-
ber is sufficiently high to allow a statistical approach of the
diffraction signal [39]. The actual sample is, in fact, this probe
volume that contains all the 24 monoclinic variants associated
with the two successive SPTs. Since the formal submillimetric
cubic crystals [grey regions in Fig. 1(a)] at high temperature
are mechanically disconnected due to the low viscosity of
the SiO2 glassy matrix, and therefore submitted to a small



average external stress, the study of one of these volumes
corresponding to one formal cubic crystal is representative of
the whole specimen.

During temperature variations, because the highest con-
sidered temperature is well below the melting temperature
of zirconia, and assuming the absence of any stoichiometry
variation of zirconia, the total number of ZrO2 molecules
is kept constant in the probed volume. The crystal volume
evolutions are the variations of the volume occupied by these
molecules.

At a given temperature T, the mean volume occupied by
each ZrO2 molecule in the zirconia crystals is equal to

〈V (T )〉 = τ t (T )〈V t (T )〉 + [1 − τ t (T )]〈V m(T )〉, (1)

where τ t (T ) is the volume fraction of tetragonal zirconia at
temperature T, and 〈V t (T )〉 and 〈V m(T )〉 are the mean vol-
umes occupied by one molecule of ZrO2 in the tetragonal and
monoclinic zirconia crystals, respectively. In both cases, the
average is expressed over all of the diffracting tetragonal or
monoclinic crystals present in the probed volume.

As previously indicated, tetragonal zirconia crystallizes
under the P42/nmc space group. Nevertheless, this structure
is commonly described in the pseudocubic “face-centered-
tetragonal” lattice in which the crystallographic directions
are parallel to those of the cubic form (see, for example,
[42]). This setting is very efficient to follow the m ⇔ t phase
transition process. Accordingly, we adopt it throughout this
paper, and, in that case, the pseudocubic tetragonal cell and
the monoclinic cell both contain four molecules of ZrO2.

Equation (1) can thus be rewritten as a function of the
volume of the tetragonal and monoclinic cells:

〈V (T )〉 = 1
4

{
τ t (T )

〈
V t

c (T )
〉 + [1 − τ t (T )]

〈
V m

c (T )
〉}

, (2)

where 〈V t
c 〉 and 〈V m

c 〉 are the mean tetragonal and monoclinic
cell volumes, respectively, averaged over all the diffracting
tetragonal or monoclinic crystals. It is worth noting that these
lattice volumes take into account not only the expansion of the
lattice due to thermal dilation, e.g., as would be measured on
a stress-free powder, but also the distribution of local stresses
(expected to be in the GPa range [27]) inside the material.

According to basic thermodynamics, the thermal expan-
sivity is expressed by the volume variation induced by an
infinitesimal variation in the temperature. It is obtained by the
derivative of Eq. (2) with respect to the temperature and is
expressed as

∂〈V (T )〉
∂T

=1

4

[(
∂
〈
V t

c (T )
〉

∂T
− ∂

〈
V m

c (T )
〉

∂T

)
τ t (T )+ ∂

〈
V m

c (T )
〉

∂T

]

+ 1

4

[
∂τ t (T )

∂T

[〈
V t

c (T )
〉 − 〈

V m
c (T )

〉]]
.

The first part of the right member of this equation,

∂V1(T )

∂T
= 1

4

[(
∂
〈
V t

c (T )
〉

∂T
− ∂

〈
V m

c (T )
〉

∂T

)
τ t (T )+ ∂

〈
V m

c (T )
〉

∂T

]
,

(3)

is closely related to the expansivity of the monoclinic and
tetragonal cells for a given volume fraction τ t and is, thus,
connected with the thermal dilation and internal stress state.

It will be denoted as the “pure thermal expansion effect.” The
second term,

∂V2(T )

∂T
= 1

4

∂τ t (T )

∂T

[〈
V t

c (T )
〉 − 〈

V m
c (T )

〉]
, (4)

is connected with the volume transfer between the m and t
phases associated with a temperature variation. It will be de-
noted, hereafter, as the “phase transition thermal expansivity.”

According to Eqs. (3) and (4), the quantitative knowledge
of the variation in both tetragonal and monoclinic mean cell
volumes together with the evolution of the volume fraction of
tetragonal crystals allows the influence of the phase transition
on the mean crystal volume variations as a function of the
temperature to be determined. All these quantities can be ex-
tracted from the XRD patterns, as detailed below in Secs. III B
and III C.

The evolution of the volume fraction of tetragonal zirconia
τ t (T ) in the probed volume with temperature can be expressed
according to a basic energy balance related to phase transition
considerations. In fact, at a given temperature, a tetragonal
crystal transforms to monoclinic if the Gibbs free energy gap
�Gt→m(T ) between the two phases becomes negative. As-
suming spherical particles, this free energy gap is classically
written as

�Gt→m(T )= 4
3πr3[�Gtm

V (T ) + �GD(T )
] + 4πr2�Gtm

S (T ),
(5)

where r is the radius of the crystal, �Gtm
V (T ) is the differ-

ence between the volume free energy of a tetragonal and a
monoclinic crystal of radius r, �GD(T ) is the free energy as-
sociated with the appearance of interfacial elastic strains, and
�Gtm

S (T ) is the difference between the surface free energy of
a tetragonal and a monoclinic crystal of radius r. Accordingly,
if one assumes that the transition is essentially driven by a size
effect, the critical radius of the t → m transition of a crystal is
given by

rt→m
c (T ) = − 3�Gtm

S (T )[
�Gtm

V (T ) + �GD(T )
] . (6)

This means that at temperature T, all tetragonal crystals
with a radius equal to rt→m

c transform to monoclinic, while the
larger tetragonal crystals have already transformed at higher
temperatures.

Let’s assume that at a temperature much higher than the
start of the t → m transition, the size of the tetragonal crystals
follows a log-normal distribution with parameters μ and σ ,

f (r) = 1

rσ
√

2π
exp

[
−1

2

(
ln(r) − μ

σ

)2]
.

Here, μ and σ are the arithmetic mean and standard deviation
of ln(r), respectively. The mean r̄ and standard deviation r of
the size distribution are given, respectively, by

r̄ = exp

(
μ + σ 2

2

)
, r = r̄[exp(σ 2) − 1]

1/2

and thus

μ = ln

⎡
⎣ r̄2√

r̄2 + r
2

⎤
⎦, σ 2 = ln

[
r̄2 + r

2

r̄2

]
(7)



The associate cumulative distribution function, which ex-
presses the volume fraction τ t (T ) of the tetragonal phase at
temperature T, is given by

τ t (T ) =
∫ rt→m

c (T )

0
f (r)dr

= 1

2

[
1 + erf

(
ln

(
rt→m

c (T )
) − μ

σ
√

2

)]
.

For practical purposes, this expression can be simplified by
using the approximation of the error function erf proposed in
[43] [see Eq. (3.11) therein], which is sufficiently accurate for
our application. This leads to

τ t (T ) 	 1

1 + exp
[− 4r̃t→m

c (T )(1+k(r̃t→m
c (T ))2 )√

π

] , (8)

where

r̃t→m
c (T ) = ln

(
rt→m

c (T )
) − μ

σ
√

2
(9)

is a normalized critical radius. The coefficient k = 0.089 430
has been introduced in [43].

On the other hand, it will be shown in the next section that
the experimental data are nicely fitted by a sigmoidal law

τ t (T ) = 1

1 + exp[−λ(T − Tc)]
, (10)

where Tc is the critical phase transition temperature in the
sense of the Landau phase transition theory (τ t

T =T c = 0.5) and
λ characterizes the “width” of the sigmoid. The numerator of
(10) is equal to 1 as the transition can be complete. Then,
identifying (8) and (10) leads to the following third order
equation:

[
r̃t→m

c (T )
]3 + 1

k
r̃t→m

c (T ) −
√

πλ(T − Tc)

4k
= 0, (11)

which has a unique real solution that is written as (Cardan
formula)

r̃t→m
c (T ) = 3

√
−q + √

�

2
+ 3

√
−q − √

�

2
, (12)

where p = 1
k , q = −

√
πλ(T −Tc )

4k , and � = q2 + 4
27 p3.

In the following, the thermal dependence of the volume
fraction of tetragonal zirconia is determined according to
Eq. (10), and the phase transition thermal expansivity is eval-
uated according to Eq. (4).

B. Quantitative experimental analysis
of the phase transition process

We followed the evolution of τ t (T ) in situ in a bulk sample
between room temperature and 1500°C during heating and
cooling. Parts of the 1D diffraction patterns are reported in
Figs. 2(a)–2(c). The m ⇔ t phase transition is illustrated by
the evolution of the diffraction signal in the Q range close to
the 1,1,1 reciprocal lattice nodes (RLNs). In fact, the split-
ting of the (111) tetragonal diffraction peak to the (1̄11) and

(111) peaks is characteristic of the formation of the mono-
clinic phase. Due to the volume expansion associated with the
t → m transition, the cooling process is critical with respect
to the microcrack formation. In the corresponding tempera-
ture range, diffraction patterns were recorded every 6°C [see
Fig. 2(c)].

According to the phenomenological description of the rela-
tionship between the m ⇔ t phase transition and the zirconia
crystal size, we have fitted the evolution of the volume fraction
of tetragonal zirconia assuming a sigmoidal evolution with
respect to the temperature. The best fits that we obtained
are reported in Figs. 2(d) and 2(e), and the values of the
critical temperatures Tc and λ are indicated in Table I. In both
cases, the critical temperatures are lower than the transition
temperature of the pure zirconia perfect crystals free of any
stress, which is reported to be equal to 1170°C. Moreover, one
can see that the critical temperature of the t → m transition
is 120°C below that of the m → t transition. Except at the
beginning of the t → m SPT during cooling, the global evo-
lution of the τ t (T ) follows the sigmoidal law quite well and
this is consistent with the model in which the phase transition
is essentially driven by size effects.

The evolution of the volume fraction of tetragonal zirconia
during heating and cooling is reported in Fig. 2(f) as a function
of the reduced temperature T-Tc. The reverse t → m transition
during cooling is spread over a range of temperatures that is
much wider than that observed for the m → t transition. In
fact, the m → t SPT occurs in a temperature range of roughly
350°C, while the t → m SPT spreads over 1000°C. Both this
feature and the critical temperature gap between heating and
cooling are clear illustrations of the influence of the excess of
free energy related to stresses induced by the increase in the
ZrO2 molecular volume associated with the t → m transition.
This free energy excess is, of course, a function of the tem-
perature, and it corresponds to the strain energy �GD(T ) in
Eq. (5).

The evolution of the normalized critical radius r̃t→m
c (T )

as a function of the temperature can be plotted according to
Eq. (12) at given λ and Tc values. The curve corresponding to
the cooling process is reported in Fig. 3(a). The knowledge of
the mean value and the standard deviation of the crystal size
distribution is needed to determine the thermal evolution of
the critical radius [see Eq. (8)]. It is not the aim of this paper
to compare the evolution of the critical radius as a function
of the characteristics of the crystal size distribution, i.e., the
microstructure, which depends on the manufacturing process.
Nevertheless, as an illustration, we have plotted in Fig. 3(b)
the evolution of this critical radius for a mean crystal size of
r̄ = 100 nm and two standard deviations, r = 10 nm and r =
30 nm. As expected, the obtained critical size increases with
temperature with values in the 100-nm range. Interestingly,
the critical size depends significantly on the initial size dis-
tribution, the fluctuation with temperature being much larger
for the broader size distribution (r = 30 nm) of tetragonal
crystals at high temperatures. The specific shape of the consid-
ered size distribution (e.g., normal vs log-normal distribution)
is found to have only a little influence (details not shown
here).

Of course, the values of λ and Tc are very strongly related
to the microstructure and residual stress state of the material



FIG. 2. Volume fraction of tetragonal zirconia as a function of temperature during heating and cooling. (a)–(c) Part of the XRD patterns
recorded during the heating and cooling processes. During cooling, the diffraction patterns were recorded roughly every 6°C [see (c)]. (d),(e)
Fit with a sigmoidal law of the evolutions of the volume fraction of tetragonal zirconia as a function of temperature during heating and cooling.
(f) Evolution of the tetragonal volume fraction with respect to the critical m → t and t → m phase transition temperatures. Only the crystal
size effect is considered in (f).

under consideration, which remains challenging to character-
ize at high temperatures. Nevertheless, we have shown that
the evolution of the critical size associated with the SPT can
be experimentally determined.

A peculiar behavior is observed at the beginning of the t →
m SPT during the cooling process [see the orange rectangle in
Fig. 2(e)]. In a very narrow range of temperature, between

TABLE I. Phase transition critical temperatures and “widths” of
the sigmoid during heating and cooling.

Critical temperature Tc (°C) λ (◦C−1)

Heating 950 0.020
Cooling 830 0.007

950°C and 925°C, roughly 30 vol% of the tetragonal zirconia
is transformed into monoclinic, and below this temperature,
the evolution of τ t (T ) follows the sigmoidal law very well
again. This behavior is discussed in more detail below, but it
attests to the occurrence of an additional phenomenon super-
imposed to the size effect and promoting the t → m SPT of a
significant part of the zirconia crystals.

C. Phase transition, strain relaxation and diffuse scattering

According to Eq. (4), the determination of the phase tran-
sition thermal expansivity requires the determination of mon-
oclinic and tetragonal mean cell volume expansions and, thus,
of the cell parameters themselves. The evolutions as a func-
tion of the temperature of the monoclinic and tetragonal cell
parameters are reported in Fig. 4. The thermal dependencies



FIG. 3. Evolution of the critical crystal size for the t → m SPT during the cooling process. (a) The normalized critical radius is plotted
according to Eq. (12) taking into account the value of λ and the critical temperature that have been determined experimentally for cooling
(Table I). (b) Critical radius considering a hypothetical value of the mean crystal size (100 nm) and standard deviations of the size distribution
of 10 and 30 nm.

of these cell parameters (at,m, bm, ct,m, βm) were fitted by
linear evolutions reported in Table II. The accordance of the
experimental values and these linear laws is illustrated in

Fig. 4. Note that the obtained lattice spacing evolutions ac-
count for both (i) the thermal dilation of the lattice, generally
measured on stress free specimens such as powders, and (ii)

FIG. 4. Mean thermal expansion along the main crystallographic axis of the monoclinic and tetragonal crystals.
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the internal stresses arising from the cooling and the phase
transitions. This is because these lattice strains have been
measured directly for the bulk specimen in which high internal
stress is expected. Therefore, these lattice spacings are the
actual in situ ones and can be used directly to compute the
lattice volume as needed in Eqs. (3) and (4).

The first observation concerns the strong anisotropy of the
thermal expansion of monoclinic zirconia. Indeed, in agree-
ment with previous results obtained on pure zirconia powders
[28,29], during heating the value of the b cell parameter is
quasi-independent of the temperature and only a slight evo-
lution is observed during the cooling. Most of the previously
published papers related to zirconia thermal expansion con-
cern bulk or powdered materials made of doped zirconia, and
because of the presence of residual stresses, different values
of thermal expansion are expected for different samples. As
the internal stress state in these specimens is largely unknown,
comparison with our results is not relevant. Only a comparison
with the thermal expansion of pure zirconia crystals almost
free of external constraint could be useful. It is not the aim of
the present paper to discuss in detail the evolutions of these
cell parameters with respect to the values already published in
the literature, nevertheless, we reported in Table II four data
sets coming from the literature and more or less respecting
this requirement.

The influence of the presence of residual stresses is evi-
denced by the discrepancy between the expansion coefficients
measured during heating and cooling. Moreover, a reverse be-
havior is observed between the a and c axis of the monoclinic
phase, i.e., the slope in Fig. 4 is higher during cooling than
during heating along the a axis while the opposite situation
is observed along the c axis. All these values are linked to
the stress state and, more generally, to the microstructure of
the sample. Here, the precise value of the lattice parameter
is not of general interest as it depends on the internal stress
state, which itself depends on the manufacturing process. For
example, changing the cooling process a little will result in
different values of the lattice parameters. However, according
to the values reported in Table II, it is easy to calculate the
difference in the molecular volume of zirconia under the mon-
oclinic and tetragonal forms as a function of the temperature.

We have reported in Figs. 2(d) and 2(e) the evolution of the
volume fraction of tetragonal zirconia modeled by sigmoidal
laws corresponding to Eq. (10). The derivative of this volume
fraction is thus given by

∂τ t (T )

∂T
= λ[1 − τ t (T )]τ t (T ). (13)

Inserting this last expression into Eq. (4), the phase tran-
sition thermal expansivity during both heating and cooling
can be estimated, as shown in Fig. 5(a). During heating, the
m → t phase transition is associated with a diminution of the
molecular volume of zirconia; this corresponds to a negative
thermal expansivity. On the contrary, the t → m transition
occurring during cooling induces a positive expansivity that is
spread over a wide temperature range. The thermal expansion
associated with this SPT results in an excess of free energy
that induces both the decrease in the phase transition critical
temperature and a spreading of the transition temperature.



FIG. 5. Phase transition thermal expansivity. (a) Thermal expansivity during heating and cooling assuming a phase transition process fully
driven by the size distribution of the crystals. (b) Modeling of the thermal variation of the volume fraction of tetragonal zirconia taking into
account the sudden transition of 30 vol% of tetragonal zirconia at the beginning of the cooling process. (c) Phase transition thermal expansivity
taking into account the true evolution of the amount of tetragonal zirconia.

The total elastic energy density associated with the phase
transition, denoted hereafter as E tm

elas, can be expressed as a
function of the elastic strain field generated by the phase
transition as

E tm
elas =

∫ TF

TS

�GD(T )dT = 1

2

∫ TF

TS

〈εi jCi jklεkl〉dT . (14)

Here, �GD is the elastic energy stored or relaxed during the
phase transition as introduced in Eq. (5), and it is integrated
between the start (TS) and finish (TF ) martensitic transforma-
tion temperatures. It accounts for the elastic strain field εi j that
is due to the sole phase transition, i.e., which is associated with
the stress field resulting from the change in the lattice volume
during the SPT. It does not account for the thermal dilation
of the t and m phases. In Eq. (14), Ci jkl are the components
of the stiffness tensor at the crystal scale. Use is made of
the Einstein summation convention over repeated indices, and
the brackets 〈.〉 denote the volume average over the specimen
volume. Neglecting the elastic anisotropy at the crystal scale,
(14) becomes

E tm
elas =

∫ TF

TS

�GD(T )dT

= E

2

∫ TF

TS

[
1

(1 + ν )
〈ε′

i jε
′
kl〉 + 1

3(1 − 2ν )
〈tr(ε)2〉

]
dT ,

(15)

where ε′
i j is the deviatoric elastic strain and tr(ε) is the trace

of ε expressing the elastic part of the lattice volume change
during the phase transition. Experimental data on the elas-
tic properties of the monoclinic and tetragonal pure zirconia
near the t → m SPT are, in fact, not available. According to
[31], the Young’s modulus of monoclinic zirconia decreases
slightly between room temperature and 1000°C. Its temper-
ature variation evaluated experimentally by Chan et al. [31]
depends on the model used for the extraction of this variation,
but in all cases, variations are smaller than 10%, and as a
first approximation, it can be considered quasiconstant as a
function of the temperature and equal to ∼240 GPa with a
Poisson ratio ν of ∼0.29. Theoretical calculations based on
first principles studies have given values close to 200 GPa
for the tetragonal polymorph [34]. As a first approximation,
it can be assumed that the elastic properties of both the mono-
clinic and the tetragonal polymorphs near the t → m SPT are
similar. As the response of the material is essentially elastic,
and according to Eshelby’s work [48,49], the elastic strain
and stress fields inside the crystals generated by the SPT
can be considered proportional to the lattice volume change
during the SPT, which itself constitutes the main contribution
to the phase transition thermal expansivity V2 defined in (4).
Accordingly, the stored elastic energy (15) is, as a first ap-
proximation, proportional to the integral of the square of the
green curve reported in Fig. 5(a). Following this approach, it
is worth noting that Et→m

elas stored during the cooling process



FIG. 6. Phase transition and diffuse scattering probed by 3D reciprocal space mapping close to the 1,1,1 zirconia tetragonal and monoclinic
RSNs. (a) 3D-RSM recorded at 500°C during heating. (b) 1D pattern obtained by integration over the azimuthal and tilt angles of the intensity
distribution reported in Fig. 5(a). (c) 3D-RSM recorded during heating at 1100°C.

is two times higher than Em→t
elas relaxed during the reverse pro-

cess. Thermal cycling of the material, thus, seems to induce a
significant storage of elastic energy.

As shown in Fig. 2, the situation is, in fact, more complex.
The green curves reported in Figs. 2(e) and 4(a) do not con-
sider the sudden decrease in the volume fraction of tetragonal
zirconia between 950°C and 925°C. Within 25°C, roughly 30
vol% of the tetragonal zirconia is transformed to monoclinic.
Modeling of this evolution allows the phase transition ther-
mal expansion associated with this very sudden evolution to
be estimated [see Fig. 5(c)]. The highest value is typically
one order of magnitude larger than the maximum reported in
Fig. 5(a). In our dense bulk material, the transforming crystals
are surrounded by other zirconia crystals, and the associated
very large level of internal stresses cannot be accommodated
by elastic deformation of those crystals. The discontinuity ob-
served in Fig. 5(c) illustrates a sudden relaxation of the stress
generated by the volume expansion associated with the t → m
transition. This relaxation corresponds to the formation of
microcracks and can be considered as a plastic relaxation.

Except for this part of the process, the high value of the
phase transition thermal expansivity must be associated with
a large level of stress inside the zirconia crystals. We have
previously described the mean cell volume variations as a
function of the temperature. Nevertheless, according to the
theory of elasticity in solids, the presence of strains results
in an a priori continuous variation of the d spacing inside
the crystal. In terms of x-ray diffraction, this must correspond
to the spreading of the diffracted intensity near the central
position of the considered reciprocal space nodes (RSNs). A

continuous distribution of the d spacing is associated, in the
reciprocal space, with a continuous diffuse scattering signal.
We have illustrated this feature by x-ray diffuse scattering
measurements around the 1,1,1 monoclinic and tetragonal
RSNs.

The probed volume is polycrystalline; nevertheless assum-
ing that all the diffracting crystals belong to only one cubic
parent crystal, the relative orientation of all the diffracting
crystals is fully defined by the two successive SPTs. Con-
sidering the 1,1,1 RLN corresponding to the diffraction of
crystals belonging to one common variant, it is quite easy
to find in the reciprocal space another RLN associated with
this set of diffracting crystals. After the determination of the
position of the 1,1,1 and 2,0,0 t-ZrO2 RLNs, we have used
this approach to define a global orientation matrix of a set of
crystals belonging to the same variant. We have then mapped
in three dimensions the reciprocal space close to the central
position of the 1,1,1 t-ZrO2 RLN through the recording of
200 2D diffraction maps at each temperature. The 3D recip-
rocal space maps (RSMs) were reconstructed using a Python
routine developed at the beamline. The total duration of the
3D mapping at each temperature was close to one hour.

The 3D RSM around the 1,1,1 nodes recorded at 500°C
during the heating of the sample is reported in Fig. 6(a). First
of all, a threefold picture clearly appears both for the 1, 1, 1m

and the 1̄, 1, 1m nodes. Such an observation illustrates the
loss of the threefold axis of the initial cubic 〈111〉 directions.
The split of the 1, 1, 1t node into the 1̄, 1, 1m and 1, 1, 1m

nodes results from a twinning process. The diffuse scattering
signal is clearly spread continuously between the opposite



monoclinic nodes and passes through the tetragonal 1,1,1
node. Because the spreading of diffuse scattering is very large,
the contributions associated with each split node are partially
superimposed to each other. We have integrated the whole sig-
nal with respect to the azimuthal and tilt angles [see Fig. 6(b)].
A large diffuse signal joining the three nodes is observed.
Because the diffracting crystals are made of pure zirconia, the
diffuse scattering signal cannot be due to any compositional
fluctuation; it corresponds to a distribution of the (111) and
(1̄11) d-spacing values induced by elastic strains. The plot
reported in Fig. 6(b) is centered on the position of the t-ZrO2

RLN. A continuous distribution of d spacing between the
1̄, 1, 1m and the 1, 1, 1m nodes corresponds to elastic strains of
roughly 10%. It is interesting to note that such a value is in full
agreement with local strain measurements obtained by Laue
microdiffraction on the same sample at room temperature
[26].

The 3D-RSM recorded at 1100°C during the heating pro-
cess is reported in Fig. 6(c). At 1100°C, according to the 1D
patterns drawn in Fig. 2(a), the signal is strongly dominated
by the diffraction of tetragonal crystals. The diffuse scattering
signal is much weaker than the one recorded at 500°C [note
that the color scale is five times smaller than that used in
Fig. 6(a)]. The negative thermal expansivity associated with
the m → t transition [see Fig. 5(a)] induced a strong relax-
ation of the strains and the tetragonal crystals are, at this stage,
at a much lower stress level compared to the monoclinic ones
at 500°C before the m → t SPT.

IV. CONCLUSIONS

It is well known that the mechanical properties of zirconia-
based materials are strongly linked to the m ⇔ t phase
transition. At the microscopic scale, two different processes
are responsible for the transformation toughening observed
in such materials [16]. Macrocracks induced by mechanical
external constraints promote relaxation of stresses around
metastable tetragonal crystals that are suddenly transformed
into the stable monoclinic form. The consumption of this
transformation energy results in a decrease in the energy of
propagation of the crack and thus slows down this propa-
gation. The second process is related to the formation of
microcrack networks around the monoclinic zirconia crystals
appearing from crystals exhibiting a higher symmetry. In this
process, the crystal volume variations associated with the t →
m SPT and the formation of microcracks is strongly linked.
However, these are two different phenomena that develop
over a priori different temperature ranges. The aim of this
paper is to disentangle the phase transition and microcracking
processes through in situ high temperature x-ray diffraction
measurements.

The temperature of the m ⇔ t phase transition in pure
zirconia perfect crystals is reported as 1170°C in the literature
[1]. In fact, in actual dense ceramic materials, the situation
is very different. We show experimentally that in a polycrys-
talline sample of pure zirconia, this phase transition spreads
over a very large temperature range, which can be as large as
1000°C. Using a phenomenological description of the energy
balance with respect to the crystal sizes, we fully explained
this observation at a quantitative level.

As we have already shown by Laue microdiffraction ex-
periments [27], the local strain generated by the SPT are of
few percent, and considering the elastic properties of zirconia,
such very high values correspond to stresses lying in the GPa
range. During sample cooling, roughly a third of the tetragonal
zirconia crystals are suddenly transformed into monoclinic
crystals in a very narrow temperature range of only 25°C.
This is clearly due to the huge and heterogeneous stress level
that induces microcracking that partially relaxes this internal
stress. Indeed, while the phase transition process occurs over
a temperature range in the order of 1000°C, the main mi-
crocracking process occurs within only 25°C, and below this
temperature range, the transformation process follows the law
corresponding to a crystal size control of this phase transition.

All of the phase transition process occurs here out of equi-
librium. Tetragonal pure zirconia crystals are still present at
temperatures 1000°C below the theoretical phase transition
temperature. We show that this is due to a subtle energy
balance related to the crystal size, crystal volume variation,
and local strain in zirconia crystals. As written in the Intro-
duction, it is well known that the m ⇔ t phase transition in
a zirconia perfect single crystal is a first order one. A strong
volume variation is observed at this transition. Nevertheless,
considering a zirconia polycrystal made of an assembly of
a large number of zirconia crystals characterized by a quite
large size distribution in the submicrometer range and taking
into account the high internal stresses in the material due to
its manufacturing method, it appears that the phase transition,
in fact, corresponds to a continuous volume variation [see
Fig. 4(a)]. Such a smooth phase transition process associated
with strain relaxation has already been described formally in
polycrystals subjected to SPTs [50]. In fact, in the narrow
temperature range in which the microcrack network quickly
develops, the martensitic phase transition process corresponds
to a first order SPT. On the contrary, at lower temperature
the continuous volume variation corresponds, at the polycrys-
talline specimen scale, to a second order phase transition
process for the large set of the transforming crystals. Such an
evolution from a first order to a second order phase transition
process has already been proposed when the SPT occurs in
polycrystals under a stress field [50,51]. Recently, it has been
evidenced through molecular dynamic calculations in the case
of the martensitic transformation of a nickel-aluminum alloy
under epitaxial stress [51]. Our experimental results are an
illustration of a similar process in the case of the martensitic
phase transition in a polycrystalline oxide dense material. In
that case, the stress field is generated during the manufac-
turing process due to the anisotropic thermal expansion and
SPTs during the cooling after the manufacturing of the mate-
rial. Finally, it is worth noting that this quite smooth volume
variation over a large temperature range probably explains the
conservation of the integrity of the whole large specimens.
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