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We concentrate on kinetic models for swarming with individuals interacting through self-propelling and friction forces, alignment and noise. We assume that the velocity of each individual relaxes to the mean velocity. In our present case, the equilibria depend on the density and the orientation of the mean velocity, whereas the mean speed is not anymore a free parameter and a phase transition occurs in the homogeneous kinetic equation. We analyze the profile of equilibria for general potentials identifying a family of potentials leading to phase transitions. Finally, we derive the fluid equations when the interaction frequency becomes very large.

Introduction

This paper is concerned with the derivation of fluid models for populations of self-propelled individuals, with alignment and noise [START_REF] Chuang | State transitions and the continuum limit for a 2D interacting, self-propelled particle system[END_REF][START_REF] Carrillo | Double milling in a self-propelled swarms from kinetic theory[END_REF][START_REF] Carrillo | Self-propelled interacting particle systems with roosting force[END_REF] starting from their kinetic description. The alignment between particles is imposed by relaxing the individuals velocities towards the mean velocity [START_REF] Cucker | Emergent behavior in flocks[END_REF][START_REF] Ha | A simple proof of the Cucker-Smale flocking dynamics and meanfield limit[END_REF][START_REF] Ha | From particle to kinetic and hydrodynamic descriptions of flocking[END_REF][START_REF] Carrillo | Asymptotic flocking dynamics for the kinetic Cucker-Smale model[END_REF][START_REF] Carrillo | Particle, Kinetic, and Hydrodynamic Models of Swarming[END_REF][START_REF] Motsch | A new model for self-organized dynamics and its flocking behavior[END_REF][START_REF] Motsch | Heterophilious dynamics enhances consensus[END_REF] in the presence of an asymptotic convergence to a fixed speed [START_REF] D'orsogna | Self-propelled particles with soft-core interactions : Patterns, stability and collapse[END_REF]. We refer to [START_REF] Neunzert | The Vlasov equation as a limit of Hamiltonian classical mechanical systems of interacting particles[END_REF][START_REF] Braun | The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles[END_REF][START_REF] Dobrushin | Vlasov equations[END_REF][START_REF] Cañizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF][START_REF] Bolley | Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming[END_REF][START_REF] Bolley | Mean-field limit for the stochastic Vicsek model[END_REF][START_REF] Ha | Emergence of Time-Asymptotic Flocking in a Stochastic Cucker-Smale System[END_REF][START_REF] Carrillo | The derivation of swarming models: mean-field limit and Wasserstein distances, in Collective dynamics from bacteria to crowds[END_REF][START_REF] Carrillo | Mean-field limit for collective behavior models with sharp sensitivity regions[END_REF] and the references therein for a derivation of kinetic equations for collective behavior from microscopic models by meanfield limit approaches. In this work, we mainly deal with a localized version of the classical Cucker-Smale consensus in velocity or flocking model [START_REF] Cucker | Emergent behavior in flocks[END_REF] for alignment, see also [START_REF] Barbaro | Phase transitions in a kinetic flocking model of Cucker-Smale type[END_REF]. This model assumes that all interactions leading to alignment happen only at the present location of the individual, that is, the communication function is a Delta Dirac. Similar kinetic theory approaches to model swarms have been used in the multiscale description of vehicular traffic, crowds, active particles, and multicellular systems, see for instance [START_REF] Bellomo | On the asymptotic theory from microscopic to macroscopic tissue models: An overview with perspectives[END_REF][START_REF] Bellomo | On the multiscale modeling of vehicular traffic: From kinetic to hydrodynamics[END_REF][START_REF] Burini | Collective learning dynamics modeling based on the kinetic theory of active particles[END_REF][START_REF]Active Particles[END_REF][START_REF] Albi | Vehicular traffic, crowds, and swarms: from kinetic theory and multiscale methods to applications and research perspectives[END_REF] and the references therein for recent reviews of these perspectives of current research.

We here concentrate on kinetic alignment models with phase transition [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF][START_REF] Degond | Macroscopic limits and phase transition in a system of self-propelled particles[END_REF][START_REF] Frouvelle | Dynamics in a kinetic model of oriented particles with phase transition[END_REF][START_REF] Barbaro | Phase transition and diffusion among socially interacting self-propelled agents[END_REF][START_REF] Degond | Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics[END_REF][START_REF] Barbaro | Phase transitions in a kinetic flocking model of Cucker-Smale type[END_REF][START_REF] Li | Flocking: Phase transition and asymptotic behaviour[END_REF]. Phase transitions are important to be analysed properly since they characterize the values of the parameters leading to sudden dramatic changes of their asymptotic behavior. Phase transitions in collective behavior models driven by alignment were first discussed in the seminal paper [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF]. They reported a behavioral change in the system from overall coordinated orientation -ordered state by polarization -to total mixing of preferred directionsdisordered state -driven by the noise strength in the system, this phenomena is usually called a noise-driven phase transition. This issue is already very challenging even in the homogeneous periodic setting for the so called McKean-Vlasov equations [START_REF] Mckean | A class of Markov processes associated with nonlinear parabolic equations[END_REF]. Classical bifurcation analysis and statistical mechanics viewpoints have been used in this setting [START_REF] Tamura | On asymptotic behaviors of the solution of a nonlinear diffusion equation[END_REF][START_REF] Chayes | The McKean-Vlasov equation in finite volume[END_REF], leading recently to sufficient conditions for its classification [START_REF] Carrillo | Long-time behaviour and phase transitions for the Mckean-Vlasov equation on the torus[END_REF] in terms of continuity or discontinuity of the order parameter at the phase transition tipping point. We also refer to [START_REF] Gomes | Mean field limits for interacting diffusions in a two-scale potential[END_REF] for a careful numerical study of the possibly complicated bifurcations depending on the potential shape. Here, we start from a model leading to phase transitions in the homogeneous setting in which the developed theory applies [START_REF] Degond | Macroscopic limits and phase transition in a system of self-propelled particles[END_REF][START_REF] Frouvelle | Dynamics in a kinetic model of oriented particles with phase transition[END_REF][START_REF] Barbaro | Phase transition and diffusion among socially interacting self-propelled agents[END_REF][START_REF] Degond | Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics[END_REF][START_REF] Barbaro | Phase transitions in a kinetic flocking model of Cucker-Smale type[END_REF][START_REF] Li | Flocking: Phase transition and asymptotic behaviour[END_REF] in order to rigorously derive the hydrodynamic system dealing with spatial perturbations around the associated equilibria in the inhomogeneous kinetic problem. This approach has been championed by P. Degond and collaborators for the Vicsek-Fokker-Planck model in a series of papers introducing the novel technique of generalized collision invariants, see [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF][START_REF] Degond | Macroscopic limits and phase transition in a system of self-propelled particles[END_REF][START_REF] Degond | Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics[END_REF], see related results by different approaches [START_REF] Bostan | Reduced fluid models for self-propelled populations, interacting through alignment[END_REF][START_REF] Aceves-Sánchez | Hydrodynamic limits for kinetic flocking models of Cucker-Smale type[END_REF]. These hydrodynamic systems are usually referred as Self-Organized Hydrodynamics (SOH). Our goal in this work is to derive the corresponding SOH system for kinetic inhomogeneous problems of Cucker-Smale type with phase transtion at their corresponding homogeneous Fokker-Planck equation in contrast to [START_REF] Bostan | Reduced fluid models for self-propelled populations, interacting through alignment[END_REF][START_REF] Aceves-Sánchez | Hydrodynamic limits for kinetic flocking models of Cucker-Smale type[END_REF]. Generalized collision invariants are understood in our present approach in a more classical sense and associated to the elements of the kernel of suitable adjoint operators as in the classical Boltzmann and Fokker-Planck operators.

We denote by f = f (t, x, v) ≥ 0 the particle density in the phase space (x, v) ∈ R d × R d , with d ≥ 2. The self-propulsion and friction mechanism writes div v {f ∇ v V (| • |)}, where v → V (|v|) is a confining potential. When considering V α,β (|v|) = β |v| 4 4 -α |v| 2 2 , with α, β > 0, we obtain the term div v {f (β|v| 2 -α)v} see [START_REF] Bostan | Asymptotic fixed-speed reduced dynamics for kinetic equations in swarming[END_REF][START_REF] Bostan | Reduced fluid models for self-propelled populations, interacting through alignment[END_REF] and also [START_REF] Bostan | The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime[END_REF][START_REF] Bostan | Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics[END_REF][START_REF] Bostan | Gyro-kinetic Vlasov equation in three dimensional setting. Second order approximation[END_REF] for results based on averaging methods in magnetic confinement. The relaxation towards the mean velocity is given by div v {f (v -u[f ])} cf. [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF], where for any particle density the notation u[f ] stands for the mean velocity

u[f ] = R d f (v) v dv R d f (v) dv
.

Including noise with respect to the velocity variable, we obtain the Fokker-Planck type equation

∂ t f +v •∇ x f = Q(f ) := div v {σ∇ v f +f (v -u[f ])+f ∇ v V (|•|)}, (t, x, v) ∈ R + ×R d ×R d . ( 1 
)
When considering large time and space scales in [START_REF] Aceves-Sánchez | Hydrodynamic limits for kinetic flocking models of Cucker-Smale type[END_REF], we are led to the kinetic equation

∂ t f ε + v • ∇ x f ε = 1 ε Q(f ε ), (t, x, v) ∈ R + × R d × R d . (2) 
We investigate the asymptotic behavior of the family (f ε ) ε>0 , when ε becomes small. We expect that the limit density f (t, x, •) = lim ε 0 f ε (t, x, •) is an equilibrium for the interaction mechanism Q(f (t, x, •)) = 0, (t, x) ∈ R + × R d .

For any u ∈ R d we introduce the notations

Φ u (v) = |v -u| 2 2 + V (|v|), Z(σ, u) = R d exp - Φ u (v) σ dv, M u (v) = exp -Φu(v) σ Z(σ, u) .
Actually the function Z depends only on σ and |u|, see Proposition 2.1, and thus we will write Z = Z(σ, l = |u|). Notice that for any smooth particle density f and any u ∈ R d we have

σ∇ v f + f (v -u[f ]) + f ∇ v V (| • |) = σM u (v)∇ v f M u
leading to the following representation formula

Q(f ) = σdiv v M u[f ] ∇ v f M u[f ] .
Multiplying by f /M u[f ] and integrating by parts with respect to the velocity imply that any equilibrium satisfies

f = ρ[f ]M u[f ] , ρ[f ] = R d f (v) dv.
Recall that u[f ] is the mean velocity, and therefore we impose

R d f (t, x, v)(v -u[f (t, x, •)]) dv = 0, (t, x) ∈ R + × R d . (3) 
Notice that Φ u is left invariant by any orthogonal transformation preserving u. Consequently, we deduce (see Proposition 2.1) that R d f (v) v dv is parallel to u, and therefore the constraint (3) fix only the modulus of the mean velocity, and not its orientation (which remains a free parameter).

Our first important observation gives a characterization to find the bifurcation diagram of stationary solutions of Q(f ) = 0. We prove that M u is an equilibrium if and only if l = |u| is a critical point of Z(σ, •), cf. Proposition 2.1. Moreover, several values for |u|, or only one are admissible, depending on the diffusion coefficient σ. In that case we will say that a phase transition occurs. Notice that in this work we do not distinguish between phase transitions and bifurcation points. For any particle density f = f (v), the notation Ω[f ] stands for the orientation of the mean velocity u

[f ], if u[f ] = 0 Ω[f ] = u[f ] |u[f ]| = R d f (v) v dv R d f (v) v dv and any vector in S d-1 , if u[f ] = 0. Here S d-1 is the set of unit vectors in R d . Notice also that we always have u[f ] = |u[f ]| Ω[f ].
Finally, for any (t, x) ∈ R + × R d , the limit particle density is a von Mises-Fisher distribution

f (t, x, v) = ρ(t, x)M |u|Ω(t,x) (v) parametrized by the concentration ρ(t, x) = ρ[f (t, x, •)] and the orientation Ω(t, x) = Ω[f (t, x, •)].
We identify a class of potentials v → V (|v|) such that a phase transition occurs and we derive the fluid equations satisfied by the macroscopic quantities ρ, Ω. More exactly we assume that the potential v → V (|v|) satisfies

lim |v|→+∞ |v| 2 2 + V (|v|) |v| = +∞ (4) 
(such that Z is well defined) and belongs to the family V defined by: there exists σ 0 > 0 verifying 1. For any 0 < σ < σ 0 there is l(σ) > 0 such that Z(σ, l) is stricly increasing on [0, l(σ)] and strictly decreasing on [l(σ), +∞[; 2. For any σ ≥ σ 0 , Z(σ, l) is strictly decreasing on [0, +∞[.

The first important result in this work shows that potentials in V have a phase transition at σ = σ 0 as shown in Section 2.

Remark 1.1 The potential V (|v|) = β |v| 4 4 -α |v| 2 2 belongs to the family V as shown in [START_REF] Tugaut | Phase transitions of McKean-Vlasov processes in double-wells landscape[END_REF][START_REF] Barbaro | Phase transitions in a kinetic flocking model of Cucker-Smale type[END_REF][START_REF] Li | Flocking: Phase transition and asymptotic behaviour[END_REF] in any dimension.

Theorem 1.1 Assume that the potential v → V (|v|) satisfies (4), belongs to the family V defined above and that 0 < σ < σ 0 . Let us consider (f ε ) ε>0 satisfying

∂ t f ε + v • ∇ x f ε = 1 ε div v {σ∇ v f ε + f ε (v -u[f ε ] + ∇ v V (| • |) )}, (t, x, v) ∈ R + × R d × R d . (5)
Therefore, at any (t, x) ∈ R + ×R d the dominant term in the Hilbert expansion

f ε = f +εf 1 +... is an equilibrium distribution of Q, that is f (t, x, v) = ρ(t, x)M u(t,x) (v), where 
u(t, x) = l(σ)Ω(t, x), (t, x) ∈ R + × R d (6) 
∂ t ρ + div x (ρu) = 0, (t, x) ∈ R + × R d (7) 
∂ t Ω + l(σ)c ⊥ (Ω • ∇ x )Ω + σ l(σ) (I d -Ω ⊗ Ω) ∇ x ρ ρ = 0, (t, x) ∈ R + × R d . ( 8 
)
The constant c ⊥ is given by

c ⊥ = R + r d+1 π 0 cos θ χ(cos θ, r) e(cos θ, r, l(σ)) sin d-1 θ dθdr l(σ) R + r d π 0 χ(cos θ, r) e(cos θ, r, l(σ)) sin d-1 θ dθdr
and the function χ solves

-σ∂ c r d-3 (1 -c 2 ) d-1 2 e(c, r, l(σ))∂ c χ -σ∂ r r d-1 (1 -c 2 ) d-3 2 e(c, r, l(σ))∂ r χ (9) + σ(d -2)r d-3 (1 -c 2 ) d-5 2 e(c, r, l(σ))χ = r d (1 -c 2 ) d-2 2 e(c, r, l(σ)), (c, r) ∈] -1, 1[×R + where e(c, r, l) = exp -r 2 2σ + rcl σ -V (r) σ .
Remark 1.2 Several considerations regarding the hydrodynamic equations ( 6)-( 8) and the asymptotic limit to obtain them are needed:

• The asymptotic limit in [START_REF] Bardos | Fluid dynamic limits of kinetic equations. I. Formal derivations[END_REF] is different from the one analysed in [START_REF] Bostan | Reduced fluid models for self-propelled populations, interacting through alignment[END_REF] where the friction term is penalized at higher order. The main technical difficulty in [START_REF] Bostan | Reduced fluid models for self-propelled populations, interacting through alignment[END_REF] compared to our present work is that to solve for the different orders on the expansion in [START_REF] Bostan | Reduced fluid models for self-propelled populations, interacting through alignment[END_REF] we had to deal with Fokker-Planck equations on the velocity sphere with speed α β .

• The hydrodynamic equations (6)-( 8) in the particular case of the potential

V (|v|) = β |v| 4 4 -α |v| 2
2 recover the ones obtained in [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF][START_REF] Degond | Macroscopic limits and phase transition in a system of self-propelled particles[END_REF][START_REF] Degond | Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics[END_REF][START_REF] Bostan | Reduced fluid models for self-propelled populations, interacting through alignment[END_REF] by taking the limit α → ∞ with β/α = O(1). In this limit, the particle density f is squeezed to a Dirac on the velocity sphere with speed α β . The constants can be computed exactly based on [START_REF] Li | Flocking: Phase transition and asymptotic behaviour[END_REF] and they converge towards the exact constants obtained in [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF][START_REF] Degond | Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics[END_REF][START_REF] Bostan | Reduced fluid models for self-propelled populations, interacting through alignment[END_REF]. This is left to the reader for verification.

• The hydrodynamic equations (6)-( 8) have the same structure as the equations derived in [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF][START_REF] Degond | Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics[END_REF][START_REF] Bostan | Reduced fluid models for self-propelled populations, interacting through alignment[END_REF] just with different constants, and therefore they form a hyperbolic system as shown in [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF]Subsection 4.4].

When V (| • |) belongs to the family V, we know that |u| ∈ {0, l(σ)}, for any 0 < σ < σ 0 and |u| = 0 for any σ ≥ σ 0 . There is no time evolution for |u|. But the modulus of the mean velocity evolves in time for other potentials. For example, let us assume that there is σ > 0, 0 ≤ l 1 (σ) < l 2 (σ) ≤ +∞ such that the function l → Z(σ, l) is stricly increasing on [0, l 1 (σ)], constant on [l 1 (σ), l 2 (σ)[, and strictly decreasing on [l 2 (σ), +∞[. In that case, we obtain a balance for |u| as well.

Theorem 1.2 Assume that the potential v → V (|v|) satisfies (4) and verifies the above hypothesis for some σ > 0. Let us consider (f ε ) ε>0 satisfying

∂ t f ε + v • ∇ x f ε = 1 ε div v {σ∇ v f ε + f ε (v -u[f ε ] + ∇ v V (| • |) )}, (t, x, v) ∈ R + × R d × R d .
Therefore, at any (t, x) ∈ R + ×R d the dominant term in the Hilbert expansion

f ε = f +εf 1 +... is an equilibrium distribution of Q, that is f (t, x, v) = ρ(t, x)M u(t,x) (v)
, where

∂ t ρ + div x (ρu) = 0, (t, x) ∈ R + × R d (10) 
∂ t u + [c ⊥ (I d -Ω ⊗ Ω) + c Ω ⊗ Ω](u • ∂ x )u + [(c ⊥ -1)(I d -Ω ⊗ Ω) + (c -1)Ω ⊗ Ω]∇ x |u| 2 2 + σ ∇ x ρ ρ + c div x Ω |u|u = 0, (t, x) ∈ R + × R d . (11) 
The constants c ⊥ , c , c are given by 

c ⊥ = R +
-σ∂ c {r d-3 (1 -c 2 ) d-1 2 e(c, r, |u|)∂ c χ Ω } -σ∂ r {r d-1 (1 -c 2 ) d-3 2 e(c, r, |u|)∂ r χ Ω } = r d-1 (rc -|u|)(1 -c 2 ) d-3 2 e(c, r, |u|), (c, r) ∈] -1, 1[×]0, +∞[.
Our paper is organized as follows. In Section 2 we investigate the function Z, whose variations will play a crucial role when determining the equilibria of the interaction mechanism Q. We identify a family of potentials such that a phase transition occurs for some critical diffusion coefficient σ 0 . Section 3 is devoted to the study of the linearization of Q and of its formal adjoint. We are led to study the spectral properties of the pressure tensor. The kernel of the adjoint of the linearization of Q is studied in Section 4. These elements will play the role of the collision invariants, when determining the macroscopic equations by the moment method. The main results, Theorem 1.1, 1.2, are proved in Section 5. Some examples are presented in Section 6.

Phase transitions and Potentials: Properties of Equilibria

For any u ∈ R d we denote by T u the family of orthogonal transformations of R d preserving u. Notice that T 0 is the family of all orthogonal transformations of R d . Lemma 2.1 Let u be a vector in R d and a : R d → R d be a integrable vector field on R d , which is left invariant by the family T u i.e.,

a( t Ov) = t Oa(v), v ∈ R d , O ∈ T u . Then R d a(v) dv ∈ Ru.
Proof. For any O ∈ T u , we have

R d a(v) dv = R d a( t Ov ) dv = t O R d a(v ) dv .
For any ξ ∈ S d-1 ∩ (Ru) ⊥ , we consider O ξ = I d -2ξ ⊗ ξ ∈ T u , and thus we obtain

R d a(v) dv = (I d -2ξ ⊗ ξ) R d a(v ) dv , or equivalently ξ • R d a(v) dv = 0. Therefore, we have R d a(v) dv ∈ ((Ru) ⊥ ) ⊥ = Ru. We assume that lim |v|→+∞ |v| 2 2 + V (|v|) |v| = +∞. ( 12 
)
Observe that

Z(σ, u) = exp - |u| 2 2σ R d exp - |v| 2 2 + V (|v|) σ + v • u σ dv ≤ exp - |u| 2 2σ R d exp - |v| σ |v| 2 2 + V (|v|) |v| -|u| dv,
and therefore, under the hypothesis [START_REF] Bonnaillie-Noël | Efficient numerical calculation of drift and diffusion coefficients in the diffusion approximation of kinetic equations[END_REF], it is easily seen that Z(σ, u) is finite for any σ > 0 and u ∈ R d . Similarly we check that for any σ > 0 and u ∈ R d , all the moments of M u are finite

R d |v| p M u (v) dv < +∞, p ∈ N.
For further developments, we recall the formula Proposition 2.1 Assume that the potential v → V (|v|) satisfies [START_REF] Bonnaillie-Noël | Efficient numerical calculation of drift and diffusion coefficients in the diffusion approximation of kinetic equations[END_REF]. Then the following statements hold true :

R d χ v • Ω |v| , |v| dv = |S d-2 | R + r d-1 π 0 χ(cos θ, r) sin d-2 θ dθdr, (13) 
1. The function Z(σ, u) depends only on σ and |u|. We will simply write

R d exp - Φ u (v) σ dv = Z(σ, l = |u|).
2. For any u ∈ R d , we have

R d M u (v)v dv ∈ R + u and obviously, R d M 0 (v)v dv = 0. 3. The von Mises-Fisher distribution M u is an equilibrium if and only if ∂ l Z(σ, l) = 0.
For any σ > 0, M 0 (v) = Z -1 (σ, 0) exp (-Φ 0 (v)/σ) is an equilibrium.

Proof.

1. Applying formula [START_REF] Bostan | The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime[END_REF] with Ω = u/|u|, if u = 0, and any Ω ∈ S d-1 if u = 0, we obtain

Z = R d exp - |v| 2 2σ - |u| 2 2σ + v • u σ - V (|v|) σ dv = |S d-2 | exp - |u| 2 2σ R + exp - r 2 2σ - V (r) σ r d-1 π 0 exp r|u| cos θ σ sin d-2 θ dθdr,
and therefore Z depends only on σ and |u|.

2. We consider the integrable vector field

a(v) = M u (v)v, v ∈ R d . It is easily seen that for any O ∈ T u , we have Φ u ( t Ov) = Φ u (v), M u ( t Ov) = M u (v), v ∈ R d ,
and therefore the vector field a is left invariant by T u . Our conclusion follows by Lemma 2.1.

It remains to check that

R d M u (v)(v • u) dv > 0, when u = 0. Indeed, we have Z R d M u (v)(v • u) dv = v•u>0 exp - Φ u (v) σ -exp - Φ u (-v) σ (v • u) dv,
and we are done observing that for any v such that v • u > 0 we have

-Φ u (v) = - |v| 2 2 + v • u - |u| 2 2 -V (|v|) > - |v| 2 2 -v • u - |u| 2 2 -V (|v|) = -Φ u (-v).
3. The von Mises-Fisher distribution M u is an equilibrium if and only if

R d M u (v)(v-u) dv = 0. By the previous statement we know that R d M u (v)v dv ∈ Ru and therefore M u is an equilibrium iff R d M u (v)(v • Ω -|u|) dv = 0, where Ω = u |u| if u = 0 and Ω is any vector in S d-1 if u = 0. But we have ∂ l Z(σ, |u|) = |S d-2 | exp - |u| 2 2σ R + exp - r 2 2σ - V (r) σ r d-1 (14) 
× π 0 exp r|u| cos θ σ r cos θ -|u| σ sin d-2 θ dθdr = R d exp - Φ u (v) σ v • Ω -|u| σ dv = Z(σ, |u|) σ R d M u (v)(v • Ω -|u|) dv,
and therefore M u is an equilibrium if and only if l = |u| is a critical point of Z(σ, •).

Remark 2.2 As Z depends only on σ, |u|, we can write

Z(σ, |u|) = R d exp - |v -Ω|u|| 2 2σ - V (|v|) σ dv = R d exp - |v| 2 2σ + (v • Ω)|u| σ - |u| 2 2σ - V (|v|) σ dv,
for any Ω ∈ S d-1 and u ∈ R d . We deduce that for any Ω ∈ S d-1 and u ∈ R d , we have

∂ l Z(σ, |u|) = R d exp - |v| 2 2σ + (v • Ω)|u| σ - |u| 2 2σ - V (|v|) σ v • Ω -|u| σ dv = R d exp - Φ |u|Ω (v) σ v • Ω -|u| σ dv = R d exp - Φ u (v) σ (v -u) • Ω[u] σ dv and ∂ 2 ll Z(σ, |u|) = R d exp - Φ |u|Ω (v) σ [v • Ω -|u| ] 2 -σ σ 2 dv = R d exp - Φ u (v) σ [(v -u) • Ω[u] ] 2 -σ σ 2 dv,
where

Ω = u |u| if u = 0 and Ω is any vector in S d-1 if u = 0 (compare with (14), established for Ω = u/|u|, if u = 0).
At this point, we know that for any σ > 0, the equilibria are related to the critical points of Z(σ, •). In order to find possible bifurcation points of the disordered state u = 0, let us analyze the variations of Z(σ, •) for small σ. We assume the following hypothesis on the potential

V (| • |) ∈ C 2 (R d ), v → |v| 2 2 + V (|v|) is strictly convex on R d . (15) 
For such a potential, we can minimize Φ

u (v) with respect to v ∈ R d , for any u ∈ R d . Indeed, the function Φ u is convex, continuous on R d and Φ u (v) = |v -u| 2 2 + V (|v|) = |v| 2 2 + V (|v|) -v • u + |u| 2 2 = |v| |v| 2 2 + V (|v|) |v| - v • u |v| + |u| 2 2 ≥ |v| |v| 2 2 + V (|v|) |v| -|u| + |u| 2 2 .
By [START_REF] Bonnaillie-Noël | Efficient numerical calculation of drift and diffusion coefficients in the diffusion approximation of kinetic equations[END_REF] we deduce that lim |v|→+∞ Φ u (v) = +∞ and therefore Φ u has a minimum point

v ∈ R d . This minimum point is unique (use v -u + (∇ v V (| • |))(v) = 0 and the strict convexity of v → |v| 2 2 + V (|v|)
). We intend to analyze the sign of ∂ l Z(σ, |u|) for small σ.

Performing the change of variable

v = v + √ σw leads to ∂ l Z(σ, |u|)σ 1-d/2 exp Φ u (v) σ = R d exp - Φ u (v) -Φ u (v) -∇ v Φ u (v) • (v -v) σ (16) 
× (v -u) • Ω[u] σ d/2 dv = R d exp - Φ u (v + √ σw) -Φ u (v) - √ σ∇ v Φ u (v) • w σ (v + √ σw -u) • Ω[u] dw = R d exp - Φ 0 (v + √ σw) -Φ 0 (v) - √ σ∇ v Φ 0 (v) • w σ (v + √ σw -u) • Ω[u] dw.
We need to determine the sign of (v -u)

• Ω[u], where v is the minimum point of Φ u . As V (| • |) ∈ C 1 (R d ), we have V (0) = 0.
We assume that V (•) possesses another critical point r 0 > 0 and V (r) < 0 for any 0 < r < r 0 and V (r) > 0 for any r > r 0 .

Notice that this is the case for

V α,β (r) = β r 4 4 -α r 2 2 , α, β > 0, with r 0 = α/β.
Proposition 2.2 Assume that (12), ( 15), ( 17) hold true. Then 1. The function r → r + V (r) is strictly increasing on R + and maps [0, r 0 ] to [0, r 0 ], and ]r 0 , +∞[ to ]r 0 , +∞[.

We have

(v -u) • Ω[u] > 0 for any 0 < |u| < r 0 , inf δ≤|u|≤r 0 -δ (v -u) • Ω[u] > 0, 0 < δ < r 0 2 and (v -u) • Ω[u] < 0 for any |u| > r 0 , inf |u|≥r 0 +δ (u -v) • Ω[u] > 0, δ > 0.
Proof.

1. By [START_REF] Bostan | Gyro-kinetic Vlasov equation in three dimensional setting. Second order approximation[END_REF] we know that Φ 0 is strictly convex on R d and we deduce that r → r 2 2 + V (r) is strictly convex on R + . Therefore the function r → r + V (r) is strictly increasing on R + and maps [0, r 0 ] to [0, r 0 ]. It remains to check that it is unbounded when r → +∞. Suppose that there is a constant C such that r + V (r) ≤ C, r ∈ R + . After integration with respect to r, one gets

r 2 2 + V (r) ≤ V (0) + Cr, r ∈ R + , implying that r 2 2 + V (r) r ≤ V (0) r + C, r ∈ R + , which contradicts (12). 2. Let us consider 0 < |u| < r 0 . Therefore, v = 0 and |v| + V (|v|) v |v| = u, implying that |v| + V (|v|) = |u| ∈]0, r 0 [. By the previous statement we obtain 0 < |v| < r 0 , Ω[v] = v |v| = u |u| = Ω[u]
, and thus

(v -u) • Ω[u] = -V (|v|) v |v| • Ω[u] = -V (|v|) > 0.
Clearly, for any 0 < δ < r 0 /2, we have inf

δ≤|u|≤r 0 -δ (v -u) • Ω[u] = inf δ≤|u|≤r 0 -δ (-V (|v|)) > 0.
Similarly, for any |u| > r 0 , we have |v| > r 0 and

(v -u) • Ω[u] = -V (|v|) v |v| • Ω[u] = -V (|v|) < 0.
As before, for any δ > 0, we obtain inf

|u|≥r 0 +δ (u -v) • Ω[u] = inf |u|≥r 0 +δ V (|v|) > 0.
The previous arguments allow us to complete the analysis of the variations of Z(σ, |u|), when σ is small. The convergence when σ 0 in ( 16) can be handled by dominated convergence,

provided that w → |w| exp -∂ 2 v Φ 0 (v)w•w 2 belongs to L 1 (R d ). We assume that there is λ < 1 such that v → V λ (|v|) := λ |v| 2 2 + V (|v|) is convex on R d . ( 18 
)
The potentials

V α,β (|v|) = β |v| 4 4 -α |v| 2 2 , 0 < α < 1, β > 0 satisfy the above hypothesis. Under (18), we write Φ 0 (v) = (1 -λ) |v| 2 2 + V λ (|v|), v ∈ R d ,
and therefore

∂ 2 v Φ 0 (v) = (1 -λ)I d + ∂ 2 v V λ (| • |) ≥ (1 -λ)I d , v ∈ R d , implying that R d |w| exp - ∂ 2 v Φ 0 (v)w • w 2 dw ≤ R d |w| exp - (1 -λ)|w| 2 2 dw < +∞.
Notice that (18) guarantees ( 12) and [START_REF] Bostan | Gyro-kinetic Vlasov equation in three dimensional setting. Second order approximation[END_REF]. Indeed, the function v → V λ (|v|) being convex, it is bounded from below by a linear function

∃ (v λ , C λ ) ∈ R d × R such that V λ (|v|) ≥ (v • v λ ) + C λ , v ∈ R d ,
and therefore

Φ 0 (v) |v| = (1 -λ) |v| 2 2 + V λ (|v|) |v| ≥ (1 -λ) |v| 2 -|v λ | + C λ |v| → +∞, as |v| → +∞.
Obviously, Φ 0 is strictly convex, as sum between the strictly convex function

v → (1 -λ) |v| 2 2
and the convex function v → V λ (|v|).

In order to conclude the study of the variations of Z for small σ > 0, we consider potentials [START_REF] Bostan | Reduced fluid models for self-propelled populations, interacting through alignment[END_REF] and [START_REF] Bostan | On the Boltzmann equation for charged particle beams under the effect of strong magnetic fields[END_REF]. We come back to [START_REF] Bostan | Asymptotic fixed-speed reduced dynamics for kinetic equations in swarming[END_REF]. Notice that

V satisfying V (| • |) ∈ C 2 (R d ),
Φ 0 (v + √ σw) -Φ 0 (v) - √ σ∇ v Φ 0 (v) • w ≥ (1 -λ) |v + √ σw| 2 2 -(1 -λ) |v| 2 2 -(1 -λ) √ σv • w = (1 -λ)σ |w| 2 2 ,
implying that, for any 0

< σ ≤ 1 exp - Φ 0 (v + √ σw) -Φ 0 (v) - √ σ∇ v Φ 0 (v) • w σ (v + √ σw -u) • Ω[u] ≤ exp -(1 -λ) |w| 2 2 [|(v -u) • Ω[u]| + |w|] . As the function w → exp -(1 -λ) |w| 2 2 [|(v -u) • Ω[u]| + |w|] belongs to L 1 (R d ), we deduce by dominated convergence that lim σ 0 ∂ l Z(σ, |u|)σ 1-d/2 exp Φ u (v) σ = (v -u) • Ω[u] R d exp - ∂ 2 v Φ 0 (v)w • w 2 dw. As we know, cf. Proposition 2.2, that inf |u|∈[δ,r 0 -δ]∪[r 0 +δ,+∞[ |(v -u) • Ω[u]| > 0, 0 < δ < r 0 /2,
we deduce that for any δ ∈]0, r 0 /2[, there is σ δ > 0 such that

∂ l Z(σ, |u|) > 0 for any 0 < σ < σ δ , δ ≤ |u| ≤ r 0 -δ and ∂ l Z(σ, |u|) < 0 for any 0 < σ < σ δ , |u| ≥ r 0 + δ.
Motivated by the above behavior of the function Z, we assume that the potential v → V (|v|) satisfies [START_REF] Bonnaillie-Noël | Efficient numerical calculation of drift and diffusion coefficients in the diffusion approximation of kinetic equations[END_REF] (such that Z is well defined) and belongs to the family V defined by: there exists σ 0 > 0 verifying 1. For any 0 < σ < σ 0 there is l(σ) > 0 such that Z(σ, l) is stricly increasing on [0, l(σ)] and strictly decreasing on [l(σ), +∞[; 2. For any σ ≥ σ 0 , Z(σ, l) is strictly decreasing on [0, +∞[.

In fact, the critical diffusion coefficient σ 0 vanishes the second order derivative of Z with respect to l, at l = 0, as shown next.

Proposition 2.3 Let V (| • |
) ∈ V be a potential satisfying [START_REF] Bonnaillie-Noël | Efficient numerical calculation of drift and diffusion coefficients in the diffusion approximation of kinetic equations[END_REF]. Then we have

∂ 2 ll Z(σ, 0) ≥ 0, 0 < σ < σ 0 , ∂ 2 ll Z(σ 0 , 0) = 0, ∂ 2 ll Z(σ, 0) ≤ 0, σ > σ 0 and ∂ 2 ll Z(σ, l(σ)) ≤ 0, 0 < σ < σ 0 .
Proof. By Remark 2.2 we know that Z(σ, •) possesses a second order derivative with respect to l. As ∂ l Z(σ, 0) = 0, we write

1 2 ∂ 2 ll Z(σ, 0) = lim l 0 Z(σ, l) -Z(σ, 0) -l∂ l Z(σ, 0) l 2 = lim l 0 Z(σ, l) -Z(σ, 0) l 2 .
We deduce that ∂ 2 ll Z(σ, 0) ≥ 0 for any 0 < σ ≤ σ 0 and ∂ 2 ll Z(σ, 0) ≤ 0 for any σ ≥ σ 0 . In particular ∂ 2 ll Z(σ 0 , 0) = 0. For any 0 < σ < σ 0 , the function Z(σ, •) possesses a maximum at l = l(σ) > 0 and therefore ∂ 2 ll Z(σ, l(σ)) ≤ 0. It is also easily seen that lim σ σ 0 l(σ) = 0. Indeed, assume that there is η > 0 and a sequence (σ n ) n≥1 σ 0 such that 0 < σ n < σ 0 , l(σ n ) ≥ η for any n ≥ 1. We have

Z(σ n , l(σ n )) ≥ Z(σ n , η) > Z(σ n , 0), n ≥ 1.
After passing to the limit when n → +∞, we obtain a contradiction

Z(σ 0 , η) ≥ Z(σ 0 , 0) > Z(σ 0 , η)
and therefore lim σ σ 0 l(σ) = 0. We have proved that σ → l(σ) is continuous.

Remark 2.3 Given a potential V (| • |) ∈ V
, then the unique bifurcation point from the disordered state happens at σ 0 . In fact, if we define the function

H(σ, l) = R d M u (v)(v • Ω -l) dv ,
as in [START_REF] Barbaro | Phase transitions in a kinetic flocking model of Cucker-Smale type[END_REF]. Then by [START_REF] Bostan | Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics[END_REF], we get σ∂ l Z(σ, l) = Z(σ, l)H(σ, l). By taking the derivative with respect to l, we obtain

∂ l H = σ ∂ 2 ll Z Z - (∂ l Z) 2 Z 2 .
Therefore, for the curve l(σ) such that H(σ, l(σ)) = 0, we get ∂ l H(σ 0 , 0) = 0. Using implicit differentiation and the continuity of the curves and the functions involved, it is also easy to check that ∂ σ H(σ 0 , 0) = 0. Therefore, to clarify the behavior of the two curves at σ 0 , one needs to work more to compute the lim σ σ 0 l (σ). In any case, this shows that σ 0 is the only bifurcation point from the manifold of disorder states u = 0 for potentials

V (| • |) ∈ V
without the need of applying the Crandall-Rabinowitz bifurcation theorem. It would be interesting to use Crandall-Rabinowitz for general potentials to identify more general conditions for bifurcations.

In the last part of this section, we explore some properties of the potentials V in the class V. We show that under the hypothesis [START_REF] Bostan | On the Boltzmann equation for charged particle beams under the effect of strong magnetic fields[END_REF], we retrieve a weaker version of [START_REF] Bostan | Reduced fluid models for self-propelled populations, interacting through alignment[END_REF]. [START_REF] Bostan | On the Boltzmann equation for charged particle beams under the effect of strong magnetic fields[END_REF] and there is the limit lim σ 0 l(σ) = r 0 > 0, then V (r) ≤ 0 for any 0 < r ≤ r 0 and V (r) ≥ 0 for any r ≥ r 0 .

Proposition 2.4 Let V (| • |) ∈ V be a potential satisfying (12). The application σ → l(σ) is continuous on R + . Moreover, if V (| • |) ∈ C 2 (R d ) verifies
Proof. We are done if we check the continuity ant any σ ∈]0, σ 0 [. Assume that there is a sequence (σ n ) n≥1 ⊂]0, σ 0 [, lim n→+∞ σ n = σ ∈]0, σ 0 [ and η > 0 such that l(σ n ) > l(σ) + η for any n ≥ 1. We have

Z(σ n , l(σ n )) > Z(σ n , l(σ) + η) > Z(σ n , l(σ n )), n ≥ 1, leading to the contradiction Z(σ, l(σ) + η) ≥ Z(σ, l(σ)) > Z(σ, l(σ) + η).
Similarly, assume that there is a sequence

(σ n ) n≥1 ⊂]0, σ 0 [, lim n→+∞ σ n = σ ∈]0, σ 0 [ and η ∈]0, l(σ)[ such that l(σ n ) < l(σ) -η for any n ≥ 1. We have Z(σ n , l(σ n )) ≥ Z(σ n , l(σ) -η) > Z(σ n , l(σ)), leading to the contradiction Z(σ, l(σ) -η) ≥ Z(σ, l(σ)) > Z(σ, l(σ) -η).
Therefore lim n→+∞ l(σ n ) = l(σ) for any sequence (σ n ) n≥1 , lim n→+∞ σ n = σ ∈]0, σ 0 [. Assume now that lim σ 0 l(σ) = r 0 > 0. For any l ∈]0, r 0 [, we have 0 < l < l(σ) for σ ∈]0, σ 0 [ small enough. As Z(σ, •) is strictly increasing on [0, l(σ)], we deduce that ∂ l Z(σ, l) > 0 for σ small enough, and by [START_REF] Bostan | Asymptotic fixed-speed reduced dynamics for kinetic equations in swarming[END_REF] it comes that

R d exp - Φ 0 (v + √ σw) -Φ 0 (v) - √ σ∇ v Φ 0 (v) • w σ (-V (|v|) + √ σw • Ω) dw > 0,
where v is the minimum point of Φ lΩ , that is v = |v|Ω, |v| + V (|v|) = l. Passing to the limit when σ 0 yields

R d exp - ∂ 2 v Φ 0 (v)w • w 2 dw V (|v|) ≤ 0,
and therefore V (|v|) ≤ 0. As before, ( 18) implies ( 15) and therefore r → r + V (r) is strictly increasing on R + . We have l -|v| = V (|v|) ≤ 0 and l = |v| + V (|v|) ≥ l + V (l) saying that V (l) ≤ 0 for any l ∈]0, r 0 [, and also for l = r 0 . Consider now l > r 0 . For σ ∈]0, σ 0 [ small enough we have l > l(σ) and therefore ∂ l Z(σ, l) < 0. As before, ( 16) leads to l -|v| = V (|v|) ≥ 0 and we have l = |v| + V (|v|) ≤ l + V (l) saying that V (l) ≥ 0 for any l > r 0 , and also for l = r 0 . In particular r 0 is a critical point of V .

In the next result we analyze the behavior of l(σ) for σ small. Proposition 2.5 Let V (| • |) ∈ V be a potential satisfying [START_REF] Bonnaillie-Noël | Efficient numerical calculation of drift and diffusion coefficients in the diffusion approximation of kinetic equations[END_REF], [START_REF] Bostan | On the Boltzmann equation for charged particle beams under the effect of strong magnetic fields[END_REF].

If V (| • |) ∈ C 3
b (R d ) and there is the limit lim σ 0 l(σ) = r 0 > 0, then we have for any

Ω ∈ S d-1 V (r 0 ) lim σ 0 l(σ) -r 0 σ = - 1 + V (r 0 ) 6 R d (w • Ω)∂ 3 v Φ 0 (r 0 Ω)(w, w, w) exp -∂ 2 v Φ 0 (r 0 Ω)w•w 2 dw R d exp -∂ 2 v Φ 0 (r 0 Ω)w•w 2 dw where ∂ 3 v Φ 0 (r 0 Ω)(w, w, w) = 1≤i,j,k≤d ∂ 3 Φ 0 ∂v k ∂v j ∂v i (r 0 Ω)w k w j w i .
Proof. We fix Ω ∈ S d-1 . For any σ ∈]0, σ 0 [ we have ∂ l Z(σ, l(σ)) = 0, and ( 16) implies

R d exp - Φ 0 (v + √ σw) -Φ 0 (v) - √ σ∇ v Φ 0 (v) • w σ (-V (|v|) + √ σw • Ω) dw = 0, ( 19 
)
where v is the minimum point of Φ l(σ)Ω , that is v = |v|Ω, |v| + V (|v|) = l(σ). As the function r → r + V (r) is strictly increasing on R + , when σ 0, we have l(σ) → r 0 and |v| converges toward the reciprocal image of r 0 , through the function r → r +V (r), which is r 0 . We deduce

l(σ) -r 0 σ = |v| -r 0 σ + V (|v|) -V (r 0 ) |v| -r 0 |v| -r 0 σ , implying that lim σ 0 l(σ) -r 0 σ = (1 + V (r 0 )) lim σ 0 |v| -r 0 σ .
We will compute lim

σ 0 V (|v|) σ = V (r 0 ) lim σ 0 |v| -r 0 σ .
Thanks to [START_REF] Bostan | High magnetic field equilibria for the Fokker-Planck-Landau equation[END_REF] we have

R d exp - ∂ 2 v Φ 0 (r 0 Ω)w • w 2 dw lim σ 0 V (|v|) σ (20) 
= lim

σ 0 R d exp - Φ 0 (v + √ σw) -Φ 0 (v) - √ σ∇ v Φ 0 (v) • w σ w • Ω √ σ dw.
Observe that

R d exp - Φ 0 (v + √ σw) -Φ 0 (v) - √ σ∇ v Φ 0 (v) • w σ w • Ω √ σ dw (21) = R d exp - Φ 0 (v + √ σw) -Φ 0 (v) - √ σ∇ v Φ 0 (v) • w σ -exp - ∂ 2 v Φ 0 (v)w • w 2 w • Ω √ σ dw and lim σ 0 1 √ σ exp - Φ 0 (v + √ σw) -Φ 0 (v) - √ σ∇ v Φ 0 (v) • w σ -exp - ∂ 2 v Φ 0 (v)w • w 2 = -exp - ∂ 2 v Φ 0 (r 0 Ω)w • w 2 × lim σ 0 Φ 0 (v + √ σw) -Φ 0 (v) - √ σ∇ v Φ 0 (v) • w -σ 2 ∂ 2 v Φ 0 (v)w • w σ 3/2 = -exp - ∂ 2 v Φ 0 (r 0 Ω)w • w 2 lim σ 0 1 √ σ 1 0 (1 -t)[∂ 2 v Φ 0 (v + t √ σw) -∂ 2 v Φ 0 (v)]w • w dt = - 1 6 ∂ 3 v Φ 0 (r 0 Ω)(w, w, w) exp - ∂ 2 v Φ 0 (r 0 Ω)w • w 2 .
Recall that, thanks to (18), we have

∂ 2 v Φ 0 (v) ≥ (1 -λ)I d , v ∈ R d , implying that Φ 0 (v + √ σw) -Φ 0 (v) - √ σ∇ v Φ 0 (v) • w σ = 1 0 (1 -t)∂ 2 v Φ 0 (v + t √ σw)w • w dt ≥ (1 -λ) |w| 2 2 and ∂ 2 v Φ 0 (v)w • w 2 ≥ (1 -λ) |w| 2 2 , w ∈ R d .
Therefore the integrand of the right hand side in ( 21) can be bounded, uniformly with respect to σ > 0 by a

L 1 function exp - Φ 0 (v + √ σw) -Φ 0 (v) - √ σ∇ v Φ 0 (v) • w σ -exp - ∂ 2 v Φ 0 (v)w • w 2 |(w • Ω)| √ σ ≤ exp -(1 -λ) |w| 2 2 |(w • Ω)| √ σ 1 0 (1 -t)[∂ 2 v Φ 0 (v + t √ σw) -∂ 2 v Φ 0 (v)]w • w dt ≤ V (| • |) C 3 b (R d ) |w| 2 exp -(1 -λ) |w| 2 2 , w ∈ R d .
Combining [START_REF] Braun | The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles[END_REF], [START_REF] Burini | Collective learning dynamics modeling based on the kinetic theory of active particles[END_REF], we obtain by dominated convergence

V (r 0 ) lim σ 0 |v| -r 0 σ = lim σ 0 V (|v|) σ = - R d (w • Ω)∂ 3 v Φ 0 (r 0 Ω)(w, w, w) exp -∂ 2 v Φ 0 (r 0 Ω)w•w 2 dw 6 R d exp -∂ 2 v Φ 0 (r 0 Ω)w•w 2
dw and therefore

V (r 0 ) lim σ 0 l(σ) -r 0 σ = (1 + V (r 0 )) V (r 0 ) lim σ 0 |v| -r 0 σ = - 1 + V (r 0 ) 6 R d (w • Ω)∂ 3 v Φ 0 (r 0 Ω)(w, w, w) exp -∂ 2 v Φ 0 (r 0 Ω)w•w 2 dw R d exp -∂ 2 v Φ 0 (r 0 Ω)w•w 2 dw .

Linearization of the interaction mechanism

We intend to investigate the asymptotic behavior of (2) when ε 0. We introduce the formal development

f ε = f + εf 1 + ...
and we expect that Q(f ) = 0 and

∂ t f + v • ∇ x f = lim ε 0 Q(f ε ) -Q(f ) ε = dQ f (f 1 ) =: L f (f 1 ). ( 22 
)
As seen before, for any (t,

x) ∈ R + × R d , the individual density f (t, x, •) is a von Mises-Fisher distribution f (t, x, v) = ρ(t, x)M |u|Ω(t,x) (v), v ∈ R d where |u| is a critical point of Z(σ, •), that is |u| ∈ {0, l(σ)} if 0 < σ < σ 0 and |u| = 0 if σ ≥ σ 0 .
It remains to determine the fluid equations satisfied by the macroscopic quantities ρ, Ω. When |u| = 0, the continuity equation leads to ∂ t ρ = 0. In the sequel we concentrate on the case |u| = l(σ), 0 < σ < σ 0 (that is, the modulus of the mean velocity is given, as a function of σ). We follow the strategy in [START_REF] Bostan | Reduced fluid models for self-propelled populations, interacting through alignment[END_REF][START_REF] Aceves-Sánchez | Hydrodynamic limits for kinetic flocking models of Cucker-Smale type[END_REF]. We consider

L 2 Mu = {χ : R d → R measurable , R d (χ(v)) 2 M u (v) dv < +∞} and H 1 Mu = {χ : R d → R measurable , R d [ (χ(v)) 2 + |∇ v χ| 2 ]M u (v) dv < +∞}.
We introduce the usual scalar products This comes from the equivalence between the Fokker-Planck and Schrödinger operators. As described in [START_REF] Bonnaillie-Noël | Efficient numerical calculation of drift and diffusion coefficients in the diffusion approximation of kinetic equations[END_REF], we can write it as

(χ, θ) Mu = R d χ(v)θ(v)M u (v) dv, χ, θ ∈ L 2 Mu , ((χ, θ)) Mu = R d (χ(v)θ(v) + ∇ v χ • ∇ v θ)M u (v) dv, χ, θ ∈ H 1
- σ √ M u div v M u ∇ v g √ M u = -σ∆ v g + 1 4σ |∇ v Φ u | 2 - 1 2 ∆ v Φ u g.
The operator

H u = -σ∆ v + 1 4σ |∇ v Φ u | 2 -1 2 ∆ v Φ u is defined in the domain D(H u ) = g ∈ L 2 (R d ), 1 4σ |∇ v Φ u | 2 - 1 2 ∆ v Φ u g ∈ L 2 (R d ), ∆ v g ∈ L 2 (R d ) .
We have a spectral decomposition of the operator H u under suitable confining assumptions (cf. Theorem XIII.67 in [START_REF] Reed | Methods of modern mathematical physics[END_REF]).

Lemma 3.1 Assume that the function

v → 1 4σ |∇ v Φ u | 2 -1 2 ∆ v Φ u belongs to L 1 loc (R d )
, is bounded from below and is coercive i.e.

lim |v|→+∞ 1 4σ |∇ v Φ u | 2 - 1 2 ∆ v Φ u = +∞.
Then H -1 u is a self adjoint compact operator in L 2 (R d ) and H u admits a spectral decomposition, that is, a nondecreasing sequence of real numbers (λ n u ) n∈N , lim n→+∞ λ n u = +∞, and a

L 2 (R d )-orthonormal basis (ψ n u ) n∈N such that H u ψ n u = λ n u ψ n u , n ∈ N, λ 0 u = 0, λ 1 u > 0.
Therefore, under the hypotheses in Lemma 3.1, for any u ∈ R d there is λ u > 0 such that for any χ ∈ H 1 Mu we have

σ R d |∇ v χ| 2 M u (v) dv ≥ λ u R d χ(v) - R d χ(v )M u (v ) dv 2 M u (v) dv. ( 23 
)
The fluid equations are obtained by taking the scalar product of ( 22) with elements in the kernel of the (formal) adjoint of L f , that is with functions

ψ = ψ(v) such that R d (L f g)(v)ψ(v) dv = 0, for any function g = g(v),
see also [START_REF] Bardos | Fluid dynamic limits of kinetic equations. I. Formal derivations[END_REF][START_REF] Bardos | Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation[END_REF][START_REF] Bostan | On the Boltzmann equation for charged particle beams under the effect of strong magnetic fields[END_REF][START_REF] Bostan | High magnetic field equilibria for the Fokker-Planck-Landau equation[END_REF][START_REF] Levermore | Entropic convergence and the linearized limit for the Boltzmann equation[END_REF][START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF]. For example, ψ = 1 belongs to the kernel of

L f R d (L f g)(v) dv = R d lim ε 0 Q(f + εg) -Q(f ) ε dv = lim ε 0 1 ε R d {Q(f + εg) -Q(f )} dv = 0,
and we obtain the continuity equation ( 7)

∂ t R d f dv + div x R d f v dv = R d L f (f 1 ) dv = 0.
In the sequel we determine the formal adjoint of the linearization of the collision operator Q around its equilibria.

Proposition 3.1 Let f = f (v) be an equilibrium with non vanishing mean velocity

f = ρM u , ρ = ρ[f ], u = |u|Ω[f ], |u| = l(σ), 0 < σ < σ 0 .
1. The linearization L f = dQ f is given by

L f g = div v σ∇ v g + g∇ v Φ u -M u R d (v -u)g(v ) dv .
2. The formal adjoint of L f is

L f ψ = σ div v (M u ∇ v ψ) M u + (v -u) • W [ψ], W [ψ] := R d M u (v)∇ v ψ dv.
3. We have the identity

L f (f (v -u)) = σ∇ v f -div v (f M u ) , M u := R d M u (v )(v -u) ⊗ (v -u) dv .
Proof.

1. We have

L f g = d ds s=0 Q(f + sg) = div v σ∇ v g + g∇ v Φ u -f d ds s=0 u[f + sg] and d ds s=0 u[f + sg] = R d (v -u[f ])g(v) dv R d f (v) dv .
Therefore we obtain

L f g = div v σ∇ v g + g∇ v Φ u --M u R d (v -u[f ])g(v ) dv .
2. We have

R d (L f g)(v)ψ(v) dv = - R d σ∇ v g + g∇ v Φ u -M u (v) R d (v -u[f ])g(v ) dv • ∇ v ψ dv = R d g(v) (σdiv v ∇ v ψ -∇ v ψ • ∇ v Φ u ) dv + R d g(v )(v -u[f ]) dv • R d M u (v)∇ v ψ dv = R d g(v) (σdiv v ∇ v ψ -∇ v ψ • ∇ v Φ u + (v -u[f ]) • W [ψ]) dv implying L f ψ = σ div v (M u ∇ v ψ) M u + (v -u[f ]) • W [ψ].
3. For any i ∈ {1, ..., d} we have

L f (f (v -u) i ) = div v   (v -u) i (σ∇ v f + f ∇ v Φ u =0 ) + σf e i -M u R d (v -u) i (v -u)f (v ) dv   = σ∂ v i f -div v f R d (v -u) ⊗ (v -u)M u (v ) dv i and therefore L f (f (v -u)) = σ∇ v f -div v (f M u ).
We identify now the kernel of L f . Lemma 3.2 Let f = ρM u > 0 be an equilibrium with non vanishing mean velocity. The following statements are equivalent 1. The function ψ = ψ(v) belongs to ker L f .

The function

ψ = ψ(v) satisfies σ div v (M u ∇ v ψ) M u (v) + (v -u) • W = 0 ( 24 
)
for some vector W ∈ ker(M u -σI d ).

Moreover, the linear map W : ker

L f → ker(M u -σI d ), defined by W [ψ] = R d M u (v)∇ v ψ
dv induces an isomorphism between the vector spaces ker L f / ker W and ker(M u -σI d ), where ker W is the set of constant functions.

Proof.

1. =⇒ 2. Let ψ be an element of ker L f . By the last statement in Proposition 3.1 we deduce

0 = R d L f ψ f (v -u) dv = R d ψ(v)L f (f (v -u)) dv = R d ψ(v) [σ∇ v f -div v (f M u )] dv = -σ R d f (v)∇ v ψ dv + M u R d f (v)∇ v ψ dv = ρ(M u -σI d )W [ψ].
As ρ > 0 we deduce that W [ψ] ∈ ker(M u -σI d ) and by the second statement in Proposition 3.1 it comes that

σ div v (M u ∇ v ψ) M u (v) + (v -u) • W = 0, W = W [ψ] ∈ ker(M u -σI d ).
2. =⇒ 1. Let ψ be a function satisfying [START_REF] Carrillo | Asymptotic flocking dynamics for the kinetic Cucker-Smale model[END_REF] for some vector W ∈ ker(M u -σI d ). Multiplying by M u (v)(v -u) and integrating with respect to v yields

-σ R d M u (v)∇ v ψ dv + M u W = 0.
As we know that W ∈ ker(M u -σI d ), we deduce that

W = W [ψ], implying that ψ belongs to ker L f L f ψ = σ div v (M u ∇ v ψ) M u + (v -u) • W [ψ] = σ div v (M u ∇ v ψ) M u + (v -u) • W = 0.
We focus on the eigenspace ker(M u -σI d ).

Lemma 3.3 Let M u be an equilibrium with non vanishing mean velocity. Then we have

M u -σI d = σ 2 ∂ 2 ll Z(σ, l(σ)) Z(σ, l(σ)) Ω ⊗ Ω ≤ 0, Ω = u |u| .
In particular (Ru

) ⊥ ⊂ ker(M u -σI d ) with equality iff ∂ 2 ll Z(σ, l(σ)) = 0.
Proof. Let us consider {E 1 , . . . , E d-1 } an orthonormal basis of (RΩ) ⊥ . By using the decomposition

v -u = (Ω ⊗ Ω)(v -u) + d-1 i=1 (E i ⊗ E i )(v -u) = (Ω ⊗ Ω)(v -u) + d-1 i=1 (E i ⊗ E i )v
we obtain

M u = R d Ω ⊗ Ω(v -u) + d-1 i=1 E i ⊗ E i v ⊗   Ω ⊗ Ω(v -u) + d-1 j=1 E j ⊗ E j v   M u (v) dv = (M u Ω • Ω)Ω ⊗ Ω + d-1 i=1 (M u E i • E i )E i ⊗ E i since we have M u Ω • E j = 0, 1 ≤ j ≤ d -1 (25) 
and

M u E i • E j = δ ij R d |v| 2 -(v • Ω) 2 d -1 M u (v) dv, 1 ≤ i, j ≤ d -1. ( 26 
)
The formula [START_REF] Carrillo | Particle, Kinetic, and Hydrodynamic Models of Swarming[END_REF] comes by the change of variable v = (I d -2E j ⊗ E j )v , by noticing that

I d -2E j ⊗ E j ∈ T u , for any 1 ≤ j ≤ d -1 M u Ω • E j = R d Ω • (v -u)(E j • v)M u (v) dv = - R d Ω • (v -u)(E j • v )M u (v ) dv = -M u Ω • E j = 0, 1 ≤ j ≤ d -1.
For the formula ( 26) with i = j we use the rotation

O ij ∈ T u v = O ij v , O ij = Ω ⊗ Ω + k / ∈{i,j} E k ⊗ E k + E i ⊗ E j -E j ⊗ E i . Notice that (E i • v)(E j • v) = -(E j • v )(E i • v ), (E i • v) 2 = (E j • v ) 2
and therefore,

M u E i • E j = R d (E i • v)(E j • v)M u (v) dv = - R d (E j • v )(E i • v )M u (v ) dv = -M u E i • E j = 0, 1 ≤ i = j ≤ d -1
and

M u E i • E i = R d (E i • v) 2 M u (v) dv = R d (E j • v ) 2 M u (v ) dv = M u E j • E j = 0, 1 ≤ i, j ≤ d -1. As d-1 i=1 (E i • v) 2 = |v| 2 -(v • Ω) 2 , we obtain R d (E i • v) 2 M u (v) dv = R d |v| 2 -(v • Ω) 2 d -1 M u (v) dv, 1 ≤ i ≤ d -1
and

M u = R d ( (v -u) • Ω) 2 M u (v) dv Ω ⊗ Ω + R d |v| 2 -(v • Ω) 2 d -1 M u (v) dv (I d -Ω ⊗ Ω).
We claim that

R d |v| 2 -(v•Ω) 2 d-1 M u (v) dv = σ. Multiplying σ∇ v M u + M u (v)∇ v Φ u = 0 by (|v| 2 I d -v ⊗ v)Ω we obtain R d σ∇ v M u • (|v| 2 I d -v ⊗ v)Ω dv + R d M u (v)∇ v Φ u • (|v| 2 I d -v ⊗ v)Ω dv = 0. But we have div v [(|v| 2 I d -v ⊗ v)Ω] = div v [|v| 2 Ω -(v • Ω)v] = -(d -1)(v • Ω) and ∇ v Φ u • (|v| 2 I d -v ⊗ v)Ω = v -u + V (|v|) v |v| • (|v| 2 I d -v ⊗ v)Ω = -(|v| 2 -(v • Ω) 2 )|u|.
We deduce that

(d -1)σ R d (v • Ω)M u (v) dv =|u| -|u| R d [|v| 2 -(v • Ω) 2 ]M u (v) dv = 0
and by taking into account that

|u| = R d (v • Ω)M u (v) dv, we obtain R d |v| 2 -(v • Ω) 2 d -1 M u (v) dv = σ.
By Remark 2.2, we know that

σ 2 ∂ 2 ll Z(σ, l(σ)) Z(σ, l(σ)) = R d M u (v){((v -u) • Ω) 2 -σ} dv = R d M u (v)((v -u) • Ω) 2 dv -σ
and finally we have

M u -σI d = R d ((v -u) • Ω) 2 M u (v) dv -σ Ω ⊗ Ω = σ 2 ∂ 2 ll Z(σ, l(σ)) Z(σ, l(σ)) Ω ⊗ Ω.
As l(σ) is a maximum point of Z(σ, •), we have ∂ 2 ll Z(σ, l(σ)) ≤ 0 and therefore M u ≤ σI d .

4

The kernel of L f By Lemmas 3.2, 3.3, any solution of ( 24) with W ∈ (Ru) ⊥ belongs to the kernel of the formal adjoint L f . Generally we will solve the elliptic problem

-σdiv v (M u ∇ v ψ) = (v -u) • W M u (v), v ∈ R d (27) 
for any W ∈ R d . We consider the continuous bilinear symmetric form a u :

H 1 Mu × H 1 Mu → R defined by a u (ϕ, θ) = σ R d ∇ v ϕ • ∇ v θM u (v) dv, ϕ, θ ∈ H 1

Mu

and the linear form L :

H 1 Mu → R, L(θ) = R d θ(v)(v -u) • W M u (v) dv, θ ∈ H 1 Mu . Notice that under the hypothesis (12) L is bounded on H 1 Mu R d |θ(v)(v -u) • W |M u dv ≤ R d (θ(v)) 2 M u dv 1/2 R d (|v| + |u|) 2 M u dv 1/2 |W |.
We are looking for variational solutions of ( 27) i.e.,

ψ ∈ H 1 Mu and a u (ψ, θ) = L(θ) for any θ ∈ H 1 Mu . ( 28 
)
When taking θ = 1 ∈ H 1 Mu , we obtain the following necessary condition for the solvability of ( 27)

L(1) = R d (v -u) • W M u (v) dv = 0 (29)
which is satisfied for any W ∈ R d , because M u has mean velocity u. It happens that ( 29) also guarantees the solvability of [START_REF] Carrillo | Mean-field limit for collective behavior models with sharp sensitivity regions[END_REF]. For that, it is enough to observe that the bilinear form a u is coercive on the Hilbert space H1 Mu := {θ ∈ H 1 Mu : ((θ, 1)) Mu = 0}. Indeed, for any θ ∈ H 1

Mu such that ((θ, 1)) Mu = 0, we have thanks to the Poincaré inequality ( 23)

σ R d |∇ v θ| 2 M u (v) dv ≥ λ u R d (θ(v)) 2 M u (v) dv,
and therefore

a u (θ, θ) ≥ λ u 2 R d (θ(v)) 2 M u (v) dv + σ 2 R d |∇ v θ| 2 M u (v) dv ≥ min{σ, λ u } 2 θ 2 Mu .
Thanks to Lax-Milgram lemma on the Hilbert space H1 Mu , there is a unique function ψ ∈ H1

Mu such that a u (ψ, θ) = L( θ) for any θ ∈ H1 Mu .

The condition [START_REF] Carrillo | Long-time behaviour and phase transitions for the Mckean-Vlasov equation on the torus[END_REF] allows us to extend [START_REF] Chayes | The McKean-Vlasov equation in finite volume[END_REF] to H 1 Mu (apply [START_REF] Chayes | The McKean-Vlasov equation in finite volume[END_REF] with θ = θ -((θ, 1)) Mu , for any θ ∈ H 1 Mu ). The uniqueness of the solution of ( 30) implies the uniqueness, up to a constant, for the solution of [START_REF] Carrillo | Self-propelled interacting particle systems with roosting force[END_REF].

From now on, for any W ∈ R d , we denote by ψ W the unique solution of ( 28), verifying

R d ψ W (v)M u (v) dv = 0. Notice that ψ 0 = 0. The solution ψ W depends linearly on W ∈ R d .
Let us introduce the Hilbert spaces

L 2 Mu = {ξ : R d → R d measurable , d i=1 R d (ξ i (v)) 2 M u (v) dv < +∞} H 1 Mu = {ξ : R d → R d measurable , d i=1 R d {(ξ i (v)) 2 + |∇ v ξ i | 2 }M u (v) dv < +∞} endowed with the scalar product (ξ, η) Mu = d i=1 R d ξ i (v)η i (v)M u (v) dv, ξ, η ∈ L 2 Mu ((ξ, η)) Mu = d i=1 R d {ξ i (v)η i (v) + ∇ v ξ i • ∇ v η i }M u (v) dv, ξ, η ∈ H 1 Mu .
We denote the induced norms by |ξ| Mu = (ξ, ξ)

1/2 Mu , ξ ∈ L 2 Mu and ξ Mu = ((ξ, ξ)) 1/2 Mu , ξ ∈ H 1 Mu . Obviously, a vector field ξ = ξ(v) belongs to H 1 Mu iff ξ i ∈ H 1
Mu for any i ∈ {1, ..., d} and we have

ξ 2 Mu = d i=1 ξ i 2 Mu .
Let us consider the closed subspace

H1 Mu = {ξ ∈ H 1 Mu : R d ξ(v)M u (v) dv = 0}.
Thanks to [START_REF] Carrillo | Double milling in a self-propelled swarms from kinetic theory[END_REF], for any ξ ∈ H 1 Mu we have the inequality

σ d i=1 R d |∇ v ξ i | 2 M u (v) dv ≥ λ u d i=1 R d ξ i (v) - R d ξ i (v )M u (v ) dv 2 M u (v) dv
and therefore

σ d i=1 R d |∇ v ξ i | 2 M u (v) dv ≥ min{σ, λ u } 2 d i=1 R d [(ξ i (v)) 2 + |∇ v ξ i | 2 ]M u (v) dv = min{σ, λ u } 2 ξ 2 Mu , ξ ∈ H1 Mu . (31) 
We introduce the continuous bilinear symmetric form a u :

H 1 Mu × H 1 Mu → R defined by a u (ξ, η) = σ R d ∂ v ξ : ∂ v η M u (v) dv = d i=1 a u (ξ i , η i ), ξ, η ∈ H 1

Mu

and the linear form L :

H 1 Mu → R, L(η) = R d (v -u) • η(v)M u (v) dv, η ∈ H 1 Mu . Under the hypothesis (12), it is easily seen that L is bounded on H 1 Mu R d |(v -u) • η(v)|M u (v) dv ≤ R d (|v| + |u|) 2 M u (v) dv 1/2 η Mu , η ∈ H 1 Mu .
Proposition 4.1 There is a unique solution F of the variational problem

F ∈ H1

Mu and a u (F, η) = L(η), for any η ∈ H 1 Mu .

For any

W ∈ R d we have ψ W (v) = F (v) • W, v ∈ R d .
The vector field F is left invariant by the family T u .

Proof. The bilinear for a u is coercive on H1 Mu , thanks to (31)

a u (ξ, ξ) ≥ min{σ, λ u } 2 ξ 2
Mu , for any ξ ∈ H1 Mu .

By Lax-Milgram lemma, applied on the Hilbert space H1 Mu , there is a unique vector field F ∈ H1

Mu such that a u (F, η) = L(η), for any η ∈ H1 Mu . Actually, the above equality holds true for any

η ∈ H 1 Mu a u (F, η) = d i=1 a u (F i , η i ) = d i=1 a u (F i , η i -(η i , 1) Mu ) = L(η 1 -(η 1 , 1) Mu , ..., η d -(η d , 1) Mu ) = d i=1 R d (v i -u i )[η i (v) -(η i , 1) Mu ]M u (v) dv = d i=1 R d (v i -u i )η i (v)M u (v) dv = L(η).

It remains to check that for any

W ∈ R d , v → F (v) • W solves (30), on H 1 Mu . Observe that F • W ∈ H1
Mu . Notice also that for any θ ∈ H 1 Mu we have θW ∈ H 1 Mu and

a u (F • W, θ) = σ R d t ∂ v F W • ∇ v θM u (v) dv = σ R d ∂ v F : ∂ v (θW )M u (v) dv = a u (F, θW ) = L(θW ) = R d (v -u) • W θ(v)M u (v) dv = L(θ).
Thank to the uniqueness we obtain

ψ W (v) = F (v)•W, v ∈ R d , W ∈ R d . Consider now O ∈ T u .
We are done if we prove that v → OF ( t Ov) solves the same problem as F . Clearly we have

R d |OF ( t Ov)| 2 M u (v) dv = R d |F (v )| 2 M u (v ) dv < +∞ R d ∂[OF ( t O •)] : ∂[OF ( t O •)]M u (v) dv = R d ∂F ( t O •) : ∂F ( t O •)M u (v) dv = R d ∂F ( t Ov) t O : ∂F ( t Ov) t OM u (v) dv = R d ∂F (v ) : ∂F (v )M u (v ) dv < +∞. and R d OF ( t Ov)M u (v) dv = O R d F (v )M u (Ov ) dv = 0 saying that v → OF ( t Ov) belongs to H1 Mu . For any η ∈ H 1 Mu we have t Oη(O •) ∈ H 1 Mu and a u (OF ( t O •), η) = σ R d ∂(OF ( t O •)) : ∂ηM u (v) dv = σ R d O∂F ( t Ov) t O : ∂ηM u (v) dv = σ R d ∂F (v ) : t O(∂η)(Ov )OM u (Ov ) dv = σ R d ∂F (v ) : ∂( t Oη(O •))(v )M u (v ) dv = R d (v -u) • t Oη(Ov )M u (v ) dv = R d (v -u) • η(v)M u (v) dv = L(η).
The vector field F expresses in terms of two functions which are left invariant by the family T u .

Proposition 4.2 There is a function ψ, which is left invariant by the family T u , such that

F (v) = ψ(v) v -(v • Ω)Ω |v| 2 -(v • Ω) 2 + ψ Ω (v)Ω, v ∈ R d \ (RΩ).
Proof. Obviously we have

F = (F • Ω)Ω + F = ψ Ω Ω + F , with F = (I d -Ω ⊗ Ω)F .
The vector field F is orthogonal to Ω and is left invariant by the family T u

F ( t Ov) = F ( t Ov) -(F ( t Ov) • Ω)Ω = t OF (v) -( t OF (v) • Ω)Ω = t O(F (v) -(F (v) • Ω)Ω) = t OF (v), v ∈ R d .
We claim that F (v) is parallel to the orthogonal projection of v over (RΩ) ⊥ . Indeed, for any v ∈ R d \ (RΩ), let us consider

E(v) = (I d -Ω ⊗ Ω)v |v| 2 -(v • Ω) 2 .
When d = 2, since E(v) and F (v) are both orthogonal to Ω, there exists a function ψ = ψ(v) such that

F (v) = ψ(v)E(v) = ψ(v) (I 2 -Ω ⊗ Ω)v |v| 2 -(Ω • v) 2 , v ∈ R 2 \ (RΩ) .
If d ≥ 3, let us denote by ⊥ E, any unitary vector orthogonal to E and Ω. Introducing the orthogonal matrix

O = I d -2 ⊥ E ⊗ ⊥ E ∈ T u , we obtain F ( t O •) = t OF . Observe that 0 = ⊥ E • E(v) = ⊥ E • v -(v • Ω)Ω |v| 2 -(v • Ω) 2 = ⊥ E • v |v| 2 -(v • Ω) 2 , Ov = v
and thus

F (v) = F (Ov) = OF (v) = (I d -2 ⊥ E ⊗ ⊥ E)F (v) = F (v) -2( ⊥ E • F (v)) ⊥ E
from which it follows that ⊥ E • F (v) = 0, for any vector ⊥ E orthogonal to E and Ω. Hence, there exists a function ψ(v) such that

F (v) = ψ(v)E(v) = ψ(v) (I d -Ω ⊗ Ω)v |v| 2 -(v • Ω) 2 , v ∈ R d \ (RΩ).
It is easily seen that the function ψ is left invariant by the family T u . Indeed, for any O ∈ T u we have

ψ( t Ov) = F ( t Ov) • E( t Ov) = t OF (v) • t OE(v) = F (v) • E(v) = ψ(v), v ∈ R d .
Similarly, ψ Ω is left invariant by the family

T u ψ Ω ( t Ov) = F ( t Ov) • Ω = t OF (v) • Ω = F (v) • OΩ = F (v) • Ω = ψ Ω (v), v ∈ R d , O ∈ T u .
The functions ψ, ψ Ω will enter the fluid model satisfied by the macroscopic quantities ρ, Ω, |u|.

It is convenient to determine the elliptic partial differential equations satisfied by them.

Proposition 4.3 There are two functions χ = χ(c, r 

) :] -1, 1[×]0, +∞[→ R, χ Ω = χ Ω (c, r) : ] -1, 1[×]0, +∞[→ R such that ψ(v) = χ (v • Ω/|v|, |v|) , ψ Ω (v) = χ Ω (v • Ω/|v|, |v|), v ∈ R d \ (RΩ).
ψ Ω ∈ H1 Mu and σ R d ∇ v ψ Ω • ∇ v θ M u (v) dv = R d (v -u) • Ω θ(v)M u (v) dv, θ ∈ H1 Mu . (34) 
By Remark 2.1 we know that there is

χ Ω = χ Ω (c, r) such that ψ Ω (v) = χ Ω (v • Ω/|v|, |v|), v ∈ R d \ (RΩ).
As ψ Ω belongs to H1 Mu , which is equivalent to

R d ψ Ω (v)M u (v) dv = 0, R d |∇ v ψ Ω | 2 M u (v) dv < +∞
we are led to the Hilbert space

H ,|u| = {h :] -1, 1[×]0, +∞[→ R, R + r d-1 +1 -1 h(c, r)e(c, r, |u|)(1 -c 2 ) d-3 2 dcdr = 0, R + r d-1 +1 -1 (∂ c h) 2 1 -c 2 r 2 + (∂ r h) 2 e(c, r, |u|)(1 -c 2 ) d-3 2 
dcdr < +∞} endowed with the scalar product

(h, g) ,|u| = R + r d-1 +1 -1 ∂ c h∂ c g 1 -c 2 r 2 + ∂ r h∂ r g e(c, r, |u|)(1 -c 2 ) d-3 2 dcdr, h, g ∈ H ,|u| .
Taking in [START_REF] Degond | Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics[END_REF] 

θ(v) = h(v • Ω/|v|, |v|), with h ∈ H ,|u| (which means θ ∈ H1 Mu ), we obtain σ R + r d-1 +1 -1 ∂ c χ Ω ∂ c h 1 -c 2 r 2 + ∂ r χ Ω ∂ r h e(c, r, |u|)(1 -c 2 ) d-3 2 dcdr = R + r d-1 +1 -1 (rc -|u|)h(c, r)e(c, r, |u|)(1 -c 2 ) d-3 2 
dcdr which implies [START_REF] Degond | Macroscopic limits and phase transition in a system of self-propelled particles[END_REF]. We focus now on the equation satisfied by ψ. Let us consider an orthonormal basis {E 1 , ..., E d-1 } of (RΩ) ⊥ . By Remark 2.1 we know that there is χ = χ(c, r) such that ψ(v) = χ(v • Ω/|v|, |v|) and

ψ E i (v) = F (v) • E i = ψ(v) v • E i |v| 2 -(v • Ω) 2 = χ(v • Ω/|v|, |v|) v • E i |v| 2 -(v • Ω) 2 for v ∈ R d \ (RΩ), i ∈ {1, ..., d -1}. Let us consider ψ E i ,h (v) = h(v • Ω/|v|, |v|) v•E i √ |v| 2 -(v•Ω) 2 , where h = h(c, r) is a function such that ψ E i ,h ∈ H 1 Mu . Actually, once that ψ E i ,h ∈ H 1 Mu , then ((ψ E i ,h , 1)) Mu = R d h(v • Ω/|v|, |v|) v•E i √ |v| 2 -(v•Ω) 2 M u (v) dv = 0, saying that ψ E i ,h ∈ H1 Mu . A straightforward computation shows that ∇ v ψ E i ,h = v • E i |v| 2 -(v • Ω) 2 ∂ c h I d -v⊗v |v| 2 |v| Ω + ∂ r h v |v| + h v • Ω |v| , |v| I d - (v -(v • Ω)Ω) ⊗ v |v| 2 -(v • Ω) 2 E i |v| 2 -(v • Ω) 2 and |∇ v ψ E i ,h | 2 = (v • E i ) 2 |v| 4 (∂ c h) 2 + (v • E i ) 2 |v| 2 -(v • Ω) 2 (∂ r h) 2 + |v| 2 -(v • Ω) 2 -(v • E i ) 2 (|v| 2 -(v • Ω) 2 ) 2 h 2 v • Ω |v| , |v| . The condition ψ E i ,h ∈ H 1 Mu writes R d (ψ E i ,h ) 2 M u (v) dv < +∞, R d |∇ v ψ E i ,h | 2 M u (v) dv < +∞
which is equivalent, thanks to the Poincaré inequality [START_REF] Carrillo | Double milling in a self-propelled swarms from kinetic theory[END_REF] to

R d |∇ v ψ E i ,h | 2 M u (v) dv = R d (v • E i ) 2 |v| 4 (∂ c h) 2 + (v • E i ) 2 (∂ r h) 2 |v| 2 -(v • Ω) 2 + |v| 2 -(v • Ω) 2 -(v • E i ) 2 (|v| 2 -(v • Ω) 2 ) 2 h 2 M u (v) dv < +∞
and therefore to h ∈ H ⊥,|u| , where we consider he Hilbert space

H ⊥,|u| = {h :] -1, 1[×]0, +∞[→ R, h 2 ⊥,|u| = (h, h) ⊥,|u| < +∞} endowed with the scalar product (g, h) ⊥,|u| = R + r d-1 +1 -1 1 -c 2 r 2 ∂ c g∂ c h + ∂ r g∂ r h + (d -2)gh r 2 (1 -c 2 ) e(c, r, |u|)(1 -c 2 ) d-3 2 dcdr, g, h, ∈ H ⊥,|u| . Taking θ = ψ E i ,h ∈ H1 Mu in (30) leads to σ R d ∇ v ψ E i • ∇ v ψ E i ,h M u (v) dv = R d ψ E i ,h (v • E i )M u (v) dv, h ∈ H ⊥,|u| or equivalently σ R + r d-1 +1 -1 1 -c 2 r 2 ∂ c χ∂ c h + ∂ r χ∂ r h + (d -2)χh r 2 (1 -c 2 ) e(c, r, |u|)(1 -c 2 ) d-3 2 dcdr = R + r d-1 +1 -1 rh(c, r)e(c, r, |u|)(1 -c 2 ) d-2 2 dcdr, h ∈ H ⊥,|u|
which implies [START_REF] Cucker | Emergent behavior in flocks[END_REF].

The fluid model

The balances for the macroscopic quantities ρ, u follow by using the elements in the kernel of L f .

Proof. (of Theorem 1.1) The use of ψ = 1 ∈ ker L f leads to [START_REF] Bellomo | On the asymptotic theory from microscopic to macroscopic tissue models: An overview with perspectives[END_REF]. By Lemma 3.3, we know that (Ru) ⊥ ⊂ ker(M u -σI d ) and thus, for any (t, x) ∈ R + × R d , the vector field

v → F (t, x, v) = χ v • Ω(t, x) |v| , |v| (I d -Ω(t, x) ⊗ Ω(t, x))v |v| 2 -(v • Ω(t, x)) 2 = d-1 i=1 ψ E i (v)E i belongs to the kernel of L f , implying that R d ∂ t f F (t, x, v) dv + R d v • ∇ x f F (t, x, v) dv = 0, (t, x) ∈ R + × R d .
We have

∂ t f = ∂ t ρM u + ρ Mu σ (v -u) • ∂ t u and we obtain R d ∂ t f F dv = R d ∂ t ρ + ρ σ (v -u) • ∂ t u χ v • Ω |v| , |v| v -(v • Ω)Ω |v| 2 -(v • Ω) 2 M u (v) dv = ∂ t ρ R d χ v • Ω |v| , |v| v -(v • Ω)Ω |v| 2 -(v • Ω) 2 M u (v) dv + ρ σ R d χ v • Ω |v| , |v| M u (v) [v -(v • Ω)Ω] ⊗ [v -(v • Ω)Ω + (v • Ω)Ω -u] |v| 2 -(v • Ω) 2 dv ∂ t u.

It is easily seen (use the change of variable

v = (I d -2E i ⊗ E i )v , 1 ≤ i ≤ d -1) that R d χ v -(v • Ω)Ω |v| 2 -(v • Ω) 2 M u (v) dv = d-1 i=1 R d χ (v • E i )E i |v| 2 -(v • Ω) 2 M u (v) dv = 0, R d χM u [v -(v • Ω)Ω] ⊗ [(v • Ω)Ω -u] |v| 2 -(v • Ω) 2 dv = d-1 i=1 R d χM u (v • E i )E i ⊗ [(v • Ω)Ω -u] |v| 2 -(v • Ω) 2 dv = 0, and R d χM u [v -(v • Ω)Ω] ⊗ [v -(v • Ω)Ω] |v| 2 -(v • Ω) 2 dv = 1≤i,j≤d-1 R d χM u (v • E i )(v • E j ) |v| 2 -(v • Ω) 2 dvE i ⊗ E j = d-1 i=1 R d χ (v • E i ) 2 |v| 2 -(v • Ω) 2 M u (v) dvE i ⊗ E i = R d χ |v| 2 -(v • Ω) 2 d -1 M u (v) dv(I d -Ω ⊗ Ω).
Therefore one gets

R d ∂ t f F (t, x, v) dv = c ⊥,1 ρ σ (I d -Ω ⊗ Ω)∂ t u (35) 
with

c ⊥,1 = R d χ v • Ω |v| , |v| |v| 2 -(v • Ω) 2 d -1 M u (v) dv.
Observe also that

v • ∇ x f = (v • ∇ x ρ)M u + ρ σ ∂ x uv • (v -u)M u = (v • ∇ x ρ)M u + ρ σ ∂ x uv • (v -(v • Ω)Ω + (v • Ω)Ω -u)M u ,
and therefore

R d (v • ∇ x f ) F dv = R d χ v • Ω |v| , |v| M u (v) (v -(v • Ω)Ω) ⊗ v |v| 2 -(v • Ω) 2 dv ∇ x ρ (36) 
+ ρ σ R d χ v • Ω |v| , |v| M u (v) (v -(v • Ω)Ω) ⊗ (v -(v • Ω)Ω + (v • Ω)Ω -u) |v| 2 -(v • Ω) 2 ∂ x uv dv.
As before, using the change of variable

v = (I d -2E i ⊗ E i )v , 1 ≤ i ≤ d -1, we have R d χM u (v) (v -(v • Ω)Ω) ⊗ v |v| 2 -(v • Ω) 2 dv = R d χM u (v -(v • Ω)Ω) ⊗ (v -(v • Ω)Ω) |v| 2 -(v • Ω) 2 dv + R d χM u (v -(v • Ω)Ω) ⊗ (v • Ω)Ω |v| 2 -(v • Ω) 2 dv = c ⊥,1 (I d -Ω ⊗ Ω).
For the second integral in the right hand side of [START_REF] Dobrushin | Vlasov equations[END_REF], by noticing that

R d (v • E i )(v • E j )(v • E k )χ v • Ω |v| , |v| M u (v) dv = 0, i, j, k ∈ {1, ..., d -1}, we obtain R d χM u (v) (v -(v • Ω)Ω) ⊗ (v -(v • Ω)Ω + (v • Ω)Ω -u) |v| 2 -(v • Ω) 2 ∂ x uv dv = R d χM u (v -(v • Ω)Ω) ⊗ (v -(v • Ω)Ω) |v| 2 -(v • Ω) 2 ∂ x uΩ (v • Ω) dv + R d χM u (v -(v • Ω)Ω) ⊗ ((v • Ω)Ω -u) |v| 2 -(v • Ω) 2 ∂ x u(v -(v • Ω)Ω) dv = c ⊥,2 (I d -Ω ⊗ Ω)∂ x uΩ + R d χM u (v -(v • Ω)Ω) ⊗ (v -(v • Ω)Ω) |v| 2 -(v • Ω) 2 t ∂ x u[(v • Ω)Ω -u] dv = c ⊥,2 (I d -Ω ⊗ Ω)(∂ x u + t ∂ x u)Ω -c ⊥,1 (I d -Ω ⊗ Ω) (u • ∂ x )u, where c ⊥,2 = R d (v • Ω)χ |v| 2 -(v • Ω) 2 d -1 M u (v) dv.
Therefore we deduce

R d (v • ∇ x f )F (t, x, v) dv = c ⊥,1 (I d -Ω ⊗ Ω)∇ x ρ + ρ σ c ⊥,2 (I d -Ω ⊗ Ω)(∂ x u + t ∂ x u)Ω - ρ σ c ⊥,1 (I d -Ω ⊗ Ω) (u • ∂ x )u (37) 
and finally [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF], [START_REF] D'orsogna | Self-propelled particles with soft-core interactions : Patterns, stability and collapse[END_REF] yield

(I d -Ω⊗Ω)∂ t u+σ(I d -Ω⊗Ω) ∇ x ρ ρ +c ⊥ (I d -Ω⊗Ω)(u•∂ x )u+(c ⊥ -1)(I d -Ω⊗Ω)∇ x |u| 2 2 = 0 ( 38 
)
where

c ⊥ = c ⊥,2 |u| c ⊥,1 = R d (v • Ω)χ v•Ω |v| , |v| |v| 2 -(v • Ω) 2 M u (v) dv |u| R d χ v•Ω |v| , |v| |v| 2 -(v • Ω) 2 M u (v) dv = R + r d+1 π 0 cos θχ(cos θ, r)e(cos θ, r, l(σ)) sin d-1 θ dθdr l(σ) R + r d π 0 χ(cos θ, r)e(cos θ, r, l(σ)) sin d-1 θ dθdr .
Recall that |u| = l(σ) and therefore we have u

• ∂ t u = 1 2 ∂ t |u| 2 = 0, (u • ∂ x )u = 1 2 ∇ x |u| 2 = 0, implying that Ω • ∂ t u = 0, t ∂ x uΩ = 0, Ω • ∂ x uΩ = 0.
The equation [START_REF] Frouvelle | Dynamics in a kinetic model of oriented particles with phase transition[END_REF] becomes

∂ t Ω + l(σ)c ⊥ (Ω • ∇ x )Ω + σ l(σ) (I d -Ω ⊗ Ω) ∇ x ρ ρ = 0.
We have to check that c ⊥,1 = 0. This comes by using the elliptic equations satisfied by

ψ E i , that is -σdiv v (M u ∇ v ψ E i ) = (v • E i )M u (v), v ∈ R d , i ∈ {1, ..., d -1}. Indeed, we have c ⊥,1 = R d χ (v • E i ) 2 |v| 2 -(v • Ω) 2 M u (v) dv = R d (F (v) • E i )(v • E i )M u (v) dv = R d ψ E i (v)(v • E i )M u (v) dv = σ R d |∇ v ψ E i | 2 M u (v) dv > 0.
Other potentials v → V (|v|) can be handled as well. For example, let us assume that there is σ > 0, 0 ≤ l 1 (σ) < l 2 (σ) ≤ +∞ such that the function l → Z(σ, l) is stricly increasing on [0, l 1 (σ)], constant on [l 1 (σ), l 2 (σ)[, and strictly decreasing on [l 2 (σ), +∞[. In that case, for any l ∈ [l 1 (σ), l 2 (σ)[ we have ∂ 2 ll Z(σ, l) = 0 and by Lemma 3.3 we deduce that M u = σI d , saying that ker(M u -σI d ) = R d . Using the function ψ Ω , we obtain a balance for |u| as well.

Proof. (of Theorem 1.2) In this case ψ Ω belongs to ker L f , and therefore we also have the balance

R d ∂ t f ψ Ω(t,x) (v) dv + R d (v • ∇ x f )ψ Ω(t,x) (v) dv = R d L f (t,x,•) (f 1 )ψ Ω(t,x) dv = 0.
As before, using also

R d ψ Ω (v)M u (v) dv = 0, we write R d ∂ t f ψ Ω dv = R d ∂ t ρM u (v) + ρ σ M u (v)(v -u) • ∂ t u ψ Ω (v) dv (39) = ∂ t ρ - ρ σ u • ∂ t u R d ψ Ω (v)M u (v) dv + ρ σ R d χ Ω M u (v)[v -(v • Ω)Ω + (v • Ω)Ω] dv • ∂ t u = ρ σ c ,1 Ω • ∂ t u where c ,1 = R d (v • Ω)ψ Ω (v)M u (v) dv = R d (v -u) • Ω ψ Ω M u dv = σ R d |∇ v ψ Ω | 2 M u (v) dv > 0.
Similarly, observe that

R d (v • ∇ x f )ψ Ω dv = R d v • ∇ x ρ + ρ σ ∂ x uv • (v -u) M u (v)ψ Ω (v) dv (40) R d (v • Ω)ψ Ω (v)M u (v) dv (Ω • ∇ x ρ) + ρ σ R d ψ Ω (v)M u (v)(v -u) ⊗ v dv : ∂ x u = c ,1 Ω • ∇ x ρ + ρ σ R d ψ Ω M u {[v -(v • Ω)Ω] ⊗ [v -(v • Ω)Ω] + (v • Ω) 2 Ω ⊗ Ω} dv : ∂ x u - ρ σ R d ψ Ω (v)M u (v)v dv • t ∂ x uu = c ,1 Ω • ∇ x ρ + ρ σ R d ψ Ω M u |v| 2 -(v • Ω) 2 d -1 dv (I d -Ω ⊗ Ω) + R d (v • Ω) 2 ψ Ω M u dv Ω ⊗ Ω : ∂ x u - ρ σ c ,1 Ω • t ∂ x uu = c ,1 Ω • ∇ x ρ + ρ σ (2c ,2 -|u|c ,1 )Ω ⊗ Ω : ∂ x u + ρ σ c ,3 (I d -Ω ⊗ Ω) : ∂ x u = c ,1 Ω • ∇ x ρ + ρ σ c ,2 |u| (Ω • ∂ x uu) + ρ σ c ,2 |u| -c ,1 Ω • ∇ x |u| 2 2 + ρ σ c ,3 |u|div x Ω where c ,2 = R d (v • Ω) 2 2 ψ Ω (v)M u (v) dv, c ,3 = R d |v| 2 -(v • Ω) 2 d -1 ψ Ω (v)M u (v) dv.
In the above computations we have used the identity (I d -Ω⊗Ω) : ∂ x u = |u|div x Ω. Combining [START_REF] Gomes | Mean field limits for interacting diffusions in a two-scale potential[END_REF], [START_REF] Ha | A simple proof of the Cucker-Smale flocking dynamics and meanfield limit[END_REF] It is easily seen that the solution of

-σdiv v {M u ∂ v F } = (v -u)M u (v), v ∈ R d , R d M u (v)F (v) dv = 0 is F (v) = v -u, v ∈ R d ,

which belongs to H1

Mu , and therefore the functions ψ, ψ Ω such that

F (v) = ψ(v) v -(v • Ω)Ω |v| 2 -(v • Ω) 2 + ψ Ω (v)Ω, v ∈ R d \ (RΩ)
are given by

ψ(v) = (v -u) • v -(v • Ω)Ω |v| 2 -(v • Ω) 2 = |v| 2 -(v • Ω) 2 , ψ Ω (v) = (v -u) • Ω, v ∈ R d and ψ E i (v) = F (v) • E i = (v • E i ), v ∈ R d , 1 ≤ i ≤ d -1.
By straightforward computations we obtain

c ⊥,1 = R d |v| 2 -(v • Ω) 2 d -1 M u dv = R d (v • E 1 ) 2 M u dv = -σ R d (v • E 1 )(∇ v M u • E 1 ) dv = σ c ⊥,2 = R d (v • Ω) |v| 2 -(v • Ω) 2 d -1 M u dv = R d (v • Ω)(v • E 1 ) 2 M u dv = -σ R d (v • Ω)(v • E 1 )div v (M u E 1 ) dv = σ R d M u (v)E 1 • [(v • E 1 )Ω + (v • Ω)E 1 ] dv = σ|u|. c ⊥ = c ⊥,2 |u|c ⊥,1 = 1 c ,1 = σ R d |∇ v ψ Ω | 2 M u (v) dv = σ c ,2 = R d (v • Ω) 2 2 ψ Ω M u dv = -σ R d (v • Ω) 2 2 div v (M u Ω) dv = σ R d (v • Ω)M u dv = σ|u| c = c ,2 |u|c ,1 = 1 c ,3 = R d |v| 2 -(v • Ω) 2 d -1 ψ Ω M u dv = R d (v • E 1 ) 2 ψ Ω M u dv = -σ R d (v • E 1 ) 2 div v (M u Ω) dv = 2σ R d (v • E 1 )(E 1 • Ω)M u dv = 0.
In this case [START_REF] Bolley | Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming[END_REF], [START_REF] Bolley | Mean-field limit for the stochastic Vicsek model[END_REF] are the Euler equations, as expected when taking the limit ε 0 in the Fokker-Planck equations

∂ t f ε + v • ∇ x f ε = 1 ε div v {σ∇ v f ε + f ε (v -u[f ε ])}, (t, x, v) ∈ R + × R d × R d that is ∂ t ρ + div x (ρu) = 0, ∂ t u + ∂ x uu + σ ∇ x ρ ρ = 0, (t, x) ∈ R + × R d .

Examples

We analyze now the potentials v → V α,β (|v|) = β |v| dv is well defined.

As seen in Section 2, the sign of ∂ l Z(σ, l), for small σ > 0, depends on the sign of V α,β . The potential V α,β satisfy (17) with r 0 = α/β V α,β (r) = r(βr 2 -α) < 0 for 0 < r < α/β and V α,β (r) > 0 for any r > α/β.

One can check that these potentials belong to the family V, see [START_REF] Li | Flocking: Phase transition and asymptotic behaviour[END_REF]. We include an example V 1,1 (|v|) = |v| 4 4 -|v| 2 2 for the sake of completeness. In this case the critical diffusion can be computed explicitly. In particular, for d = 2 we have σ 0 = 1/π.

Proof. We have 

Φ u (v) = |v -u| 2 2 + V 1,1 (|v|) = |v| 4 4 -v • u + |u| 2

r d+1 π 0

 0 cos θ χ(cos θ, r) e(cos θ, r, |u|) sin d-1 θ dθdr |u| R + r d π 0 χ(cos θ, r) e(cos θ, r, |u|) sin d-1 θ dθdr c = R + r d+1 π 0 cos 2 θ χ Ω (cos θ, r) e(cos θ, r, |u|) sin d-2 θ dθdr 2|u| R + r d π 0 cos θχ Ω (cos θ, r) e(cos θ, r, |u|) sin d-2 θ dθdr c = R + r d+1 π 0 χ Ω (cos θ, r) e(cos θ, r, |u|) sin d θ dθdr (d -1)|u| R + r d π 0 cos θχ Ω (cos θ, r) e(cos θ, r, |u|) sin d-2 θ dθdr the function χ solves (9) and the function χ Ω solves

Remark 2 . 1

 21 The functions on R d which are left invariant by the family T 0 are those depending only on |v|. The functions on R d which are left invariant by the family T u , u = 0, are those depending on v • u and |v|.

  for any non negative measurable function χ = χ(c, r) :] -1, 1[×R + → R, any Ω ∈ S d-1 and d ≥ 2. Here |S d-2 | is the surface of the unit sphere in R d-1 , for d ≥ 3, and |S 0 | = 2 for d = 2.

Mu

  and we denote by |•| Mu , • Mu the associated norms. Moreover we need a Poincaré inequality.

The above functions satisfy -σ∂ c {r d- 3 ( 1 -c 2 ) d- 1 2 3 2 5 2 2 2

 3121352 e(c, r, |u|)∂ c χ} -σ∂ r {r d-1 (1 -c 2 ) de(c, r, |u|)∂ r χ} (32) + σ(d -2)r d-3 (1 -c 2 ) de(c, r, |u|)χ = r d (1 -c 2 ) de(c, r, |u|), (c, r) ∈] -1, 1[×]0, +∞[ and -σ∂ c {r d-3 (1 -c 2 ) d-1 2 e(c, r, |u|)∂ c χ Ω } -σ∂ r {r d-1 (1 -c 2 ) d-3 2 e(c, r, |u|)∂ r χ Ω } (33) = r d-1 (rc -|u|)(1 -c 2 ) d-3 2 e(c, r, |u|), (c, r) ∈] -1, 1[×]0, +∞[ where e(c, r, l) = exp -r 2 2σ + rcl σ -V (r) σ .Proof. The function ψ Ω = F • Ω satisfies

2 + c |u| 2 1 . 2 +

 2212 leads toΩ • ∂ t u + σΩ • ∇ x ρ ρ + c (Ω • (u • ∂ x )u) + (c -1) Ω • ∇ x |u| 2 divx Ω Finally we deduce from[START_REF] Frouvelle | Dynamics in a kinetic model of oriented particles with phase transition[END_REF],[START_REF] Ha | Emergence of Time-Asymptotic Flocking in a Stochastic Cucker-Smale System[END_REF] the balance for the mean velocity u∂ t u + c ⊥ (I d -Ω ⊗ Ω)∂ x uu + c (Ω ⊗ Ω)(u • ∂ x )u + (c ⊥ -1)(I d -Ω ⊗ Ω)∇ x |u| 2 (c -1)(Ω ⊗ Ω)∇ x |u| 2 2 + σ ∇ x ρ ρ + c div x Ω|u|u = 0.Remark 5.1 When V = 0, the equilibria are Maxwellians parametrized by ρ ∈ R + andu ∈ R d M u (v) = ρ (2πσ) d/2 exp -|v -u| 2 2σ , v ∈ R d .In that case the function l → Z(σ, l) is constantZ(σ, l) = R dexp -|v -u| 2 2σ dv = (2πσ) d/2 , l ∈ R + .

4 4 -α |v| 2 2 .

 42 Clearly the hypothesis[START_REF] Bonnaillie-Noël | Efficient numerical calculation of drift and diffusion coefficients in the diffusion approximation of kinetic equations[END_REF] is satisfied, and thus the functionZ(σ, |u|) = R d exp -|v-u| 2 2σ -V α,β (|v|) σ

Proposition 6 . 1 -|v| 2 2 .R

 612 Consider the potential v → V 1,1 (|v|) = |v| 4 4 The critical diffusion σ 0 writes σ + exp(-z 4 /4)z d+1 dz R + exp(-z 4 /4)z d-1 dz , d ≥ 2.

cos 2 θ 0 cos 2 θ 0 cos 2 θd π 0 sin d- 2 θdz σ d 4 and thus ∂ 2 3 σR

 2020202423 , l) = R d exp -Φ u (v) σ dv = |S d-2 | expcos θ σ sin d-2 θ dθdr.Taking the second derivative with respect to l one gets cf. Remark 2Ω -l) 2 -σ σ 2 dv = |S d-2 | expsin d-2 θ dθ = π 0 sin d-2 θ dθ + π 0 cos θ sin d-1 θ dθ = π 0 sin d-2 θ dθ -(d -1)π sin d-2 θ dθ and thusπ sin d-2 θ dθ = 1 dθ, d ≥ 2.We obtain the following expression for the second derivative ∂ 2 ll Z(σ, 0)Using the change of variable r = σ 1/4 z, we have ll Z(σ, 0) > 0 iffσ 1/2 < 1 d R + exp -z 4 4 z d+1 dz R + exp -z 4 4 z d-1 dz . The critical diffusion σ 0 is, cf. Proposition 2.+ exp(-z 4 /4)z d+1 dz R + exp(-z 4 /4)z d-1 dz , d ≥ 2.In particular, when d = 2, we obtainR + exp(-z 4 /4)z 3 dz = z 4 /4)z dz = R + exp(-z 4 /4) d z 2 2 = R + exp(-s 2 ) ds = √ π 2implying that σ 0 = 1/π.
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