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Abstract

We concentrate on kinetic models for swarming with individuals interacting through
self-propelling and friction forces, alignment and noise. We assume that the velocity of
each individual relaxes to the mean velocity. In our present case, the equilibria depend
on the density and the orientation of the mean velocity, whereas the mean speed is not
anymore a free parameter and a phase transition occurs in the homogeneous kinetic
equation. We analyze the profile of equilibria for general potentials identifying a family
of potentials leading to phase transitions. Finally, we derive the fluid equations when the
interaction frequency becomes very large.

Keywords: Swarming, Cucker-Smale model, Phase transition.

AMS classification: 92D50, 82C40, 92C10.

1 Introduction

This paper is concerned with the derivation of fluid models for populations of self-propelled
individuals, with alignment and noise [31, 23, 28] starting from their kinetic description. The
alignment between particles is imposed by relaxing the individuals velocities towards the
mean velocity [32, 40, 42, 24, 25, 47, 48] in the presence of an asymptotic convergence to a
fixed speed [37]. We refer to [49, 20, 36, 22, 10, 11, 41, 26, 27] and the references therein for
a derivation of kinetic equations for collective behavior from microscopic models by mean-
field limit approaches. In this work, we mainly deal with a localized version of the classical
Cucker-Smale consensus in velocity or flocking model [32] for alignment, see also [4]. This
model assumes that all interactions leading to alignment happen only at the present location
of the individual, that is, the communication function is a Delta Dirac. Similar kinetic theory
approaches to model swarms have been used in the multiscale description of vehicular traffic,
crowds, active particles, and multicellular systems, see for instance [7, 8, 21, 9, 2| and the
references therein for recent reviews of these perspectives of current research.

We here concentrate on kinetic alignment models with phase transition [53, 33, 38, 3, 34,
4, 45]. Phase transitions are important to be analysed properly since they characterize the
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values of the parameters leading to sudden dramatic changes of their asymptotic behavior.
Phase transitions in collective behavior models driven by alignment were first discussed in
the seminal paper [53]. They reported a behavioral change in the system from overall coor-
dinated orientation - ordered state by polarization - to total mixing of preferred directions -
disordered state - driven by the noise strength in the system, this phenomena is usually called
a noise-driven phase transition. This issue is already very challenging even in the homoge-
neous periodic setting for the so called McKean-Vlasov equations [46]. Classical bifurcation
analysis and statistical mechanics viewpoints have been used in this setting [51, 30], leading
recently to sufficient conditions for its classification [29] in terms of continuity or discontinu-
ity of the order parameter at the phase transition tipping point. We also refer to [39] for a
careful numerical study of the possibly complicated bifurcations depending on the potential
shape. Here, we start from a model leading to phase transitions in the homogeneous setting
in which the developed theory applies [33, 38, 3, 34, 4, 45| in order to rigorously derive the
hydrodynamic system dealing with spatial perturbations around the associated equilibria in
the inhomogeneous kinetic problem. This approach has been championed by P. Degond and
collaborators for the Vicsek-Fokker-Planck model in a series of papers introducing the novel
technique of generalized collision invariants, see [35, 33, 34], see related results by different
approaches [17, 1]. These hydrodynamic systems are usually referred as Self-Organized Hy-
drodynamics (SOH). Our goal in this work is to derive the corresponding SOH system for
kinetic inhomogeneous problems of Cucker-Smale type with phase transtion at their corre-
sponding homogeneous Fokker-Planck equation in contrast to [17, 1]. Generalized collision
invariants are understood in our present approach in a more classical sense and associated
to the elements of the kernel of suitable adjoint operators as in the classical Boltzmann and
Fokker-Planck operators.

We denote by f = f(t,z,v) > 0 the particle density in the phase space (z,v) € R? x RY,
with d > 2. The self-propulsion and friction mechanism writes div,{fV,V (] - |)}, where
v = V(]v]) is a confining potential. When considering V,, 5(|v|) = B% —a@, with o, 8 > 0,
we obtain the term div,{f(B|v|?> — a)v} see [16, 17] and also [13, 14, 15] for results based
on averaging methods in magnetic confinement. The relaxation towards the mean velocity is
given by div,{f(v — u[f])} cf. [35], where for any particle density the notation u[f] stands
for the mean velocity

B fRd fw)vdv

~ Jgaf()dv
Including noise with respect to the velocity variable, we obtain the Fokker-Planck type equa-
tion

Oif+v-Vaf = Q(f) = div{oVuf+ flo—ul N+ V.V (-}, (t2,0) € Ry xRIxR?. (1)

ulf]

When considering large time and space scales in (1), we are led to the kinetic equation
1
Ouf* + v Vaft = ZQU7), (t,w,0) € Ry x RY x R (2)

We investigate the asymptotic behavior of the family (f¢)c:>0, when € becomes small. We
expect that the limit density f(¢,x,-) = lim.\ f*(,z,-) is an equilibrium for the interaction
mechanism

Q(f(t,z,")) =0, (t,z) e Ry x R%L

For any u € R% we introduce the notations

0 —up 0 exp (~ )
o, (v) = —5 +V(|v]), Z(o,u) = /Rdexp (— > ) dv, M,(v) = Zom)
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Actually the function Z depends only on ¢ and |u|, see Proposition 2.1, and thus we will
write Z = Z(o0,1 = |u|). Notice that for any smooth particle density f and any u € R? we
have

oV + [ —=ulf]) + [VLV (|- ]) = oMu(v)V, <z\§>

leading to the following representation formula

Q(f) = odiv, <Mumvv <M]up[f}>> :

Multiplying by f /Mu[f] and integrating by parts with respect to the velocity imply that any
equilibrium satisfies

f=plfIMyy, plf]= Rdf(’v) dv.

Recall that u[f] is the mean velocity, and therefore we impose

Rdf(t,a:,v)(v —ulf(t,z,)]) dv =0, (t,z) € Ry x R% (3)
Notice that ®,, is left invariant by any orthogonal transformation preserving u. Consequently,
we deduce (see Proposition 2.1) that [p4f(v) v dv is parallel to u, and therefore the constraint
(3) fix only the modulus of the mean velocity, and not its orientation (which remains a free
parameter).

Our first important observation gives a characterization to find the bifurcation diagram
of stationary solutions of Q(f) = 0. We prove that M, is an equilibrium if and only if [ = |u]
is a critical point of Z(o,-), cf. Proposition 2.1. Moreover, several values for |u|, or only one
are admissible, depending on the diffusion coefficient . In that case we will say that a phase
transition occurs. Notice that in this work we do not distinguish between phase transitions
and bifurcation points. For any particle density f = f(v), the notation Q[f] stands for the
orientation of the mean velocity u[f], if u[f] # 0

u[f] _ Jgaf (@) v dv
lulf]] URdf(v) v dv‘

and any vector in S¥1 if u[f] = 0. Here S¢~! is the set of unit vectors in R?. Notice also
that we always have

Qf] =

ulf] = [ulf]] QLS.

Finally, for any (t,2) € R, x R%, the limit particle density is a von Mises-Fisher distribution
f(t,x,v) = p(t, ) M)y ot,2)(v) parametrized by the concentration p(t,z) = p[f(t,z,-)] and
the orientation Q(¢,xz) = Q[f(t,z,-)]. We identify a class of potentials v — V(|v|) such
that a phase transition occurs and we derive the fluid equations satisfied by the macroscopic
quantities p, Q. More exactly we assume that the potential v — V (|v|) satisfies

b4y
lim L(M) =400 (4)
pl=+o0 o]
(such that Z is well defined) and belongs to the family V defined by: there exists o9 > 0
verifying

1. For any 0 < o < o there is [(c) > 0 such that Z(o,l) is stricly increasing on [0,[(c)]
and strictly decreasing on [I(0),400];



2. For any o > 09, Z(0,1) is strictly decreasing on [0, 4+o0].

The first important result in this work shows that potentials in V have a phase transition at
o = og as shown in Section 2.

Remark 1.1 The potential V(|v|) = BM 04*' belongs to the family V as shown in [52,
4, 45] in any dimension.

Theorem 1.1 Assume that the potential v — V(|v|) satisfies (4), belongs to the family V
defined above and that 0 < o < gqg. Let us consider (f¢):>0 satisfying

Of +v-Vuf = édivv{avvfg b w—ulf ]+ VoV (|- )} (o, v) € Ry x RE x RE. (5)

Therefore, at any (t,z) € Ry xR? the dominant term in the Hilbert expansion f& = f4+ef'+
is an equilibrium distribution of Q, that is f(t,x,v) = p(t,2) My q)(v), where

u(t,z) = 1(0)Qt, ), (t,z) e Ry x RY (6)
dip + dive(pu) =0, (t,z) € Ry x RY (7)
QL +1(0)es (-V)Q+ —(I;— Q@ Q)pr =0, (t,z) e Ry x R4 (8)

U(o)
The constant c| is given by
coS cosf,r)e(cos,r (o)) sin®” r
fR+ P [T cos 0 x(cos 8, 7) e(cos B, , (o)) sin ! 9 ddd
r (cos@,r)e(cosB,r l(o))sin®" r
) Jg, 7 Jo x(cos0,r) e(cos 0,1, 1(0)) sin?~" 6 dOd

c| =

and the function x solves

~00, |17 (1 = )T e, 1(0)0ex| — 00, 1171 = ) e, U0) x| (9)
+o(d—2)r?3(1 - 02)756(0 r1(o))x = r%(1 — 62)%6<C, r, (o)), (c,r) €] —1,1[ xR

where e(c,r,l) = exp (—% + %d - @)
Remark 1.2 Several considerations regarding the hydrodynamic equations (6)-(8) and the
asymptotic limit to obtain them are needed:

e The asymptotic limit in (5) is different from the one analysed in [17] where the friction
term is penalized at higher order. The main technical difficulty in [17] compared to our
present work is that to solve for the different orders on the expansion in [17] we had to

deal with Fokker-Planck equations on the velocity sphere with speed \/% .

o The hydrodynamic equations (6)-(8) in the particular case of the potential V(|v|) =

B% — a@ recover the ones obtained in [35, 33, 34, 17] by taking the limit o — oo
with /o = O(1). In this limit, the particle density f is squeezed to a Dirac on the
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velocity sphere with speed \/% The constants can be computed exactly based on [45]

and they converge towards the exact constants obtained in [35, 34, 17]. This is left to
the reader for verification.

e The hydrodynamic equations (6)-(8) have the same structure as the equations derived
in [35, 34, 17] just with different constants, and therefore they form a hyperbolic system
as shown in [35, Subsection 4.4).



When V(| - |) belongs to the family V, we know that |u| € {0,1(c)}, for any 0 < o < 09
and |u| = 0 for any o > 0g. There is no time evolution for |u|. But the modulus of the mean
velocity evolves in time for other potentials. For example, let us assume that there is ¢ > 0,
0 <li(0) < lz(0) < 400 such that the function I — Z(o,1) is stricly increasing on [0, ()],
constant on [l1(0),l2(0)[, and strictly decreasing on [l2(0), +oo[. In that case, we obtain a
balance for |u| as well.

Theorem 1.2 Assume that the potential v — V(|v|) satisfies (4) and verifies the above
hypothesis for some o > 0. Let us consider (f%)s>0 satisfying

Ofe +v-Vuft = édivv{avvfa + v —ulf+ Vo V(- ))}, (tzv) e Ry x R x RY

Therefore, at any (t,z) € Ry xR? the dominant term in the Hilbert expansion f¢ = f4+ef'+...
is an equilibrium distribution of Q, that is f(t,z,v) = p(t,z) My ) (v), where

Ap + divg(pu) =0, (t,z) € Ry x RY (10)

Jul?

Ou+[er(lg—QQ) + Q@ Q(u-0x)u+[(ct —1)(Ig =22 Q) + (¢ - 1) ® Q]Vgc7
+ Uv;p + cﬂ div,Q |ulu =0, (t,z) € Ry x RY. (11)

The constants cy , c|, ch are given by

fR+ r&t1 [ cos 0 x(cos6,7) e(cos b, r, [u]) sin™ 6 dfdr

o= |u| fR+ rd [ x(cos0,7) e(cos b, r, ul) sin?=1 9 dfdr

fR+ rd+l o cos? 0 xq(cos8,7) e(cos b, 7, |ul) sin?=2 9 dfdr

- 2|ul fR+ rd [7 cos Oxqa(cos b, r) e(cos b, r, |u|) sin?~2 § dodr

€l

/ fR+ rdtt Jo xa(cosB,r)e(cosb,r, ul) sin? @ dodr

U= (d—1)ul fR+ rd [ cosOxa(cos B, r) e(cos b, 7, |u]) sin?=2 9 dfdr

the function x solves (9) and the function xq solves

—aﬁc{rd*?)(l — 02)%;16(6, r, |ul)dexat — a@r{rdfl(l — 62)%6<C, r, |ul)Orxa}
= rd_l(rc — |ul)(1 - 62)%6(0, rul), (e,7r) €] —1,1[x]0, +o0l.

Our paper is organized as follows. In Section 2 we investigate the function Z, whose variations
will play a crucial role when determining the equilibria of the interaction mechanism ). We
identify a family of potentials such that a phase transition occurs for some critical diffusion
coefficient gp. Section 3 is devoted to the study of the linearization of @) and of its formal
adjoint. We are led to study the spectral properties of the pressure tensor. The kernel of
the adjoint of the linearization of @) is studied in Section 4. These elements will play the
role of the collision invariants, when determining the macroscopic equations by the moment
method. The main results, Theorem 1.1, 1.2, are proved in Section 5. Some examples are
presented in Section 6.



2 Phase transitions and Potentials: Properties of Equilibria

For any u € R? we denote by 7T, the family of orthogonal transformations of R? preserving
u. Notice that Tg is the family of all orthogonal transformations of R

Remark 2.1 The functions on R% which are left invariant by the family To are those de-
pending only on |v|. The functions on RY which are left invariant by the family Ty,u # 0,
are those depending on v - u and |v|.

Lemma 2.1 Let u be a vector in R% and a : R — R? be a integrable vector field on R?,
which is left invariant by the family T, i.e.,

a(*Ov) = 'Oa(v), veR?, OcT,.
Then [paa(v) dv € Ru.

Proof. For any O € T,, we have

/ a(v) dv = / a(tOV)ydv' = 'O [ a() dv.
R4 R4 R4

For any ¢ € S™1 N (Ru)*, we consider O =1; — 26 ®¢ € Ty, and thus we obtain

[t av= =229 [ a) av,

R4
or equivalently ¢ - [pqa(v) dv = 0. Therefore, we have [p.a(v) dv € ((Ru)t)t = Ru. O
We assume that o
v
I
lim = V) +00. (12)
[plmtoo [0]

Observe that

2 (G 7 .
Z(g" u) = exp <_|u|> / exp (_ 2 + ("UD + v U> dv
20 Rd o o
2 G 7
<o (1) [ o [_wl <+<r> . ’“')] v,
20 ) Jga o ]

and therefore, under the hypothesis (12), it is easily seen that Z(o,u) is finite for any o > 0
and u € R%. Similarly we check that for any o > 0 and u € R%, all the moments of M, are
finite

|v|P M, (v) dv < 400, p € N.
R4

For further developments, we recall the formula
v-Q d—2 a1 [7 . d—2
X | ——,|v| | dv=1|S""% r x(cos 8, r)sin®" <0 dodr, (13)
Rd v Ry 0

for any non negative measurable function x = x(c,7) ] — 1, 1[xR% — R, any € S9! and
d > 2. Here |S%2| is the surface of the unit sphere in R¢~!, for d > 3, and |S°| = 2 for d = 2.

Proposition 2.1 Assume that the potential v — V(|v|) satisfies (12). Then the following
statements hold true :



1. The function Z(o,u) depends only on o and |u|. We will simply write

/RdexP <_ @ua(v)> Qv = Z(o. = [u]).

2. For any u € R, we have [pqM,(v)v dv € Riu and obviously, [zaMo(v)v dv = 0.

3. The von Mises-Fisher distribution M, is an equilibrium if and only if 0;Z(o,l) = 0.
For any o > 0, Mo(v) = Z71(0,0) exp (—®g(v)/0) is an equilibrium.

Proof.
1. Applying formula (13) with Q = u/|ul, if v # 0, and any Q € S?! if u = 0, we obtain

2 2 .
R 20 20 o o

2 2 U
— [S%2] exp <_lu\> / exp (J’ _ V<T>> i1 / exp (7"|u!<3089> i § dodr,
20 R, 20 o 0 o

and therefore Z depends only on o and |u.
2. We consider the integrable vector field a(v) = M, (v)v,v € R It is easily seen that for
any O € T,, we have

Dy ( LOV) = By (v), My('Ov) = My(v), veRY,

and therefore the vector field a is left invariant by 7,. Our conclusion follows by Lemma 2.1.
It remains to check that [, M, (v)(v-u) dv > 0, when u # 0. Indeed, we have

2 [ steman= [ Joo (-2 o (-2 ) oy

and we are done observing that for any v such that v -u > 0 we have
2 2 2 2
v v U
—®,(v) = —|2| +v-u— |2| —V(Jv]) > —|2| —v-u— ’2| —V(|v]) = =Pu(—v).

3. The von Mises-Fisher distribution M, is an equilibrium if and only if [, M, (v)(v—u) dv =
0. By the previous statement we know that fRdMu(v)v dv € Ru and therefore M, is an
equilibrium iff [p M, (v)(v - Q — |u|) dv = 0, where Q = ﬁ if u # 0 and 2 is any vector in
S 1if u = 0. But we have

_ |Qd—2 _@ / _ﬁ . V() a1
01 Z (o, |ul) = |S**|exp < 5, > o exp < o K (14)

y /ﬂexp (r\u|cos0) rcosf — |ul <ind—2 9 dodr
0

g g

o () 0l

o
Z
= ("‘“D/ My (v)(v - Q = Ju]) do,
g Rd
and therefore M, is an equilibrium if and only if I = |u] is a critical point of Z (o, ). O



Remark 2.2 As Z depends only on o, |u|, we can write

Z(0, Jul) = /RdeXp <_!’v = Qull* _ V(!v|)> do

20 o

_/Rdexp<_yv|2+(v'9)\u|_m|2_v(|u\)> do,

20 o 20 o

for any Q € S ! and uw € RY. We deduce that for any Q € S and u € R?, we have

v]? v - u ul? v v-§)—|u
alZ(a,yu\):/Rdexp <_"+(Q>\|_|!_V(I I)> Q-lul

20 o 20 o o

_/ exp <_‘I’|u|ﬂ(v)> v Q- ful
- / dexp (-2e)) Lo Al
Rd g o

and

20, 1ul) = [ e (—q""Q(”’) R U

_ /p <%§>> (v =w)- U%[u] Peo

where Q = Wul if u# 0 and Q is any vector in S* if u = 0 (compare with (14), established
for Q=u/|u|, if u#0).

At this point, we know that for any o > 0, the equilibria are related to the critical points
of Z(o,-). In order to find possible bifurcation points of the disordered state u = 0, let us
analyze the variations of Z(o,-) for small 0. We assume the following hypothesis on the
potential

2
V(-] e C*(RY), v ‘1}2’ + V(|v|) is strictly convex on RY. (15)

For such a potential, we can minimize ®,(v) with respect to v € R?, for any u € R?. Indeed,
the function ®,, is convex, continuous on R? and

—_ 2 2 2
By(v) = 2“’ +V(|v|):|v2|+V(\v])—v-u+|uQ|
2
Cp Y+ v(e) v L P
v |v] 2
Py 2
v 2

By (12) we deduce that limj,|_, 4 ®u(v) = 400 and therefore ®, has a minimum point
7 € RY. This minimum point is unique (use ¥ — u + (V,V(| - |))(@) = 0 and the strict
convexity of v @ + V(Jv]) ). We intend to analyze the sign of 0,Z(o,|u|) for small o.



Performing the change of variable v = v + y/ow leads to

0,2(0, [u])o=Y2 exp <<I>1;(v)) _ /Rdexp <_ Dy (v) — Py (V) — Vo @y (0) - (v — v)) (16)

g

v—u)-Qu
x—( 03/2 Hdv

- / o <_ e w) (@ + vow — u) - Qu] dw
_ /Rd exp <_ P (v + vow) — éo(i) — oV, (D) - w
R

g

) (T + vow —u) - Qu] dw.

We need to determine the sign of (v — u) - Q[u], where v is the minimum point of ®,. As
V(|-]) € CHR?), we have V'(0) = 0. We assume that V(-) possesses another critical point
ro > 0 and

V'(r) <0 forany 0 <r <79 and V'(r) >0 for any r > rq. (17)

Notice that this is the case for V,, g(r) = ﬁ% — a%, a, B >0, with rg = \/a/p.
Proposition 2.2 Assume that (12), (15), (17) hold true. Then

1. The function v~ r + V'(r) is strictly increasing on Ry and maps [0,19] to [0, 0], and
|10, +00[ to ]ro, +o0l.

2. We have
_ . _ To
—u)-Qu] >0 0 < |ul < ro, f —u)-Qu >0, 0<d < —
(=) Q) >0 for any 0 < ful <ro. _inf (7). Ofu ;
and

(T—u)-Qu] <0 for any |u| >rg, inf (u—7)-Qu]>0, §>0.
|u|>ro+d
Proof.
1. By (15) we know that ® is strictly convex on R? and we deduce that r % + V(r) is
strictly convex on R . Therefore the function r — r + V’(r) is strictly increasing on Ry and
maps [0, 9] to [0, rp]. It remains to check that it is unbounded when r — +oo. Suppose that
there is a constant C such that r + V'(r) < C,r € R;. After integration with respect to r,

one gets
2

% +V(r) <V(0)+Cr, reRy,

implying that
V(0)

+C, T€R+,

which contradicts (12).
2. Let us consider 0 < |u| < r¢. Therefore, 7 # 0 and

‘e\

(1ol + V' ([o)))

:’UJ7

=

V'(|v]) = |u| €]0,79[. By the previous statement we obtain 0 < [7] < ry,

implying that |o
v = 2 [u], and thus

Q) = = & =

o +

=

@—w-mm:—wmm%~mm:—wmm>a

9



Clearly, for any 0 < § < rg/2, we have

inf (T—wu)-Qu=_inf (=V'(|5])) > 0.

0<|u|<ro—48 0<|u|<ro—48

Similarly, for any |u| > 7o, we have [7| > r¢ and

‘e\

(0 —u) - Qu] = =V'(|9]) i - Qu] = =V'([v]) <0.

=

As before, for any § > 0, we obtain

inf (u—1)-Qul= inf V'(|5]) > 0.
|u\zro+é( ) - Q[u] Wit ([7])

[

The previous arguments allow us to complete the analysis of the variations of Z (o, |u|), when

o is small. The convergence when o N\, 0 in (16) can be handled by dominated convergence,
provided that w — |w|exp (—W) belongs to L'(R%). We assume that there is A < 1
such that )
v = Wi(v]) := )\‘1}2’ +V(|v|) is convex on R% (18)
|v]?

The potentials V, g(|v]) = B% —a-,0 < a<1,3 > 0 satisfy the above hypothesis. Under

(18), we write

2
Do) = (1 - M VA (), v e R,

and therefore
2do(v) = (1 = NIg+ V(- ) > (1 = NIy, veRY

implying that

200 (T)w - 1—\)|wl|?
/ ] exp <_ao<v>ww> dwg/ ] exp <_<>\w!> dw < +oo.
]Rd 2 ]Rd 2

Notice that (18) guarantees (12) and (15). Indeed, the function v — V) (|v|) being convex, it
is bounded from below by a linear function

3 (vy,Cy) € RT xR such that Vy(|v]) > (v-vy) +Cy, v eRY,
and therefore

P 1- N v,
?v(r)) = ( ) 2‘ ’+ (o) >(1- /\)]1)2| — |ual + ﬁ]‘ — 400, as |v] = 4o0.
v

2
Obviously, @y is strictly convex, as sum between the strictly convex function v — (1 — )\)%

and the convex function v — Vy(|v]).
In order to conclude the study of the variations of Z for small ¢ > 0, we consider potentials

V satisfying V(| - |) € C?(R9), (17) and (18). We come back to (16). Notice that

W (- )\)W

Oo(V + Vow) — Bo(V) — oV, Po(D) - w > (1 —N) 5

2
—(1=XMVov-w=(1 —A)g|w2|,

10



implying that, for any 0 <o <1
exp <_ D4(T + /ow) — P(V) — /o VP (D) - w

g

) @ vow - u) -0l

< e (~0 =00 10— ) -0l + ol

|w]?

As the function w — exp (—(1 - )\)T) [[(@ — u) - Qu]| + |w|] belongs to L'(R?), we deduce

by dominated convergence that

limy {a,Z(a, luf)o 2 exp (‘I’“U(”)>} — =) O[] /Rd exp (-W) dw,

As we know, cf. Proposition 2.2, that inf,|c(5rg—s)Ufro+6,400[ | (T — 1) - Qu]| > 0,0 <6 < 10/2,
we deduce that for any 0 €]0,ro/2[, there is o5 > 0 such that

01 Z(o,|ul) >0 forany 0 < o < os, 6 <|u|] <rg—29

and
0, Z(o,|ul) <0 forany 0 < o < g5, |u| >ro+4d.

Motivated by the above behavior of the function Z, we assume that the potential v — V(|v])
satisfies (12) (such that Z is well defined) and belongs to the family ) defined by: there exists
oo > 0 verifying

1. For any 0 < o < ogg there is (o) > 0 such that Z(o,1) is stricly increasing on [0,(0)]
and strictly decreasing on [I(0),+00];

2. For any o > 09, Z(0,1) is strictly decreasing on [0, 4+o0].

In fact, the critical diffusion coefficient oy vanishes the second order derivative of Z with
respect to [, at [ = 0, as shown next.

Proposition 2.3 Let V(| -|) € V be a potential satisfying (12). Then we have
027(0,0) >0, 0< 0o <0, 07Z(00,0)=0, 02Z(c,0)<0, o> 0

and

97 Z(0,1(0)) <0, 0< 0o < 0.
Proof. By Remark 2.2 we know that Z(o, -) possesses a second order derivative with respect
tol. As 0,Z(0,0) =0, we write
— lim Z(o,l) — Z(0,0) —10,Z(0,0) — lim Z(o,1) — Z(0,0)
INO 12 INO 12

1
502(2,0)

We deduce that 8l2lZ(0, 0) > 0 for any 0 < 0 < 0p and 812[Z(a, 0) < 0 for any o > 0p. In
particular 822 (00,0) = 0. For any 0 < o < 0y, the function Z(o,-) possesses a maximum at
[ =1(0) > 0 and therefore 93Z(0,1(0)) < 0. O

It is also easily seen that limy x5, I(0) = 0. Indeed, assume that there is 7 > 0 and a sequence
(0n)n>1 /" 00 such that 0 < oy, < 09,1(0y) > n for any n > 1. We have

Z(on,l(on)) > Z(on,m) > Z(op,0), n>1.
After passing to the limit when n — +00, we obtain a contradiction
Z(00,m) = Z(00,0) > Z(00,7)

and therefore lim, »,, [(c) = 0. We have proved that o + I(0) is continuous.
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Remark 2.3 Given a potential V(| -|) € V, then the unique bifurcation point from the
disordered state happens at og. In fact, if we define the function

H(o,l) = RdMu(v)(v -Q—1)do,

as in [4]. Then by (14), we get 00,Z(0,l) = Z(o,l)H(0,l). By taking the derivative with
respect to I, we obtain

Z A

Therefore, for the curve l(o) such that H(o,l(0)) =0, we get O, H (09,0) = 0. Using implicit
differentiation and the continuity of the curves and the functions involved, it is also easy to
check that 0,H (00,0) = 0. Therefore, to clarify the behavior of the two curves at oy, one
needs to work more to compute the lim, »q (o). In any case, this shows that oy is the
only bifurcation point from the manifold of disorder states uw = 0 for potentials V(| -|) € V
without the need of applying the Crandall-Rabinowitz bifurcation theorem. It would be inter-
esting to use Crandall-Rabinowitz for general potentials to identify more general conditions
for bifurcations.

In the last part of this section, we explore some properties of the potentials V in the class
V. We show that under the hypothesis (18), we retrieve a weaker version of (17).

Proposition 2.4 Let V(| -|) € V be a potential satisfying (12). The application o — (o)
is continuous on R*. Moreover, if V(| -|) € C*(R?) verifies (18) and there is the limit
limy,\l(0) =79 > 0, then

V'(r) <0 for any0<r <ry and V'(r) >0 for anyr > ro.

Proof. We are done if we check the continuity ant any o €]0,09[. Assume that there is a
sequence (op,)p>1 C|0,00[, limy, 400 0y, = 0 €]0, 09[ and 1 > 0 such that (o,,) > (o) + 1 for
any n > 1. We have

Z(on, (o)) > Z(on, (o) + 1) > Z(on, (o)), n>1,
leading to the contradiction
Z(o,l(0) +n) = Z(0,1(0)) > Z(,1(0) +n).

Similarly, assume that there is a sequence (oy)n>1 C|0,00[, lim, 4100 05, = 0 €]0,00[ and
n €]0,1(o)] such that I(oy) < l(0) —n for any n > 1. We have

Z(on,l(on)) = Z(on, (o) —n) > Z(0om,(0)),
leading to the contradiction
Z(UJ(U) - 77) > Z<07 Z(U)) > Z(Uv Z(U) - 77)'

Therefore limy, 1 l(0y,) = I(0) for any sequence (op,)n>1, limy—s 400 07y = 0 €]0, 09].

Assume now that limy\ol(c) = 79 > 0. For any [ €]0,79[, we have 0 < I < (o)
for o €]0,00] small enough. As Z(o,-) is strictly increasing on [0,[(c)], we deduce that
0,Z(o,1) > 0 for o small enough, and by (16) it comes that

/Rdexp <_(I)0(v+ Vow) = %) = VoV 2o(®) -w> (=V'([o]) + Vow - Q) dw > 0,

g
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where ¥ is the minimum point of ®;q, that is v = |9|Q, [v| + V'(|v|) = I. Passing to the limit

when o N\, 0 yields
2@ - .
/ exp <_8v0(v)ww> dw V'(|3]) < 0,
Rd 2

and therefore V'(|t]) < 0. As before, (18) implies (15) and therefore r — 7+ V'(r) is strictly
increasing on Ry. We have | — [v| = V/(|9]) < 0 and | = 5| + V'(|v]) > 1 4+ V() saying that
V(1) <0 for any [ €]0,7¢[, and also for [ = r.

Consider now [ > rp. For o €]0,00[ small enough we have | > [(o) and therefore
0,Z(0,1) < 0. As before, (16) leads to I — [v] = V/(|v]) > 0 and we have [ = [v] + V'(|7]) <
I+ V'(l) saying that V'(I) > 0 for any [ > r(, and also for [ = ry. In particular r( is a critical
point of V. O

In the next result we analyze the behavior of {(c) for o small.

Proposition 2.5 Let V(|- |) € V be a potential satisfying (12), (18). If V(| -|) € C3(RY)
and there is the limit lim,~ol(c) = ro > 0, then we have for any § € Sé-1

.93 _ % %o(roQww
V" (ro) lim o) —ro _ 1+ V"(ro) Jpa(w - )03 P (ro) (w, w, w) exp ( 9 ) dw

N0 O - 6 [-aexp (_ agcbo(rgg)w.w> duw

where O30 (roQ)(w, w, w) = > oi<ijk<d %(mﬁ)wkiji.
Proof. We fix Q € S9!, For any o €0, 0¢[ we have 9,Z(c,1(c)) =0, and (16) implies
/ exp <_(I)0(U+ ﬁw) - (I)()(@) - ﬁvv%(@) s w
Rd

o

) (=V'(|9]) + Vow - Q) dw =0, (19)

where  is the minimum point of ®;(yq, that is 7 = [7], [0|+V'(|7]) = I(0). As the function
r+— r+ V'(r) is strictly increasing on Ry, when o \, 0, we have [(0) — ro and |v] converges
toward the reciprocal image of rg, through the function r — r+V’(r), which is rg. We deduce

lo) =ro _ [ol=r0 V(o) = V'(ro) [v] =70

o o [o] — ro o

implying that
o] — o

. Z(U)—To_ " .
By == = (1+V (ro));lg}) .

We will compute
/ m m _
V (|UD — V”(TO> hm |U‘ TO'
o \.0 o

lim
o \.0 o

Thanks to (19) we have

= lim exp <— DoV + Vow) — Po(v) — VoV Po(D) -w) w- ) duw.
Observe that T 7 Vo
o, [ 2o+ Vow) — ®o(T) — \/aVudo (D) - w w- Q " .
e ’ )% (21
_ _ Po(T A+ Vow) = () — VoV, P (D) - w
/Rd [exp < . >
() 2
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and

m _— 7 _— 7 . 2 o .
limi {exp (_ Dy(T 4 Jow) — Py(V) — /o VP (D) w> ~exp (_ 5P (v)w w>}
U\Oﬁ g 2
( 02®o(roQ)w - w>
=—exp|— 5
. Do(T+ ow) — Po(V) — VoV, Do(V) - w — § O2Po(V)w - w
x lim
o \0 o3/2
2 . 1
= —exp <—8”(1>0(T029)w w) h{‘% L / (1-— t)[agq)o(@-i- tﬁw) — 65@0(6)]11; -w dt
o g Jo

02®o(roQ)w - w>
5 :

1
= —683‘1)0(7“09)(10,10,10) exp (-
Recall that, thanks to (18), we have 02®g(v) > (1 — A\)I4,v € RY, implying that

(I)O(W-i- \/Ew) - (I)O(f) - \/EVU(I)O(U) Cw _ /1(1 . 75)83(1)0(@‘}‘ tﬁw)w cw dt > (1 _ )\)|w2‘2
o 0

and 25 (s )
WE(l—/\)lng w e RE

Therefore the integrand of the right hand side in (21) can be bounded, uniformly with respect
to o > 0 by a L' function

exp (_‘I’O(U+ Vow) — 0o(v) — oV, (7) 'w> exp (_@%%(g)w : w) ’ |(w\/'>9)
W) [(w - Q)]

2 Vo
jw]?

< IVQ- Dlegrolufexn (~-V'50), wer,

< exp <—(1 - ) /01(1 —1)[0%®0(T + tv/ow) — 82®(T)|w - w dt

Combining (20), (21), we obtain by dominated convergence

J— _ , J—
V" (ro) lim 7|U| o _ lim L (o)
o \,0 g a\,0 g

Jpa(w - 0)03P¢(roQ) (w, w, w) exp (—w) dw

6 [paexp (—783%(7";9)”1”) dw

and therefore

X l(U)—T’Q . |§‘ — 170
V" (r) lim “22 "0 — (1 4 V" (r)) V" (o) 1
(ro) lim == (1+V7(ro)) V¥i{ro) lim =
14 V" (ro) fRd(w . Q)BS‘I)O(TOQ)(M, w,w) exp (763%(7"%) dw
= 6 fRdeXp <_83@0(T§Q)w-w) dw

14



3 Linearization of the interaction mechanism

We intend to investigate the asymptotic behavior of (2) when € N\, 0. We introduce the
formal development
fe=ftefl+..

and we expect that Q(f) = 0 and

Q%) —Q(f)

9

Of +v-Vof = lim =dQs(f1) = Ly (f1). (22)

As seen before, for any (¢,z) € Ry x R?, the individual density f(t,x,-) is a von Mises-Fisher
distribution
f(ta L, U) = p(ta$)M|u|Q(t,z)(v)7 v E R?

where |u| is a critical point of Z(o,-), that is
lu| € {0,l(0)} if0 <o <o0g and |u| =0 if o> o).

It remains to determine the fluid equations satisfied by the macroscopic quantities p, 2. When
|u| = 0, the continuity equation leads to d;p = 0. In the sequel we concentrate on the case
lu| = 1(0),0 < 0 < op (that is, the modulus of the mean velocity is given, as a function of
o). We follow the strategy in [17, 1]. We consider

Li, = {x: R? — R measurable , / (x(0))*My(v) dv < +o0}
R4

and
H}Wu = {x : R? = R measurable , / [ (x(v))? 4 |Vox|? |My(v) dv < 400},
R4

We introduce the usual scalar products

(x 0)ar, = /R WP M) dv, X6 € Ty,

(08D, = [ (X000 + T Tub)Mo) do. 3,6 € H,

and we denote by ||, || [z, the associated norms. Moreover we need a Poincaré inequality.
This comes from the equivalence between the Fokker-Planck and Schrodinger operators. As
described in [12], we can write it as

o . g 1 9 1
——=d v Mu v | T A/~ = - Av - vq)u - *Avq)u .
Vi ( v <¢Mu>> ? g+[4o’v T3 ]g
The operator H, = —cA, + [ﬁ\VU@uP - %Avéu] is defined in the domain
1 1
D(Hu) = {g € L2(Rd)a LLU‘V“(I)U‘Q - 2AU(I)’LL:| g € LQ(Rd>7 Avg € L2<Rd)} .

We have a spectral decomposition of the operator H, under suitable confining assumptions
(cf. Theorem XIIL.67 in [50]).
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Lemma 3.1 Assume that the function v ﬁ\VUCDUP — %Aﬂ)u belongs to Li (RY), is

loc
bounded from below and is coercive i.e.

1 1
lim | -—|V,®, > — 2A,®,| = +oc.
4o 2

|v|—+o0

Then Hy ! is a self adjoint compact operator in L* (RY) and H, admits a spectral decomposi-
tion, that is, a nondecreasing sequence of real numbers (A%)pen, limy oo Al = 400, and a
L%(R)-orthonormal basis (V7 )nen such that Hyyt = Ny, n € N, X0 =0, AL > 0.

Therefore, under the hypotheses in Lemma 3.1, for any u € R? there is A, > 0 such that for
any y € H }4“ we have

0/ Vx| M, (v) dv > )\u/
R4 R4

The fluid equations are obtained by taking the scalar product of (22) with elements in the
kernel of the (formal) adjoint of L, that is with functions ¢ = ¢)(v) such that

2
x(v) — /Rdx(v/)Mu(v/) dv'| My (v) dv. (23)

/ (Lg)(w)(v) dv =0, for any function g = g(v),
R4

see also [5, 6, 18, 19, 43, 44]. For example, 1 = 1 belongs to the kernel of D}

/(cfg)(u) dv:/ li @ F29) = Q) dvzliml/ {Q(f +29) — Q(f)} dv =0,
R4 Rd

RdEN\0 5 e\o0 €

and we obtain the continuity equation (7)

8t/fdv+div$/ fodv= [ L;(f')dv=0.
R4 R4 R4

In the sequel we determine the formal adjoint of the linearization of the collision operator )
around its equilibria.

Proposition 3.1 Let f = f(v) be an equilibrium with non vanishing mean velocity
f=pMy, p=plfl, u=IuQf], lul=I(c), 0<0o <o

1. The linearization Ly = dQy is given by

Lsg = div, {avvg + gV @y — M, [ (V' —u)g(v) dU'} .

Rd

2. The formal adjoint of Ly is

divy (M Vo) | (v—u) - W], W]:= [ M,(v)Vy¥ dv.

*oly
fw 7 Mu R4

3. We have the identity

Li(f(v—u))=0V,f—div,(fMy), My:= Rd]\/[u(v’)(v’ —u)® (v —u) dv.
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Proof.

1. We have
d d
Lig= &L:OQ(]” + sg) = div, {avvg + gV @, — f@ szou[f + 39]}
d
o d ulf + sg] = Jra (v = ulf])g(v) dv
ds ls=0 9= Jgaf () dv '

Therefore we obtain

ﬁfg = div, {vag + gV @y — =M, (’Ul - u[f])g(v,) dv,} .

Rd

2. We have
Lo a == [ {avigs 9.0, - w0) [ 0 = ulsat) @'} V.0 ao

= / g9(v) (0div,Vytp — Vb - V, @) dou + / g (W —ulf]) dv' - | My(v)Vy dv
R4 R4 R4

= [ 90 @i,V = Vo V. (0= ulf]) - W) d
implying

divy, (M, V1)

* o
f¢—0 M,

3. For any i € {1, ...,d} we have

+ (v —ulf]) - W[yl

Ef(f(v - u)z) = din |:(1) - U)Z<vauf + fvv(bu) + Ufei - Mu /Rd(v, - u)i(vl - u)f(vl) dU/]
=0

= 00y, f — divy < f /R d(v/ —u) @ (v —u) M, (v") dv’>

i

and therefore

Li(f(v—u))=0V,f—divy(fMy).

We identify now the kernel of E’}.

Lemma 3.2 Let f = pM, > 0 be an equilibrium with non vanishing mean velocity. The
following statements are equivalent

1. The function 1 = (v) belongs to ker L.
2. The function 1 = (v) satisfies

divy, (M, V1)

M, (0) +(v—u)-W=0 (24)
for some vector W € ker(M,, —oly).

Moreover, the linear map W' : ker L} — ker(M,, —oly), defined by W[y = JraMu(v)Vy1) dv
induces an isomorphism between the vector spaces ker C}/ker W and ker(M,, — olg), where
ker W is the set of constant functions.
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Proof.
1. = 2. Let ¢ be an element of ker [,}. By the last statement in Proposition 3.1 we deduce

0= [ g3 fo—w)dv= [ w1 do
_ /R (o) [V f — diva(FM)] dv

- /R )V do M, /R F@)V do
= p(My — aly)W[i].

As p > 0 we deduce that W[y] € ker(M,, — ol;) and by the second statement in Proposition
3.1 it comes that

divy, (M, V1)

M, (0) +(w—u)-W=0, W=WIK| € ker(M, —aly).

2. = 1. Let % be a function satisfying (24) for some vector W € ker(M, —ol;). Multiplying
by M, (v)(v —u) and integrating with respect to v yields

—o | My(v)Vu dv+ M, W = 0.
Rd

As we know that W € ker(M,, — ol;), we deduce that W = W{¢], implying that ¢ belongs
to ker L”f*

divy, (M, V1)

divy, (M, V1)
M, g

=0 +(v—u)- W] = i Y (v—u) W =0.

We focus on the eigenspace ker(M,, — oly).
Lemma 3.3 Let M, be an equilibrium with non vanishing mean velocity. Then we have

_ 203Z(0,1(0))

u
_ < -
M, — ol Z(,l( )) QN <0, Q

Jul
In particular (Ru)t C ker(M,, — oly) with equality iff 03Z(0,1(c)) # 0.

Proof. Let us consider {F1,..., E4_1} an orthonormal basis of (R)*. By using the decom-
position

d—1 d—1
v—u=(Qe)(v-u)+Y (BE®E) v-—u)=(Qe)W-u)+) (5 E)w
=1 =1

we obtain

d—1 d—1
QRQv-—u)+> EREv| @ |Q@Qv—u)+ > E;&Eju| M (v)dv
i=1 j=1
d—1
= (M- Q@2+ (ME; - E)E; ® E;
=1

Mu:

R4
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since we have
M E;j=0, 1<j<d—1 (25)
and
[0]* — (v-Q)?
d—1
The formula (25) comes by the change of variable v = (I; — 2E; ® E;)v’, by noticing that
Ij—2E; @ Ej €Ty, forany 1 <j<d—-1

ME; - E; = §;; My(v)dv, 1<i,j<d-—1. 26
J J R

MSQ-Ej= [ Q- (v—u)(Ej v)My(v) dv
Rd

_— / Q- (v = u)(E; - ') My (v') d’
R4
=M B =0, 1<j<d-1.

For the formula (26) with i # j we use the rotation O;; € Ty,

UZOUU’, O,;jZQ@Q—i- Z Ek®Ek—|—Ei®Ej—Ej®Ei.
k¢{i,j}

Notice that
(i~ 0)(Bj-v) = —(Ej - v')(B; - v'), (Ei-v)?=(E;-v')

and therefore,
MyE; - Ej = /Rd(Ei -v)(Ej - v)My(v) dv
=— /d(Ej ) (B - v )My (V) dv’
:—J\qurEj:O, 1<i#j<d-1
and

MuEl . Ez = (El . ’U)2Mu(1}) dU
R4

:/ (Ej.U/)QMu(U/) do’
R4

=M,E;-E;=0, 1<i,j<d-1
As Z?;E(Ez )2 = |[v]? — (v- Q)2, we obtain

o — (v- Q)

My(v)dv, 1<i<d—1
Rd d—]_ (U) v !

/ (B; - v)*My(v) dv =
Rd

and

M= [ (weu)- QM) do e [ PEZ (27

M, (v) dv (I — Q® Q).
Rd Rd d— 1

We claim that [p, "CZCD207,(0) do = 0. Multiplying oV, M, + M,(v)V,®, = 0 by
(|v]21; — v ® v)Q2 we obtain

/ oVoM, - (Jv]*I; — v @v)Q dv + / My (v)Vy @, - (|v)*Iy — v @ v)Q dv = 0.
R4 R4

19



But we have
div, [(|[v2 1y — v ® v)Q] = div,[|v]?Q = (v- Q] = —(d — 1)(v- Q)

and

Vo, - (02— v ®0)Q = <v —u+ V’(!v|)‘z‘> (oL —v @) = —(Jv]* = (v Q)H)]ul.

We deduce that

(d—1)o /Rd(v Q) My (v) dv —|ul /Rdnv\? (v Q)2 My(v) dv = 0

=|ul

and by taking into account that |u| = [pu(v - Q)M (v) dv, we obtain

v = (v- Q)2
RdWMu(v) dv=o0.
By Remark 2.2, we know that
2761212(07[(0))— ) {((v—u) Q)2 —0cldv = V) ((v—u) - Q2%dv—0o
A0 [ (- 972 =y ao= [ M-

and finally we have

AR

Z(1(0)) Q0.

My — ol = (/Rd((v—u)~Q)2Mu(v)dv—a>Q®Q:(72

As I(0) is a maximum point of Z(o,-), we have 027 (0, 1(c)) < 0 and therefore M,, < ol4.

4 The kernel of E}

By Lemmas 3.2, 3.3, any solution of (24) with W € (Ru)* belongs to the kernel of the formal
adjoint E}. Generally we will solve the elliptic problem

—odivy (M, V1) = (v —u) - WM, (v), veR? (27)

for any W € R%. We consider the continuous bilinear symmetric form a,, : HJ}JU X H}wu —R
defined by

ay(p,0) =0 [ Vo -V,0M,(v)dv, ¢,0¢€ H}V[u
R4

and the linear form L : Hy, — R,L(0) = [p.0(v)(v — u) - WM, (v) dv, 6 € H}, . Notice
that under the hypothesis (12) L is bounded on H}V[u

1/2 1/2
[ Jot)w=w) - Wi, dv < </ (6(0))2M, dv) </ (o] + [ul)2M, dv) W
R R R
We are looking for variational solutions of (27) i.e.,

¢ € Hy, and a,(1,0) = L(9) for any 6 € Hy; . (28)
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When taking =1 € H11\4u> we obtain the following necessary condition for the solvability of
(27)

L(1) = / (0 — ) - WMy(v) dv = 0 (29)

Rd
which is satisfied for any W € R?, because M, has mean velocity u. It happens that (29)
also guarantees the solvability of (27). For that, it is enough to observe that the bilinear

form a,, is coercive on the Hilbert space ﬁJl\/Iu ={0 € Hy, : ((0,1))p, = 0}. Indeed, for
any 0 € Hy, such that ((6,1)), = 0, we have thanks to the Poincaré inequality (23)

0/ V0|2 M,, (v) dv > )\u/ (0(v))? M, (v) dv,
R4 R4

and therefore

min{o, A

0(0,0) 2 5 [ 00w dot F [ IV.0PM () dv > w112,

u
2 R4 - 2

Thanks to Lax-Milgram lemma on the Hilbert space fl}wu, there is a unique function ¢ € .ﬁIML
such that . B o
au(,0) = L(0) for any § € Hy, . (30)

The condition (29) allows us to extend (30) to Hj, (apply (30) with 6 =0—(0,1)),,
for any 0 € H}Mu) The uniqueness of the solution of (30) implies the uniqueness, up to a
constant, for the solution of (28).

From now on, for any W € R, we denote by 1y the unique solution of (28), verifying
Jgatw (v) My, (v) dv = 0. Notice that 1o = 0. The solution y depends linearly on W e R,
Let us introduce the Hilbert spaces

d
L?Wu = {¢:R? - R? measurable ,Z/ (&(v))*M,(v) dv < 400}
i—1 /R?

d
Hj, = {¢: R? — R? measurable ,Z/ {(& V)2 + | V&Y My (v) dv < +o0}
=1 /R?

endowed with the scalar product

d
€= [ GOmEMLE) dv. e L,
i—1 /R¢

d
((&:m)n, = Z /Rd{&(v)m(v) + Voéi - Vit My(v) do, &n € Hyy,.
i=1
We denote the induced norms by ||y, = (5,5)11\//13, € e L2 L and [[€]la, = ((5,5))11\43, ¢ e

H}\/[u Obviously, a vector field £ = £(v) belongs to Hzlwu iff & € Hjl\/[u for any ¢ € {1,...,d}
and we have

d
11132, = D lI&ill3, -
i=1
Let us consider the closed subspace

H), ={¢cH), : /Rdg(v)Mu(u) dv = 0}.
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Thanks to (23), for any £ € Hj; we have the inequality

d d
viZMu d >>\u /
o [T a0 [

and therefore

d
7> [ 19 PM) do > it} Z/ P+ V& 1M (o) dv

- Muanm ¢ e, . (31)

2
&i(v) — /Rdfi(v’)]\/[u(v') dv'| My (v) dv

We introduce the continuous bilinear symmetric form a,, : H}W X H1 — R defined by

au(6,1) —a/as 0 Myl0) dv— S el € € H,

=1

and the linear form L : H}\/[u = R, L(n) = [gav —u) - n(v)My,(v) dv,n € H}VIU. Under the
hypothesis (12), it is easily seen that L is bounded on Hj,

1/2
[ o= n@to) o< ([ (ol P800 a0) il 0 € B,

Proposition 4.1 There is a unique solution F of the variational problem
F e I:I}wu and a,(F,n) =L(n), for anyne Hy, .

For any W € RY we have 1w (v) = F(v) - W,v € RL. The vector field F is left invariant by
the family T,.

Proof. The bilinear for a, is coercive on I:I}V[u, thanks to (31)

min{o, A, }

ey, for any € € ),

au(g, g) Z

By Lax-Milgram lemma, applied on the Hilbert space fl}\/[u, there is a unique vector field
Fe ﬁ}wu such that
au(F,n) = L(n), for any n € Hj;,.

Actually, the above equality holds true for any n € Hjlwu

a,(F,n) =

'M&

[y

d
au(Fiyni) =Y au(Fyymi = (i 1)a,)
=1

1=

=L(n — (1, agys -sMa — (Ma, 1)agy,)

(v) = (7> 1) ar, | Mo (v) do

> [
/ = i) (0) Moy (v) do
(1)

||M& I Mg
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It remains to check that for any W € R?, v — F(v) - W solves (30), on Hj, . Observe that
F-We ﬁ}\/[u Notice also that for any 6 € H}m we have W € H}VIU and

ay(F-W,0) = 0/ L0, FW - V0M,(v) dv
Rd

=0 | OuF : 0,(0W)M,(v) dv
Rd

— a,(F, W) = L(6W)
= /Rd(v —u) - Wé(v) M, (v) dv
= L(0).

Thank to the uniqueness we obtain ¢y (v) = F(v)-W,v € R, W € R?. Consider now O € Ts,.
We are done if we prove that v — OF( !Ov) solves the same problem as F. Clearly we have

/ OF(100)2 M (v) dv = / [F(W)2M,(t) dof < +oo
]Rd ]Rd

/8[0F( tO )] O[OF ('O )My(v) dv= | OF('O-): 0F('0O )M, (v) dv
R4 Rd

= [ OF('Ov)'0: 0F('0Ov) 'OM,(v) dv
Rd

= [ OF(W): 0F (v )M,(v") dv' < +c0.
R4

and

OF('Ov)M,(v)dv =0 | FQ')M,(Ov)dv' =0
R4 Rd

saying that v — OF( 'Ov) belongs to ﬁ}m For any n € H}; we have ‘On(O -) € H}; and

a,(OF ('O ),n) =0 | 0(OF('0O ")) : 0nM,(v) dv

R4

=g | OOF('Ov) 'O : onM,(v) dv
Rd

=0 [ OF('): 'O(n)(OV)OM,(OV') dv'
Rd

=0 Rd@F(U') :0(TOn(0 ) (V)M (v") dv’

N /R< —u) - 'On(Ov) M, (v') v’

= /Rd(v —u) - n(v)M,(v) dv = L(n).

1
The vector field F' expresses in terms of two functions which are left invariant by the family
Tu.
Proposition 4.2 There is a function ¢, which is left invariant by the family T,, such that

v—(v-2)Q

FEETE +Po(0)Q, ve R\ (RQ).

F(v) = 1(v)
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Proof. Obviously we have F = (F - Q)Q + F' = ¢oQ + F', with F/ = (I; — Q® Q)F. The
vector field F’ is orthogonal to © and is left invariant by the family 7,
F'('Ov) = F('Ov) — (F('Ov) - Q)Q = 'OF(v) — (*OF(v) - Q)
= O(F(v) — (F(v) - Q)Q) = 'OF'(v), veR%L
We claim that F”(v) is parallel to the orthogonal projection of v over (R2)*. Indeed, for any
v e R\ (RQ), let us consider
Ij— 020
E(v) = Ua— Q@R
[v]* = (v- Q)2

When d = 2, since E(v) and F'(v) are both orthogonal to €2, there exists a function ¢ = ¥ (v)
such that

(Ig —O® Q)U
o2 = (Q - v)?’

If d > 3, let us denote by - E, any unitary vector orthogonal to E and €. Introducing the
orthogonal matrix O = I; —2+*E® +E € T,, we obtain F'( 'O -) = ‘OF’. Observe that

v —(v- Q)0 _ LE v
VIE=(@w- 2?2 Vo = (v- )2

F'(v) = $(0) E(v) = ¢(v) eR?*\ (RQ).

0=1E-E(w)=*E Ov =

and thus
F'(v) = F'(Ov) = OF' (v)=(I; -2 E® tE)F'(v) = F'(v) —2(*E - F'(v)) *E

from which it follows that +E - F’(v) = 0, for any vector - E orthogonal to E and €. Hence,
there exists a function v (v) such that

(Id*Q(X)Q)’U
oF (o 0P

It is easily seen that the function v is left invariant by the family 7,. Indeed, for any O € T,
we have

Y(1Ov) = F'(10v) - E(t'Ov) = 'OF'(v) - '1OE(v) = F'(v) - E(v) = ¥(v), v € R%

F'(v) = b(v) E(v) = $(v) ve R\ (RO).

Similarly, 1q is left invariant by the family 7,
Vo (tOv) = F('Ov)- Q= 'OF () - Q=F(v)- 00 =F()-Q=1vq(), veRY OeT,.

1
The functions v, 1q will enter the fluid model satisfied by the macroscopic quantities p, 2, |u|.
It is convenient to determine the elliptic partial differential equations satisfied by them.

Proposition 4.3 There are two functions x = x(c,r) :] —1,1[x]0, +oo[— R, xq = xalc,r) :
| = 1,1[x]0, +o0[— R such that P(v) = x (v-Q/|v],|v]),Yav) = xa(v-Q/|v],|v]), v €
R\ (RQ). The above functions satisfy
—00 {3 (1 — )T e(e,r, |u)Bex} — 00 {r (1 — ) Fele, r, |u)dyx} (32)
+o(d—2)rt 31 — )T ele,r |ul)x = 191 — ) Trele,r, u]), (c,r) €] — 1,1[x]0, +00]
and
— 00 {r3(1 — )T e(e, 1, [u))dexa) — 08 {r N1 — )T e r |u))drxal  (33)

— 1 re — Ju)(1 = )7 ele,r ul), (er) €] = 1, 1[x]0, +oc]

where e(c,r,1) = exp (_% +rd V(T))_

g
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Proof. The function vq = F - 2 satisfies
Vo € Hyy, anda/ vvqmvveMu(v)dv:/ (v—u)- QO()M,(v) dv, 0 € Hy, . (34)
Rd Rd

By Remark 2.1 we know that there is xo = xq(c, ) such that Yo (v) = xa(v - Q/[v], |v]),v €
R\ (RQ). As 1q belongs to H}, , which is equivalent to

[ a(),0) dv =0, /rme()de

we are led to the Hilbert space

+1 _
Hyy = {h:] = 1,1[x]0, +-00[— R, /R rd_l/l h(e,r)e(c,r, |u|)(1 — 02)% dedr =0,
N _

d—1 +1 ah21—cz o2 2@dd
/R+T /—1 (0ch) 2 + (Orh)7| e(e,r, uf)(1 = %)= dedr < +o0}

endowed with the scalar product

d—3
(hy )|, Jul —/ = 1/ [8 hc')cg —1—8 hé?,«g} e(e,r,|ul)(1 = )2 dedr, h,g € Hi[ |-

Taking in (34) 0(v) = h(v - Q/|v], |[v]), with h € H) | (which means 6 € ﬁ}\/[u), we obtain

+1
/ = 1/ |: cXQa
R4

_ rd—1 re — |u c,r)e(c,r,|u _02%07"
/R+ /1( [ul)h(e,r)e(e, r, [u])(1 =) 2" ded

- x20r h] e(e,r [ul)(1 — )2 dedr

which implies (33). We focus now on the equation satisfied by 1. Let us consider an or-
thonormal basis {E1, ..., Eq_1} of (RQ). By Remark 2.1 we know that there is xy = x(c,7)
such that ¥ (v) = x(v - Q/|v], |v]) and

v- by v- B
(v) =Fv) - E; =¢(v ! =x(v-Q/|v|, v !
BE0) = ) - By = o) T = x0-0l ol)—
for v € R4\ (RQ),i € {1,...,d — 1}. Let us consider ¥, ,(v) = h(v - Q/Jv], M)W’
where h = h(c 'r) is a function such that g, ; € Hzl\/[u Actually, once that ¢g, , € IgMu,
then ((Yg;.p,1 = [gah(v-Q/|v], \v|)%Mu(v) dv = 0, saying that ¢, , € H}Wu
A stralghtforward computation shows that
v-FE; Id - Tﬁv
Vvl/JEi,h = O:h Q+ 0, h
o] = (v- ) [l |
(v—(v- Q) @v E;
+h ( v ) [I —
ER A SR TR e E By s e
and
v- E;)? v - E;
\Votom nl* = ( v |4) (0:h)* + Mg(())g(arh)

WP — (092~ (0 B)? 5 (09
T PR h(|v| '”‘)
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The condition 9 g, € H}wu writes

/d(wEi,h)QMu(@ dv < +o0, /d|Vv¢Ei,h]2Mu(v) dv < 400
R R

which is equivalent, thanks to the Poincaré inequality (23) to

/’V Vi, h|> My (v) dv
v- By v- E;)2(9.h)? o2 = (v Q)2 — (v E;)?
_/Rd[( |v|4) (@ch)”+ (|v|2 —)(U(.Q)L = (|v(|2—()U.Q()2)2 D h2| by0) av < +oc

and therefore to h € H |,, where we consider he Hilbert space
Hy ) ={h ] —1,1[x]0, +o0[— R, Hh||i,|u‘ = (h,h) 1 ju| < +o00}

endowed with the scalar product

+1

Ry (=201

(g, h)J_,|u| = /]R+ r / |: 093 h + 87"98 h+ (1 — 02)
L

e(e,r,|ul)(1 = c®)"2 dedr,g,h, € H| Jul-

Taking 6 =Yg, 5 € Hzluu in (30) leads to

U/dvvl/JEi . vvlei’hMu(U) dv = /dl/)Ei’h (U . El)Mu(U) dv, h e HJ_7|U|
R R

or equivalently

-2 (d—2)xh a3
d—1 2\ 4=3
U/R+ T /1 [ﬂacxﬁch + 0y xOrh + 1"2(1—02)} e(e,r, Ju[)(1 —¢c”) 2 dedr

+1 —
= / le/ rh(C,T‘)G(C, T, ‘UD(]. - 62)(1272 dCdT’ h e HJ_"u'
Ry -1

which implies (32). ]

5 The fluid model

The balances for the macroscopic quantities p, u follow by using the elements in the kernel
of L.
f

Proof. (of Theorem 1.1)
The use of 1) = 1 € ker £} leads to (7). By Lemma 3.3, we know that (Ru)* C ker(M,, —aly)

and thus, for any (t,2) € R, x R?, the vector field

UHF’(t’x,U):X<’U-Q<t,.’ﬂ)”v|>(\/ Q(t, m)@,mx ZwE

|v] W2 = (v-Q(t, z)

belongs to the kernel of £%, implying that

8th/(t,x,v)dv+/ v-Vof F'(t,z,v) dv =0, (t,z) € Ry x R%,

R4 R4

26



We have 0y f = OpM,, + p%(v —u) - Oyu and we obtain

-Q —(v-Q)Q
thF'dv—/ Op+ = v—u)-@tu)x<vv’,]v|> TU‘Q(i)(U')Q)QMU(v)dU

:atp/Rdx< . ,Q [v |> IUIQ(U (f?g)QMu(v) do

p v-Q [v—(v- QYR [v—(v- Q2+ (v-Q)Q —u]
+ p /]R{dX < FR |v|> M, (v) () dv dsu.

It is easily seen (use the change of variable v = (I; — 2F; @ E;)v',1 <i <d— 1) that

v—(v-Q)Q

) dv = / M, (v) dv =0,

w VPP =7 Z Gk
/XMu[v—(v-Q)Q] [(v-Q)Q Z/ (v- EE®[(U-Q)Q—u]dv:0’
R [v]* = (v- ©2)? Rt v = (v- ©2)?

and
/xMu[U_(”'Q)S;]@[”_(;’ LILFREES / sl (v E) _ dvE; ® E
R? [0]* = (v- Q) 1<i,j<d—1 Re" v |U|
= Z/ ) vE; ® E;
R4 \/‘U‘Q (v-Q)2
\/2—
/ Pl = (v-© v) do(Iy — Q@ Q).
Rd - ].
Therefore one gets
O fF'(t,z,v) dv = CJ_Jg(Id - Q® Q)0 (35)
Rd

with

= My (v) dv.
L /Rd < lv] v |> d—1 (v) dv
Observe also that

v-Vuf =(v-Vep)M, + g@xuv (v —u)M,
= (v-Vgp) M, + B&TUU (v=(v- D2+ (v-Q)Q — u)M,,
o

and therefore

Q (v—(v- Q) v
Ve :/ (U’ >Mu dv V, 36
Lwen = [ () a0 g, (36)
2 [ (B ol ) a =R E R T B LB 6,y
0 JRrd |U| ‘0‘2— (,U.Q)Q
As before, using the change of variable v = (I; — 2F; ® E;)v',1 <i <d — 1, we have
/ XMy (v) Chl CRVIDRER dv = xMy, (v—(v- QY ® (v —(v-2)Q) dv
[ol? = (- )2 R [o]? = (v- Q)2

/ XMu(v —(v- D)) @ (v-Q)Q do
o — (v )2
= CJ_J(Id —Q® Q)
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For the second integral in the right hand side of (36), by noticing that

/ (v-E;)(v-Ej)(v- Eg)x <UHQ, ]v\) M,(v)dv =0, i,j,ke{l,..,d—1},
Rd v

we obtain
/ XMy (v) (v - (- DY (,Z|;£U(f,2)g§;2+ (v )92 —u) dpuv dv
:/ XM“(U—(U~Q)Q)®(U—(U.Q)Q)&EUQ (0-9) dv
R4 [v|? = (v-Q)?
(v—=(v- ) & ((v-VQ —u) , ;
+ [ o, e = (- 2)0) d

(v—(v- Q) @ (v—(v-Q)Q)
w2 = (v-Q)?
=cio(lg—Q®Q)(Opu+ L0,u)Q — ci1Ilg—Q®Q) (u-0y)u,

=c12(lq— Q@ Q)0u + / XM, Lopul(v - Q)Q — u] dv
Rd

where

2 _ (v-Q0)2
Cng/ (v-Q)x [ol* = (v ) M, (v) dv.
’ Rd d— 1

Therefore we deduce
/ (v- Vo f)F (t,x,0) dv =ci1(Ig— QR Q) Vap + CJ_ 2(Ig — Q® Q) (0pu + L0,u)Q
]Rd
- gcl,l(Id —Q®Q) (u-d,)u (37)

and finally (35), (37) yield

Jul?

(I4—QRQ) (u-0z )u+(c) —1) (13— Q®Q)Vi—— =0 (38)

Vg
(I—08Q)dhuto(I;—Q20) pp

where

o Jrdv-Qx (M,ym) 02 — (v Q2M,(v) dv

ulent ul fax (‘;7, v ) [0[2 = (v - Q)2M,(v) dv
fR+ rd+l Jo cosOx(cos 0, r)e(cos 6,r,1(c))sin?"1 @ dfdr
fR r [ x(cos 0, 7)e(cos 6,r,1(c))sin?1 0 dodr

c| =

Recall that |u| = [(c) and therefore we have u - dyu = 30;|ul* = 0, (u- 9p)u = LAV, |uf* =
implying that
Q-0u=0, '0,uQ=0, Q- 9,uQ=0.

The equation (38) becomes

=0.

o Ve
m(Lj—Q@Q) ,

We have to check that c¢| 1 # 0. This comes by using the elliptic equations satisfied by g, ,
that is

O+ 1(0)c L (Q-V)Q +

—odivy (M, Vop,) = (v- E)M,(v), veR% ie{l,...d-1}.
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Indeed, we have

= (v E)° = v) - E;)(v- E; v) dv
= [ Xt M) dv = [ (PG B B M) d

_ / i, (0)(v - E) Ma(v) dv = o / Vot [2Mo (v) dv > 0.
R4 R4

[

Other potentials v — V(|v|) can be handled as well. For example, let us assume that
thereis o > 0,0 < l1(0) < l2(0) < 400 such that the function | — Z(0,1) is stricly increasing
on [0,11(0)], constant on [l1(0),l2(0)[, and strictly decreasing on [l3(0),+00[. In that case,
for any [ € [I1(0),lz(0)[ we have §3Z(c,1) = 0 and by Lemma 3.3 we deduce that M,, = o1y,
saying that ker(M,, — ol;) = R%. Using the function g, we obtain a balance for |u| as well.

Proof. (of Theorem 1.2)
In this case 1 belongs to ker £7%, and therefore we also have the balance

/ Ot fYq(t e (v) dv +/ (v Vaf)Ya e (v) dvo = / Lt ([ oz dv=0.
R4 R4 R4

As before, using also [patq(v)My(v) dv = 0, we write
[ anfindo= [ [aroMuo) + £M0)0 ~ ) - O] o) do (39)
Rd R o
- (at,o— Bu-atu> / Ye(v) My (v) du
g Rd
+ g / xaMy,(v)[v— (v- Q)2+ (v-Q)Q] dv - dyu
Rd
= BC”JQ - Owu
o

where

= [ (0 Dl Ma(o) do = [ (0 =)-QvaM,dv = [ [FyialM, () dv >0,

Similarly, observe that

/ (v-Vgfvg dv = / [v -Vap+ Baxuv (v — u)} M, (v)Yq(v) dv (40)
R4 R4
/(v D)o (v)My(v) dv (2 - Vaip) + /1/19 v)(v—u)®@vdv: dyu

R4

=192 Vaep + / YoM {[v—(v- Q@ [v—(v-QQ + (v- Q2@ Q} dv : d,u
— / Yo (v Ju dv - topuu = 182 - Vap

2 _ .0 2

+ p {/RdeMuw dv (Iy— Q22 Q) + /Rd(v . Q)2¢QMU dv Q® Q} 1 0zu
— BCHJQ - topuu

—C||1Q Vzep+ — (20“2—|u]c||1)§2®ﬂ 8u+—c||3(ld—Q®Q) Oz u

P2 P [ul* \2 P .
_C||1Q Vep + o Tu ’(Q Oruu) + | | — 1 Q-V, +UC||’3|u’d1V$Q
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where

v - 'U2
c,,,Qz/Rd( 0 ()M () v, c,,g_/ Pl = (0 7 )My (o) o,

In the above computations we have used the identity (I;—Q®€Q) : Ozu = |u|div$2. Combining
(39), (40) leads to

2
Q-0+ ofd- V;p + C”(Q . (u . 8m)u) + (CH — 1) <Q Va | ‘ > + C/H‘UIQdiVmQ =0 (41)

where ¢| = Iuc\”Tni ¢ = —L3_ Finally we deduce from (38), (41) the balance for the mean

velocity u
2
Oy + CL(Id -O® Q)(’? uu + CH(Q & Q)(u . ax)u -+ (CL — 1)(Id —-O0® Q)qu2|

ul? Vazp .
+ (g = DQeQ)V, | 2’ +o g 1div,Q|uju = 0.

[

Remark 5.1 When V = 0, the equilibria are Mazwellians parametrized by p € Ry and
u € R?

I A _|U_u|2 d
M, (v) = (2m0) 12 exp( 5 >, v € R%

In that case the function | — Z(o,l1) is constant

Z(o,1) = [ ex _l—uly = (2n0)¥2, 1 € R}
) — iy p v = e y e

20
It is easily seen that the solution of
—0divy { M 0, F} = (v — u)M,(v), veRY, My (v)F(v) dv =0
R4
is F(v) = v —u,v € R, which belongs to H » and therefore the functions v, yq such that
— (v-Q)Q

WE = (0-Q)? +1ho(v)Q, ve R\ (RQ)

F(v) = ¢(v)

are given by

w(v):(v—u)-\/w% VIvE = (v-Q)2, Yo)=@w-u)-Q, veR?

and Yp,(v) = F(v) - E; = (v-E),v e R4, 1<i<d—1.

By straightforward computations we obtain

[v]? — (v-Q)° 2
cL1= ————Mydv= | (v-E1)’Mydv=—0 | (v-E1)(V,M, E)dv=0
’ Rd d—1 Rd Rd

2 O
CM:/ O] i CIRU Y dv:/ (v- Q) (v E1)*M, dv
’ Rd d—l R4

=—0 /Rd(v Q) (v - Ey)divy(MyEq) dv =0 RdMu(v)El - ED)Q 4+ (v-Q)E] do

= olul.
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_ 12
lulcy 1

CH71 = U/ |vv¢ﬂ|2Mu(U) dv=o¢o
Rd

=1

Cl

.0)? .0)?
Cl2= / LU YoM, dv = 0/ (-5 div, (M, Q) dv = 0/ (v-Q)M, dv = olu|
’ R4 2 Rd 2 Rd
_ C2
luley 1

€|

2 _ .0 2
o3 —/ wngu dv —/ (v - E1)*poM, dv = —a/ (v - BE1)3div, (M,Q) dv
’ Rd d - ]. Rd Rd

= 20’/ (’U . El)(El . Q)Mu dv = 0.
R4

In this case (10), (11) are the Euler equations, as expected when taking the limit £ N\, 0 in
the Fokker-Planck equations

Ouf + - Vofs = édivv{avvfe + W —ulfD)), (ta0) € Ry x R x RY

that is

\Y%
Op + divg(pu) =0, O+ Opuu+ o 2P _ 0, (t,z) e Ry x R%

p

6 Examples

[

We analyze now the potentials v — V,, g(|v|) = B% — a'-. Clearly the hypothesis (12)

is satisfied, and thus the function Z(o, [u]) = [paexp (— ‘U;;“Q — Va‘i,(lvl)) dv is well defined.

As seen in Section 2, the sign of 0;Z(0,1), for small o > 0, depends on the sign of V| - The
potential V, g satisfy (17) with ro = \/a/f

() = r(Br?’ —a) <0 for 0<r<+/a/B and Vi p(r) >0 for any r > \/a/p.
One can check that these potentials belong to the family V), see [45]. We include an example

4 2
Vii(lv]) = I U for the sake of completeness. In this case the critical diffusion can be
; 1 2 p
computed explicitly.

Proposition 6.1 Consider the potential v — Vi 1(|v|) = % - % The critical diffusion og

writes
e 1 fR+ exp(—2%/4) 21 dz

= d> 2.
% d fR+ exp(—z4/4)z4-1dz” ~ —
In particular, for d =2 we have oy = 1/7.
Proof. We have ) . )
v—u v U
@u(v):‘ 5 | +V171(!v|):’4‘—v-u—|—’2’

and therefore

2
Z(o,l) = / exp <— <I>u(v)> dv = S 2| exp <—l>
R4 o 20
4 T
/ exp (—T> rd_l/ exp <rl COSQ) sin?2 6 dodr.
R, 40 0 o
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Taking the second derivative with respect to [ one gets cf. Remark 2.2

4y, 12 Q-02- 12
03 7Z(0,1) = / exp <_|v[ T > -’ -o dv = |S%2| exp <—)
R 20

4o o 20 o
4 ™ N AV
/ exp (_r) rd_l/ exp <Tl COSQ) (rcos? 2l) ? sin2 ¢ dodr
R, 4o 0 o o
and therefore
Sd72 4 ™
0% Z(0,0) = | 2 | exp <—T> pdtt dr/ cos? fsin?2 6 do
o Ry 4o 0
Sd72 4 ™
— | | exp (—T> rd=1 dr/ 0 sin?2 6 de.
g Ry 4o 0

It is easily seen that
/ cos? 0sin?26 do = / sin?=2 9 dg + / cos' @sin?1 9 dg
0 0 0
= / sin?260 df — (d — 1) / cos® fsin?2 6 do
0 0
and thus

/ cos? 0sin? 26 df = 1/ sin®260d6, d>2.
0 d Jo

We obtain the following expression for the second derivative 8121Z (0,0)

2Z(0,0) [y sin?20d6 (1 A N\
s T = d/R+exp ey dr—a/{R+eXp ey dr ¢ .

1/4

Using the change of variable r = o"/*z, we have

4 4
/ exp (—T> rdtl dr = / exp (_z) 24t dz a%
R+ 40' R+ 4
4 4
/ exp <T) rd=ldr = / exp <Z) 2414y o
Ry 4o R4 4

and thus 93Z(0,0) > 0 iff

The critical diffusion oy is, cf. Proposition 2.3

e 1 fR+ exp(—21/4) 21 dz
o))" ==
0 d fR+ exp(—z%/4)z4-1dz” ~ —

In particular, when d = 2, we obtain

4
/ exp(—z1/4)23 dz = / exp(—z1/4) aZ = / exp(—s)ds =1
R, Ry 4
and

/]R+ exp(—21/4)z dz = / exp(—24/4) dZ; _ /R+ excp(—s?) s — \/27?

Ry

implying that og = 1/7.
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