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Abstract—We consider the problem of recovering off-the-grid
spikes from Fourier measurements. Successful methods such as
sliding Frank-Wolfe and continuous orthogonal matching pursuit
(OMP) iteratively add spikes to the solution then perform a costly
(when the number of spikes is large) descent on all parameters at
each iteration. In 2D, it was shown that performing a projected
gradient descent (PGD) from a gridded over-parametrized initial-
ization was faster than continuous orthogonal matching pursuit.
In this paper, we propose an off-the-grid over-parametrized
initialization of the PGD based on OMP that permits to fully
avoid grids and gives faster results in 3D.

Index Terms—spike super-resolution, non-convex optimization,
over-parametrization, projected gradient descent, continuous or-
thogonal matching pursuit

I. INTRODUCTION

Let x0 be an off the grid sparse signal over Rd. Such signals
can be modeled as a sum of k Dirac measures:

x0 =

k∑
i=1

aiδti (1)

where a = (a1, . . . , ak) ∈ Rk are the amplitudes and
t = (t1, . . . , tk) ∈ Rk×d are the locations of the spikes.
We observe this signal through m Fourier measurements at
frequencies ω = (ω1, . . . , ωm) ∈ Rd×m. We write this as
y = Ax0 with A the corresponding linear operator from the
space M of finite signed measures over Rd to Cm. Note that
we consider the noiseless case for the sake of clarity.

A way to recover the true signal x0 is to find the minimizer
of a non-convex least-squares problem:

x∗ ∈ arg min
x∈Σk,ε

‖Ax− y‖22 (2)

where Σk,ε is a set modeling a separation constraint between
spikes. Theoretical guarantees for the recovery of x0 with
(2) have been given by Gribonval and al. in [1], e.g. when
frequencies are drawn with a well chosen Gaussian distribution
and m & O(k2dpolylog(k, d)), we have that x∗ = x0.
Practically, continuous orthogonal matching pursuit [2] (OMP)
has been successful at minimizing (2). Continuous OMP is
inspired by on the the grid OMP [3] (derived from the
Matching Pursuit algorithm [4]) for which theoretical success
guarantees have been described [5], [6]. Success in the contin-
uous case have been shown in cases that do not fit all practical
applications (such as Dirac recovery from random Gaussian
Fourier measurements) [7], [8].Another way to estimate x0 is
to add a regularization term (total variation of measures) to

(2). The regularized functional can then be solved practically
with the sliding Frank-Wolfe algorithm [9].

Both Continuous OMP and Sliding Frank-Wolfe iteratively
add a spike then perform a descent on all parameters (ampli-
tudes and positions). This descent step that we call the sliding
step in both cases is where most of the calculations are made
and it makes this class of method computationally heavy when
the number of spikes is large.

The geometry of minimization (2) in the parameter space
has been studied in [10]: consider a set of parameters Θk,ε

where

Θk,ε :=
{
θ = (a1, . . . , ak, t1, . . . , tk) ∈ Rk(d+1) ,

∀i, j ∈ {1, . . . , k}, i 6= j, ‖ti − tj‖2 > ε
}
.

(3)

We can rewrite (1) with the variable θ:

x0 = φ(θ) :=

k∑
i=1

aiδti ∈ Σk,ε. (4)

The unknown x0 belongs to the low dimensional model

Σk,ε :=

{
k∑
i=1

aiδti , (ai, ti) = θ ∈ Θk,ε

}
. (5)

Problem 2 can then be equivalently written

θ∗ ∈ arg min
θ∈Θk,ε

g(θ) (6)

with
g(θ) := ‖Aφ(θ)− y‖22 (7)

It has been shown that a simple gradient descent converges to
a global minimimun as long as it is initialized within a basin of
attraction of this minimum that has an explicit size. It has been
shown that this size increases with respect to the number of
measures. In [11], it was shown that a single projected gradient
descent initialized by an over-parametrized backprojection of
the measurements on a grid permits the recovery of a large
number of spikes in 2D with improved calculation times
compared to Sliding Continuous OMP. However, the use of
a grid is an obstacle to the generalization of this method to
domains of higher dimensions.
Contributions. In this paper, our main contribution is a
fast fully grid-less method for recovering sparse signals on
domains of any dimension. We propose to use an over-
parametrized greedy off-the-grid initialization based on Con-
tinuous OMP without a sliding step. We then perform a



projected gradient descent that provides the final estimate. We
provide experiments in 2D and 3D that shows the success
of the algorithm and up to an improvement of ten times in
calculation times compared to Sliding Continuous OMP. It
must also be noted that with recent advances on the study of
gradient descent in this context, a full proof of convergence
of the proposed algorithm seems now accessible.

II. OVER-PARAMETRIZED CONTINUOUS OMP AND
PROJECTED GRADIENT DESCENT

In this section, we describe our method which consists in
two parts: a projected gradient descent and a greedy over-
parametrized initialization off the grid. For each iteration of
the projected Gradient Descent, we perform a heuristic where
if two spikes are too close, we merge them. The Gradient
Descent operates on all parameters of the estimated signal,
meaning the locations and amplitudes of the spikes.

A. Projected gradient descent

The projected gradient descent (PGD), as introduced in
[12], or in spectral compressed sensing in [13] and for this
specific case in [11], is a way to perform a simple “descent”
algorithm on the function g while guaranteeing θ ∈ Θk,ε, i.e.
our estimate of x0 is in Σk,ε.

Given an initialization θinit ∈ Rkinit(d+1), we iterate

θ(n+1) = PΘε(θ
(n) − τn∇g(θ(n))) (8)

with τn the step size at the nth iteration and PΘkn,ε
is the

projection on the separation constraint for a signal made of
kn spikes at gradient step n.

Practically, a heuristic is used to perform the projection
PΘkn,ε

[11]: if two spikes are too close i.e. their distance from
one another is below a threshold, they are merged to form one
spike. To merge them, we add the amplitudes and we take the
barycenter of the locations weighted by the amplitudes.

Of course, the critical step for the use of only one pass
of this algorithm is that the over-parametrized initialization
is close enough to θ∗. Practically, in 2D it is possible to
use a simple hard thresholding of the back-projection of
measurements on a grid. Given a grid Γ, we can calculate
the back-projection zΓ ∈M of y on the grid Γ as

zΓ =
∑
sj∈Γ

zΓ,jδsi with zΓ,j =

m∑
l=1

yle
j〈ωl,sj〉. (9)

It is then possible to extract greedily an initial θinit from the
largest amplitudes in zΓ [11]. While successful in 2D for the
initialization of PGD (and useful for an easy visualization of
the quality of the sampling, see next section), the curse of
dimension limits the possibility to extend such gridded method
in domains of higher dimensions.

B. Initialization with Over-parametrized Continuous

The over-parametrized COMP (Continuous Orthogonal
Matching Pursuit) is an alteration of Sliding COMP. As
described in Algorithm 1, it iterates over the number of total
spikes to add. It finds a location where the spike maximize

a correlation with the residue. Then it performs an update of
the amplitudes and it refreshes the residue. The idea is to skip
the sliding part to yield an initialization close enough to the
true solution for the PGD. If the norm of the residue decreases
below a threshold or if the number of spikes to add passes a
certain value, then we stop the iterations.

The role of over-parametrization is to compensate the inac-
curacies induced at each iteration by the removal of the sliding
step. This can be viewed as an off-the-grid generalization of
the previously proposed gridded greedy initialization [11]. The
over-parametrized COMP is described in Algorithm 1.

Algorithm 1 Continuous Orthogonal Matching Pursuit algo-
rithm. The Sliding COMP performs state of the art spike
recovery. We use an over-parametrized COMP without sliding
as initialization of our PGD.

procedure COMP(A, y,K, is sliding)
r(0) ← y
t(0) ← {}
for k = 1→ K do

T ← arg maxt〈Aδt, r(k−1)〉
t(k) ← t(k−1) ∪ {T}
a(k) ← arg mina ‖A

∑k
i=1 aiδt(k)i

− y‖22 . Update
of the amplitudes

if is sliding then
a(k), t(k) ← descent(g, a(k), t(k))

end if
r(k) ← y −A

∑k
i=1 a

(k)
i δ

t
(k)
i

. Update of the
residue

end for
return a(K), t(K)

end procedure

To chose the amount of over-parametrization kinit, it was
proposed to chose a fixed multiple of an estimated true number
of spikes [11]. In our new method, we add spikes until it
reaches a threshold on the residue or when the difference
between two consecutive values of the residue reaches 0. This
method makes sure that adding more spikes with our chosen
COMP would not bring more information in the initialization
of the projected gradient descent (as the residue would not
decrease further).

It must be noted that the more robust Sliding COMP
with Replacement was proposed in [14]. In the version with
replacement, 2k spikes are estimated to produce an estimate
with k spikes (making the last sliding steps more costly). We
chose to compare ourselves with the faster version without
replacement as the main objective of our algorithm is to
provide a fast estimation (i.e. we place ourselves in the least
favorable case for execution times comparison).

C. Complexity

To estimate the time gained with our method over Sliding
COMP, we analyse qulaitatively the number of iterations in
the descent step (which is the most time consuming) in each



method. First for the Sliding COMP method, the execution
time is

TSCOMP = O(N × (1 + · · ·+K)) = O(NK2) (10)

with N the number of iteration in the gradient descent and
K the number of spikes. For over-parametrized COMP, the
execution time is

TPGD = O(K
∑
i

NiCi) (11)

with N0 =
∑
iNi the number of iteration in the Projected

Gradient Descent method, Ni the number of iterations between
each projection and Ci the constant symbolizing the over-
parameterization between each projection, i.e. after the i-th
projection, there are Ki = CiK spikes left.

As the over-parametrization factors Ci are generally low
compared to K, we observe that when the number of spikes K
grows, the PGD becomes more interesting than Sliding COMP.
We also remark PGD is faster if projections happen early in
the descent.

Moreover, when compared to the grid-based initialization
from [11], the over-parametrized COMP complexity is no
longer exponential in the dimension of the support of the
spikes.

III. EXPERIMENTS

In this section, we compare our over-parametrized COMP
+ PGD with Sliding COMP. We study these methods in 2D
and 3D in a compressed acquisition example. For both 2D and
3D cases, the signal is composed of a hundred of spikes. The
domain in which the locations of the spikes are is either [0, 1]2

for the 2D case or [0, 1]3 for the 3D case. The code for this
experiments is available for download at [15].

A. Comparisons on the 2D case

For this case, the signal has the following properties:
k = 100, the minimum distance between two spikes is
at least εdist = 0.015. Moreover, the amplitudes follow a
uniform distribution U([1, 5]). In addition, the number of
measurements taken is m = 40× k = 4000. The frequencies
of measurements follow a normal distribution N (0, c2), with
c = 1

0.02 ≈
1
εdist

. The choice of the variance is primordial for
the success of recovery. Indeed, The frequencies at which the
signal is observed can be too high or too low resulting in a
bad approximation of the signal as described in [16].

In Fig. 1(a), we represent the 2D signal as well as its back-
projection. In this figure and the following, the intensity of
the colors represent the amplitudes of the spikes. Some spikes
close from each other form clusters that are not separated in
the back-projection. For some spikes with very low amplitude
(close to 1 in this case), they are barely visible on the back-
projection. This means that these spikes are more complex to
detect using initialization by back-projection.

(a) (b)

(c) (d)
Figure 1. (a) Ground truth and its back-projection, (b) Ground truth and the
estimated signal by Sliding COMP, (c) Norm of the residue after adding each
spike by Sliding COMP, (d) Back-projection of the residue by Sliding COMP

1) Sliding COMP: In Fig. 1(b), Sliding COMP recovered
almost all spikes with its correct amplitude. Due to the non-
convex nature of the first step of COMP, some estimated spikes
are stuck in a local basin of attraction. The computation time
of Sliding COMP is 1h 30min.

To compare this result to others, we use the error e = ‖y−
Axesti‖2. We call r := y −Axesti the residue.

As we initialize the estimated signal spike by spike, the
norm of the residue r decreases steadily to attain ‖r(k)‖2 ≈ 5.
As we see in Fig. 1(c), the norm of the residue is still
decreasing at the end, meaning that the optimization and/or
the adding process has not completely converged to the true
solution. However, if we compare the back-projection of the
observed signal y in Fig. 1(a) with the back-projection of
the residue r(k) as in Fig. 1(d), the order of magnitude of
the energy has decreased. This means that Sliding COMP
recovered the majority of the signal.

2) Over-parametrized COMP without PGD : To understand
the role of the initialization with the over-parametrized COMP,
we show its results without the PGD step in Fig. 2(a). We
observe that every spikes of the true signal has at least an
initialized spike close to it. In some places, we notice a cluster
of spikes. This is for these cases that the projection part is
needed. The time to compute the initialization is 1min 54s.
We note the low cost of this initialization compared to Sliding
COMP. We see that in Fig. 2(b), the norm of the residue
is steadily decreasing and that in the last few steps, it stays
constant. This is the limit that this method attains and adding
more spikes does not increases the accuracy of the estimation.

By comparing the back-projection of the residue after
initialization with the back-projection of the observation, we
see in Fig. 2(c) that the order of magnitude of the error has
decreased. Yet there are still spots with a lot of energy meaning
that the estimation is not accurate enough. This is why we still



(a) (b)

(c) (d)
Figure 2. (a) Ground truth and initialized signal by over-parametrized COMP,
(b) Norm of the residue after adding each spike by over-parametrized COMP,
(c) Back-projection of the initialized residue by over-parametrized COMP, (d)
Ground truth and estimated signal by over-parametrized COMP

need the PGD to optimize the initialized signal.

3) Over-parametrized COMP with PGD : After the opti-
mization step with the PGD, we get the following result in
Fig. 2(d). All the spikes from the ground truth have been
estimated. This procedure took approximately 24min and it
converged after 2656 iterations of the PGD. We consider that
an estimated signal has converged to the ground truth if the
norm of the residue is lower that a threshold. With a much
smaller calculation time our method was able to recover more
accurately the spikes. Improvement in calculation times would
be even greater when comparing to the more accurate but
slower Sliding COMP with replacement.

(a) (b)
Figure 3. (a) Norm of the residue during the PGD, (b) Back-projection of
the estimated residue by PGD

By observing Fig. 3(a), we also deduce that all the signal
has been estimated. We note that the norm of the residue
may increase sometimes during the PGD. This is a typical
phenomenon that must be controlled to bre able to proove
convergence. Finally, the norm of the residue is close to zero
and the back-projection of the residue has an energy very low
compared to the original back-projection of the observation of
the true signal in Fig. 3(b). We can note the difference of scale

with the back-projection of the residue obtained with Sliding
COMP.

4) Limits of the over-parametrization: Computing the am-
plitudes at each step is done by solving a least-squares problem
with a matrix M of size m× k. So the more spikes we add,
the bigger M gets. We show that in Figs. 4(a) and 4(b), the
condition number of M at the end of the over-parametrized
COMP is higher than for Sliding COMP. This means that too
much over-parametrization lead to a condition number so high
that it can induce errors in the computation. This also shows
that the amount of over-parametrization by COMP cannot be
arbitrarily large.

(a) (b)
Figure 4. (a) Condition number of M by Sliding COMP, (b) Condition
number of M by over-parametrized COMP

B. Comparisons on the 3D case

For the the recovery of a signal in 3D (represented in red in
Fig. 5(a)), we perform the same analysis. The same parameters
than the 2D case are applied to some exceptions which are the
following. The minimum separation between spikes is set to
εdist = 0.05. Furthermore, since the measurements depend in
our case on εdist, they follow a normal distribution N (0, c2)
with c = 1

0.05 ≈
1
εdist

.
1) Sliding COMP: We see that in Fig. 5(a), most spikes are

also recovered with some exceptions. It is important to note
that in some place, two or more spikes from the ground truth
signal have been estimated by a single spike of the estimated
signal. The amplitude of this spike is roughly the sum of
the amplitudes of the spikes in the cluster. Sliding COMP
computed this estimation in approximately 1h 30min. For the
norm of the residue in Fig. 5(b), it is decreasing over the
iterations but does not attain 0 after adding 100 spikes. We
also note that this time is not too far apart from the time in
the 2D case. We can deduce that this family of algorithm is not
too dependent on the dimension of the space. On the contrary
to method needing a grid like in [11].

2) Over-parametrized COMP + PGD: : After the initial-
ization, we get the signal in Fig. 6(a). We note that all the
spikes from the ground truth have at least one spike from
the initialized signal. Moreover, some spikes have a negative
amplitude (in green). This step took approximately 1min after
adding 418 spikes. In Fig. 6(c), we note that the norm of the
residue decreases until it reaches a threshold. Adding even
more spikes does not increase the accuracy of the estimation.



(a) (b)
Figure 5. (a) Ground truth and estimation by Sliding COMP, (b) Norm of
the residue during the Sliding COMP

(a) (b)

(c) (d)
Figure 6. (a) Ground truth and initialization by Sliding COMP, (b) Ground
truth and estimation by PGD, (c) Norm of the residue during the over-
parametrized COMP, (d) Norm of the residue during the PGD

Same as Sliding COMP, this algorithm seems not to be too
dependent from the number of dimensions.

For the projected gradient descent, we note that after 1716
iterations, the energy of the system reached a threshold close to
0 to consider convergence in Fig. 6(d). It took approximately
13min 45s. We get as a final result the signal in Fig. 6(b).

IV. DISCUSSION/CONCLUSION

We showed that Projected Gradient Descent initialized by
over-parametrized COMP without sliding leads to better re-
sults in faster times than Sliding COMP. Indeed, it provides
a way to catch all spikes from the ground truth and without
needing to know precisely the number of true spikes to recover.
We have shown the success of our method in both 2D and 3D
and expect similar results for examples in larges dimensions.
To recapitulate, the table I shows the computation times of
each algorithms.

Although these are some promising experimental results,
there are still no theoretical guarantees for this new method.
However, some very strong quantitative and qualitative in-

Table I
SUMMARY OF COMPUTATION TIMES

Time (in min.)
Dimensions 2D 3D

Sliding COMP 90 90
Over-parametrized COMP 2 1
Projected Gradient Descent 24 14

sights already exist [10], [17], and hope for the possible
extension of proofs from the finite dimensional domain to our
case gives interesting potential leads for future work.
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