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Abstract

Stellar streams from globular clusters (GCs) offer constraints on the nature of dark matter and have been used to
explore the dark matter halo structure and substructure of our Galaxy. Detection of GC streams in other galaxies
would broaden this endeavor to a cosmological context, yet no such streams have been detected to date. To enable
such exploration, we develop the Hough Stream Spotter (HSS), and apply it to the Pan-Andromeda
Archaeological Survey (PAndAS) photometric data of resolved stars in M31ʼs stellar halo. We first demonstrate
that our code can re-discover known dwarf streams in M31. We then use the HSS to blindly identify 27 linear GC
stream-like structures in the PAndAS data. For each HSS GC stream candidate, we investigate the morphologies of
the streams and the colors and magnitudes of all stars in the candidate streams. We find that the five most
significant detections show a stronger signal along the red giant branch in color–magnitude diagrams than spurious
non-stream detections. Lastly, we demonstrate that the HSS will easily detect globular cluster streams in future
Nancy Grace Roman Space Telescope data of nearby galaxies. This has the potential to open up a new discovery
space for GC stream studies, GC stream gap searches, and for GC stream-based constraints on the nature of dark
matter.

Unified Astronomy Thesaurus concepts: Galaxy dark matter halos (1880); Dark matter distribution (356); Cold
dark matter (265); Globular star clusters (656); Stellar streams (2166); Galaxy structure (622); Galaxy kinematics
(602); Galaxy dynamics (591); Galaxy stellar halos (598); Andromeda Galaxy (39)

1. Introduction

More than 60 stellar streams have been detected in the Milky
Way (MW; Mateu et al. 2018). These streams have been
identified from a variety of search methods (e.g., Grillmair
et al. 1995; Johnston et al. 1996; Rockosi et al. 2002; Grillmair
& Dionatos 2006; Shipp et al. 2018; Shih et al. 2022), and they
have taught us crucial information about the mass distribution
of dark matter (e.g., Koposov et al. 2010; Küpper et al. 2015;
Bovy et al. 2016; Bonaca & Hogg 2018; Malhan & Ibata 2019;
Reino et al. 2021) and the accretion history of our Galaxy (e.g.,
Newberg et al. 2002; Belokurov et al. 2006; Helmi et al. 2018).
Thin stellar streams that emerge from globular clusters (GCs)
are particularly useful, as their small physical scales and low
velocity dispersion (only a few kilometers per second), make
them sensitive to subtleties in potential properties that can be
noticeable in the morphology of the streams alone. As GC
streams are dynamically cold, i.e., their velocity dispersion is
much smaller than their orbital velocity around their host

galaxy, morphological and kinematic disturbances in the GC
streams remain distinct and coherent for billions of years.
GC stellar streams are more sensitive to gravitational

disturbances from nearby low-mass dark matter subhalos than
stellar streams emerging from dwarfs. These disturbances can
create gaps and density fluctuations in the GC streams (e.g.,
Yoon et al. 2011; Carlberg et al. 2012). If we find indirect
evidence of low-mass subhalos through gaps in streams, this
can help rule out certain dark matter particle candidates (e.g.,
Bullock & Boylan-Kolchin 2017). In the MW, there are several
examples of streams deviating from coherent structures (e.g.,
Bonaca et al. 2019a, 2021; Li et al. 2021), but less than a
handful of examples of streams with gaps (e.g., Odenkirchen
et al. 2001; Price-Whelan & Bonaca 2018; Li et al. 2021).
GC stellar streams are also useful because their morpholo-

gies can constrain the global structure of our Galaxy, through
the precession of the streams’ orbits (e.g., Johnston et al. 2002;
Dehnen et al. 2004; Johnston et al. 2005; Belokurov et al.
2014; Erkal et al. 2016). In Pearson et al. (2015), we showed
that a specific triaxial dark matter halo that had been proposed
to explain the 6D structure of the Sagittarius stream (Law &
Majewski 2010) could be ruled out using a constraint from the
2D morphology of the Palomar 5 (Pal 5) stream because its
stream became “fanned”. Such “fanned” streams exist near
abrupt transitions between orbit families known as separatrices
(Price-Whelan et al. 2016; Yavetz et al. 2021). These results
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suggest that observations of thin streams map out smooth
transitions in orbital properties supported by a potential, while
disturbed stream morphologies (or the absence of streams
altogether) may be used to identify separatrices between orbit
families. While these effects from time-dependent perturbations
and global structure will also apply to more massive, dwarf
streams, the low velocity dispersion in the GC streams makes
them particularly sensitive.

A common limitation to MW studies is cosmic variance—
that we are only studying one galaxy. Extending the sample of
thin GC streams to hundreds of galaxies is crucial if we want to
(1) expand the sample of clear gaps in streams that could
originate from interactions with dark matter subhalos, and (2)
probe the dark matter mass distributions in more galaxies.
Several dwarf galaxy streams have already been discovered in
external galaxies (e.g., McConnachie et al. 2009; Martínez-
Delgado et al. 2010; Crnojević et al. 2016). However, we still
do not have clear evidence of any GC streams in galaxies other
than the MW. GC streams are much fainter and thinner than
dwarf stellar streams and are therefore harder to detect against
diffuse backgrounds of stellar halos in external galaxies. Over
the next decade, data from upcoming telescopes such as the
Nancy Grace Roman Space Telescope (Roman, formerly
WFIRST; Spergel et al. 2015), the Vera Rubin Observatory
(VRO, formerly LSST; Laureijs et al. 2011), and Euclid (Racca
et al. 2016) will reveal thousands of dwarf stellar streams in
external galaxies, as well as a number of GC streams (Pearson
et al. 2019).

In this paper, we develop a new stream-finding code, the
Hough Stream Spotter (HSS; Pearson & Clark 2021),10

which is designed to detect and quantify stream signatures in
large data sets through a Hough transform (Hough 1962). Our
approach requires only the 2D plane of stellar positions as
input; thus, it can be applied across missions. For external
galaxies, the number of data sets with 2D projections (i.e., sky
positions) will greatly exceed those with any kinematic
information (i.e., line-of-sight velocities), and there is no
prospect of gathering the 6D phase-space maps that are
attainable for the MW. Thus, there is a need for algorithms that
can search blindly (or semi-blindly) through these large data
sets and identify stream candidates, especially in noisy or
background-confused data. The HSS fills this need as it is
computationally efficient and simultaneously quantifies the
linearity of stream candidates relative to the background.

Pearson et al. (2019, hereafter P19) showed that Roman,
planned to launch in mid-2020s, will easily detect GC streams
in resolved stars in galaxies out to at least 3.5 Mpc. More than
80% of the galaxies within this volume are dwarfs (see
Karachentsev & Kaisina 2019), and many of these galaxies do
not harbor molecular clouds, spiral arms, or bars, which can
also produce gap signatures in streams and contaminate the
subhalo signal (Amorisco et al. 2016; Erkal et al. 2017; Pearson
et al. 2017; Banik & Bovy 2019). If we discover GC streams in
external galaxies, which the HSS is set up to do, this provides
exciting prospects for studying morphologies and stream gaps
(i.e., dark matter subhalo populations) as a function of galactic
radii (see, e.g., Garrison-Kimmel et al. 2017) and environment
in a large sample of host galaxies, which could help uncover
the nature of dark matter. With the HSS, we can fully exploit
our growing observational data sets and advance our

understanding of how thin streams might constrain dark matter
distribution and properties through morphology alone.
We introduce and validate our automated approach

to stream-finding by applying the HSS to the Pan-
Andromeda Archaeological Survey (PAndAS) stellar halo
data (McConnachie et al. 2009, 2018)11 where we first
identify the known dwarf galaxy streams and subsequently do a
blind search for new GC stream candidates. P19 showed that an
old GC stream, scaled to have five to ten times more mass than
the stream emerging from the MW globular cluster, Pal 5,
would be detectable in the PAndAS data after applying a
metallicity cut of [Fe/H]<−1. More than 450 GCs have been
detected in M31 to date (Huxor et al. 2014; Caldwell &
Romanowsky 2016; Mackey et al. 2019a). This is more than
three times the GC population in the MW, and this large
difference likely arises from dissimilarities between the two
spiral galaxies’ accretion histories (e.g., Deason et al. 2013;
Forbes et al. 2018). Huxor et al. (2014) searched for stellar
streams surrounding the known globular clusters in M31 using
Hubble Space Telescope (HST) data and did not detect any
associated stellar streams. For the majority of the known GC
streams in the MW, the progenitor has been fully disrupted
(e.g., Balbinot & Gieles 2018). Examples of extended GC
stellar streams with associated progenitors exist (e.g., Pal 5;
Odenkirchen et al. 2001; NGC 5466; Grillmair & John-
son 2006; ωCen; Ibata et al. 2019a; Pal 13; Shipp et al. 2020),
and Ibata et al. (2021) recently reported 15 streams associated
with known MW GCs in Gaia DR3 (Gaia Collaboration et al.
2021). However, despite the fact that Huxor et al. (2014) did
not find any GC streams with deep follow-up observations near
the GCs, we might be able to detect GC streams in a blind
search of the M31 stellar halo by running the HSS.
The paper is organized as follows: in Section 2 we describe

the M31 PAndAS data. In Section 3, we present our code. In
Section 4, we describe how we apply our code to PAndAS
data. In particular, we show how we treat the regions and mask
out known objects (Section 4.1), we optimize our code to
search for GC streams in M31 (Section 4.2), we demonstrate
that the code easily detects known M31 dwarf streams (4.3),
and we carry out completeness tests of our code using synthetic
streams (Section 4.4). In Section 5, we show the results of
blindly running the Hough Stream Spotter on PAndAS
data, present our GC stream candidates (Section 5.1), and
analyze the morphologies and color–magnitude diagrams
(CMDs) of our stream candidates (Section 5.2). We discuss
the implications of our results and comparisons to other stream-
finding techniques in Section 6, and we review the future
prospects of GC stream searches in external galaxies in
Section 7. We conclude in Section 8.

2. Data

PAndAS is a photometric survey of the stellar disk and halo
surrounding our neighboring spiral galaxy, M31 (McConnachie
et al. 2009, 2018). The observations for the survey were carried
out using the 1-square-degree field-of-view (FOV) Mega-
Prime/MegaCam camera on the 3.6 m Canada–France–Hawaii
Telescope (CFHT) and cover 400 square degrees. PAndAS
surveyed in the g and i bands to depths of g= 26.5 mag,
i= 25.5 mag, with a 50% completeness in the g and i bands of
≈24.9 and 23.9, respectively (see Figure 4 Martin et al. 2016).

10 Also available at https://github.com/sapearson/HSS. 11 Obtained from R. Ibata, private communication.
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Each individual star is resolved with a signal-to-noise ratio of at
least 10. We show the PAndAS data (Ibata et al. 2014) in
Figure 1. Ibata et al. (2014) divided the data into 406
overlapping regions (see their Figure 1). In Figure 1 we have
applied a metallicity cut of [Fe/H]<−1. At this cut, the
enhancement of stars in the overlapping regions is visible (see
1× 1 degree fields). We handle these artifacts in post-
processing when we search for linear features in the data.

Several dwarf galaxy stellar streams have been discovered in
the stellar halo of M31 (e.g., Ibata et al. 2007; McConnachie
et al. 2009; Ibata et al. 2014). The most prominent dwarf stream
is the giant southern (GS) stream first discovered by Ibata et al.
(2001; see Figure 1). Several groups have since identified the
B, C, D, and NW streams (see labels in Figure 1), which are all
likely associated with accreted dwarf galaxies based on the
stream metallicities and widths (see, e.g., Chapman et al. 2008;
Gilbert et al. 2009). Near M31, there is also debris emerging
from known dwarfs that are in the process of being tidally torn
apart by M31ʼs gravitational potential at present day (e.g.,
M33, NGC 147; Crnojević et al. 2014).

Throughout the paper, we divide the PAndAS data set into
smaller regions. Our region sizes are always at least 10× larger
than the width of the stream we are searching for, to ensure that
our target structures do not fill the region as a large-scale
overdensity instead of a stream-like feature. In P19, they
injected a synthetic MW Pal 5–like stream to a 10× 10 kpc2

PAndAS region, which corresponds to 0.729× 0.729 deg2 at
the distance of M31 (dM31= 785 kpc). They updated the
number of resolved stars Pal 5 would have at the limiting
magnitude of PAndAS (g0< 25.5). Additionally, they scaled

the width and length of the stream based on M31ʼs
gravitational field and based on the stream’s location in
M31ʼs stellar halo. Since we can only detect part of the red
giant branch (RGB) for Pal 5 at the distance of M31 (see Figure
1 in P19), P19 found that a similar stream would be very
difficult to detect in the PAndAS data. P19 demonstrated,
however, that GC streams that are five to ten times more
massive than a Pal 5–like stream can be detected in current
PAndAS data after a metallicity cut. In this paper, we refer to
these synthetic streams as 5MPal 5 and 10MPal 5. Motivated
by P19, in this paper we use the Astropy Collaboration et al.
(2013, 2018) SkyCoordinate module to divide the PAndAS
data into equal-area overlapping regions, each with an angular
radius of rangular= 0.729/2= 0°.365 (2766 regions total) when
we search for new GC streams. Half of each region overlaps
with its neighbor region both in the R.A. and decl. directions to
ensure that linear features at the edge of a region will appear at
the center of a neighboring region and not get missed. To mask
high star count objects that are not streams, we use the Martin
et al. (2017), McConnachie et al. (2019), and Huxor et al.
(2014) catalogs to identify known dwarf galaxies and GCs in
the PAndAS data.

3. The Hough Stream Spotter

Clark et al. (2014) developed the Rolling Hough
Transform (RHT) machine vision algorithm, which quanti-
fies linear structure in 2D image data. They applied the RHT to
measure the orientation of filamentary structure in high-
resolutions Galactic neutral hydrogen emission (see also Clark
& Hensley 2019). The publicly available RHT code has since
been widely used in the astronomical community to quantify
linear structure in images of molecular clouds (Malinen et al.
2016; Panopoulou et al. 2016), magnetohydrodynamic simula-
tions (Inoue & Inutsuka 2016), depolarization canals (Jelić
et al. 2018), the solar corona (Boe et al. 2020), and supernova
remnants (Raymond et al. 2020), among others. One of the
adaptations in the RHT (Clark et al. 2014), as distinct from the
classical Hough transform, is to operate on circular subsets of
data, rather than on one large rectangular image. The RHT,
working on image-space data, computes a Hough transform for
a circular region of sky centered on each pixel in the image,
because the goal of the RHT is to parameterize local image-
space linearity rather than detect individual lines globally (see
Clark et al. 2014, for details). Here our goal is to detect streams
—lines in the distribution of stars that may have a curvature
globally—and so we tile the sky with overlapping circular
regions. Additionally, rather than operating on pixelated image
data, the code presented in this work, the HSS, transforms the
individual positions of resolved stars. This allows us to
optimize the code for the detection of stellar streams, but the
algorithm works on any data that can be described as a list of
positions.
In this Section, we describe the principles of our code (see

Sections 3.1, 3.2), and our detection significance and detection
criteria (Section 3.3).

3.1. The Hough Transform

The Hough transform (Hough 1962) maps from position
space, (x, y), to (θ, ρ) space through the following
parameterization of a straight line:

( ) ( ) ( )r q q= +x ycos sin 1

Figure 1. PAndAS observations of the Andromeda galaxy for all stars that
have a metallicity of [Fe/H] < −1 (g0 < 25.5). We assume a distance to
Andromeda of d = 785 kpc. We mark the location of stream D, stream C, the
two parts of the northwest (NW) stream, and the giant southern (GS) stream.
We additionally mark the locations of three known dwarfs (N185, N147, and
M33) as well as cloud E and the southwest (SW) cloud. The dotted ellipses
show two examples of the region sizes we use in this paper. The dashed ellipse
has an angular radius of rangular = 1°. 825, which corresponds to 25 kpc at the
distance of M31. This is one of the region sizes we use to search for known
dwarf debris. The solid ellipse has rangular = 0°. 365, which corresponds to 5 kpc
at the distance of M31. Note that both ellipses are circles in spherical sky
coordinates, but appear “squashed” here due to the high decl.
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such that each point (x, y) is represented by a sinusoidal curve
in (θ, ρ), where ρ represents the minimum Euclidean distance
from the origin in (x, y) space to the line, and θ represents the
orientation of each possible line in [0, π) measured counter-
clockwise from the vertical.

We illustrate the application of the Hough transform in
Figure 2, where we first plot three different lines in position,
(x, y), space with three different orientations, made up of 60
points (light blue), 40 points (purple), and 20 points (navy),
respectively (see panel (a)). We discretize the set of possible
line orientations into an array θarr that spans 0 to 180° spaced
by Δθ= 0°.1 and transform each point in panel (a) via the
Hough transform (Equation (1)). In panel (b), each point from
panel (a) corresponds to a sinusoidal curve. Thus, the line with
60 data points (light blue) is represented by 60 different
sinusoids. For each of the three lines in panel (a), the sinusoidal
curves overlap at the same minimal Euclidean distance from
the origin, ρ, and at the same orientation angle, θ (panel (b)).
Thus, a full straight line in (x, y) corresponds to a point in (θ, ρ)
space. (θ, ρ) space is often referred to as the “accumulator
matrix”. We bin this matrix in ρ to facilitate peak finding in
panel (c). HereΔρ= 0.1, and there are three clear peaks, which
correspond to the overlapping sinusoids for the three different
lines. The line with the most points (light blue) has the highest
intensity peak. We plot three horizontal lines at the Hough
accumulator peak ρ values that yield the most overlapping
sinusoids (ρ= 5.57, −1.92, and 2.64). In panel (d) we illustrate
the intensity of the three peaks by plotting the value of the
(θ, ρ) map for each peak-ρ as a function of θ. We clearly see the
excess in intensity in (θ, ρ) space (i.e., the number of
overlapping sinusoids) at three specific angles: θ= 50°.8 (navy
line), θ= 101°.3 (purple line), and θ= 146°.2 (light blue line).
We can directly read off the number of initial points (60, 40,
and 20) that make up each line. Thus, instead of searching for
lines in position space, we can simply search for peaks in the
accumulator matrix (θ, ρ) space.

3.2. Detecting Streams in (θ, ρ) Space

To illustrate how the HSS works for stream-finding, we
inject a 10MPal 5 synthetic stream (same age= 11.5 Gyr and
metallicity [Fe/H]=−1.3) from P19 to a PAndAS region
located 50 kpc from M31ʼs galactic center (Figure 3, left). Note
that this type of stream should be visible in the PAndAS data

by eye if such a stream exists in the stellar halo of M31 (P19).
In Section 4.4 we explore the HSSʼs ability to detect lower
surface density streams and investigate which type of streams
the HSS is sensitive to in PAndAS data. The synthetic stream in
this example is ten times more massive than Pal 5, which we
take into account when we compute its length, width, and the
number of resolved stars in the synthetic stream at the limiting
magnitude of PAndAS (see P19, Figure 1 for details). Due to
the 50% completeness in the g and i bands at 24.9 and 23.9
mag, respectively (see Figure 4 in Martin et al. 2016), in this
paper, we only use 50% of the stream stars used in P19. The
10MPal 5 synthetic stream in P19 had 623 resolved stars (see
their Figure 1 upper, right panel). Here, we inject a stream with
only 311 stars, and only 130 of these stars fall within the region
size used in this example. The PAndAS region has an angular
radius of rangular= 0°.365, which corresponds to a radius of
5 kpc at the distance of M31 (d= 785 kpc). We have applied a
metallicity cut of [Fe/H]<−1 to this region.
We use Equation (1) to Hough transform the positions of

stars in our example region. The HSS detects streams by
finding peaks in the binned (θ, ρ) space (see Figure 2, Panel
(c)). Because a stream has a physical width, w, the overlap of
the sinusoidal curves of its constituent stars will not be a single
point in (θ, ρ). We therefore select a scale, Δρ, at which we
search for linear structures. In this section, we use
Δρ= 0.5 kpc (see Figure 3, left), which is slightly larger than
the width of the stream shown in Figure 2 (w= 0.273 kpc in
this example from P19). In Section 4.2, we optimize Δρ for
M31 GC stream detection. We show the result of the binned
Hough transform in the second panel of Figure 3. The
horizontal and vertical lines highlight the peak in (θ, ρ) space.
The value in each bin corresponds to the number of sinusoidal
curves, i.e., stars, crossing this particular bin (here darker colors
mean more stars). Note that a peak in the (θ, ρ) grid
corresponds to a linear real-space “stripe” of width Δρ in (x,
y), as illustrated in Figure 3 (right), where we plot the inverse
Hough transform based on the peak (θ, ρ) values.
A stream-like structure will similarly have an extent in the θ-

direction. We refer to this as Δθsmear. The minimum number of
consecutive bins θ spans in degrees (see Figure 3, second
panel) Δθsmear depends on the region size, i.e., rmax (here
5 kpc), and Δρ (here 0.5 kpc). In the scenario where Δρ≈ w
(where w is the width of the linear structure we search for), the

Figure 2. Panel (a): three lines with three different orientations made up from 60 (light blue), 40 (purple), and 20 (navy) data points plotted in position space (x, y).
Panel (b): the Hough transform (see Equation (1)) of each point in position space (x, y) using an angle, θ from 0°–180° with 0°. 1 spacing. Each point in (x, y) space is
represented by one full sinusoid in (ρ, θ) space (also referred to as the Hough accumulator matrix). Panel (c): the same (θ, ρ) accumulator matrix as in panel (b), but
now binned in ρ to facilitate peak finding. In this exampleΔρ = 0°. 1, which is the same as the spacing along the θ-axis:Δθ. The horizontal lines indicate the ρ-value at
which each of the three lines have the maximal amount of overlapping sinusoids in panel (b). Panel (d): the value of the accumulator matrix along each of the
horizontal lines in panel (c) as a function of angle. The accumulator peaks occur at θ = 50°. 8 (navy line), θ = 101°. 3 (purple line), and θ = 146°. 2 (light blue line). The
maximum value of each line corresponds to the number of points making up each line in panel (a).
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minimal qD » r
r
D

smear 2 max
. In the HSS, we update Δθsmear based

on the input region size, rmax, and the spacing in ρ, Δρ.
In the third panel of Figure 3, we plot the value of the (θ, ρ)

map for the Hough accumulator peak ρ value as a function of θ
(purple) as well as for all other values of ρ (gray). This is
similar to panel (c) in Figure 2, except that we here have a
background of stars and that the linear feature (the stream) has
a physical width. The purple line has a maximum value at (θp,
ρp)= 165 stars. We again see the extent (smear) of the peak in
the θ-direction as described above. The average value of the
purple line off of the peak (here excluding θ= 60°–90°) is ≈58
stars. In physical space, investigating the values of the purple
line off of the peak is equivalent to looking at a “stripe” with a
width of Δρ at the same minimum Euclidean distance, ρ, as the
stream, but at a different angle. The purple line therefore
includes some of the stream stars, as these will be captured in
the “stripes” at the off peak angles, which is why the purple line
has a higher average value than the gray lines in the third panel.
For comparison, the average of all gray lines (i.e., at all other
values of ρ than ρp) is ≈50 stars. We can assess the initial
amount of stars that make up the injected stream from the peak
value of the purple line. As opposed to Figure 2, where we did
not have a background of points, we here need to take into
account the contrast to the background. In the example here, we
obtain≈165–50= 115 stars in the initial input stream, which is
similar to the true value of 130 stars.

Note that the injected stream in Figure 3 is overdense by
more than a factor of three as compared to the background. The
HSS can detect streams in M31 with much lower significance.
To test this, we injected a stream with Pal 5ʼs width (127 pc),
length (12 kpc), and number of stars (34) calculated at a
galactocentric radius of 55 kpc in PAndAS (see Table 1 and
Figure 1 in Pearson et al. 2019). The HSS successfully flags
this stream at the correct (θ, ρ); however if we remove more of
the stars, the stream is not distinguishable against the
background. Thus, in principle the HSS is sensitive to Pal 5–
like streams in the PAndAS data, but since the significance of
the detections is very low, noisy features will also be flagged as
streams with this detection threshold. See how we optimize our
blind search for GC streams in Section 4.2, and test the
completeness of our method in Section 4.4.

3.3. Significance of a Stream Candidate and Criteria to Flag
the Detection

To facilitate a blind search for undiscovered GC stream
candidates in M31, we need to estimate the significance of each
candidate flagged by the HSS. Depending on where in a region
the linear structure is located, the area that the stripe can cover
will vary (see Figure 3). Because the length of the stripe will be
shorter toward larger ρ (the edge of the circular region), in
Figure 3 (second panel) we see a gradient of higher bin values
toward the center of the (θ, ρ) grid. Thus, in our assessment of
the significance of a stream candidate detection, we need to
take the area that each stripe can cover into account at any
given ρ. For each bin in the (θ, ρ) grid (which, in the second
panel of Figure 3, has 36,000 bins), we can express the area,
δA, that the corresponding stripe can cover in (x, y) space
analytically as:
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, rmax is the radius of the
region, and Δρ is the bin size in ρ. δA is independent of θ due
to rotational symmetry.
Any given region contains a total number of stars, Nstars. To

assess the significance of a detection in (θ, ρ) space, we need to
ask: what is the probability that k or more stars could fall in a
given bin by chance? Here, k is the actual number of sinusoids
(i.e., stars) crossing a given bin in (θ, ρ) space (i.e., the value in
the individual bins in Figure 3 second panel). The probability
of there being k stars in certain bin, i, is related to the area that a
certain stripe covers in (x, y) space under the assumption that
the region is well represented by a uniform field of stars. Thus,
the probability of there being k stars in an area δA (and
Nstars− k stars in the rest of the region) can be expressed as
the probability mass function of the binomial formula, with

Figure 3. First panel: a synthetic stream (N*,stream = 130) injected to a 5 kpc radius PAndAS region at Rgc = 55 kpc with N*,background = 879 (from P19). θ is
measured counterclockwise from the vertical in (x, y) space. ρ is the minimum Euclidean distance from the center, i.e., r = 5 kpcmax is the radius of the region, and
ρ = 0 is at (x, y) = (0,0). Δρ = 0.5 kpc is the size of the feature we are searching for, which is similar here to the width of the stream, w. Second panel: the Hough
transform (Equation (1)) of each star from Figure 2 using an angle θ from 0°–180° with 0.1 deg spacing. Each star is represented by a sinusoid. This is similar to the
accumulator matrix presented in Figure 2, but now binned in the ρ-direction using Δρ = 0.5 kpc. The purple dashed line highlights the ρ at which the accumulator
matrix has its peak. This corresponds to where in (θ, ρ) space most sinusoids overlap, ρp. The gray dashed line shows the angle, θp, at this same bin. Note the gradient
toward higher intensity (darker colors) toward the center (see discussion of this in Section 3.3). Third panel: the value of the accumulator matrix (second panel) as a
function of θ at the peak value of ρ (purple) as well as at all other values of ρ (gray). Fourth panel: the input region with the recovered inverse Hough transform stripe
from (θp, ρp). This stripe has a width, Δρ.
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p= (δA/A):
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where the maximal number of stars that can fall in any given
bin is the total number of stars in the region, Nstars.

We can then ask: what is the probability that k or more stars
should fall in a certain bin by chance? For each given bin, this
can be expressed as:
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Thus, given the values, k, in each bin of the (θ, ρ) grid for the data
(see Figure 3), the total number of stars in a region, Nstars, and the
area that each stripe covers, p= δA/A, we can compute a (θ, ρ)
grid of the probability for each bin having the value k or more stars
in each data bin. If the probability that a certain bin has k or more
stars by chance is very low, we flag this bin as a possible detection.
In the limit of a large number of stars, Nstars, Equation (4)
approaches a Poisson distribution. Because we apply the HSS to
subregions, global gradients and large substructures in halos are
negligible, and the assumption of a uniform distribution of the
background stars is valid. There are many choices that can be
made in terms of handling the background. An alternative
approach to assess the significance of the peaks in θ, ρ space is
to compare the value of the peak to the surrounding values in θ, ρ
space (see, e.g., Shih et al. 2022, and Figure 7 therein).

In Figure 4, we again show the (θ, ρ) grid for the synthetic
stream injected to PAndAS data (top, which is the same as the
second panel of Figure 3), as well as the (θ, ρ) grid for dN A

Astars

from Equation (2) (middle), and log10 of the binomial probability
distribution from Equation (4) based on the two top panels
(bottom). Note that we use log10 of the probability to avoid
machine precision errors. In this example, the flagged synthetic
stream detection is in the bin where θ= 74°.1 and ρ= 0.74 [kpc]
(see purple dashed lines), and has log10Pr (X� k)=− 65.47, i.e.,
the probability of the data showing the value k or higher in that
specific bin, by chance, was<10−65.47. Thus, instead of
searching for peaks in the “number of stars” (θ, ρ) space (e.g., as
presented in panels two and three of Figure 3), we can instead
search for peaks in the binomial probability (θ, ρ) space, where
we have already taken into count the area that a stream can have
and the total number of stars in the background.

Motivated by our intuition from the synthetic stream in the
above example, we use the following criteria to flag a stream
candidate with the HSS code:

1. Significance: a probability threshold in the binomial
distribution as described in Equation (4) defined as
log10Pr (X� k)< Pr-thresh.

2. Size: the detection must span at least qD = r
r
D degsmear 2 max

in θ in the (θ, ρ) grid (see Figure 4, top panel).
3. Uniqueness: a θ-separation of peaks by at least 10° in θ, so

that we do not flag the same linear structure multiple times.
4. Overlap: an edge criterion of r r r< -max edge, where

rmax is the size of the region, to avoid flagging overdense
features at the edges of regions.

For each region, HSS saves a figure of the input data region
and a figure of the input data with any flagged stream
detections (as in Figure 3, right panel). The code additionally

stores the binomial probability distribution of bins (see
Figure 4, lower panel). If there is a stream detection, HSS
stores the plots starting with the filename Stream. If there are
more than 10 flagged stream detections in one region, this
means that we have likely detected a “blob,” as spherical
objects will have overdensities in (θ, ρ) space along a sinusoid
covering all angles. For these cases, we name the files Blob
and do not count them as a stream candidate detection. If there
are consistently 10 or more flagged streams in each region, that
can also indicate that our Pr-thresh value is too high (such that
we find multiple peaks that are actually noise). If there is no
detection, the HSS outputs a filename called Empty.

4. Application to PAndAS Data

4.1. Input Data

Before we feed our data regions (see Section 2) into HSS, we
transform to spherical sky coordinates (X,Y):

( ) ( )
( ) ( ) ( ) ( ) ( )

( )

d a a
d d a a d d

=
* -

* * - + *
X

cos sin

cos cos cos sin sin
5

0

0 0 0

Figure 4. Top panel: same (θ, ρ)-grid as in Figure 3 based on the Hough
transform (Equation (1)) of all Nstars = 1009 total stars in Figure 2 (left), where
the gray scale shows the number of stars, k, crossing each of the 36,000 bins.
Middle: the number of stars that should fall in each bin if the stars are
distributed uniformly in the region with the probability =p dA

A
(see

Equation (2)). Bottom: the probability of the (θ, ρ) data grid (top) having k,
or more stars crossing each specific bin, by chance (Equation (4)). The purple
dashed lines highlight the flagged stream detection (corresponding to the stripe
in Figure 3, right). This bin had probability <3.4 × 10−66 of having k stars (see
color bars) in that data specific bin, by chance, and is the only significant outlier
in this probability distribution.
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where α=R.A., δ= decl., and α0, δ0 are the tangent points of
each region projection (i.e., the center of whatever region you
are projecting). This means that each data region that we input
to HSS will be a circle with rangular= 0°.365 with an origin at
(X, Y)= (0, 0). All regions are spaced uniformly on the surface
of the R.A./decl. sphere, which ensures both equal areas of all
regions, and that HSS does not preferentially detect linear
structure in one spatial direction. HSS allows the option to use
sky coordinates and read in data sets in degrees, or the code can
work with any input unit and will then ignore sky coordinate
transformations.

We mask out dwarf galaxies and GCs in the data, since we
are not interested in re-finding known objects. We use Astropy
(Astropy Collaboration et al. 2013, 2018) to remove an area of
5× rh surrounding each dwarf and GC position (Huxor et al.
2014; Martin et al. 2017; McConnachie et al. 2019). In the
HSS, there is an option to include your own mask position and
size files.

For regions that intersect with a mask, the “stripes” (see
Figure 3, right) can fall partially within a mask and partially
outside a mask. We therefore compute dA

A
numerically, since

this breaks the assumed rotational symmetry in our analytic
expression (see Equation (2)). In the numerical case, we
populate regions containing masks uniformly with stars, such
that each region has at least 100 stars kpc−2. All of these stars
are distributed outside of the masks. We then Hough transform
each of these stars via Equation (1), compute a (θ, ρ) grid with
the same Δρ spacing as the data, and divide by the total
number of stars. The value in each bin, i, is thus [ ]n

N
irandom

stars, total
, where

nrandom is the amount of stars that fell in one bin, i, and
Nstars, total is the number of stars in the region. We require a
number density of at least 100 stars kpc−2 to ensure a uniform
distribution of stars for the numerical dA calculation. The
fraction, [ ]n

N
irandom

stars, total
, is equal to [ ]dA

A
i , where A is the area of that

region. Thus, we now have a numerical representation of
=p dA

A
for each bin and can use this to calculate the probability

in Equation (4) and produce a map equivalent to the bottom
panel of Figure 4.

4.2. Optimizing HSS Parameters for GC Streams in M31

In order to optimize HSS to find GC streams in M31, we
investigate which Δρ yields the most significant detection in
the binomial probability space (see the lower panel of Figure 4
for the 10MPal 5 synthetic stream from P19). If there is a low
probability of Pr (X� k) for a certain bin by chance, this means
that we have detected a linear overdensity (see white flagged
bins in Figure 4, lower panel). In this Section, we search for the
bin size, Δρ, which yields the lowest probability Pr (X� k) in
the (θ, ρ) grid for the 10MPal 5 synthetic stream. Thus, we
effectively change the stripe width (see Figure 2) to determine
which width optimizes the detectability of 10MPal 5 synthetic
streams (see Section 4.2.1). Additionally, we investigate which
Pr (X� k)-threshold to apply to our search in order to detect
potential GC streams in the PAndAS data without adding too
much noise (see Section 4.2.2). Note that the stream width in
this example is w= 0.273 kpc (see Table 1 in P19). In this

Section, we approach these questions numerically. See
Appendix A for an analytic approach with a subset of different
stream widths and backgrounds.

4.2.1. Investigating the HSS Search Width

We run the HSS on the input data shown in Figure 2 (left)
using Δρ= 0.1–1 kpc in steps of 0.1 kpc, and show the results
in Figure 5 (magenta dashed line). Δρ= 0.4 kpc yields the
most significant detection (i.e., lowest log10Pr (X� k)-value). If
Δρ< 0.4 kpc, the minimum log10Pr (X� k)-values are all
larger than −55, and the minimum Pr (X� k)-values are larger
than −50 if Δρ> 0.5. Note that for the detections with
Δρ< 0.4 kpc, multiple streams were flagged on top of the
actual synthetic stream, instead of one clear peak, as in the case
for Δρ> 0.4 kpc. This is because Δρ becomes smaller than the
actual width of the stream, so the peaks span several bins in ρ,
and multiple structures are flagged with slightly different
Euclidean distances, ρ, from the origin.
The fluctuation at large Δρ (see Figure 5, dashed magenta

line) is due to the fact that the synthetic stream can be partially
detected in a stripe (rather than covering that whole stripe)
depending on the stream’s location in the region. To
summarize, using a Δρ slightly larger (0.4 kpc) than the width
of the stream (0.273 kpc) maximizes the signal from the stream
in this example. The magenta solid line in Figure 5 shows the
analytic version of this line in an idealized case, where the
stream is assumed to cross the center of the region to avoid
partial overlap between the stream and the stripe (see details in
Appendix A). In this case, the optimal stripe width Δρ is equal
to the exact width of the stream. Note how the shape of the

Figure 5. The minimum log10Pr (X � k) bin value (purple dots) for the
10MPal 5 synthetic stream in PAndAS data (see Figure 2) as a function ofΔρ in
steps of 0.1 kpc. If the probability is very low for a bin having Pr (X � k), that
means we potentially have a stream detection. For this 10MPal 5 synthetic
stream example, a Δρ = 0.4 kpc yields the most significant detection
(log10Pr ≈ −78); thus, we use Δρ = 0.4 when we blindly search for GC
streams in PAndAS data. The magenta solid line shows the analytic counterpart
to this example, which has a very similar shape and minimum log10Pr-value to
the numerical example, but has its minimum at the exact width of the stream
(see Appendix A for details).
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lines is very similar between the analytic and numerical
examples, but the detection is more significant (lower
log10Pr-value) for the analytic case, where the stream is
assumed to cross the center of the region. In that scenario, the
signal is not smeared between several ρ-bins. We conclude that
a search Δρ width about one to two times larger than the target
stream width is optimal to ensure that the stream width is
thinner than the stripe (Figure 5). This is a user-specified input
to the HSS.

4.2.2. Choosing the HSS Pr-thresh Value

Motivated by the fact thatΔρ= 0.4 kpc optimizes the stream
detection in our numerical example, we use this Δρ to test
which Pr (X� k)-threshold to use to flag the synthetic stream. If
we use a high Pr (X� k)-threshold, we might flag noise in the
field as detections, but if we are too conservative and use a very
low Pr (X� k)-threshold, we might miss the stream. To carry
out this test, we run HSS with Δρ= 0.4 kpc, and vary the
log10Pr (X� k)-threshold (Pr-thresh) from −120 to 0 in steps of
5. We find that for −5� Pr-thresh< 0, HSS detects >10 noisy
features as well as the synthetic stream in the input field. For
−15� Pr-thresh�−10, the stream is detected at the correct
orientation along with two different stream orientations (for Pr-
thresh=−10) and with one other stream orientation (for Pr-
thresh=−15). In Figure 4 (bottom panel), similar lower-
significance peaks also surround the minimum. For −65< Pr-
thresh�−20, we detect just the synthetic stream at the same
bin (i.e., same (θ, ρ) value). For Pr-thresh<−65, we do not
detect the synthetic stream. Note that for this stream, the
minimum Pr-thresh=−78.15 (see Figure 5), but since we have
a Δθsmear criteria, the stream needs to be detected above the Pr-
thresh in several consecutive θ bins (see Section 3.3), which is
only the case when Pr-thresh>−65. Note that this test is based
on one field in PAndAS, and that the backgrounds will vary
from region to region (in Section 4.4 we test various locations).
Since we will run HSS blindly on PAndAS data, using a
nonconservative value (e.g., Pr-thresh=−15) will allow us to
find streams in noisy fields, without flagging too many spurious
structures.

From our analytic investigation in Appendix A, we
additionally found that: (1) a higher number of total stars will
lead to a higher significance detection, even with a fixed
number density contrast between the stream stars and back-
grounds stars, (2) a larger contrast between the stream and
background yields a large difference in detection significance,
and (3) wider streams yield a more significant detection for a
fixed number density of stars in the streams. Related to point 3,
due to the presence of dark matter in dwarf galaxies, we cannot
scale directly from stellar stream densities in GC streams to
stellar stream densities in dwarf streams. However, with access
to dwarf stream data, we can measure the dwarf streams’ stellar
number densities, and use Equation (4) to calculate which Pr-
thresh to apply.

4.3. Application to PAndAS Dwarf Streams

Before we run the HSS blindly on PAndAS data to search for
unknown GC stream candidates (see Section 5), we test
whether our code can recover the known, wider debris features
in M31 (see structures A through M in McConnachie et al.
2018, Figure 12, where we omit their NE shelf, E shelf, and G1

clump as these are contained in our M31 mask). In Table 1
(left), we list the features that we are attempting to recover. We
also label these in Figure 6 (left), where the regions and data
are plotted after a metallicity cut of [Fe/H]<−1.
Most of the dwarf streams in M31ʼs stellar halo are a few

kiloparsecs wide, with the exception of the GS stream, which
is≈0°.5 wide corresponding to≈6.9 kpc (McConnachie et al.
2003). To capture the range of wide debris features, we divide
the PAndAS data set into regions with two different angular
extents: first 73 regions with rang= 1°.825 (25 kpc at M31ʼs
distance; see Figure 6, top left) and second: 358 regions with
rang= 0°.9125 (12.5 kpc at M31ʼs distance; see Figure 6,
bottom left). Most of these regions have neighbor regions that
overlap by 50% in both the R.A. and decl. directions. For
regions on the edge of the data sets or on the edge of a large
mask (e.g., the M31 mask), there are not overlapping regions in
the direction of the edge or the mask (see Figure 6, left
column). We transform each region to spherical sky coordi-
nates (see Equation (5)) and run HSS with two different set of
parameters (see the definition of each parameter in Section 3.3):

1. RunA: Region diameter=50 kpc, Δρ= 5 kpc, Pr-thresh
<−200, θsmear= 5°.73, θseparation= 10°, ρedge= 10 kpc.

2. RunB: Region diameter=25 kpc, Δρ= 2.5 kpc, Pr-thresh
<−50. θsmear= 2°.86, θseparation= 10°, ρedge= 5 kpc.

We used the NW2 stream (see Figure 6) as an example dwarf
stream to motivate the difference in the Pr-thresh-values for
RunA (Pr-thresh<−200) and RunB (Pr-thresh<−50). For
the NW2 stream, the number density in the stream is
≈21.5 stars kpc−2, and the number density in its close vicinity
is ≈18.5 stars kpc−2. The region sizes in RunA and RunB are
factors of 25 and 6.5 times larger, respectively, than the region
size used in Section A (r= 5 kpc), and the search widths for the
streams, Δρ, are ≈10 and 5 times wider. Thus, we can
calculate p= dA/A, by scaling up the difference in the areas of
the streams and regions. With p, the stellar number densities
(and thus number of stars) in the NW2 stream, and the stellar
number densities in the background in hand, we can use
Equation (4) to calculate the analytic minimum log10Pr-values
for RunA and RunB (see also Appendix A). We find that the
minimum log10Pr-values are −679 for RunA and −172 for
RunB. Thus, a factor of four difference for the two runs. For
the 10MPal 5 synthetic stream in Section 4.2, we found a
numerical log10Pr-minimum at −78 (see Figure 5), but showed
that Pr-thresh<−15 was the ideal threshold to use to detect the
10MPal 5 synthetic stream without much noise (see Section 4.2).
By comparison, the analytic minimum for this 10MPal 5

synthetic stream example was −129 (see Figure 5). Thus, for
the two dwarf runs (RunA and RunB), we fix the ratio of the
Pr-thresh to 4, but use Pr-thresh<−200 for RunA and Pr-
thresh<−50 for RunB to ensure that we capture fainter
features than the NW2 stream.
For each region with a flagged detection, we only plot the

most prominent detection in that region, i.e., the detection with
the minimum log10Pr-value. In some flagged regions, HSS
detects several different features; however, in all flagged
regions where a known debris structure was present, that
structure was the most prominent log10Pr peak. Thus, if we had
used a lower, more conservative Pr-thresh, we would pick up
the specific structure only. Note that if a region has more than
10 flagged detections above the threshold, we classify it as a
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likely “blob” and not a stream, since a “blob” would span a full
sinusoid in (θ, ρ)-space, and therefore likely have several peaks
despite the θseparation= 10° criterion (see Section 3.3). We do
not count these “blobs” as detections in this work.

In the right panels of Figure 6, we show PAndAS data and
overplot all stars that were a part of an HSS detection stripe
based on three criteria: (1) purple streams: detection of known
PAndAS feature, (2) pink streams: data artifacts at 0° or 90°
due to the 1°× 1° field size of the CFHT pointings, and (3)
light blue streams: detection at the edge of an overdense feature
in a neighboring region. Each feature is labeled by the number
of the region that it was detected in (see left panels).

In RunA, the HSS flags 17 detections regions out of the 73
total regions (see Figure 6, upper right). In Table 1, we
summarize the known features (see purple “stripes” in
Figure 6) that were recovered and how many regions the
features were recovered within. Additionally, we list how many
data artifacts were flagged (see pink “stripes” in Figure 6), as
well as overdense features at the edge of the regions (see blue
“stripes” in Figure 6).

RunA detects all streams except for the NW stream, stream
A, and the GS stream. The first two are likely too narrow for
the Δρ= 5 kpc criterion (recall how the detection signal is less
significant if Δρ is much wider than the width of the stream in
Section 4.2.1, Figure 5 and Appendix A, Figure 16). The GS
stream is wider than our search criteria, with a high surface
density, and it takes up a large area of our region sizes. In
several regions, the GS stream was therefore classified as a
“blob”. Had we used larger region sizes and an even lower Pr-
thresh, we would have detected this as a stream. Note also that
the southern part of M33ʼs stellar debris is not detected here, as
it was flagged as a “blob”.

For RunB, where we search for narrower features (Δρ= 2.5
kpc), the HSS flags detections in 52 of the 358 regions
(Figure 6 bottom, right). As for RunA, in Table 1 we
summarize the detection of known features, data artifacts,

and overdense features. We also list whether any detections
were flagged where their origin is “unknown” (see red “stripes”
in Figure 6). The only stream that the more narrow RunB did
not recover was the GS stream, because the stream almost takes
up the entire size of the region (see Figure 6, lower left) and is
therefore flagged as a “blob” with more than ten detections.
Interestingly, the thinner streams such as NW1 and NW2 are
picked up by RunB, which was not the case for RunA (see
Figure 6, right panels).
For each detected dwarf feature, we investigate the most

significant (minimized log10Pr-value) detection of that feature.
We investigate the number of stars for each value of ρ as a
function of θ (see purple line in panel three of Figure 3 as an
example) and report the Hough accumulator peak in Table 1.
This is the number of stars at the values of θp and ρp that
minimized log10Pr (see the peak of purple line in the third panel
of Figure 3 as an example). To assess the density of the
detected stream feature, we divide this peak value by the area
of the “stripe” (250 kpc2 for Run A, and 62.5 kpc2 for Run B).
This gives us the stellar density of the dwarf feature. For
comparison, we also average over the stellar density for all
other stripes positions and orientations, excluding the most
significant peak (see all gray lines in Figure 3 as an example)
and list the average value in Table 1 (last column). We note that
the dwarf features are all overdense by more than a factor of 1.5
as compared to their backgrounds at the metallicity cut of
[Fe/H]<−1.
There were three regions flagged with previously unknown

features (see red highlighted stars in Figure 6). In Figure 7, we
show the regions that these stars were detected in (top panels)
as well as the flagged stripe detection (red). Particularly region
60 (top, middle) is of interest as it is a flagged detection near a
masked out dwarf (Andromeda XXIV), which could potentially
be a dwarf stream not yet reported by the PAndAS team. To
analyze these three detections further, we center the regions on
each detection (or in the case of region 60, we center the region

Table 1
Summary of HSS Dwarf Stream Searches

Debris Featurea RunAb Regc RunBd Regc Accum. Peak Stripe Dens. 〈 Off Stripe Dens. 〉
(stars) (stars/kpc2) (stars/kpc2)

Stream D yes 1 yes 4 7750 31 16.5
Stream C yes 1 yes 2 5387 21.5 13.4
Stream B yes 2 yes 2 3633 14.5 8.8
Stream A no - yes 1 648 10.4 6.2
NW1 Streame no - yes 1 1688 27 14.7
NW2 Streame no - yes 5 1409 22.5 14
GS Stream no L no L
NGC 147ʼs stream yes 2 yes 1 5145 20.6 13.4
M33ʼs stream yes 1 yes 1 886 14.2 7.7
Cloud E yes 1 yes 5 2964 11.8 6.2
SW Cloud yes 2 yes 5 4139 16.6 10.4
W shelf yes 1 yes 1 5791 23.1 13.6
Data artifacts yes 3 yes 10
Edge detections yes 3 yes 11
Unknownf no - yes 3

Notes.
a See features in Figure 1 and 6 as well as in McConnachie et al. (2018).
b Detected in HSS run with Δρ = 5 kpc, Pr-thresh < −200.
c Number of regions that this feature is detected in.
d Detected in HSS run with Δρ = 2.5 kpc, Pr-thresh < −50.
e This is the thinnest stream.
f Not reported by PAndAS team.
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on the mask center), and create regions with 50 kpc surround-
ing these new centers (see bottom row). We create these new
regions, with the goal of re-running the HSS to check if the
streams are flagged again.

However, from Figure 7 (bottom panels), we notice that each of
the detections overlaps with an over- or underdense “square” in
the PAndAS data (see black arrows). These correspond to the
CFHT 1°× 1° fields, which are apparent due to the incomplete-
ness of the data at the given magnitudes. The HSS has picked up

on the overdensities because they are linear artifacts, and these red
detections are not new dwarf streams. When we re-ran the HSS on
the new, larger regions (but with the same criteria as for RunB),
the code did not flag any detections. Thus, these detections are
“artifacts,” and get picked up when the CFHT 1°× 1° fields are
on the edge of a region (see Appendix B where many of these
“squares” are picked up if we use a Pr-thresh<−10).
We combine the results of the two HSS runs in Figure 8,

where the two different width stripe detections are plotted. To

Figure 6. Summary of RunA & RunB. Left panels: PAndAS data with [Fe/H] < − 1 with all known objects labeled (see Figure 12 in McConnachie et al. 2018),
which RunA and RunB should recover. The region sizes are overplotted as ellipses (top: 3°. 65 ( ≈50 kpc) in diameter, bottom: 1°. 82 ( ≈25 kpc) in diameter). Upper-
right panel: RunA results (region size = 50 kpc, Δρ = 5 kpc, Pr-thresh < −200). Purple indicates a known feature detection. All features except for stream A, the GS
stream, and the NW stream are recovered in RunA. Pink streams represent data artifacts—linear features at the edges of the CFHT pointings. Light blue streams show
edge detections—where a feature at the wrong angle is detected, because the feature is close to the edge of that specific region or mask in a region. Lower-right panel:
RunB results (region size = 25 kpc, Δρ = 2.5 kpc, Pr-thresh < −50). Note how the narrow features (e.g., NW1, NW2 streams) are recovered here. The red streams
here show previously undetected features, which we explore in Figure 7. Note that we here did not include detections that were labeled as “blobs” by the HSS, which
occurs when more than 10 features are discovered above the Pr-thresh in one region (this was the case for the lower part of the M33 stream and also for the GS stream,
due to the location and size of the regions).
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summarize, the test of the HSS code on known dwarf debris
features was successful and rediscovered all known streams
and clouds (purple), except for the GS stream, which was
flagged as a “blob” in both runs due to the high density of stars,
the width of the stream, and the small region size compared to
the stream area. We also report detections of linear artifacts
(pink) and overdense features at the edge of our regions (blue).
If Δρ is narrow, we detect multiple streams on top of the wider
tidal features. Note that when the region size is larger, our
assumption that the stars in the field follow a uniform
distribution is not entirely correct. With a better estimate of
the star distribution or comparisons to stellar halos from
simulations (e.g., Bullock & Johnston 2005), we could make a
more accurate detection criteria and potentially strengthen our
stream signals and detections. However, we leave this for
future applications of the code, as our goal in this paper is to
find new GC streams. The HSS RunA and RunB did not flag
any GC candidates, since we used a very wide Δρ. See
Section 5 for a narrower search for new GC stream candidates.

4.4. Completeness Checks

In this Section, we investigate the ability of the HSS to detect
10MPal 5 synthetic streams at various locations in M31ʼs stellar
halo, as the density of stars varies across the PAndAS data set.
We inject the 10MPal 5 synthetic streams with ten random
orientations, but ensure that each stream is curved in a concave
configuration with respect to the center of M31 to mimic a
plausible orbit (e.g., Johnston et al. 2001). The synthetic
streams all have a width of 0.273 kpc, a length of 25.9 kpc and
initially have 311 stars total (see also Table 1 and Figure 1
in P19), which have been calculated based on the limiting
magnitudes of PAndAS at the distance of M31. As mentioned
in Section 3.1, we use half of the stars (i.e., 311 instead of 623)
presented in Figure 1 in P19, due to the incompleteness of the
PAndAS data (Martin et al. 2016). We test the ability of the

HSS to recover the injected synthetic streams if we include a
random subset of 100%, 75%, 50%, and 25% of these 311 stars
in the 10MPal 5 synthetic stream.
In Figure 9 (left), we show the location of the ten 10MPal 5

synthetic streams, each of which consists of 100% of the 311
stars (teal streaks) injected into the PAndAS data (with [Fe/
H]<−1). The blank areas represent regions where we have
masked out data due to the locations of galaxies or GCs in the
PAndas data set (see Huxor et al. 2014; Martin et al. 2017;
McConnachie et al. 2019, and Section 2). The four panels in
Figure 9 (left, bottom) show a 2°× 2° zoom of “stream 5” with
100%, 75%, 50%, and 25% of its stars remaining (left to right).
Note that stream 5 is difficult to see by eye if only 25% of the
stars are included.
We first check whether the HSS can recover these streams

with 100% of the stars in the streams. We divide the data set,
which now includes the synthetic streams, into 2766 over-
lapping regions with an angular diameter of 0°.73 (10 kpc at the
distance of M31; see small ellipse in Figure 9 and details in
Section 2). We then run the HSS with Δρ= 0.4 kpc, Pr-
thresh<−15 motivated from Section 3.3. We additionally
require that q > > r

r
D 2 .86smear 2 max

, and θ-separation >10° (see
Section 3.3). We remove edge detections where ρ> 3 kpc, as
the 2766 regions overlap by 50% in both R.A. and decl. (see
Section 2), so anything on the edge of one region will be in the
center of another region.
In Figure 9 (right), we show the results of this run. Here, the

purple streaks highlight the stars that have been flagged as part
of the detected streams in the blind HSS run. All ten synthetic

Figure 7. Top panel: the three flagged detections in RunB that are not
associated with any known debris features (see red stripes in Figure 6). Region
60 (middle) has a flagged detection near a masked out dwarf galaxy
(Andromeda XXIV; see white blank circle), which could indicate that we are
detecting tidal debris from this dwarf. Bottom panel: we centered the regions
on the detected features for region 11 and region 245 and create a 50 kpc
diameter region. For region 60, we center the region on the center of the
masked out dwarf, Andromeda XXIV, with the same 50 kpc diameter region
size. In each case, we see that the flagged features have picked up data artifacts
from the size of a CFHT 1° × 1° pointing, which is apparent in the data due to
the incompleteness at the given magnitude and [Fe/H] cut (see black arrows).
Thus, these detections are not new dwarf streams, but data artifacts.

Figure 8. Summary of the findings for HSS RunA and RunB. The wider
streams show the results from RunA, and the narrower streams show the results
from RunB. The colors are the same as in Figure 6. All dwarf streams listed in
McConnachie et al. (2018) are rediscovered, except for the GS stream due to its
wide nature. Regions 11, 60, and 245 have been updated as “data artifacts” as
opposed to “unknown” based on the analysis in Figure 7. Note that using
different locations and sizes for the regions would yield slightly different
results for the data mask/region edges, as these are detections at the edge of a
region. Different Pr-thresh values would also lead to scenarios where the
southern part of M33 and the GS stream were labeled as detections instead of
“blobs”.
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streams are detected by the HSS, and even the curvature of the
streams is captured, as the streams span several 0°.73 regions
(lstream= 1°.89), each with a slightly different HSS angle of
detection. If M31 indeed has these 10MPal 5 streams in its stellar
halo, the streams will be detected very clearly by the HSS.
These streams, however, would also be noticeable by eye (see
Figure 9, lower left).

The darker gray, thin streaks in Figure 9 (right) highlight
other HSS flagged detections in this particular run. Note that
some of these features appear to be artifacts (at 0° and 90°) of
the CFHT pointings due to the incompleteness of the data at
this metallicity cut, and some features are on top of known
dwarf debris features. We will investigate these features in
Section 5.

We repeat the exercise above, but now instead inject streams
with 75%, 50%, and 25% of the initial 311 stars (we keep the
length and width the same in this test). We first inject ten 75%
synthetic streams into the same locations with the same
orientations as shown in Figure 9 (left), and read out 2766 new
overlapping regions, which now include the ten new synthetic
streams with 75% of the stars. We re-run the HSS with the
same parameters as above. We then repeat this exercise with
ten synthetic streams including only 50% of the stars (155), and
then including only 25% of the stars (77). For the 75% case,
each synthetic stream is visible by eye (Figure 9). For the 50%
case, some of the inner streams are hard to make out by eye,
even knowing where they are, and for the 25% case, we cannot
see the synthetic streams by eye.

We summarize the results of all four HSS runs with the ten
different synthetic streams in Figure 10, where we plot the
detection significance of each synthetic stream (1 through 10)
for each of the four runs (100%–25%). For each HSS run

(100%–25%) and for each stream (1 through 10), we recorded
the one most significant log10Pr-value, and the color of each
marker represents this significance (see the color bar).
In the case with ten injected synthetic streams that have 75%

of the stream stars, all ten synthetic streams are recovered
across several regions. The streams that are fully recovered are
labeled with “+” markers in Figure 10. As stream 9 is located
close to a masked out dwarf, only part of the stream is
recovered (see triangles in Figure 10). Note how the
significance of each detection is lower in the 75% run (see
fading colors). For the case of the 50% synthetic streams, all
streams were recovered, but three of streams (streams 1, 3, and
9) were only partly recovered (i.e., not across all regions that
the streams span). Streams 1 and 3 are closest to the center of
M31 and are located in higher-density backgrounds. The fact
that it is the inner streams that are only partially detected is
expected due to the lower contrast between the streams and
background (see Figure 16, Appendix A). With a higher Pr-
thresh in the HSS run, we could detect these parts of the
synthetic streams too, but with the caveat that the code would
also find more spurious features.
For the synthetic streams with 25% of the 311 initial stream

stars, none of the streams are detected in the HSS run, because
the synthetic streams are too sparse to stand out against the
background. This is expected based on the relation between
number of stream stars versus log10Pr-value (see Appendix A,
Figure 16). We have used a Pr-thresh<−15 in the HSS run,
motivated by the fact that several streams are detected on top of
one feature if we go lower than this (see Section 3.3). We re-ran
the HSS for the 25% synthetic streams with a Pr-thresh<−10
instead. In this new run, we fully recovered Stream 5, located in
the low-density outskirts of M31ʼs halo, and we partially

Figure 9. Left: PAndAS data with [Fe/H] < −1 (gray), where the M31, dwarf, and GC masks have been removed from the data. We have injected ten 10MPal 5

synthetic streams at random locations with random orientations (highlighted in teal). The widths of these streams are all 0.273 kpc, the lengths are 25.9 kpc (1°. 89), and
the number of stars in each synthetic stream is 311, motivated from P19. Note that some of the streams are closer to M31 than others, thus residing in a higher-density
environment. The four panels in the lower part of the plot show 2° × 2° zooms of stream 1 with 100%, 75%, 50%, and 25% of its stream stars remaining (from left to
right). Right: the results of a blind HSS search on 0°. 73 overlapping regions (see small ellipse, left) with Δρ = 0.4 kpc, Pr-thresh < −15 (detections are highlighted in
purple). Each of the ten synthetic streams are recovered by the HSS, and their curvature is captured since the region sizes (0°. 73 in diameter) are smaller than the length
of the synthetic streams (1°. 89). Thus, should these type of streams exist in the data, the HSS should easily detect them. The dark gray streaks represent other detections
by the HSS in this run, which we will discuss in Section 5.
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rediscovered five of the ten synthetic streams (see Figure 10).
Four of the streams were not recovered (see “-” markers). The
HSS also flagged many more unknown (gray) features across
the regions (see Appendix B). Note that the synthetic streams
were flagged as “blobs” by the HSS several times in this run, as
multiple detections were found in one region due to the higher
Pr-thresh.

From Figure 10 it is clear that the synthetic streams with a
higher percentage of remaining stars have a more significant
detection in the HSS (darker colors). We conclude, unsurpris-
ingly, that streams with fewer stars will be detected by the HSS
with a larger log10Pr-value (less significance). Additionally, if a
10MPal 5 in M31 only has 25% of the stars, we will not detect it
with an HSS run with log10Pr<−15. Thus, in the PAndAS
data, we are complete for streams with half of the stellar
density of a 10MPal 5-type stream (∼5MPal 5-type stream) with
the HSS.

As mentioned in Section 3.2, the HSS is capable of detecting
thinner, shorter Pal 5–like streams also (i.e., not the 10MPal 5

used in this section). To check the completeness of Pal 5–like
streams in PAndAS, we also inject ten different 2MPal 5–like
streams (nstars= 68, length= 12 kpc, width= 127 pc; see
Table 1 and Figure 1 in Pearson et al. 2019). We run the HSS
with Δρ= 0.3 kpc and log10Pr<−10, and find that the HSS
recovers all of the synthetic 2MPal 5–like streams. However, the
HSS also flags >700 features with this threshold, and we get
overwhelmed by noise (see also Appendix C). When we
remove 50% of the stars and inject ten Pal 5–like streams
(nstars= 34, length= 12 kpc, width= 127 pc), only half of the
streams are recovered by the run, and we again detect more
than 700 features. It is possible that some of the >700 features
are indeed Pal 5–like streams, but with the depth of the data, it
is not possible to confirm this, and we cannot yet set limits on
the presence of Pal 5–like streams in M31.

5. Results

We have demonstrated that the HSS can recover synthetic
injected streams as well as re-detect the known PAndAS debris
features. In this Section, we explore whether the HSS recovers
new, unknown GC candidate streams. We first run the HSS
blindly on the PAndAS data after a metallicity cut of [Fe/
H]<−1 (Section 5.1), and subsequently analyze the morph-
ology and CMDs of the flagged HSS candidates (Section 5.2).

5.1. GC Stream Candidates in M31

We again divide the PAndAS data into 2766 overlapping,
equal-area regions with radius rangular= 0°.365 (see Figure 1,
Sections 2 and 4.4). Subsequently, we run the HSS on the 2766
regions with a metallicity cut of [Fe/H]<−1. We have again
masked out dwarfs and GCs from PAndAS (Huxor et al. 2014;
Martin et al. 2017; McConnachie et al. 2019) and M31 (see
Section 2 and Figure 9). We use parameters optimized for finding
10MPal 5 synthetic streams: Δρ= 0.4 kpc, Pr-thresh<−15 (see
Section 4.2). We additionally require that q > > r

r
D 2 .86smear 2 max

,

and θ-separation> 10° (see Section 3.3). We remove edge
detections where ρ> 3 kpc, as the 2766 regions overlap by
50% in both R.A. and decl. (see Section 2), such that anything on
the edge of a region will be in the center of another field. Thus, if
edge detections are indeed streams, as opposed to larger overdense
features on the edge of a region, they will be flagged as a stream
candidate in a separate region. We again exclude detections where
ten or more structures were detected in one region, as these are
likely “blobs,” which trace out a full sinusoid in (θ, ρ)-space.
While we have masked out dwarfs and GCs from the sample,
some “blobs” remain in the data, and these show up as sinusoids
in the (θ, ρ) space. While the HSS removes “blobs” by flagging a
region with more than ten detections as a “blob,” there are
instances where only part of the sinusoid is above the Pr-thresh. In
these instances, part of a sinusoid can be flagged as a stream
candidate. If a GC candidate is “blob”-like in position space or
sinusoid-like in (θ, ρ) space, we do not include it in the remainder
of our analysis. This was the case for ten flagged detections.
Of the 2766 regions, the HSS flags stream detections in 153

regions. To investigate which of these 153 flagged detections
could be potential GC candidate streams, in Figure 11, we plot
the PAndAS data and highlight the stars from the most
significant HSS detection in each of these 153 regions (i.e., we
only plot one detection per region). We separate the candidates
into three groups: (1) streams that are new GC candidates
(purple: 27 streams), (2) streams that are likely artifacts of the
data as they are at 0° or 90° and trace out the CFHT 1°× 1°
pointings (salmon: 48 streams), or (3) streams that fall within
0°.5 of the detected dwarf features from RunA and RunB (pink:
78 streams; see Section 4.3).
From Figure 11, we note that none of the detected streams

(purple) span several regions, as opposed to the synthetic
streams in Figure 9, and that several of the purple candidate GC
streams appear to be at the edge of an artifact (salmon)
indicating that these could be edge detections of these artifacts
despite the ρedge-criterion. Several of the dwarf features from
RunA/RunB are partially re-detected in this HSS run, which
has a narrow Δρ-value (see pink streams in Figure 11). This
was expected based on the tests in Section 3.3, where we found
that if Δρ was narrower than a specific feature, multiple
streams are flagged on top of that feature. We have marked the
location of all outer halo GCs (Huxor et al. 2014) with gray

Figure 10. Summary of each of the four different HSS runs with 100%, 75%,
50%, and 25% of the stars remaining in the ten 10MPal 5 synthetic streams. For
the 100%, 75%, 50% runs, we used a Pr-thresh < −15, but for the 25% run
(**), we used a Pr-thresh < −10 (see the text for details). For each of the runs,
we mark whether each specific synthetic stream (streams 1 through 10, see
Figure 9, left) was recovered. The “+” markers represent streams that were
fully recovered by the HSS across all regions. The triangles represent partially
recovered streams. The “-” markers represent streams that were not recovered.
The color bar shows the significance of each detection. We note that the
synthetic streams with more stars are detected to a higher significance (see
darker colors). The trends in the significance of detections persist between all
four runs (e.g., the outer halo synthetic stream 9 has a dark color in all four HSS
runs). The HSS is complete to streams with 50% of the surface density of
10MPal 5.
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“+” markers in Figure 11. We use the Astropy Collaboration
et al. (2013, 2018) SkyCoordinate module to determine that 10
of the GCs are within 0°.5 (≈6.9 kpc) of purple candidate
streams, and 17 of the GCs are within 1° (≈13.7 kpc) of the
purple candidate streams. Several of these candidate streams
have orientations that cannot be extrapolated from the GC path
(e.g., they are offset perpendicular from the cluster), and are
unlikely to be associated with the GCs. Since Huxor et al.
(2014) searched for stream candidates close to the progenitors
using HST data, our blind search is more likely to find fully
disrupted streams that are not associated with any cluster (see
also Balbinot & Gieles 2018).

In Appendix C, we show the results of an HSS run with
Δρ= 0.3 kpc and Pr-thresh<−10, where we are sensitive to
streams with 2MPal 5–like streams but also recover >700 other
features.

5.2. Morphology and Color–Magnitude Exploration

To explore whether any of the 27 purple streams in Figure 11
are likely new GC stream candidates, we investigate the
morphology of each stream and their location in CMDs. We
expect that a GC stream would have an old population of

metal-poor stars. We therefore compare the CMD of each
purple detection to the expectation from an old Pal 5–like
globular cluster isochrone (age= 11.5 Gyr, [Fe/H]=−1.3) at
the distance of M31 (see also Figure 1 in P19). Note that the
main-sequence turnoff is not observable at the limiting
magnitude of PAndAS at the distance of M31.
In Figure 12, we highlight the five most significant detections

(with minimum log10Pr-values) of the purple stream candidates
(see purple transparent circles in Figure 11). In the left column we
plot each star (gray) in the flagged region. In the middle panel, we
highlight the stars that were flagged as an HSS detection (purple).
In the right column, we plot the g0 versus (g− i)0 CMD for each
star in the region (gray), we highlight which stars are in the HSS
detection (purple), and overplot the part of the isochrone of a Pal
5–like cluster at the distance of M31 (age= 11.5 Gyr, [Fe/
H]=−1.3, gray line). We obtained the isochrone from the
PAdova and TRieste Stellar Evolution Code (PARSEC) set of
isochrones (Bressan et al. 2012), which were constructed by
interpolating points along missing stellar tracks, which gives rise
to the nature of the isochrone’s asymptotic giant branch. Note that
the narrow spread in the (g− i)0 color is due to the nature of how
PAndAS photometrically determines metallicities for all stars by
assuming that the width of the RGB can be interpreted as the

Figure 11. Flagged HSS candidates from a blind run on 2766 overlapping PAndAS data regions (with [Fe/H] < −1) and a radius of rangular = 0°. 365 with search
parameters set to Δρ = 0.4 kpc, Pr-thresh < −15. The known dwarfs, M31, and known GC were masked out in this run. The HSS flags 153 candidate streams, where
27 streams (purple) are potential new GC candidate streams, and where 48 of these are likely data artifacts (salmon) as θ = 0° or 90° and trace out the CFHT 1° × 1°
fields. The remaining 78 of the flagged streams fall within 0°. 5 of known dwarf streams found in RunA/RunB (pink). We highlight the five most significant GC
candidates (with the lowest log10Pr value) with purple transparent circles for further investigation. The gray “+” markers indicate the location of outer halo GCs in the
PAndAS data (Huxor et al. 2014), where 10 of the GCs are within 0°. 5 ( ≈ 6.9 kpc) of purple candidate streams. Note that several of the purple candidate GC streams
are close to dwarf streams and data artifacts, and that none of them trace out several regions as in the idealized case with synthetic data streams in Figure 9.
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Figure 12. The five most significant GC stream candidate detections from Figure 11 (see purple transparent circles). This figure shows all of the stars (gray) in the
region where the detection was flagged in spherical sky coordinates (left column), all of the stars, as well as the highlighted HSS flagged stream stars (purple) that were
within the stripe of detection in spherical sky coordinates (middle). Lastly, we plot the g0 vs. (g − i)0 CMD (right column) of all stars in each region (gray), as well as
the stars flagged by the HSS as a candidate (purple). We additionally overplot the Pal 5 isochrone (gray line) with age = 11.5 Gyr and [Fe/H] = −1.3 obtained from
the PARSEC set of isochrones (Bressan et al. 2012), scaled to the distance of M31 (see P19 for the shape of the entire isochrone). Note that we cannot see the main-
sequence turnoff of a Pal 5–like isochrone at PAndAS’ limiting magnitudes at the distance of M31.
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spread in metallicity within a galaxy (see, e.g., Crnojević et al.
2014).

Some of the stream detections (Figure 12, middle, purple)
are noticeable by eye (left). From the right column, it is evident
that none of the candidate streams (purple) appear to be
strongly clustered around the Pal 5–like isochrone, but instead
are scattered in the CMD space. To investigate the GC
candidates further, for all of the 27 purple streams in Figure 11,
we combine the photometry of all of their constituent stars in
the CMD space. In Figure 13 (upper left), we plot a 2D
histogram of stars in g0 versus ((g− i)0 for those 27 streams
and color the bins by the fraction of the total number of the
stars in those 27 streams that fall within that bin. We carry out
the same analysis for all 48 artifact streams (top middle), and
all 78 stream candidates that fell within 0°.5 of known dwarf
features (top right). If the 27 purple streams are indeed real GC
candidates from old, low-metallicity globular clusters, we
would expect them to have a stronger signal in the CMD along
Pal 5ʼs isochrone (see gray line upper left), than the artifacts
(top middle), which are not originating from one object. Note,
however, that the globular clusters in M31 have a large spread
in metallicities (see, e.g., Barmby et al. 2000; Caldwell &
Romanowsky 2016), and that streams from younger, more
metal-rich globular clusters could show a stronger correlated
signal offset to the right of Pal 5ʼs isochrone along the RBG.

From the top row of Figure 13, we note that the distributions
of the fraction of total stars fall in similar regions of the CMD
for the GC candidates (top left) and artifacts (top middle) with
more of a signal in the bottom-left corner of the plot. For the
HSS stream detections that were within 0°.5 of dwarf features
from RunA/RunB (see pink streams in Figure 11), we notice a
slightly stronger signal along the RGB (top-right panel). To
investigate this further, in the bottom row of Figure 13, we
compare the three maps from the top row. In particular, we plot
the map of the GC streams (upper left) divided by the map of
the artifact streams (upper middle) in the lower-left panel to
illuminate any differences. Similarly, we plot the dwarf streams

map divided by the artifacts map in the lower-middle panel,
and the dwarf streams CMD map divided by the GC candidates
CMD map in the lower-right panel.
In the lower-left panel of Figure 13, we see that there is no

clear difference between the GC candidates and the artifacts
(the bin values are ≈1), but the dwarf streams have more of a
signal along the RGB than both the artifacts (lower middle) and
the GC candidate (lower right) where the values of the map
ratios are >1. As the streams on top of the dwarf features (pink)
are expected to trace metal-poor populations of disrupted
dwarfs, it is not strange that these show correlated colors in the
CMD. However, if the purple HSS detections are indeed true
GC streams, we expect them to show this same trend of a
stronger signal along the RGB in the CMD than for the
artifacts. This could be along slightly different isochrones than
the Pal 5 isochrone overplotted here (e.g., a more metal-rich
GC would have an isochrone to the right of the Pal 5–like
isochrone in the g0− i0 color).
We now redo the analysis above, but use only the stars from the

five most significant detections (see purple circles on Figure 11
and the highlighted streams in Figure 12) to create our binned
maps showing the 2D histogram of the location of all stars in
those five streams. We again color the bins by the fraction of the
total number of the stars in those five stream candidates that fall in
each bin. We show this map in Figure 14 (upper left). We
compare this new map to the previous map of all 27 candidate
purple streams (Figure 12, upper left) by dividing the 2D-
histogram of the five most significant detections with the 2D
histogram of all 27 detections (see Figure 14, upper right). There
is a stronger signal along the RGB for the five most significant
detections than in all 27 candidates as the values are>1 (see color
bar); however, this enhancement does not fall exactly along the

Figure 13. g0 vs. (g − i)0 (same as Figure 12, right) but now binned and
colored by the fraction of total stars falling within each bin (see color bar) for
all of the stars in the 27 candidate GC stream detections (purple: upper left), all
of the stars in the 48 flagged artifact (salmon: upper middle), and all of the
flagged candidates within 0°. 5 of known dwarf streams (pink: upper right). We
overplot the part of the Pal 5 isochrone (the tip of the RGB) that is visible at the
distance of M31 in the upper-left panel (gray). The bottom panel shows the
fractional difference between the three types of flagged streams. The GC
detections do not show a stronger correlation in the CMDs along the RGB than
the artifacts (lower left), although the dwarf streams show more of a signal
close to the RGB of a metal-poor isochrone than both the artifacts (lower
middle) and the GC candidates (lower right).

Figure 14. The upper-left panel shows the g0 vs. (g − i)0 binned and colored
by the fraction of total stars falling within each bin (same as Figure 13, upper
left) but now for the stars in the five most significant GC candidate detections
only (see Figure 12). The upper-right panel shows the difference between the
2D histograms for these five most significant candidates vs. the CMDs based
on all GC candidate stars (Figure 13, upper left). There seems to be more of a
signal for the five more significant detections in the right part of the CMD (as
we saw for the dwarfs in Figure 13). This does not trace Pal 5ʼs isochrone (gray
line). The lower-left panels show the ratios between the 2D CMD maps for the
five most significant detections vs. all artifact streams (salmon), and the lower-
right panel shows this same ratio for all dwarf streams (pink) vs. the five most
significant GC candidates. These two maps are the same maps as shown in
Figure 13 lower-left and lower-right panels, but now using only the five most
significant purple detections. Comparing the maps interestingly shows more of
a signal along the RGB for the five most significant candidate GC streams, than
for all candidate streams.
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Pal 5–like isochrone. This could indicate that these candidates are
streams from younger, more metal-rich globular clusters (see GC
metallicity distributions for M31 in, e.g., Barmby et al. 2000;
Caldwell & Romanowsky 2016).

In the lower-left panel of Figure 14, we compare the new
fractional 2D map of the five candidate streams (Figure 14
upper left) to the fractional 2D map of all 48 artifact streams,
which is the same map that we showed for all purple streams in
the lower-left panel of Figure 13. In the lower-right panel of
Figure 14, we show the fractional 2D map of all stars in the 78
streams that fell in the vicinity of dwarf streams divided by the
map of all stars in the five GC candidate streams (Figure 14,
upper left). Interestingly, the maps in Figure 14, using the five
most significant streams, differ from the maps presented in
Figure 13, where we used all purple GC stream detections from
Figure 11. In particular, there appears to be a stronger signal
(values >1) along the RGB for the five CG candidates
compared to the artifacts (Figure 14, lower left), and there is a
shift in the distribution of the dwarfs versus candidates
(Figure 14, lower right). However, there is still a stronger
signal in the dwarf streams along the Pal 5–like isochrone than
for the five GC stream candidates.

The fact that the 27 GC candidates (Figure 11, purple) do not
appear to be correlated in the CMDs nor follow a Pal 5–like
isochrone could indicate that these flagged detections are noise
or artifacts as well. However, we do see a higher signal along
the RGB in the CMD when we analyze the most significant
candidates only (see Figure 14). The data appear to be just at
the boundary, where it is difficult to validate (and detect) GC
streams in the PAndAS data. We discuss this further in
Sections 6 and 7.

6. Discussion

In this Section, we discuss our choice of parameters for the
blind HSS run (Section 6.1), and how the HSS code compares
to and differs from other existing stream-finding techniques
(Section 6.2).

6.1. The HSS Parameter Choices

In Section 5, we showed the results of a blind HSS run with a
specific choice of parameters, such as the significance of
detection threshold (Pr-thresh<−15), search with (Δρ= 0.4
kpc), region size (dang= 0°.73), and metallicity cut ([Fe/H]<
−1). The choice of Pr-thresh<−15 and Δρ= 0.4 kpc were
motivated in Section 4.2 based on a 10MPal 5 synthetic stream.
Specifically, Pr-thresh<−15 lead to the detection of a 10MPal 5

synthetic stream without adding noisy spurious detections (see
also Appendix B). Δρ= 0.4 kpc optimized the detection of the
synthetic stream, while streams narrower than the chosen Δρ
value could still be flagged as stream overdensities, but with a
lower significance.

If we change the region size and the exact region location,
this can change the specific detections that are closer to the
edges of our regions, which still pass the ρedge-cut (see
Section 3.3). Throughout this work, we have ensured that the
region sizes are at least ten times larger than the feature we
search for, such that stream-like features would not fill up an
entire region and go undetected. We have additionally used
overlapping regions, such that a feature at the edge of one
region will be at the center of its neighboring region. While a
different choice of region locations might change the specific

flagged data artifacts, we do not expect true stream candidates
to be affected by a shift in region locations and sizes (see
example of how the random injection of synthetic streams lead
to clear HSS detections in Section 4.4).
Lastly, we can use a less restrictive metallicity cut, as some

GCs in M31 have higher metallicities and younger ages than
Pal 5 (e.g., Caldwell & Romanowsky 2016). To test the effect
of a less restrictive metallicity cut, we re-run the HSS with the
same parameters as in Section 5, but on PAndAS data with
[Fe/H]< 0. Dynamically, it takes GC streams several giga-
years to form and evolve (e.g., Johnston et al. 2001), and thus
adding in more stars with higher metallicities could serve to
contaminate our sample further with non-stream members. In
this new run, the HSS flagged more candidate streams (70),
data artifacts (72), and more streams within 0°.5 of the dwarf
debris (90) as compared to the HSS run with [Fe/H]<−1
presented in Figure 11. This is not surprising, as adding more
stars to the regions while keeping Pr-thresh fixed should lead to
higher significance detections (see Appendix A). Of the 27 GC
stream candidates found in the [Fe/H]=−1 run (see
Section 5), 20 of those candidates are within 0°.5 of the 70
new candidate streams from the [Fe/H]= 0 run. With the less
conservative metallicity cut, we again found that there is more
of a signal in the dwarf streams in the RGB part of the CMD
than for the artifacts and GC candidates, and it is difficult to
make conclusive statements about the candidates.
Thus, we can detect more GC candidates by re-running the

HSS with a grid of parameters. However, as the PAndAS data
appear to be at the very limit of detection capability for GC
streams in M31, we leave this exploration for future analysis of
deeper data.

6.2. Other Stream-finding Techniques

We have presented a new technique to identify streams in
resolved stars, and we can quantify how much of an outlier our
stream detection is with respect to its background. Over the
past few decades, different techniques have been developed to
search for stellar streams in various multidimensional data sets,
but to date, there is still no universal way of confirming the
significance of a stream detection. In this section, we discuss
the current state-of-the-art for stream-finding, most of which
relies on follow-up measurements of kinematics, colors, and
metallicities in addition to positional information.
One of the first examples of stream-detection methods was

presented in Johnston et al. (1996), who showed that debris
structure from tidally disrupted satellites could remain aligned
along great circles passing close to the Galactic poles for
several gigayears. They developed a method named the Great
Circle Cell Counts (GC3), where they create a grid of great
circle cells with equally spaced poles to provide a systematic
search for debris trails along all possible great circles. GC3 was
used to identify the first full sky view of the stream from the
Sagittarius dwarf (Ibata et al. 2002; Majewski et al. 2003). As
streams are not only coherent linear structures in positional
space, but also exhibit ordered kinematics, Mateu et al. (2017)
extended the GC3 method to include kinematic information.
Individual streams likely originate from just one progenitor,

which means that streams, most often, consist of a specific
population of stars with distinct ages and metallicities. Dwarf
streams can consist of several populations and will therefore
have a larger spread in these quantities. In the early days of
stream finding, Grillmair et al. (1995) took advantage of the
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fact that the progenitor main sequence on the CMD should be
the same for extended tidal debris near globular clusters. Since
then, this technique has been expanded and optimized to find
specific stellar populations against noisy stellar backgrounds
through matched-filter techniques in color–magnitude space
(e.g., Rockosi et al. 2002). The matched filtering technique
relies on a “template isochrone” of a specific age and
metallicity representing a specific population of interest.
Similarly, the technique relies on knowledge of a “background
template,” such that it is possible to construct a weighting filter
that maximizes the signal-to-noise of the output map. With
these templates in hand, it is possible to select a range of stars
around the template isochrone within the CMD while stepping
in distance modulus. Several groups have found numerous MW
streams using this technique (e.g., Grillmair & Dionatos 2006;
Bonaca et al. 2012; Carlberg et al. 2012; Ibata et al. 2016;
Shipp et al. 2018, 2020; Thomas et al. 2020).

With the wealth of stellar halo data that will be available in
the near future from Roman (Spergel et al. 2015), VRO
(Laureijs et al. 2011), and Euclid (Racca et al. 2016), it will be
important that we do not only detect substructure, but also
classify detections of various substructure such as streams and
shells to learn astrophysical parameters from their properties.
Hendel et al. (2019) developed a machine vision method,
SCUDS, which automates the classification of debris structures
(see Darragh-Ford et al. 2020 for a dwarf-finding algorithm). In
particular, the algorithm first locates high-density “ridges” that
are typical of substructure morphology in controlled Nbody
simulations of minor mergers. Once a “ridge” has been located,
the algorithm determines whether it is ‘stream’-like or ‘shell’-
like based on an analysis of the coefficients of an orthogonal
series density estimator. With SCUDS applied to current
(e.g., Martínez-Delgado et al. 2010; Martínez-Delgado 2019;
Martinez-Delgado et al. 2021) and future large data sets, we
will be able to obtain global morphological classifications,
which will help statistically assess, e.g., the host-to-satellite
mass ratio, the interaction time, and the satellite orbits for a
large sample of galaxies.

Malhan & Ibata (2018) developed the code STREAM-
FINDER where their aim was to use maximal prior knowledge
of stellar streams, including kinematics, to maximize the
detection efficiency. Their code makes use of 6D hyperdimen-
sional (position and velocity) “stripes” in phase-space, with
plausible widths and lengths motivated from a disrupted
progenitor’s properties and orbit. By integrating trial orbits
and searching within 6D hyperdimensional “tubes” surround-
ing these orbits, STREAMFINDER identified several known
streams and new stellar stream candidates (Malhan et al. 2018;
Ibata et al. 2019b) in Gaia DR2 data (Gaia Collaboration et al.
2018; Lindegren et al. 2018), most of which have since been
confirmed via the coherence in their radial velocities (Ibata
et al. 2021). Recently, Shih et al. (2022) applied a data-driven,
unsupervised machine-learning algorithm, ANODE (Nachman
& Shih 2020), which uses conditional probability density
estimation to identify anomalous data points along with a
Hough transform, to search for streams in Gaia DR2 data (Gaia
Collaboration et al. 2018). In particular, they identify the region
in Hough space with the highest contrast in density compared
to the region surrounding it, and search the Hough space for the
parameters that maximize the significance of their detection.
The input for the ANODE training includes the angular
position, proper motion, and photometry of the stars, which is

ideal for data sets such as Gaia DR2 (Gaia Collaboration et al.
2018). However, in external galaxies, we will most often not
have access to kinematic data, and “blind” systematical,
morphological searches (such as those carried out by HSS)
will be critical.
The HSS is developed with external galaxies and future

surveys of resolved stars in mind, and it currently uses
positional information only. In contrast, the GC3 method
(Johnston et al. 1996) was built for an internal Galactic
perspective. We expect HSS to be a great tool to rapidly and
systematically identify streams in densely populated data sets
of resolved stars. Due to HSSʼs general nature, its application is
not limited to searches for stellar streams, but could be adapted
to search for linear structure in other data sets. Similarly, the
HSS can be extended to include color information instead of
having this as a post-processing step.

7. Future Prospects

With the HSS, we have found 27 GC stream candidates in
PAndAS, but we could not make conclusive statements
regarding their nature. In this Section, we discuss the expected
GC stream population in M31 and future data that can be used
to search for and/or confirm GC stream candidates in M31
(Section 7.1). We also discuss how the HSS combined with
Roman will help find GC streams in external galaxies
(Section 7.2), and how this can potentially help in the quest
for the nature of dark matter (Section 7.3).

7.1. GC Population of M31 versus MW

The accretion histories of the MW and M31 have differed
substantially (e.g., Deason et al. 2013; Mackey et al.
2019a, 2019b). We see evidence of this, in part, from the large
dissimilarity in the number of GCs orbiting each of the spiral
galaxies. While we know of ≈150GCs in the MW (e.g.,
Harris 1996), there are more than 450 reported detections of GCs
in M31 (Huxor et al. 2014; Caldwell & Romanowsky 2016;
Mackey et al. 2019a). In the MW,<20% of the known GCs show
hints of tidal debris surrounding them (e.g., Leon et al. 2000;
Kundu et al. 2019) with only a few clear examples of extended
stellar streams (e.g., Odenkirchen et al. 2001; Grillmair &
Johnson 2006; Shipp et al. 2020). However, several stellar streams
in the MW have been detected in the absence of a progenitor. The
initial progenitors of those streams have likely been fully torn
apart by tides from the MW’s gravitational field. Based on the
widths and metallicities of the MW streams, >50 of them likely
originated from disrupted GCs (e.g., Mateu et al. 2018). Since
M31 has three times more GCs than the MW, it is reasonable to
expect that M31 hosts >150 GC streams (three times the amount
of GC streams than the MW), most of which should have fully
disrupted progenitors.
Our work in this paper and in P19 has demonstrated that we

should be able to detect 5MPal 5 and 10MPal 5 streams in the
PAndAS data if those streams exist in M31, but that a Pal 5–like
stream cannot be detected (see Section 4.4). However, we did not
find clear evidence (e.g., as compared to the synthetic streams in
Section 4.4) of GC stream in the PAndAS data with a systematic
search using the HSS. Thus, it appears as though there are no
10MPal 5 streams orbiting M31, as these should have been detected
with a log10Pr-value ≈ −80 (see Figure 10), where our most
significant detections have a log10Pr-value≈−25 (see Figure 12,
middle columns). It is possible that streams with 50% of the
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surface density of a 10MPal 5–like stream exist in the data (see
log10Pr-values in Figure 10 versus Figure 12, middle panels) or
streams with younger, more metal-rich stars than Pal 5 (see
Figure 14).

The MW stellar stream, Pal 5, had an initial mass
of≈47,000± 1500Me (Ibata et al. 2017), and many GCs
exist that are much more massive than Pal 5 (see, e.g.,
Harris 1996; Ibata et al. 2019a). Thus, it is not unreasonable to
expect that GC streams that are five to ten times more massive
than Pal 5 can exist in M31. Pal 5 has≈8000Me in its tails at
present day (Ibata et al. 2016, 2017). The globular cluster MW
stream, GD-1, has≈2× 104Me in its stream (Koposov et al.
2010), which makes it≈2.5×more massive than Pal 5. In the
MW, we do not yet know of GC streams more massive than
GD-1 at present day, and it might be that there simply are not
any GC streams that massive in M31ʼs stellar halo. Note,
however, that many factors play into our ability to detect such
streams in the MW (e.g., location in the Galaxy, time of
accretion, and extinction).

If the M31 stream mass population is similar to the observed
MW stream population, the PAndAS data appear to be at the
very boundary of detection capability for GC streams. To get a
better probe of the CMDs for the GC candidate structures and
to confirm the nature of the GC candidates in this work, deeper
data is needed. This would allow us to probe the RGB of
potential old GC streams in M31ʼs stellar halo. Deeper surveys
could also find a wealth of one to two times Pal 5–like streams.
The HST and soon the James Webb Space Telescope, and its
Near Infrared Camera, are ideal for deeper data (e.g., Huxor
et al. 2014), but due to the small FOV, they are not ideal for
anything spanning more than a few arcminutes (i.e., much
smaller than the synthetic streams in this work, which span
1°.89). Thus, this would be an expensive and risky observa-
tional program.

Interestingly, Patel et al. (2018) showed that the Hyper
Suprime-Cam (HSC) on Subaru, which has a much larger FOV
of 1.8 deg2, can go 1.5 mag deeper than PAndAS. However, it
is unclear how well the HSC will be able to resolve enough of
the individual stars from the much more numerous unresolved
background galaxies at faint magnitudes. Similar surveys can
be done with Magellan+Megacam, but with much smaller
FOVs. Instead, future surveys carried out with wide field
telescopes that resolve individual stars, such as Roman, are
perfectly suited for this purpose (P19), and when they are
combined with the HSS, we can carry out a systematic search.

7.2. HSS and Roman Space Telescope Synergy

With the large FOV (0.28 deg2) and high spatial resolution
(0 11) of Roman, we know that GC streams can easily be
resolved and stand out against the background of M31 (P19).
The HST Panchromatic Hubble Andromeda Treasury (PHAT)
survey (Johnson et al. 2012) used 432 pointings to cover the
disk of M31. This can be done using only two pointings with
Roman. For comparison, the entire field of PAndAS (400 deg2)
can be covered in ≈1500 pointings, but have a similar spatial
resolution and depth as the HST. While such a program is not
yet planned, the fact that a large part of GC streams can be
covered in one Roman pointing makes Roman ideal for follow-
up to verify and characterize, e.g., HSC candidates. In this
Section, we demonstrate the ability of HSS to find Pal 5 in
future 1 hr exposure Roman data of M31ʼs stellar halo.

We inject a stream with the present-day mass of Pal 5ʼs
stream (Ibata et al. 2017, i.e., not with ten times the mass) to a
background M31 field, which represents Roman’s limiting
magnitudes and stellar densities at a galactocentric distance of
Rgc= 55 kpc (see Section 3.1.2 in P19). The length of the
stream is updated based on the gravitational potential of M31 at
a galactocentric radius of 55 kpc. At this location in M31, Pal 5
would have a width of w= 0.127 kpc, and would have 1299
resolved stars based on the limiting magnitude of a 1 hr Roman
exposure at the distance of M31 (see P19, Figure and Table 1).
We inject the stream to a region size representing Roman’s

FOV (i.e., =  = r 0 .28 0 .529angular ). We therefore use a
radius of 0°.529/2 in this example, which is ≈3.62 kpc at the
distance of M31. In this example, we apply a metallicity cut
of [Fe/H]<−1, and we run HSS with Δρ= 0.3 kpc, and
q = > = = r

r
D
´ ´

0.041 rad 2 .37smear 2

0.3 kpc

2 3.62 kpcmax
(see details

in Sections 3.2 and 3.3).
In Figure 15, we show the results of HSS run on Roman-like

data with: (a) an injected Pal 5–like stream, and (b) an injected
Pal 5–like stream with 50% of the surface density. Note that the
length of the stream is much larger (l= 12 kpc; see P19 table 1)
than the size of the region (based on Roman’s FOV), so the
streams will connect over several regions that would be
detected by the HSS (see, e.g., Figure 9). Note also that due to
the stream’s larger length, not all 1299 stars are included in this
region. In the upper panels of Figure 15, we show the input
data fed to HSS, as well as the recovered stream (purple stripe).
The middle panels show the (θ, ρ) grid, which is the Hough
transform of each star (Equation (1)) binned in Δρ. The gray
scale demonstrates how many stars, k, fell in each specific bin.
The lower panel shows the binomial log10Pr(X� k), where k is
the value (number of stars) in each bin in the (θ, ρ) grid
(middle). The probability of one star landing in a certain bin is
represented by p= dA/A (see Equation (2)).
The HSS clearly detects the synthetic Pal 5–like stream

(Figure 15, left). When we remove 50% of the stars in the Pal
5–like stream (Figure 15, right), we still detect the stream, but
at a slightly different angle and with a lower significance (see
Figure 15, bottom panels, and a summary in Table 2). When we
only include 25% of the stars in the Pal 5–like stream, the HSS
still detects the streams but with orders-of-magnitude lower
significance and at a slightly different angle (see Table 2), as
there is more noise in the surrounding region. We do not detect
the stream with 10% of the stars remaining. The fact that our
code has the ability to significantly detect streams with 50% of
Pal 5ʼs stars in M31 yields very promising prospects for future
GC stream searches with Roman and HSS, in M31 and beyond.
While using conservative limits for star–galaxy separation, P19
showed that with a 1 hr Roman exposure, we can easily detect
Pal 5–like streams within 1.1 Mpc by eye (see their Figure 4,
left panel). We will additionally probe three magnitudes down
the RGB as compared to the PAndAS data presented here.
Thus with Roman and the HSS, we can place PAndAS-quality
constraints on GC streams for any halo within 10Mpc, and Pal
5–like streams can be detected in a wealth of galaxies in the
near future.

7.3. Constraining the Nature of Dark Matter

Over the next decade, there are multiple prospects for
deploying the HSS to data sets from other galaxies in search of
thin GC streams. With Roman and HSS, we will have the
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ability to detect hundreds of these types of streams in the
Local volume of galaxies (Karachentsev & Kaisina 2019;
Pearson et al. 2019), and many in M31 alone. This will usher
in a new era of statistical analysis of stellar stream
morphology. The mass spectrum of dark matter subhalos
varies depending on the nature of the dark matter particle
(e.g., Boehm et al. 2014). If dark matter is indeed a weakly
interactive massive particle, as is the case in Λ cold dark
matter, subhalos with masses lower than 106Me should be
abundant in galaxies. If dark matter is instead composed of
warm, lighter particles, these low-mass subhalos should not
exist (e.g., Bullock & Boylan-Kolchin 2017). Thus, finding
evidence of the existence of low-mass dark matter subhalos is
of particular interest, as that will enables us to distinguish
between dark matter particle candidates.

The thin MW stellar stream GD-1, which is likely the
remnant of a fully disrupted GC (Grillmair & Dionatos 2006),
is a prime example of a stellar stream that has a noticeable gap.
GD-1 orbits the MW retrograde with respect to the disk and
Galactic bar, which means that the stream will be minimally
impacted by these components of the galaxy (e.g., Hattori et al.
2016). Thus, the gap in GD-1 could be evidence of an
interaction between a low-mass dark matter subhalo and a GC
stream (de Boer et al. 2018; Price-Whelan & Bonaca 2018;
Bonaca et al. 2020a, 2019b). Another example of a MW stream
with gaps is the stream associated with Pal 5, which also shows
evidence of direction variations in its stream track (e.g., Bonaca
et al. 2020b). However, due to Pal 5ʼs prograde orbit with
respect to the Galactic bar (Erkal et al. 2017; Pearson et al.
2017), it is more difficult to disentangle the origin of the gaps
and morphological disturbances in Pal 5. In external galaxies,
we will most often not have access to kinematic data of the
stream members, which could make it difficult to put together
conclusive claims about the nature of the gaps (see, e.g., the
complex parameter space of GD-1ʼs perturber in the MW in
Bonaca et al. 2019b, 2020a). On the other hand, if we have a
large enough sample of gaps in streams in external galaxies
without molecular clouds, bars, and spiral arms, there are fewer
opportunities for baryonic perturbers to induce gaps in streams
(Amorisco et al. 2016; Hattori et al. 2016; Erkal et al. 2017;
Pearson et al. 2017; Banik & Bovy 2019; Pearson et al. 2019;

Figure 15. Top panels: input data to HSS with resolved stars in M31 background with Roman limiting magnitudes and a Pal 5 stream (a) and a stream with 50% of Pal
5 (b) injected with an updated number of stars for a limiting magnitude of 1 hr Roman exposure at the distance of M31. The purple stripes show the streams detected
by the HSS. Middle panels: the Hough transform of each star from the top panel shown in a (θ, ρ)-grid where each bin has a certain number of stars, k, corresponding
to how many sinusoidal curves crossed this bin, which was ≈1250 stars for the Pal 5–like stream (a) and ≈800 stars for the stream with 50% of Pal 5 stars (b). Lower
panels: the probability of the (θ, ρ)-grid (middle) having k or more stars cross each specific bin, by chance (Equation (4)). The purple dashed lines highlight the flagged
stream detection (corresponding to the purple stripe in the top panels). Note that the probability distribution for case b (lower right) is slightly more noisy. Roman
combined with HSS will thus allow us to detect GC streams much fainter than Pal 5 in hundreds of galaxies.

Table 2
Summary of HSS Roman Pal 5–like Stream Recovery.

Remaining Stars ρ θ log10Pr
(kpc) (deg)

100% 0.12 84.8 −246.5
50% 0.12 83.8 −62.59
25% 0.12 84.8 −23.12
10% L L L
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Bonaca et al. 2020b). We can potentially also do statistical
analyses on gap distributions in streams as a function of
environment and galactocentric radii, as smaller subhalos
should be destroyed in the central parts of galaxies (Garrison-
Kimmel et al. 2017).

The HSS can systematically search for GC streams in future
Roman data sets. Although the code is not yet optimized to find
gaps, with resolved stars, discontinuous structures should be
quite easy to see in post-processing, and we plan to facilitate
the search for discontinuities in streams (i.e., gaps) in a future
release of the HSS code.

8. Conclusion

We have developed a new code, the Hough Stream
Spotter (HSS), optimized to find and characterize linear
structure in discrete data sets. The HSS takes two positional
coordinates as inputs, and searches for overdensities via a
Hough transform and a binomial probability analysis to flag
potential stream candidates in noisy background regions. We
have optimized the code to be sensitive to thin GC-like streams
through both numerical and analytic analyses of various
synthetic streams injected with different number densities and
widths, at various locations and orientations. Additionally, we
have tested and applied our code to the photometric PAndAS
data from M31ʼs stellar halo, and we found the following:

1. The HSS re-discovers all previously known dwarf
streams and clouds in M31ʼs stellar halo, except for the
GS, which is flagged as a “blob” due to our search
criteria. The HSS also detects linear artifacts in the data
and edges of real features.

2. The HSS easily detects 10MPal 5 synthetic streams
injected to the PAndAS data. The code traces the
synthetic streams’ curvatures, and is complete to streams
with 50% of the surface density of a 10MPal 5–like stream
in M31ʼs stellar halo.

3. We found 27 new GC candidate streams that passed our
detection criteria motivated from the synthetic GC
streams. The five most significant detections show a
stronger signal along the RGB than artifacts in the data,
but we need follow-up data to confirm whether they are
true GC streams.

4. We have demonstrated that the Roman Space Telescope
will be sensitive to GC streams, and that the HSS can find
these streams. Roman and morphology-based codes like
the HSS will usher in a new era of statistical analyses of
extragalactic GC stream morphologies.

While we do not yet have a confirmation of a GC stream in
any other galaxy than the MW, there are exciting prospects for
using the morphology of GC streams in external galaxies for
orbit mapping, potential mapping, and statistical gap assess-
ment in the near future with the Roman Space Telescope.
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Appendix A
Analytic Investigation of HSS Parameters for Streams

In Figure 5, the optimal Δρ search width (Δρ= 0.4 kpc)
was a bit larger than the stream width in this example
(w= 0.273 kpc). However, the specific background and
number of stars in a stream can also affect the detection of a
stream. To generalize which search width and Pr-thresh value
to use for a specific type of stream search, we investigate a
range of stream widths and backgrounds analytically.
We can calculate the binomial probability (see Equation (4))

of a detection having “k” or more stars analytically (see
Section 3.3) for an idealized case, where the stream passes
through the center of the given region. We can calculate this
probability as a function of the stream width, w, the number of
stars in the stream, the stripe width, Δρ, and the number of
stars in the background and the area of background. We use an
array of Δρ from 0.05–1.5 kpc in steps of 0.05 kpc. In the
binomial calculation, p is the same as described in Section 3.3
and is the area of the stripe (which depends on the chosen Δρ)
divided by the area of the total region: =p

A

A
stripe

background
. Nstars is

the total number of stars in the region, Nstars=Nstream +
Nbackground, and the number of stars that fall into a certain stripe,
k, depends on whether the stripe width (Δρ) is greater than or
less than the stream width. If the stripe width is greater than the
stream width, all stream stars and the background stars that fall
within the stripe will be counted:

( )= +k N pN . A11 stream backgroundgt

But if the stripe width is less than the stream width, only part of
the stream stars will be counted as well as the background stars
that fall within the stripe:

( )= +k N
A

A
pN . A22 stream

stripe

stream
backgroundgt

With this prescription, we can analytically calculate the
probability of a stripe having k or more stars via
Equation (4).
We carry out the steps above for three different stream

widths (w1= 136 pc, w2= 273 pc, and w3= 546 pc). We first
keep the number density (stars/kpc2) between each stream and
the background fixed (q) but scale up or down the total number
of stars, Ntot=Nstream+Nbackground. To keep the number
density ratio, q, fixed, we scale up the number of stream stars
for larger width streams. Thus, there are more total stars in the
wider streams.
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In the top panel of Figure 16, we show the results for fixed q
for the three different widths. As a starting point, we use the
stream from the example in Figure 5, a 10MPal 5 stream with 130
stars injected to the PAndAS background at Rgc= 55 kpc with a
radius of 5 kpc including 879 stars. We do not change the area of
the regions in the following examples. The middle magenta line
in Figure 16 (top, middle) shows this example (same line as
shown in Figure 5). Here, q= 4.25, and we use this q for all lines
in the top panel. The two other panels (top left and right) in
Figure 16 represent streams with half of the width of the 10MPal 5

synthetic stream (left: blue) and two times the width of the
10MPal 5 synthetic stream (right: teal). For constant q but with a
higher total number of stars in the streams and backgrounds, the
stream is more significantly detected (lower log10Pr value). The
widest streams with more stars are most significantly detected. In
each case, the stripe width (Δρ) for optimal detection, per
construction, is the width of the stream. If the stream had not
been assumed to fall perfectly in the center of the input data
region, we could have a scenario where the stream is smeared
over several Δρ-bins (“stripes”), and the signal will be slightly
weaker, as is the case in Figure 5, for the numerical (dashed line)
versus analytic (solid line) example.

In the bottom row of Figure 16, we keep the number of stars
in the background fixed (Nbackground= 879), but scale up and
down the number of stars in the stream. Here, the contrast
between the stream and background is getting higher with
darker line colors. As expected, the log10Pr values become
lower (more significant) with higher number densities of stream
stars (darker lines). Thus, it is easier to detect streams in low-
density backgrounds and streams with more stars (see example
in Section 4.4).
Based on the analyses here, where we have fixed the region

sizes to have r= 5 kpc, we conclude the following:

1. A higher number of total stars will lead to a higher
significance detection, even with a fixed number density
contrast between the stream stars and backgrounds stars
(Figure 16, top row).

2. A larger contrast between the stream and background
yields a large difference in detection significance
(Figure 16 bottom row). Thus, it easier to detect streams
in the outer halos of galaxies.

3. Wider streams yield a more significant detection
(Figure 16, left to right).

Figure 16. Analytic log10Pr values (see Equation (4)) vs. Δρ for three different streams with three different widths w1 = 136 pc (blue, left), w2 = 273 pc (purple,
middle), and w3 = 546 pc (teal, right). “q” is the number density (stars/kpc2) in the stream vs. the background. Top row: the middle magenta line (in the middle panel)
is the 10MPal 5 synthetic stream case where there are 130 stars in the stream and 879 stars in the background (q = 4.25; see also Figure 5). We use this as a starting
point and scale our other examples from here. The other magenta lines represent the scenario where we have scaled the number of stars down in both the stream and
the background by a factor of 0.75 (lighter) or up by 1.5 (darker). The other two panels demonstrate examples with smaller (left) and larger (right) stream widths by
factors of one-half and two, respectively. To keep q constant, we scaled the number of stars in the streams based on their areas (i.e., there are fewer stars in the stream
to the left and more stars in the stream to the right). We note that having more stars in total yields a more significant detection (darker lines), despite constant q. Bottom
row: instead of keeping q fixed, here we instead fix the number of stars in the background to be 879 in each panel and scale the number of stream stars up and down by
factors of 0.75 and 1.25, respectively. A larger number of stars in each stream makes the detections more significant (smaller log10Pr-values).
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Appendix B
Completeness Test

We highlight the findings of the HSS run with ten injected
10MPal 5 synthetic streams including only 25% of the initial
stars (see also Section 4.4). Note that these streams are not
visible by eye in the data (Figure 9, left panel and lower-right
panel). As the HSS did not recover any of the synthetic streams
if we ran the code with Pr-thresh<−15, in this run we used Pr-
thresh<−10. In Figure 17, purple streaks highlight the stars
that were recovered from the injected streams. Five of the

streams are partially recovered, but streams 3 and 10 were only
flagged in one region. The dark gray streaks highlight the other
linear features that the HSS flagged in this run. Several of these
flagged detections appear to trace out the linear artifacts (at 0°
and 90°) that are present in the data due to the CFHT 1°× 1°
FOV, and many are in the close vicinity of the known dwarf
debris. Additionally, several unknown GC candidates were
flagged. It is possible that some of these are true stream
candidates, but based on our tests in Section 4.2, they are likely
noise.

Figure 17. Same as Figure 9 (right), but including only 25% of the 311 10MPal 5 synthetic stream stars. The purple highlighted stars are stars that were flagged in an
HSS run with a Pr-thresh < −10 instead of −15 as in the case for the 100%, 75%, and 50% runs. Note that the code flags many new linear features (dark gray), and
that the code partially recovers five of the ten injected streams (purple). At this Pr-thresh, several of the recovered features trace out the artifacts at 0° and 90° from the
CFHT 1° × 1° pointings and many trace out part of the known, wider dwarf debris features.
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Appendix C
Searching for Pal 5–like Streams

The HSS is capable of detecting lower-mass, shorter
2MPal 5–like streams (length= 12 kpc, width= 127 pc, nstars=
68) in the PAndAS data with [Fe/H]<−1. However, at the
limiting magnitudes of PAndAS, the HSSwill also pick up a lot of

noise. In Figure 18, we show the result of the HSS run with
Δρ= 0.3 kpc and Pr-thresh=−10, where the HSS flags 705
detections total. While some of the purple streams might indeed
be real Pal 5–like streams, we cannot confirm this with the data in
hand. We would instead need either deeper follow-ups or future
observations with Roman (see Section 2).

Figure 18. Flagged HSS candidates from a blind run on 2766 overlapping PAndAS data regions (with [Fe/H] < −1) and a radius of rangular = 0°. 365 with search
parameters set to Δρ = 0.3 kpc, Pr-thresh < −10 to search for Pal 5–like streams. The known dwarfs, M31, and known GC were masked out in this run. The HSS
flags 705 candidates streams, where 283 streams (purple) are potential new GC candidate streams, and where 193 of these are likely data artifacts (salmon) as θ = 0° or
90° and trace out the CFHT 1° × 1° fields. The remaining 228 of the flagged streams fall within 0°. 5 of known dwarf streams found in RunA/RunB (pink). The gray
“+” markers indicate the location of outer halo GCs in the PAndAS data (Huxor et al. 2014).
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