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A uniqueness result for the two vortex travelling wave in the Nonlinear Schrödinger equation

, where we constructed and studied a particular travelling wave of the equation. We show a uniqueness result on this travelling wave in a class of functions that contains in particular all possible minimizers of the energy.

 

for instance, or if u is a travelling wave tending to 1 at infinity, then the expression of the momentum reduces to

Re i∇u(ū -1) .

In addition to the translation invariance, the (NLS) equation is also phase shift invariant, that is invariant by multiplication by a complex of modulus one, and rotation invariant.

Travelling waves for (NLS)

), there has been a large amount of mathematical works on the question of existence and properties of travelling wave solutions in the (NLS) equation, that are solutions of

 for an overview on these problems in several dimensions. A natural approach is to look at the minimizing problem for p > 0

It was shown by Bethuel-Gravejat-Saut in [7] that there exists a minimizer to this problem.

Theorem 1.2 ([7]) For any p > 0, there exists a non constant function u p ∈ E and c(u p ) > 0 such that P 2 (u p ) = p, u p is a solution to (TW c(up) )(u p ) = 0 and E(u p ) = E min (p).

Furthermore, any minimizer for E min (p) is, up to a translation in x 1 , even in x 1 .

 for the natural semi-distance on

Theorem 1.3 ([13]) For any p > 0, and any minimizing sequence (u n ) n∈N for E min (p), there exists a subsequence (u nj ) j∈N , a sequence of translations (y j ) j∈N and a non constant function u p ∈ E such that D 0 (u nj , u p ) → 0, P 2 (u nj ) → P 2 (u p ) = p and E(u nj ) → E(u p ) = E min (p) as j → +∞. In particular, there exists c(u p ) > 0 such that P 2 (u p ) = p, u p is a solution to (TW c(up) )(u p ) = 0 and

Furthermore, the set S p := {v ∈ E, P 2 (v) = p and E(v) = E min (p)} of minimizers for E min (p) is orbitally stable for the semi-distance D 0 .

An open and difficult question is to show, up to the invariances of the problem, the uniqueness of the energy minimizer at fixed momentum. In other words, the problem is to determine if S p consists of a single orbit under phase shift and space translation, that is: do we have, for some minimizer U p , S p = {U p (. -X)e iγ , γ ∈ R, X ∈ R 2 }?

The main consequence of our work is to solve this open problem of uniqueness for large momentum.

with the estimate

Introduction and statement of the results

We consider the Nonlinear Schrödinger equation

i∂ t Ψ + ∆Ψ -(|Ψ| 2 -1)Ψ = 0 (NLS)
in dimension 2 for Ψ : R t × R 2 x → C, also called the Gross-Pitaevskii equation without potential. The Nonlinear Schrödinger equation is a physical model for Bose-Einstein condensate (see [START_REF] Ginzburg | On the theory of superfluidity[END_REF], [START_REF] Neu | Vortices in complex scalar fields[END_REF], [START_REF] Roberts | The Nonlinear Schrödinger Equation as a Model of Superfluidity[END_REF], [START_REF] Abid | Gross-Pitaevskii dynamics of Bose-Einstein condensates and superfluid turbulence[END_REF]), superfluidity ( [START_REF] Pismen | Vortices in Nonlinear Fields: From Liquid Crystals to Superfluids, From Non-Equilibrium Patterns to Cosmic Strings[END_REF]) and nonlinear Optics (see [START_REF] Kivshar | Dark optical solitons: physics and applications[END_REF]). The condition at infinity for (NLS) will be |Ψ| → 1 as |x| → +∞.

The (NLS) equation is associated with the Ginzburg-Landau energy

E(v) := 1 2 R 2 |∇v| 2 + 1 4 R 2 (1 -|v| 2 ) 2 ,
which is formally conserved by the (NLS) flow. We denote by E the set of functions with finite energy, that is

E := {u ∈ H 1 loc (R 2 , C
), E(u) < +∞}.

Remark 1.1 The Cauchy problem for (NLS) is globally well-posed in the energy space: see [START_REF] Gérard | The Cauchy problem for the Gross-Pitaevskii equation[END_REF], [START_REF] Gérard | The Gross-Pitaevskii equation in the energy space[END_REF], [START_REF] Gallo | The Cauchy problem for defocusing nonlinear Schrödinger equations with non-vanishing initial data at infinity[END_REF].

Theorem 1.4 There exists p 0 > 0 such that, for any p > p 0 , if u, v ∈ E with P 2 (u) = P 2 (v) = p satisfy

E(u) = E(v) = E min (p),
then, there exist X ∈ R 2 and γ ∈ R such that u = v(. -X)e iγ .

In fact, we will be able to show slightly stronger results than Theorem 1.4, see Theorem 1.11 below.

Even though we focus on the Ginzburg-Landau nonlinearity, it is plausible that our results hold true (still for large momentum) for more general nonlinearities, provided vortices exist. For the Ginzburg-Landau (cubic) nonlinearity, it is also possible that uniqueness of minimizers holds true for E min (p) for any p > 0. However, the numerical results given in [START_REF] Chiron | Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension two[END_REF] suggest that this may no longer be the case for more general nonlinearities.

In the analysis of the minimization problem in [START_REF] Bethuel | Travelling waves for the Gross-Pitaevskii equation[END_REF] (and also [START_REF] Chiron | Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity[END_REF]), the following properties of E min play a key role.

Proposition 1.5 ([7]) The function E min : R + → R is concave, nondecreasing and √ 2-Lipschitz continuous. In addition, there exists K 0 such that, for any p 1, we have E min (p) 2π ln p + K.

(1.1)

A smooth branch of travelling waves for large momentum

There have been several ways of constructing travelling waves of the (NLS) equation, with different approaches. For instance, we may use variational methods, such as a mountain pass argument in [START_REF] Bethuel | Travelling waves for the Gross-Pitaevskii equation[END_REF] and in [START_REF] Bellazzini | Finite energy traveling waves for the Gross-Pitaevskii equation in the subsonic regime[END_REF], or by minimizing the energy at fixed kinetic energy ( [START_REF] Bethuel | Travelling waves for the Gross-Pitaevskii equation[END_REF], [START_REF] Chiron | Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity[END_REF]). Also, we have constructed in [START_REF] Chiron | Smooth branch of travelling waves for the Gross-Pitaevskii equation in R 2 for small speed[END_REF] a travelling wave by perturbative methods, taking for ansatz a pair of vortices, by following the Lyapounov-Schmidt reduction method as initiated in [START_REF] Del Pino | Variational reduction for Ginzburg-Landau vortices[END_REF]. Vortices are stationary solutions of (NLS) of degrees n ∈ Z * (see [START_REF] Ginzburg | On the theory of superfluidity[END_REF], [START_REF] Neu | Vortices in complex scalar fields[END_REF], [START_REF] Weinstein | On the vortex solutions of some nonlinear scalar field equations[END_REF], [START_REF] Hervé | Étude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg-Landau[END_REF], [START_REF] Chen | Shooting method for vortex solutions of a complex-valued Ginzburg-Landau equation[END_REF]):

V n (x) = ρ n (r)e inθ , where x = re iθ , solving

∆V n -(|V n | 2 -1)V n = 0 |V n | → 1 as |x| → ∞.
In the previous paper [START_REF] Chiron | Smooth branch of travelling waves for the Gross-Pitaevskii equation in R 2 for small speed[END_REF], we constructed solutions of (TW c ) for small values of c > 0 as a perturbation of two well-separated vortices (the distance between their centers is large when c is small). We have shown the following result.

Theorem 1.6 ([15], Theorem 1.1 and [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF], Proposition 1.2) There exists c 0 > 0 a small constant such that for any 0 < c c 0 , there exists a solution of (TW c ) of the form

Q c = V 1 (. -d c - → e 1 )V -1 (. + d c - → e 1 ) + Γ c ,
where d c = 1+oc→0 (1) c is a C 1 function of c. This solution has finite energy, that is Q c ∈ E, and Q c → 1 at infinity. Furthermore, for all 2 < p +∞, there exists c 0 (p) > 0 such that, if 0 < c c 0 (p), for the norm

h p := h L p (R 2 ) + ∇h L p-1 (R 2 )
and the space X p := {f ∈ L p (R 2 ), ∇f ∈ L p-1 (R 2 )}, one has [START_REF] Abid | Gross-Pitaevskii dynamics of Bose-Einstein condensates and superfluid turbulence[END_REF].

Γ c p = o c→0
In addition, c → Q c -1 ∈ C 1 (]0, c 0 (p)[, X p ),
Finally, we have

d dc P 2 (Q c ) = -2π + o c→0 (1) c 2 < 0,
hence the C 1 mapping

P :]0, c 0 ] c → P 2 (Q c ) ∈ R
is a strictly decreasing diffeomorphism from ]0, c 0 ] onto [P 2 (Q c0 ), +∞[.

Remark 1.7

With the same kind of approach, [START_REF] Liu | Multivortex traveling waves for the Gross-Pitaevskii equation and the Adler-Moser polynomials[END_REF] also provides an existence result of travelling waves for (NLS), including some cases with more than two vortices. Our result has the advantage of showing the smoothness of the branch with respect to the speed. In particular, with the last part of Theorem 1.6, we see that we may also parametrize the branch c → Q c by its momentum P.

It is conjectured that all these constructions yield the same branch of travelling waves (for large momentum) when they are all defined, and that they are the solutions numerically observed in [START_REF] Jones | Motions in a Bose condensate. IV. Axisymmetric solitary waves[END_REF] and [START_REF] Chiron | Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension two[END_REF] for more general nonlinearities (see also [START_REF] Chiron | Multiple branches of travelling waves for the Gross-Pitaevskii equation[END_REF]). We will show here that the construction of Theorem 1.6 are the unique, up to the natural translation and phase invariances, constrained energy minimizers.

A uniqueness result for symmetric functions

We have shown in [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF] several coercivity results for the travelling waves constructed in Theorem 1.6. This will allow us to show the following uniqueness result for symmetric functions close to the branch constructed in Theorem 1. Proposition 1.8 There exists λ * > 1 such that, for any λ λ * , there exists ε(λ) > 0 such that if a function u ∈ E satisfies 1. ∀(x 1 , x 2 ) ∈ R 2 , u(x 1 , x 2 ) = u(-x 1 , x 2 ),

2. u = V 1 (x -d - → e 1 )V -1 (x + d - → e 1 ) + Γ, with d > 1 ε(λ) , Γ L ∞ ({r d 2λ}) ε(λ), 3. |u| -1 L ∞ ({r d λ})
1 λ * , 4. (TW c )(u) = 0 for some c > 0 such that |dc -1| ε(λ), then, there exist X ∈ R and γ ∈ R such that u = Q c (. -X e 2 )e iγ , where Q c is defined in Theorem 1.6. Remark 1.9 In view of the symmetry assumption, we may replace the second hypothesis by

u -V 1 (• -d - → e 1 ) L ∞ (B(d - → e1,2λ))
ε(λ).

We will discuss the main arguments of the proof of Proposition 1.8 in the next section. This result can be seen as a local uniqueness result, but the uniqueness turns out to be in a rather large class of function. Indeed, two functions that satisfies the hypothesis of Proposition 1.8 can be very far from each other, for two main reasons. First, in condition 2., the vortices that compose one of them have no reason to be close to the ones composing the other function since d depends on u: their centers ±d -→ e 1 only need to satisfy |dc -1| ε(λ), but for instance both d = 1 c and d = 1 c + 1 √ c satisfy these conditions for c > 0 small enough at fixed λ. Secondly, we only have that far from the vortices, the modulus is close to 1 from condition 3., but we have no information on the phase. The proof of Proposition 1.8 will rely on methods used in [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF] in order to prove some coercivity, and we shall need to be very precise to take into account all these cases.

A way to see that Proposition 1.8 is a strong unicity result is that it implies the following local uniqueness result in L ∞ for even functions in x 1 .

Corollary 1.10 There exist c 0 , ε > 0 such that, for 0 < c < c 0 , if a function u ∈ E satisfies 1. ∀(x 1 , x 2 ) ∈ R 2 , u(x 1 , x 2 ) = u(-x 1 , x 2 ), 2. (TW c )(u) = 0 in the distributional sense,

3. u -Q c L ∞ (R 2 ) ε,
then, there exist X ∈ R and γ ∈ R such that u = Q c (. -X e 2 )e iγ .

We may now state our main result. It establishes that any travelling wave solution which is even in x 1 and within O(1) of the minimizing energy must be, for large momentum, the Q c travelling wave constructed in Theorem 1.6, up to the natural translation and phase invariances.

Theorem 1.11 For any Λ 0 > 0 there exists p 0 (Λ 0 ) > 0 such that, if u ∈ E satisfies

1. ∀(x 1 , x 2 ) ∈ R 2 , u(x 1 , x 2 ) = u(-x 1 , x 2 ),
2. (TW c )(u) = 0 for some c > 0, 3. P 2 (u) p 0 (Λ 0 ), 4. E(u) 2π ln P 2 (u) + Λ 0 , then, there exist X ∈ R and γ ∈ R such that

u = Q c (. -X e 2 )e iγ ,
where Q c is defined in Theorem 1.6. In particular, P 2 (u) = P(c) (where P is defined in Theorem 1.6).

Section 3 is devoted to the proof of this result. We show there that a function satisfying the hypothesis of Theorem 1.11 also satisfies the hypothesis of Proposition 1.8. Our result applies in particular to the constraint minimizers for the problem E min (p), for large p.

Corollary 1.12 There exist p 0 > 0 such that, for any p p 0 , any minimizer U for E min (p), there exists γ ∈ R and X ∈ R 2 such that, with c = P -1 (p),

U = Q c (• -X)e iγ .
Moreover, (TW c )(U ) = 0.

Proof. By a first translation in x 1 , we may assume, by Theorem 1.2, that this minimizer U is even in x 1 . By Proposition 1.5, the last hypothesis 4 of Theorem 1.11 is satisfied hence we may translate in x 2 and use phase shift and get that this minimizer U is Q

c . Necessarily, P 2 (U ) = p = P 2 (Q c ), thus c = P -1 (p). 2 
Theorem 1.4 is a direct consequence of this corollary. This allows to derive several interesting consequences on the function E min . This also shows that the branch of Theorem 1.6 coincides with the global energy minimizer at fixed momentum (up to translation and phase shift). Theorem 1.13 There exists c * > 0 such that, for 0 < c c * , Q c is a minimizer for E min (P 2 (Q c )). Moreover, there exists p 0 > 0 such that the following statements hold.

The function

E min is of class C 2 in [p 0 , +∞[ and 0 > E min (p) ∼ - 2π p 2 , 0 < E min (p) ∼ 2π p , E min (p) = 2π ln p + O(1).
2. For p p 0 S p = {Q P -1 (p) (. -X)e iγ , γ ∈ R, X ∈ R 2 }, hence, for any p p 0 , E min (p) is the speed of any minimizer for E min (p).

3. For any p p 0 , Q P -1 (p) is orbitally stable for the semi-distance D 0 (or, equivalently, for 0 < c c * , Q c is orbitally stable for the semi-distance D 0 ).

4.

For p p 0 and any minimizer u for E min (p), then, up to a space translation and a phase shift, u enjoys the symmetry

∀(x 1 , x 2 ) ∈ R 2 , u(x 1 , -x 2 ) = ū(x 1 , x 2 )
in addition to the symmetry in x 1 .

5. For any Λ > 0, there exists p 0 (Λ) > 0 such that, if u ∈ E satisfies (TW c )(u) = 0 for some c > 0, P 2 (u) p 0 (Λ) and u is even in x 1 , then either E(u) = E min (P 2 (u)), or E(u) E min (P 2 (u)) + Λ.

Proof. By Theorems 1.2 and 1.3, we have existence of at least one minimizer U p for E min (p), whatever is p > 0.

For large p, by applying Corollary 1.12, we have U p = Q c (• -X)e iγ for some X ∈ R 2 and γ ∈ R, thus proving that Q c is a minimizer for E min (p) and that P 2 (Q c ) = P(c) = p. For 1., it suffices to notice that, in view of Corollary 1.12 applied to any minimizer (we have existence by Theorems 1.2 and 1.3) E min (p) = E(Q P -1 (p) ). We then conclude by using that P is a C 1 diffeomorphism and that

c → E(Q c ) is also of class C 1 (see [14], Proposition 1.2) that E min is of class C 1 in [p 0 , +∞[ and that E min (p) = d dc E(Q c ) |c=P -1 (p) × 1 P (P -1 (p)) = P -1 (p),
in view of the Hamilton like relation (formally shown in [START_REF] Jones | Motions in a Bose condensate. IV. Axisymmetric solitary waves[END_REF] and rigorously proved for the branch constructed in Theorem 1.6 in [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF])

d dc E(Q c ) = c d dc P 2 (Q c ).
Since P is a C 1 diffeomorphism, we deduce that E min is of class C 1 . The asymptotics for E min and E min then follow from Proposition 1.2 in [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF]. Integration would yield E min (p) ∼ 2π ln p, but we may slightly improve this estimate. Indeed, Proposition 1.5 gives E min (p) 2π ln p + O(1), and the lower bound is a straightforward consequence of Theorem 3.4 (i) and the study in subsection 3.2.3.

Statement 2. is a rephrasing of Corollary 1.12 combined with the existence of at least one constrained minimizer. Statement 3. is then a direct consequence of Theorem 1.3. Statement 4. simply follows from the fact that Q c enjoys by construction this symmetry (see [START_REF] Chiron | Smooth branch of travelling waves for the Gross-Pitaevskii equation in R 2 for small speed[END_REF]). Finally, statement 5. is also a rephrasing of Theorem 1.11.

2

Remark 1.14 Concerning the stability stated in statement 3. in the above theorem, we quote the work [START_REF] Lin | Instability, index theorem, and exponential trichotomy for linear hamiltonian pdes[END_REF], where a linear "spectral" stability result is proved (through ad hoc hypotheses that have been checked in [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF]), namely that the linearized equation i∂ t v = L Qc (v) does not have exponentially growing solutions (in Ḣ1 (R 2 ; C), say). Statement 3. in the above theorem does not rely on the result in [START_REF] Lin | Instability, index theorem, and exponential trichotomy for linear hamiltonian pdes[END_REF], and is for the nonlinear (orbital) stability (following the Cazenave-Lions approach).

Let us conclude this section with several comments on our result. First, let us explain the relevance of the symmetry hypothesis, namely that we restrict to mappings even in x 1 . This symmetry is used in the coercivity of the branch of Theorem 1.6, along the following arguments. The quadratic form around the travelling wave Q c is decomposed in three areas, close to the two vortices, and far from them. In the latter region, the coercivity can be shown without any orthogonality condition. Close to the vortices, the quadratic form is close to the one of a single vortex, that has been studied in [START_REF] Del Pino | Minimality and nondegeneracy of degree-one Ginzburg-Landau vortex as a Hardy's type inequality[END_REF]. Its coercivity requires three orthogonality conditions, two for the translation, and one for the phase. Therefore, we can show the coercivity of the full quadratic form with six orthogonality conditions, three for each vortex. However, the family of travelling waves of Theorem 1.6 has only five parameters (two for the speed, two for the translation, and one for the phase). The symmetry is then used to reduce the problem to three orthogonality conditions into a family with three parameters. With this symmetry, both orthogonality conditions on the phase for the two vortices become the same condition. It is possible to prove a coercivity result with only five orthogonality conditions without symmetry (see [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF]), but then the coercivity constant goes to 0 when c → 0. This would pose a problem for the uniqueness result. The last statement in Theorem 1.13 shows that, when restricting ourselves to symmetric travelling waves, there is an energy threshold under which there is no travelling wave except the Q c branch.

Secondly, the proof of the fact that Q c is a minimizer of the energy for fixed momentum relies on the existence of such minimizers. In particular, we have not been able to use our coercivity results in [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF] in order to prove directly that Q c is orbitally stable (for small c).

Thirdly, the symmetry in x 2 for the minimizers (statement 4) is established as a consequence of the uniqueness result and not in itself. Notice that the numerical studies in [START_REF] Jones | Motions in a Bose condensate. IV. Axisymmetric solitary waves[END_REF], [START_REF] Chiron | Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension two[END_REF] and [START_REF] Chiron | Multiple branches of travelling waves for the Gross-Pitaevskii equation[END_REF] assume the two symmetries.

The travelling wave Q c and two other variational characterizations

Before providing other variational characterizations of Q c , we have to define a distance on the energy space E. One can use (see [START_REF] Gérard | The Gross-Pitaevskii equation in the energy space[END_REF])

D E (ψ 1 , ψ 2 ) := ψ 1 -ψ 2 L 2 (R 2 )+L ∞ (R 2 ) + ∇ψ 1 -∇ψ 2 L 2 (R 2 ) + |ψ 1 | -|ψ 2 | L 2 (R 2 ) ,
which is adapted to the Cauchy problem. Actually, we may also use the pseudo-distance

1 D 0 (ψ 1 , ψ 2 ) := ∇ψ 1 -∇ψ 2 L 2 (R 2 ) + |ψ 1 | -|ψ 2 | L 2 (R 2 ) ,
Is it shown in [START_REF] Chiron | Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity[END_REF], Corollary 4.13 there, that both the energy E and the momentum P 2 are continuous for the distance D E , and actually even for the pseudo-distance D 0 .

The travelling wave Q c as a mountain pass solution. Thanks to the results in Theorem 1.13, it is easy to show that we have locally, near Q c , a mountain-pass geometry. Indeed, let c * > 0 be small, and define

Υ c * := {υ : [-1, +1] → E continuous, v(-1) = Q 3c * /2 , v(+1) = Q c * /2 } the set of continuous paths from Q 3c * /2 to Q c * /2 in E. Then, we claim that inf υ∈Υc * max t∈[-1,+1] (E -c * P 2 )(υ(t)) = (E -c * P 2 )(Q c * ). (1.2)
Indeed, let υ ∈ Υ c * . By the intermediate value theorem, there exists

t * ∈ [-1, +1] such that P 2 (υ(t)) = P 2 (Q c * ) (c → P 2 (Q c ) is a C 1 function, see Proposition 1.2 in [14]). Since Q c * is a minimizer for E min (Q c * ), we infer max t∈[-1,+1] (E -c * P 2 )(υ(t)) E(v(t * )) -c * P 2 (Q c * ) E(Q c * ) -c * P 2 (Q c * ).
Moreover, considering the particular

C 1 path υ * : [-1, +1] → E defined by υ(t) := Q c * -tc * /2 , we see that d dt (E -c * P 2 )(υ * (t)) = - c * 2 d dc E(Q c ) -c * d dc P 2 (Q c ) |c=c * -tc * /2 = c 2 * t 4 
d dc P 2 (Q c ) |c=c * -tc * /2
in view of the Hamilton group relation

d dc E(Q c ) = c d dc P 2 (Q c ) (see Proposition 1.2 in [14]). Since d dc P 2 (Q c ) < 0, we deduce that (E -c * P 2 )(υ * (t)) increases in [-1, 0] and decreases in [0, +1], hence has maximal value E(Q c * ) - c * P 2 (Q c * ), as wished.
Furthermore, by the asymptotics given in [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF] and the above mentioned Hamilton group relation 

d dc E(Q c ) = c d dc P 2 (Q c ), we have (E -c * P 2 )(Q c * ) -(E -c * P 2 )(Q c * /2 ) = c * c * /2 (c -c * ) d dc P 2 (Q c ) dc > 0 since c -c * < 0 and d dc P 2 (Q c ) < 0. Similarly, we prove that (E -c * P 2 )(Q c * ) -(E -c * P 2 )(Q 3c * /2 ) < 0. We now claim that if u ∈ E is such that (TW c * )(u) = 0 and (E -c * P 2 )(u) = inf υ∈Υc * max t∈[-1,+1] (E -c * P 2 )(υ(t)) = (E -c * P 2 )(Q c * ), (1.3 
(u) = P 2 (Q c * ), then E(u) E min (P 2 (u)) > E min (P 2 (Q c * )) + E min (P 2 (Q c * )) P 2 (u) -P 2 (Q c * ) = E(Q c * ) + c * P 2 (u) -P 2 (Q c * ) , 1 D 0 (ψ 1 , ψ 2 ) is zero if and only if ψ 2 -ψ 1 is constant with |ψ 1 | -1 = |ψ 2 | -1 ∈ L 2 (R 2 ).
in contradiction with (1.3). As a consequence, we have

E(u) = E(Q c * ) = E min (P 2 (u)) = E min (P 2 (Q c * )),
implying that u is a minimizer for E min (P 2 (Q c * )), hence there exist γ ∈ R and

X ∈ R 2 such that u = Q c * (• -X)e iγ ,
hence proving a uniqueness result for mountain pass type travelling wave solutions. However, stating rigorously a useful uniqueness result for this kind of variational solution is not so easy: in [START_REF] Bethuel | Travelling waves for the Gross-Pitaevskii equation[END_REF], the mountain pass is implemented in the space 1 + H 1 (R 2 ) whereas we know (by the result in [START_REF] Gravejat | Asymptotics for the travelling waves in the Gross-Pitaevskii equation[END_REF]) that the nontrivial traveling wave do not belong to this affine space; in [START_REF] Bellazzini | Finite energy traveling waves for the Gross-Pitaevskii equation in the subsonic regime[END_REF], the solution is constructed by working first on [-N, +N ] × R and then passing to the limit, and it is then not immediate to compute the functional E -cP on the solution; in addition, the method does not provide easily some explicit bounds on the energy or the momentum. We shall then not go further in this discussion even though the previous arguments indicate that mountain pass solutions are (at least for small c) only the orbit of Q c .

The travelling wave Q c as a minimizer of E -cP 2 for fixed kinetic energy. In [START_REF] Chiron | Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity[END_REF], for κ 0, the following variational problem is investigated:

I min (κ) = inf 1 4 R 2 (1 -|v| 2 ) 2 dx -P 2 (v), v ∈ E s.t. 1 2 R 2 |∇v| 2 dx = κ .
Any minimizer v for I min (κ) is such that there exists c > 0 satisfying (TW c )(v(•/c)) = 0. In 2d and for the Ginzburg-Landau nonlinearity, existence of minimizers for κ > 0 is established in Theorem 1.2 there. Furthermore, it is shown in [START_REF] Chiron | Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity[END_REF] (see Proposition 8.4 there) that if p > 0 and if U is a minimizer for E min (p) with speed c, then U (c •) is a minimizer for I min (κ) with κ = 1 2 R 2 |∇U | 2 dx (this last quantity is scale-invariant in 2d) and I min is differentiable at this κ, with

I min (κ) = -1/c 2 . Since Q c is a minimizer for E min (P 2 (Q c )), if we prove that c → 1 2 R 2 |∇Q c | 2 dx is a decreasing C 1 -diffeomorphism from ]0, c 0 ], for some small c 0 , onto [κ 0 , +∞[, with κ 0 := 1 2 R 2 |∇Q c0 | 2 dx, then
we shall conclude that I min is of class C 1 on [κ 0 , +∞[, and that (by the arguments in [START_REF] Chiron | Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity[END_REF]), the only minimizer for κ = 1 2 R 2 |∇Q c | 2 dx (for some suitable c ∈]0, c 0 ]) is Q c (c •) up to the natural translation and phase invariances and, in addition, I min (κ) = -1/c 2 . In order to prove that statement, it suffices to use the Pohozaev identity (2.2) and deduce

1 2 R 2 |∇Q c | 2 dx = E(Q c ) - 1 4 R 2 (1 -|Q c | 2 ) 2 dx = E(Q c ) - cP 2 (Q c ) 2 .
Therefore, by using the Hamilton like relation

d dc E(Q c ) = c d dc P 2 (Q c )
and then the asymptotics of c → P 2 (Q c ) obtained in [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF], we arrive at

d 2dc R 2 |∇Q c | 2 dx = d dc (E(Q c )) - c 2 
d dc P 2 (Q c ) - 1 2 P 2 (Q c ) = c 2 d dc P 2 (Q c ) - 1 2 P 2 (Q c ) ∼ - 2π c < 0
and this concludes.

The paper is organized as follows. In section 2, we give the proof of the uniqueness result given in Proposition 1.8. Section 3 is devoted to the vortex analysis of travelling waves with energy E min (p) + O(1) and even in x 2 , in order to show that they satisfy the hypotheses of Proposition 1.8. Subsection 3.4 contains a few remarks on the nonsymmetrical case. Finally, in subsection 3.3, we provide some decay estimates slightly away from the vortices. For the Ginzburg-Landau (stationary) model, such estimates have been first given in [START_REF] Mironescu | Explicit bounds for solutions to a Ginzburg-Landau type equation[END_REF] for minimizing solutions and later generalized in [START_REF] Comte | The behavior of a Ginzburg-Landau minimizer near its zeroes[END_REF] to non-minimizing solutions. They improve some estimates in [START_REF] Chiron | Smooth branch of travelling waves for the Gross-Pitaevskii equation in R 2 for small speed[END_REF] and are not specific to the way we construct the solutions.

Proof of the local uniqueness result (Proposition 1.8)

This section is devoted to the proof of Proposition 1.8 and Corollary 1.10. The proof of Proposition 1.8 uses arguments from the proof of Theorem 1.14 of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF], another local uniqueness result for this problem, but in different spaces. We explain here the core ideas of the proof.

Let us explain schematically the proof of Proposition 1.8. We first pick c , X, γ in such a way that Q = Q c (. -X)e iγ has the same vortices as u. This is possible because c → d c , the position of the vortices, is smooth. We then decompose u = Qe ψ , where ψ is the error term. This can not be done near the zeros of Q, but we focus here on the domain far from the vortices.

The equation satisfied by ψ is then (TW c )(u) = 0 = (TW c )(Q) + L(ψ) + NL(ψ), where we regroup the linear terms in L and the nonlinear terms in NL, and (TW c )(Q) = 0 because c = c . We then take the scalar product of this equation with ψ, and we get 0 = (TW c )(Q), ψ + B Q (ψ) + NL(ψ), ψ . Now, the coercivity of B Q has been studied in [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF]. It holds (for even functions in x 1 ) up to three orthogonality conditions, that can be satisfied by changing slightly the modulation parameters c , X, γ. We deduce that B Q (ψ) K ψ 2 1 for some norm • 1 . There are two main difficulties at this point. First, since the hypothesis on u in Proposition 1.8 are weak, we simply have ||ψ|| 1 < +∞, but not the fact that it is small. Therefore, an estimate of the form | NL(ψ), ψ | K ψ 3 1 would not be enough to conclude. Secondly, the norm • 1 is rather weak, and in fact NL(ψ), ψ can not be controlled by powers of ψ 1 .

Concerning the term (T W c )(Q), ψ , we may show that we always have

|c-c | o(1) ψ 1 , thus | (T W c )(Q), ψ | o(1) ψ 2
1 . Therefore, we are led to

(K/2) ψ 2 1 (TW c )(Q), ψ + B Q (ψ) = -NL(ψ), ψ .
Then, even if ψ 1 is not small, by the hypothesis of Proposition 1.8, ψ will be small in other (non equivalent) norms. Let us write one of them • 2 . Our goal is then to show an estimate of the form | NL(ψ), ψ | K ψ 2 ψ 2 1 , which would conclude. This is possible, except for one nonlinear term, which contains two derivatives. We then perform some integrations by parts on it. When both derivatives fall on the same term, we get a term containing ∆ψ, which also appears in the equation 0 = (TW c )(Q) + L(ψ) + NL(ψ) (in L(ψ)). We thus replace it using the equation, which leads to another term containing two derivatives (from NL(ψ)), and other terms that can be successfully estimated. After n such integration by parts, we have an estimate of the form

| NL(ψ), ψ | K ψ 2 ψ 2 1 + ψ 3 ψ n 2 ψ 2 1
, where • 3 is another (semi-)norm in which ψ is not necessarily small. Now, taking n large enough (depending on ψ), since ψ 2 1, we get | NL(ψ), ψ | o(1 ) ψ 2 1 , concluding the proof. The problem is a lot simpler near the vortices. There, we write u = Q + φ and the coercivity norm is equivalent to the H 1 norm, and the hypothesis of Proposition 1.8 gives us φ L ∞ = o(1). The estimate of the nonlinear terms then becomes trivial.

As stated in the introduction, the symmetry condition is necessary to have a coercivity result where the coercivity constant is uniform, see Corollary 2.6 below. This is the only place where the symmetry is used in a crucial way.

Some properties of the branch of travelling waves from Theorem 1.6

We recall here properties on the branch c → Q c from Theorem 1.6, coming mainly from [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF] and [START_REF] Chiron | Smooth branch of travelling waves for the Gross-Pitaevskii equation in R 2 for small speed[END_REF]. In this section, we will use the notation

f, g := R 2
Re(f ḡ).

Properties of vortices

We start with some estimates on vortices, that compose the travelling wave (see Theorem 1.6).

Lemma 2.1 ([12] and [28])

A vortex centered around 0, V 1 (x) = ρ 1 (r)e iθ , verifies V 1 (0) = 0, E(V 1 ) = +∞ and there exist constants K, κ > 0 such that ∀r > 0, 0 < ρ 1 (r) < 1; ρ 1 (r) ∼ r→0 κr; ρ 1 (r) ∼ r→0 κ; ∀r > 0, ρ 1 (r) > 0; ρ 1 (r) = O r→∞ 1 r 3 ; |ρ 1 (r)| + |ρ 1 (r)| K; 1 -|V 1 (x)| = 1 2r 2 + O r→∞ 1 r 3 ; |∇V 1 | K 1 + r ; |∇ 2 V 1 | K (1 + r) 2 and ∇V 1 (x) = iV 1 (x) x ⊥ r 2 + O r→∞ 1 r 3 ,
where x ⊥ := (-x 2 , x 1 ), x = re iθ ∈ R 2 . Furthermore, similar properties hold for V -1 , since

V -1 (x) = V 1 (x).

Toolbox

We list in this section some results useful for the analysis of travelling waves for not necessarily small speeds.

Theorem 2.2 (Uniform L ∞ bound -[21]) Assume that U ∈ L 3 loc (R d ) solves ∆U + ic∂ 2 U + U (1 -|U | 2 ) = 0.
Then,

U L ∞ (R d ) 1 + c 2 4 . Corollary 2.3 There exists K > 0 such that for any c ∈ [- √ 2, + √ 2] and any U ∈ L 3 loc (R d ) satisfying (TW c )(U ) = 0, we have ∇U L ∞ (R d ) + ∇ 2 U L ∞ (R d ) K. (2.1) 
The following Pohozaev identity (see [START_REF] Bethuel | Travelling waves for the Gross-Pitaevskii equation[END_REF] for instance) will be useful in our analysis. If c ∈ R and U ∈ E satisfies

(TW c ), then 1 2 R 2 (1 -|U | 2 ) 2 dx = cP 2 (U ). (2.2) 
We shall also make use of the algebraic decay of the travelling waves conjectured in [START_REF] Jones | Motions in a Bose condensate. IV. Axisymmetric solitary waves[END_REF] and shown in [START_REF] Gravejat | Decay for travelling waves in the Gross-Pitaevskii equation[END_REF].

Theorem 2.4 (Algebraic decay of the travelling waves - [START_REF] Gravejat | Decay for travelling waves in the Gross-Pitaevskii equation[END_REF])

Let c ∈ [0, √ 2[. Assume that U ∈ E is a solution of (TW c )(U ) = 0.
Up to a phase shift, we may assume U (x) → 1 for |x| → +∞. Then, there exists M , depending on U and c such that, for x ∈ R 2 ,

|U (x) -1| M 1 + |x| , |∇U (x)| M (1 + |x|) 2 , |U (x)| -1 M (1 + |x|) 2 .

Symmetries of the travelling waves from Theorem 1.6

We recall from [START_REF] Chiron | Smooth branch of travelling waves for the Gross-Pitaevskii equation in R 2 for small speed[END_REF] that the travelling wave Q c constructed in Theorem 1.6 satisfies for all

x = (x 1 , x 2 ) ∈ R 2 , Q c (x 1 , x 2 ) = Q c (-x 1 , x 2 ) = Q c (x 1 , -x 2 ).

This implies that for all

x = (x 1 , x 2 ) ∈ R 2 , ∂ c Q c (x 1 , x 2 ) = ∂ c Q c (-x 1 , x 2 ) = ∂ c Q c (x 1 , -x 2 ), ∂ x1 Q c (x 1 , x 2 ) = -∂ x1 Q c (-x 1 , x 2 ) = ∂ x1 Q c (x 1 , -x 2 ), ∂ x2 Q c (x 1 , x 2 ) = ∂ x2 Q c (-x 1 , x 2 ) = -∂ x2 Q c (x 1 , -x 2 ) and ∂ c ⊥ Q c (x 1 , x 2 ) = -∂ c ⊥ Q c (-x 1 , x 2 ) = -∂ c ⊥ Q c (x 1 , -x 2 ),
where [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF]. Remark that these quantities all have different symmetries.

∂ c ⊥ Q c := x ⊥ .∇Q c , see subsection 2.2 of

A coercivity result

From Proposition 1.2 of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF], we recall that Q c defined in Theorem 1.6 has two zeros, at ± dc e 1 , with

d c -dc = o c→0 (1). (2.3)
We define (as in [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF]) the symmetric expended energy space by

H exp,s Qc := ϕ ∈ H 1 loc (R 2 , C), ϕ H exp Qc < +∞, ∀(x 1 , x 2 ) ∈ R 2 , ϕ(-x 1 , x 2 ) = ϕ(x 1 , x 2 ) ,
where, with ϕ = Q c ψ, r = r dc = min(r 1 , r-1 ), r±1 being the distances to the zeros of Q c (we use r instead of r dc to simplify the notations here), we define

ϕ 2 H exp Qc := ϕ 2 H 1 ({r 10}) + {r 5} |∇ψ| 2 + Re 2 (ψ) + |ψ| 2 r2 ln 2 r .
By using (2.1), we deduce, for any

R > 0, ϕ H 1 ({r R}) K(R) ϕ H exp Qc . The linearized operator around Q c is L Qc (ϕ) := -∆ϕ -ic∂ x2 ϕ -(1 -|Q c | 2 )ϕ + 2Re(Q c ϕ)Q c .
We take a smooth cutoff function η such that η

(x) = 0 on B(± d c - → e 1 , 2R), η(x) = 1 on R 2 \B(± d c - → e 1 , 2R + 1)
, where

± d c - → e 1
are the zeros of Q c and R > 0 will be defined later on (it will be a universal constant, independent of any parameters of the problem). We define the quadratic form (as in [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF])

B exp Qc (ϕ) := R 2 (1 -η)(|∇ϕ| 2 -Re(ic∂ x2 ϕ φ) -(1 -|Q c | 2 )|ϕ| 2 + 2Re 2 (Q c ϕ)) - R 2 ∇η.(Re(∇Q c Q c )|ψ| 2 -2Im(∇Q c Q c )Re(ψ)Im(ψ)) + R 2 c∂ x2 ηRe(ψ)Im(ψ)|Q c | 2 + R 2 η(|∇ψ| 2 |Q c | 2 + 2Re 2 (ψ)|Q c | 4 ) + R 2 η(4Im(∇Q c Q c )Im(∇ψ)Re(ψ) + 2c|Q c | 2 Im(∂ x2 ψ)Re(ψ)). (2.4) 
We recall from [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF] (or by integration by parts

) that for ϕ ∈ C ∞ c (R 2 , C), we have B exp Qc (ϕ) = L Qc (ϕ), ϕ ,

and that B exp

Qc (ϕ) is well defined for ϕ ∈ H exp,s Qc . This last point is the reason why we write the quadratic form as (2.4), which is equal, up to some integration by parts, to the more natural definition

R 2 |∇ϕ| 2 -(1 -|Q c | 2 )|ϕ| 2 + 2Re 2 (Q c ϕ) -Re(ic∂ x2 ϕ φ), but this integral is not well defined for ϕ ∈ H exp,s
Qc . See [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF] for more details on this point. We now quote a coercivity result from [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF].

Theorem 2.5 ([14], Theorem 1.13) There exists R, K, c 0 > 0 such that, for 0 < c c 0 , Q c defined in Theorem 1.6, if a function ϕ ∈ H exp,s Qc satisfies the three orthogonality conditions:

Re B( dc e1,R)∪B(-dc e1,R) ∂ c Q c φ = Re B( dc e1,R)∪B(-dc e1,R) ∂ x2 Q c φ = 0, Re B( dc e1,R)∪B(-dc e1,R) iQ c φ = 0, then 1 K ϕ 2 H exp Qc B exp Qc (ϕ) K ϕ 2 H exp Qc .
We will use a slight variation of this result, given in the next corollary.

Corollary 2.6 There exists R, K, c 0 > 0 such that, for 0 < c c 0 , Q c defined in Theorem 1.6, if a function ϕ ∈ H exp,s Qc satisfies the three orthogonality conditions:

Re B(dc e1,R)∪B(-dc e1,R) ∂ d (V 1 (. -d e 1 )V -1 (. + d e 1 )) |d=dc φ = Re B(dc e1,R)∪B(-dc e1,R) ∂ x2 Q c φ = 0, Re B(dc e1,R)∪B(-dc e1,R) iQ c φ = 0, then 1 K ϕ 2 H exp Qc B exp Qc (ϕ) K ϕ 2 H exp Qc .
Remark, with Theorem 1.6 (for p = +∞), that -

1 c 2 ∂ d (V 1 (. -d e 1 )V -1 (. + d e 1 )) |d=dc is the first order of ∂ c Q c when c → 0 in L ∞ (R 2 , C
), and that (with Lemma 2.1) they both have the same symmetries. We need to change the quantity Re B( dc e1,R)∪B(-dc e1,R) ∂ c Q c φ in the orthogonality conditions because we will differentiate it with respect to c, and

c → ∂ d (V 1 (. -d e 1 )V -1 (. + d e 1 )) |d=dc = -∂ x1 V 1 (. -d c e 1 )V -1 (. + d c e 1 ) + ∂ x1 V -1 (. + d c e 1 )V 1 (. -d c e 1 ) is a C 1 function (c → d c ∈ C 1 (]0, c 0 [, R) for c 0 > 0 a small constant, see subsection 4.6 of [15]), but it is not clear that c → ∂ c Q c can be differentiated with respect to c. Precise estimates on ∂ d (V 1 (. -d e 1 )V -1 (. + d e 1
)) |d=dc can be found in Lemma 2.6 of [START_REF] Chiron | Smooth branch of travelling waves for the Gross-Pitaevskii equation in R 2 for small speed[END_REF]. Furthermore, we changed, in the area of the integrals, dc by d c (they are close when c → 0, see (2.3)). Proof.

Step 1: changing the integrand but not the integration domain.

Take a function ϕ ∈ H exp,s Qc satisfying Re B( dc e1,R)∪B(-dc e1,R) ∂ d (V 1 (. -d e 1 )V -1 (. + d e 1 )) |d=dc φ = Re B( dc e1,R)∪B(-dc e1,R) ∂ x2 Q c φ = 0, Re B( dc e1,R)∪B(-dc e1,R) iQ c φ = 0. Let us show that it satisfies 1 K ϕ 2 H exp Qc B exp Qc (ϕ) K ϕ H exp Qc . For µ ∈ R, we define ϕ * = ϕ + c 2 µ∂ c Q c . We have that ∂ c Q c ∈ H exp,s
Qc . We want to choose µ ∈ R such that ϕ * satisfied the hypothesis of Theorem 2.5. By the symmetries of subsection 2.1.3 and the hypotheses on ϕ, we have that

Re B( dc e1,R)∪B(-dc e1,R) iQ c ϕ * = Re B( dc e1,R)∪B(-dc e1,R) ∂ x2 Q c ϕ * = 0, and we compute, using Re B( dc e1,R)∪B(-dc e1,R) ∂ d (V 1 (. -d e 1 )V -1 (. + d e 1 )) |d=dc φ = 0, that Re B( dc e1,R)∪B(-dc e1,R) c 2 ∂ c Q c ϕ * = Re B( dc e1,R)∪B(-dc e1,R) c 2 ∂ c Q c φ + µRe B( dc e1,R)∪B(-dc e1,R) c 4 |∂ c Q c | 2 = Re B( dc e1,R)∪B(-dc e1,R) (c 2 ∂ c Q c -∂ d (V 1 (. -d e 1 )V -1 (. + d e 1 )) |d=dc ) φ + µRe B( dc e1,R)∪B(-dc e1,R) c 4 |∂ c Q c | 2 .
By Theorem 1.6 (for p = +∞) and Lemma 2.6 of [START_REF] Chiron | Smooth branch of travelling waves for the Gross-Pitaevskii equation in R 2 for small speed[END_REF], we have

c 2 ∂ c Q c -∂ d (V 1 (. -d e 1 )V -1 (. + d e 1 )) |d=dc L ∞ (R 2 ) = o c→0 (1),
and also that there exists a universal constant K > 0 (we recall that R > 0 is a universal constant) such that

1 K Re B( dc e1,R)∪B(-dc e1,R) c 4 |∂ c Q c | 2 K. Now, taking µ = -Re B( dc e1,R)∪B(-dc e1,R) (c 2 ∂ c Q c -∂ d (V 1 (. -d e 1 )V -1 (. + d e 1 )) |d=dc ) φ Re B( dc e1,R)∪B(-dc e1,R) c 4 |∂ c Q c | 2 ,
we have Re

B( dc e1,R)∪B(-dc e1,R) c 2 ∂ c Q c ϕ * = 0, with |µ| o c→0 (1) ϕ L 2 (B( dc e1,R)∪B(-dc e1,R)) o c→0 (1) ϕ H exp Qc . Since ∂ c Q c ∈ H exp,s
Qc by Lemma 2.8 of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF], we deduce that ϕ * satisfies all the hypotheses of Theorem 2.5, therefore

1 K ϕ * 2 H exp Qc B exp Qc (ϕ * ) K ϕ * 2 H exp Qc . Now, from Lemma 6.3 of [14], we have 1 K c 2 ∂ c Q c H exp Qc K for a universal constant K > 0. With |µ| o c→0 (1) ϕ H exp Qc , we deduce that, taking c > 0 small enough, 1 K ϕ 2 H exp Qc B exp Qc (ϕ * ) K ϕ 2 H exp

Qc

for some universal constant K > 0. Now, we decompose (using Lemmas 6.2 and 6.3 of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF])

B exp Qc (ϕ * ) = B exp Qc (ϕ + c 2 µ∂ c Q c ) = B exp Qc (ϕ) + 2c 2 µ L Qc (∂ c Q c ), ϕ + c 4 µ 2 B exp Qc (∂ c Q c ),
and by Lemmas 2.8, 5.4 and 6.1 of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF],

| L Qc (∂ c Q c ), ϕ | = | i∂ x2 Q c , ϕ | K ln 1 c ϕ H exp Qc , hence |2c 2 µ L Qc (∂ c Q c ), ϕ | Kc 2 ln 1 c |µ| ϕ H exp Qc o c→0 (1) ϕ 2 H exp Qc . By Proposition 1.2 of [14], B exp Qc (∂ c Q c ) = 2π+oc→0(1) c 2
, thus

|c 4 µ 2 B exp Qc (∂ c Q c )| o c→0 (1) ϕ 2 H exp Qc , which concludes the proof of 1 K ϕ 2 H exp Qc B exp Qc (ϕ) K ϕ 2 H exp
Qc by taking c > 0 small enough.

Step 2: changing the integration domain.

To change the conditions

Re B( dc e1,R)∪B(-dc e1,R) ∂ d (V 1 (. -d e 1 )V -1 (. + d e 1 )) |d=dc φ = Re B( dc e1,R)∪B(-dc e1,R) ∂ x2 Q c φ = 0, Re B( dc e1,R)∪B(-dc e1,R) iQ c φ = 0 to Re B(dc e1,R)∪B(-dc e1,R) ∂ d (V 1 (. -d e 1 )V -1 (. + d e 1 )) |d=dc φ = Re B(dc e1,R)∪B(-dc e1,R) ∂ x2 Q c φ = 0, Re B(dc e1,R)∪B(-dc e1,R) iQ c φ = 0,
we use similar arguments, using |d c -dc | = o c→0 (1) by (2.3). We check for instance that

Re B( dc e1,R)∪B(-dc e1,R) ∂ x2 Q c φ -Re B(dc e1,R)∪B(-dc e1,R) ∂ x2 Q c φ K(R)|d c -dc | ϕ H exp Qc ,
and

|d c -dc | = o c→0 (1).
Notice that the integration domain remains symmetric with respect to the x 2 -axis. 2

Proof of Proposition 1.8

In this subsection, we take ν ∈]0, 1[ a small but universal constant, that will be fixed at the end of the proof. We take λ * = max(3R + 1, 1 ν 2 ) in the statement of Proposition 1.8 (where R > 0 is defined in Corollary 2.6). Then, for any λ λ * , we take

ε(λ) = min ν, 1 10λ 2 + 100
in the statement of Proposition 1.8. The condition ε(λ) 1 10λ 2 +100 is required only to make sure that the two balls B(d -→ e 1 , 2λ) and B(-d -→ e 1 , 2λ) are disjoint and at a distance at least 1 from one another. This will be used only in the proof of Lemma 2.8. We take u a function satisfying the hypotheses of Proposition 1.8 for these values of λ * , λ and ε(λ). In the rest of the subsection, K, K > 0 denote universal constants, independent of any parameters of the problem (in particular, λ, λ * , ε(λ) and ν).

Modulation on the parameters of the branch

From Theorem 1.1 and the end of section 4.6 of [START_REF] Chiron | Smooth branch of travelling waves for the Gross-Pitaevskii equation in R 2 for small speed[END_REF], we have that

Q c = V 1 (. -d c e 1 )V -1 (. + d c e 1 ) + Γ c , with d c = 1+oc→0(1) c , Γ c L ∞ → 0, and c → d c ∈ C 1 (]0, c 0 [, R),
with ∂ c d c ∼ -1/c 2 for c → 0 (see section 4.6 of [START_REF] Chiron | Smooth branch of travelling waves for the Gross-Pitaevskii equation in R 2 for small speed[END_REF]). In particular, c → d c is a smooth decreasing diffeomorphism from ]0, c 0 ] onto [d 0 , +∞[, and thus, given d > 1 ν > d 0 (for ν small enough), there exists a unique c > 0 such that

d c = d. In addition, c ∼ d→∞ 1/d Kν. Furthermore, u(x) -Q c (x) = V 1 (x -d e 1 )V -1 (x + d e 1 ) + Γ(x) -V 1 (x -d c e 1 )V -1 (x + d c e 1 ) -Γ c (x) = Γ(x) -Γ c (x).
From the hypotheses on Γ, and the fact that

Γ c L ∞ (R 2 ) 2ν (since c 2 d
2ν, we deduce that (we denote r = rd = rd c to simplify the notations) (2.5)

u -Q c L ∞ ({r 2λ}) Kν.
We now claim that, for a universal constant K > 0,

u -Q c C 1 ({r λ}) Kν. (2.6)
That is, u is close to Q c near the vortices (in the region {r λ}) in the C 1 norm and not only in L ∞ . In order to show this, we use the elliptic equation satisfied by u -Q c , that is

∆(u -Q c ) = -ic∂ x2 (u -Q c ) -(u -Q c )(1 -|u| 2 ) + (|u| 2 -|Q c | 2 )Q c .
Let us fix x ∈ {r λ}. We have u -Q c L ∞ ({r 2λ}) K ν by hypothesis, thus the right-hand side of the equation is small in H -1 (B(x, 4)). By a standard H 1 -H -1 estimate, we deduce

u -Q c H 1 (B(x,3)) K ν.
Then, the right-hand side is small in L 2 , and standard L 2 elliptic regularity yields first

u -Q c H 2 (B(x,2)) K ν and then u -Q c H 3 (B(x,1)) K ν,
and we conclude by Sobolev imbedding. Outside of this domain, u and Q c are close only in modulus. Indeed, by equation (2.6) of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF] (for σ = 1/2) and the hypotheses on u, we have for a universal constant K > 0 that on {r λ},

||u| -|Q c || ||u| -1| + ||Q c | -1| ν + K λ 3/2 K ν.
Now, we modulate on the parameters of the family of travelling waves to get the orthogonality conditions of Corollary 2.6. For c > 0 close enough to c and X, γ ∈ R, we define

Q := Q c (. -X e 2 )e iγ . (2.7) 
Lemma 2.7 There exists K > 0, ν 0 > 0 universal constants such that, for u satisfying the hypotheses of Proposition 1.8 for values of λ * , λ, ε(λ), ν described above, if ν ν 0 , then there exists c > 0, X, γ ∈ R such that, for R > 0 defined in Corollary 2.6, and d ± := ±d c e 1 + X e 2 ;

Re B( d+,R)∪B( d-,R) ∂ d (V 1 (. -d e 1 -X e 2 )V -1 (. + d e 1 -X e 2 )e iγ ) |d=d c (u -Q) = Re B( d+,R)∪B( d-,R) ∂ x2 Q(u -Q) = Re B( d+,R)∪B( d-,R) iQ(u -Q) = 0. Furthermore, |c -c | c 2 + |X| + |γ| Kν.
Proof. To simplify the notations, in this proof, we define

∂ d V := ∂ d (V 1 (. -d e 1 -X e 2 )V -1 (. + d e 1 + X e 2 )e iγ ) |d=d c .
We will keep the notation r for the minimum of the distance to the zeros of Q. First, from equation (7.5) of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF], there exists a universal constant K > 0 such that, for c < c 0 , c /2 c 2c ,

Q -Q c L ∞ (R 2 ) K |X| + |c -c | c 2 + |γ| . (2.8)
Now, we follow closely the proof of Lemma 7.6 of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF], which is done in Appendix C.3 there. We define

G   X c γ   :=    Re B( d+,R)∪B( d-,R) ∂ x2 Q(u -Q) Re B( d+,R)∪B( d-,R) ∂ d V (u -Q) Re B( d+,R)∪B( d-,R) iQ(u -Q)    .
Remark that Q, ∂ d V and d ± all depend on X and c , and Q depends also on γ. From equation (2.6) and the fact that λ λ * > 2R, we have u -Q c L ∞ ({r R}) Kν, and from Theorem 1.6 with p = +∞ as well as Lemma 2.6 of [START_REF] Chiron | Smooth branch of travelling waves for the Gross-Pitaevskii equation in R 2 for small speed[END_REF],

∂ x2 Q c L ∞ (R 2 ) + ∂ d V L ∞ (R 2 ) + iQ c L ∞ (R 2 ) K (2.9)
for some universal constant

K > 0. Therefore, since Q = Q c for X = γ = 0, c = c , we obtain G   0 c 0   K u -Q c L ∞ ({r λ}) Kν.
We want to show that G is invertible in a vicinity of 

  0 c 0   . With
recall that r = min(|x -d + |, |x -d -|)) u -Q L ∞ ({r 2R}) u -Q c L ∞ ({r 2R}) + Q -Q c L ∞ (R 2 ) Kν + K |X| + |c -c | c 2 + |γ| ,
and as in Lemma 7.1 of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF], this implies

u -Q C 1 ({r R}) Kν + K |X| + |c -c | c 2 + |γ| . (2.10) 
Now, we compute

∂ X Re B( d+,R)∪B( d-,R) ∂ x2 Q(u -Q) - B( d+,R)∪B( d-,R) |∂ x2 Q| 2 ∂B( d+,R)∪∂B( d-,R) |∂ x2 Q(u -Q)| + B( d+,R)∪B( d-,R) |∂ 2 x2 Q(u -Q)|,
therefore, with (2.1) and (2.10), we check that

∂B( d+,R)∪∂B( d-,R) |∂ x2 Q(u -Q)| + B( d+,R)∪B( d-,R) |∂ 2 x2 Q(u -Q)| Kν + K |X| + |c -c | c 2 + |γ| , hence ∂ X Re B( d+,R)∪B( d-,R) ∂ x2 Q(u -Q) - B( d+,R)∪B( d-,R) |∂ x2 Q| 2 Kν + K |X| + |c -c | c 2 + |γ| .
With similar computations, using Lemma 2.6 of [START_REF] Chiron | Smooth branch of travelling waves for the Gross-Pitaevskii equation in R 2 for small speed[END_REF], equations (2.1) and (2.10), we infer that

∂ X G -    B( d+,R)∪B( d-,R) |∂ x2 Q| 2 Re B( d+,R)∪B( d-,R) ∂ d V ∂ x2 Q Re B( d+,R)∪B( d-,R) iQ∂ x2 Q    Kν + K |X| + |c -c | c 2 + |γ| .
By the symmetries of Q(. + X e 2 )e -iγ and ∂ d V (. + X e 2 )e -iγ , we have that

Re B( d+,R)∪B( d-,R) ∂ d V ∂ x2 Q = 0,
and from Theorem 1.6 (with p = +∞), with the symmetries of Q c and V 1 (see subsections 2.1.1 and 2.1.3), we have

Re B( d+,R)∪B( d-,R) iQ∂ x2 Q -2Re B(0,R) iV 1 ∂ x2 V 1 K |X| + |c -c | c 2 .
By decomposition in harmonics and Lemma 2.1, we check easily that Re B(0,R)

iV 1 ∂ x2 V 1 = 0, thus ∂ X G -   B( d+,R)∪B( d-,R) |∂ x2 Q| 2 0 0   Kν + K |X| + |c -c | c 2 + |γ| .
Similarly, we check that (using

∂ c (d c ) = -1+oc→0(1)
c 2 from section 4.6 of [START_REF] Chiron | Smooth branch of travelling waves for the Gross-Pitaevskii equation in R 2 for small speed[END_REF], and Lemma 2.6 of [START_REF] Chiron | Smooth branch of travelling waves for the Gross-Pitaevskii equation in R 2 for small speed[END_REF])

c 2 ∂ c G -   0 B( d+,R)∪B( d-,R) |∂ d V | 2 0   Kν + K |X| + |c -c | c 2 + |γ|
(we use here the fact that c → ∂ d V and c → d ± are differentiable) and

∂ γ G -   0 0 -B( d+,R)∪B( d-,R) |Q| 2   Kν + K |X| + |c -c | c 2 + |γ| .
From (2.1) and Theorem 1.6 (for p = +∞) as well as Lemma 2.6 of [START_REF] Chiron | Smooth branch of travelling waves for the Gross-Pitaevskii equation in R 2 for small speed[END_REF], there exists a universal constant K > 0 such that

1 K B( d+,R)∪B( d-,R) |∂ x2 Q| 2 K, 1 K B( d+,R)∪B( d-,R) |∂ d V | 2 K and 1 K B( d+,R)∪B( d-,R) |Q| 2 K,
provided |X| + c is small enough. We deduce that there exists K 1 , K 2 , ν 0 > 0 such that, for 0 < ν ν 0 and u satisfying the hypotheses of Proposition 1.8 with the parameters λ, ν, dG is invertible in the ball {(X, c , γ) ∈

R 3 s.t.|X| + |c -c | c 2 + |γ| K 1 ν}, and that there exists X, c , γ ∈ R such that G   X c γ   = 0, with |c -c | c 2 + |X| + |γ| K 2 ν. 2 

Construction and properties of the perturbation term

We define η a smooth cutoff function with η(x) = 0 for x ∈ B( d ± , 2R) and η(x) = 1 for x ∈ R 2 \B(± d ± , 2R + 1) even in x 1 . We infer the following result, where the space H exp,s Q is simply defined by

H exp,s Q := ϕ ∈ H 1 loc (R 2 , C), ϕ H exp Q < +∞, ∀(x 1 , x 2 ) ∈ R 2 , ϕ(-x 1 , x 2 ) = ϕ(x 1 , x 2 ) ,
with, for r the minimum of the distances to the zeros of

Q, ϕ = Qψ, ϕ 2 
H exp Q := ϕ 2 H 1 ({r 10}) + {r 5} |∇ψ| 2 + Re 2 (ψ) + |ψ| 2 r2 ln 2 r ,

and B exp

Q has the same definition than B exp Qc , replacing η by η and Q c by Q.

Lemma 2.8 There exists K 1 , K 2 > 0, ν 0 > ν 1 > 0 universal constants such that, for u satisfying the hypotheses of Proposition 1.8 for values of λ * , λ, ε(λ), ν described above, if ν ν 1 , then there exists a function

ϕ = Qψ ∈ H exp,s Q ∩ C 1 (R 2 , C) such that, for Q defined in (2.7) with the values of c , X, γ ∈ R from Lemma 2.7, u -Q = (1 -η)ϕ + ηQ(e ψ -1). Furthermore, B exp Q (ϕ) K 1 ϕ 2 H exp Q and ϕ C 1 ({r λ}) + Re(ψ) L ∞ ({r λ}) K 2 ν.
The goal of this lemma is to decompose the error u -Q in a particular form. In the area {η = 1}, that is far from the zeros of Q, the error is written in an exponential form: u = Qe ψ . This form was already used in [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF], [START_REF] Chiron | Smooth branch of travelling waves for the Gross-Pitaevskii equation in R 2 for small speed[END_REF], and is useful to have a particular form on the cubic error terms. Furthermore, we fix the parameters of Q such that ϕ satisfies the orthogonality conditions of Corollary 2.6, yielding the coercivity.

Remark that we have no smallness on Im(ψ) in {r λ}, where ϕ = Qψ. We will simply be able to show that it is bounded (see equation (2.11) below), with no a priori bound on it. This lack of smallness is one of the main difficulties in the proof of Proposition 1.8. Analogously, we show that ϕ ∈ H exp,s Q , but we have no good control on ϕ H exp Q : this quantity might be a priori very large at this point. Proof. This proof follows some ideas of the proofs of Lemmas 7.2 and 7.3 of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF]. First, in the area {r λ}, the proof is identical to that of Lemma 7.2 of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF] for the existence of ϕ = Qψ ∈ C 1 ({r λ}, C) such that u -Q = (1 -η)ϕ + ηQ(e ψ -1) in {r λ}, with ϕ C 1 ({r λ}) Kν (this is a consequence of the estimate u-Q C 1 ({r λ}) Kν, obtained using Lemma 2.7). The main idea is that u-Q is small there (in C 1 ({r λ}, C)), and the equation on ϕ is a perturbation of the identity for functions ϕ that are small in C 1 ({r λ}, C). In particular, since u and Q are symmetric with respect to the x 2 -axis, ϕ and ψ are also symmetric with respect to the x 2 -axis.

We then focus our attention in the area {r λ}, where η ≡ 1, so that the problem reduces to the equation

u = Qe ψ .
By Theorem 1.6 and the hypotheses of Proposition 1.8, there exists ν 1 > 0 such that, if ν ν 1 , then, as a consequence of

ε(λ) min(ν 1 , 1 10λ 2 + 100
),

the domain {r λ} consists in the complement of the two disjointed disks B( d ± , λ), with

|Q| 1/2, |u| 1/2 in {r λ} and deg(Q, ∂B( d ± , λ)) = deg(u, ∂B( d ± , λ)) = ±1, so that u/Q is smooth in {r λ} = R 2 \ (B( d + , λ) ∪ B( d -, λ))
, does not vanish and has zero degree on the two circles ∂B( d ± , λ). It then follows from standard lifting theorems (even though {r λ} is not simply connected), that there exists ψ † ∈ C 1 ({r λ}) such that e ψ † = u/Q, as wished. We then notice that u and Q are symmetric with respect to the x 2 -axis, thus x → ψ † (-x 1 , x 2 ) is also a lifting of u/Q in the connected set {r λ}, which implies that there exists q ∈ Z such that ψ † (-x 1 , x 2 ) = ψ † (x 1 , x 2 ) + 2iqπ in {r λ}. Letting x 1 = 0, we obtain q = 0: ψ † is also symmetric with respect to the x 2 -axis.

Recalling that ψ := ϕ/Q in the set {λ r 2λ} (where Q does not vanish), we see that, since η ≡ 1 there, the equation u -Q = (1 -η)ϕ + ηQ(e ψ -1) becomes u = Qe ψ . We then infer that there exists m ∈ Z such that 

ψ = ψ † + 2imπ
e Re(ψ) = u Q , thus, decomposing | u Q | = 1 + |u| -1 + (|u|-1)-(|Q|-1)

|Q|

, since there exists a universal constant K > 0 such that in this region, |u| -1

+ (|u|-1)-(|Q|-1)
|Q| K ν, we deduce that, for ν ν 1 with ν 1 small enough,

Re(ψ) L ∞ ({r λ}) Kν.
Since u is a travelling wave and E(u) < +∞, u converges to a constant at infinity (uniformly in all directions) by [START_REF] Gravejat | Decay for travelling waves in the Gross-Pitaevskii equation[END_REF]. Therefore, u Q converges to a constant at infinity, and the function ψ converges to a constant, and thus it is bounded near infinity, that is

ψ L ∞ ({r λ}) < +∞. (2.11) 
Now, we want to show that ϕ ∈ H exp,s

Q

. We already know that ϕ satisfies the symmetry 

∀(x 1 , x 2 ) ∈ R 2 , ϕ(-x 1 , x 2 ) = ϕ(x 1 , x 2 ). Furthermore, to check that ϕ H exp Q < +∞, since ϕ ∈ C 1 (R
(u) < +∞, E(Q) < +∞), |e Re(ψ) -1| = ||u| -|Q|| |Q| 2(||u| -1| + ||Q| -1|) K(u, c, Q, c ) (1 + r) 2 ,
where

K(u, c, Q, c ) > 0 is a constant depending on u, c, c and Q, hence |Re(ψ)| K(u,c,Q,c ) (1+r) 2
and {r λ}

Re 2 (ψ)

{r λ} K(u, c, Q, c ) (1 + r) 4 < +∞.
We finally compute

∇ψ = ∇u u - ∇Q Q ,
and with Theorem 11 of [START_REF] Gravejat | Decay for travelling waves in the Gross-Pitaevskii equation[END_REF], in {r λ}, we deduce that

(1 + r) 2 |∇ψ| (1 + r) 2 ∇u u + (1 + r) 2 ∇Q Q K(u, c, Q, c ), therefore {r λ} |∇ψ| 2 < +∞.
This concludes the proof that ϕ = Qψ ∈ H exp,s

Q . The fact that B exp Q (ϕ) K ϕ 2 H exp Q is a consequence of Corollary 2.
6 and Lemma 2.7, using in particular that

B exp Q (ϕ) = B exp Q c (ϕ(.+X e 2 )e -iγ ) and ϕ H exp Q = ϕ(.+X e 2 )e -iγ H exp Q c . 2
We now compute the equation satisfied by ϕ. By Lemma 2.8, in {0 < η < 1} = {2R < r < 2R + 1}, we have |Re(ψ)| = |Re(ϕ/Q)| Kν uniformly, thus |e Re(ψ) -1| Kν uniformly in this region and then |(1-η)+ηe ψ | 1/2 for ν ν 1 , possibly diminishing ν 1 of Lemma 2.8. Lemma 2.9 For u satisfying the hypotheses of Proposition 1.8 for values of λ * , λ, ε(λ), ν described above, if ν ν 1 (where ν 1 is defined in Lemma 2.8) , then the function ϕ = Qψ defined in Lemma 2.8 satisfies the equation

L Q (ϕ) -i(c -c ) e 2 .H(ψ) + NL loc (ψ) + F (ψ) = 0, with L Q the linearized operator around Q: L Q (ϕ) = -∆ϕ -ic ∂ x2 ϕ -(1 -|Q| 2 )ϕ + 2Re( Qϕ)Q, S(ψ) := e 2Re(ψ) -1 -2Re(ψ), F (ψ) := Qη(-∇ψ.∇ψ + |Q| 2 S(ψ)), H(ψ) := ∇Q + ∇(Qψ)(1 -η) + Q∇ψηe ψ (1 -η) + ηe ψ
and NL loc (ψ) is a sum of terms at least quadratic in ψ, localized in the area where η = 1. Furthermore,

| NL loc (ψ), Qψ | K NL loc (ψ) L 2 ({η<1}) ϕ L ∞ ({η<1}) Kν ϕ 2 H 1 ({η =1}) .
Notice that F (ψ) (the notation X.Y for complex vector fields stands for X 1 Y 1 + X 2 Y 2 ) contains all the nonlinear terms far from the zeros of Q, and its structure relies on the fact that the error is written in an exponential form far from the vortices. Close to the zeros of Q, this particular form does not hold, but it will not be necessary, since there the error ϕ is small in the C 1 norm whereas, at infinity, it is small only in a weaker norm. Proof. The proof is identical to the proof of Lemma 7.5 of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF], and it is in the particular case where all the speeds are along e 2 . The proof consists simply in decomposing the equation

0 = (TW c )(u) = TW c (Q + (1 -η)ϕ + ηQ(e ψ -1))
in the different terms.

The last estimate uses Lemma 2.8 and Lemma 2.7. 2

This result shows in particular that ψ ∈ C 2 ({η = 0}, C), and we can check with it, as in Lemma 7.3 of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF], that ∆ψ

(1 + r) 2 L ∞ ({r λ}) K(u, Q, c, c ).
We now infer a critical estimate on the differences of the speeds of the problem, namely c (the speed of u) and c (the speed of Q). The method for the estimate has been used in [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF] (we take the scalar product of the equation of Lemma 2.9 with ∂ c Q), but since we have worse estimates on the error term, we need to be more careful ( ϕ H exp Q is not a priori small at this point).

Lemma 2.10 There exists universal constants K > 0, ν 1 ν 2 > 0 (where ν 1 is defined in Lemma 2.8), such that, for u satisfying the hypotheses of Proposition 1.8 for values of λ * , λ, ε(λ), ν described above, if ν ν 2 , then, with ϕ = Qψ defined in Lemma 2.8, we have (2.12)

|c -c| K √ c ϕ H exp Q . Proof.
We will show the following estimate:

|c -c| K c 2 ln 1 c ϕ H exp Q + ϕ 2 H exp Q + K|c -c| ϕ H exp Q . (2.13)
This is related to equation (7.13) of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF] (its proof is in step 1 in subsection 7.3.1 of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF]). With both estimates, we can conclude the proof of this lemma. Indeed, either ϕ H exp Q √ c , and in that case

|c -c| Kc K √ c ϕ H exp Q , or ϕ H exp Q √ c
, and then with (2.13),

|c -c| K c 2 ln 1 c ϕ H exp Q + ϕ 2 H exp Q + K|c -c| ϕ H exp Q K √ c ϕ H exp Q + C 2 √ c |c -c|, therefore, for c > 0 small enough such that C 2 √ c < 1/2 (which is implied by taking ν > 0 small enough, independently of λ), we have |c -c| K √ c ϕ H exp Q .
We now focus on the proof of (2.13). We take the scalar product of the equation

L Q (ϕ) -i(c -c ) e 2 .H(ψ) + NL loc (ψ) + F (ψ) = 0 with c 2 ∂ c Q.
We estimate, as in subsection 7.3.1 of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF], that

| L Q (ϕ), c 2 ∂ c Q | = c 2 | ϕ, L Q (∂ c Q) | = c 2 | ϕ, i∂ x2 Q | Kc 2 ln 1 c ϕ H exp Q .
We recall that

i e 2 .H(ψ) = i∂ x2 Q + i ∂ x2 (Qψ)(1 -η) + Q∂ x2 ψηe ψ (1 -η) + ηe ψ ,
and we check (estimating the local terms in the area where η = 1 by Cauchy-Schwarz and

c 2 ∂ c Q L ∞ (R 2 ) K
from Theorem 1.6 for p = +∞ and Lemma 2.6 of [START_REF] Chiron | Smooth branch of travelling waves for the Gross-Pitaevskii equation in R 2 for small speed[END_REF])

|(c -c ) i e 2 .H(ψ), c 2 ∂ c Q -(c -c ) i∂ x2 Q, c 2 ∂ c Q | K(|c -c | ϕ H 1 ({η =1}) + |(c -c ) ηQi∂ x2 ψ, c 2 ∂ c Q |) K(|c -c | ϕ H exp Q + |(c -c ) ηQi∂ x2 ψ, c 2 ∂ c Q |).
We recall from subsection 7.3.1 of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF] (using decay estimates on c 2 ∂ c Q Q and integrations by parts), that

|(c -c ) ηQi∂ x2 ψ, c 2 ∂ c Q | K|c -c | ϕ H exp Q
and, from Proposition 1.2 of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF] (we check easily that the translation and phase on Q instead of Q c do not change the computation),

(c -c ) i∂ x2 Q, c 2 ∂ c Q = (2π + o c →0 (1))(c -c ) = (2π + o ν→0 (1))(c -c ).
We deduce that, taking ν > 0 small enough (independently of λ), that

|c -c | Kc 2 ln 1 c ϕ H exp Q + K|c -c | ϕ H exp Q + K| NL loc (ψ) + F (ψ), c 2 ∂ c Q |.
We take ν 2 > 0 with ν 2 ν 1 such that all the above condition on the smallness of ν are satisfied if ν ν 2 . Since NL loc (ψ) contains terms at least quadratic in ϕ, ϕ C 1 ({η =1}) C 3 ν from Lemma 2.8 and

c 2 ∂ c Q L ∞ (R 2 ) K, we obtain that for ν ν 2 , diminishing ν 2 if necessary so that ϕ C 1 ({η =1}) Kν 1, | NL loc (ψ), c 2 ∂ c Q | K ϕ 2 H 1 ({η =1}) K ϕ 2 H exp Q .
Finally, we estimate, using

c 2 ∂ c Q L ∞ (R 2 ) K, | Qη∇ψ.∇ψ, c 2 ∂ c Q | K R 2 η|∇ψ| 2 c 2 ∂ c Q L ∞ (R 2 ) K ϕ 2 H exp Q .
Similarly, since ηRe(ψ) L ∞ ({r λ}) Kν by Lemma 2.8, diminishing ν 2 if necessary, for ν ν 2 , then ηRe(ψ) L ∞ ({r λ}) 1, hence

|Qη|Q| 2 S(ψ)| = |Qη|Q| 2 (e 2Re(ψ) -1 -2Re(ψ))| KηRe 2 (ψ), therefore | Qη|Q| 2 S(ψ), c 2 ∂ c Q | K R 2 ηRe 2 (ψ) c 2 ∂ c Q L ∞ (R 2 ) K ϕ 2 H exp Q .
This concludes the proof of (2.13), and therefore of the lemma. 2

Proof of Proposition 1.8 completed

We take u satisfying the hypotheses of Proposition 1.8 for values of λ * , λ, ε(λ), ν described above, with ν ν 2 , where ν 2 is defined in Lemma 2.10. We want to take the scalar product of the equation of Lemma 2.9 with ϕ. It is however not clear at this point that every term is integrable. In subsection 7.3 of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF], we took the scalar product of the equation with ϕ + iγQ for some γ ∈ R, using a decay estimate Im(ψ + iγ)(1 + r) L ∞ ({r λ}) K(u, Q, c, c ) to justify that some terms are well defined, and to do some integration by parts. Here, we need to change a little our approach. We first require better decay estimates on ψ. At this stage, we know (see Theorem 11 of [START_REF] Gravejat | Decay for travelling waves in the Gross-Pitaevskii equation[END_REF] and the proof of Lemma 2.8) that

∆ψ(1 + r) 2 L ∞ ({r λ}) + (1 + r) 2 ∇ψ L ∞ ({r λ}) + ψ L ∞ ({r λ}) + (1 + r) 2 Re(ψ) L ∞ ({r λ}) K(u, Q, c, c ).
Now, let us show the following improvements:

Im(∆ψ)(1 + r) 3 L ∞ ({r λ}) + (1 + r) 3 Re(∇ψ) L ∞ ({r λ}) K(u, Q, c, c ). (2.14) 
The proof of (1 + r)

3 |Re(∇ψ)| L ∞ ({r λ}) K(u, Q, c, c
) is identical to the one for the same result in Lemma 7.3 of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF] (see the penultimate estimate of its proof). We focus on the estimate on Im(∆ψ). In {r λ}, we have u = Qe ψ , therefore,

∆ψ = - ∆Q Q + ∆u u -2 ∇Q Q .∇ψ -∇ψ.∇ψ.
With the previous estimates and Theorem 11 of [START_REF] Gravejat | Decay for travelling waves in the Gross-Pitaevskii equation[END_REF], we have

-2 ∇Q Q .∇ψ -∇ψ.∇ψ (1 + r) 4 L ∞ ({r λ}) K(u, Q, c, c ),
and since

(TW c )(Q) = 0, ∆Q Q = ic ∂ x2 Q Q -(1 -|Q| 2 ), therefore, with [26] (E(Q) < +∞), Im ∆Q Q c Re ∂ x2 Q Q K(Q, c ) (1 + r) 3 .
Similarly, since (TW c )(u) = 0 and E(u) < +∞,

Im ∆u u c Re ∂ x2 u u K(u, c) (1 + r) 3 , thus Im(∆ψ)(1 + r) 3 L ∞ ({r λ}) K(u, Q, c, c ).
We infer, with these two additional estimates on ψ, that we can do the same computations as in the proof of Lemma 7.4 of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF], with γ = 0. The only difference is that, when we used Im(ψ

+ iγ)(1 + r) L ∞ ({r λ}) K(u, Q),
we can use (2.14) instead to get the same decay for these terms, with Im(ψ) L ∞ ({r λ}) K(u, Q). The only two terms where this change is needed are

R η|Q| 2 Re(∆ψ ψ) R η|Q| 2 Re(∆ψ)Re(ψ) + R η|Q| 2 Im(∆ψ)Im(ψ) K( Re(∆ψ)(1 + r) 2 L ∞ ({r λ}) Re(ψ)(1 + r) 2 L ∞ ({r λ}) ) + K( Im(∆ψ)(1 + r) 3 L ∞ ({r λ}) Im(ψ) L ∞ ({r λ}) ) and R η|Q| 2 Re(i∂ x2 ψ ψ) R η|Q| 2 Re(∂ x2 ψ)Im(ψ) + R η|Q| 2 Im(∂ x2 ψ)Re(ψ) K( Re(∂ x2 ψ)(1 + r) 3 L ∞ ({r λ}) Im(ψ) L ∞ ({r λ}) ) + K( Im(∂ x2 ψ)(1 + r) 2 L ∞ ({r λ}) Re(ψ)(1 + r) 2 L ∞ ({r λ}) ).
We deduce, taking the scalar product of the equation of Lemma 2.9 with ϕ, that

B exp Q (ϕ) -i(c -c ) e 2 .H(ψ), ϕ + NL loc (ψ), ϕ + F (ψ), ϕ = 0. (2.15) 
From Lemma 2.8,

B exp Q (ϕ) K ϕ 2 H exp Qc , (2.16) 
and from Lemma 2.9, We recall that

| NL loc (ψ), ϕ | Kν ϕ 2 H 1 ({η =1}) Kν ϕ 2 H exp Qc . ( 2 
i e 2 .H(ψ) = i∂ x2 Q + i ∂ x2 (Qψ)(1 -η) + Q∂ x2 ψηe ψ (1 -η) + ηe ψ .
We compute, with Lemma 2.10 and Lemma 5.4 of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF],

|(c -c ) i∂ x2 Q, ϕ | K √ c ϕ H exp Q | i∂ x2 Q, ϕ | K √ c ln 1 c ϕ 2 H exp Q Kν ϕ 2 H exp Q . Indeed, although Q = Q c (.
-X e 2 )e iγ has a phase that is not present in Lemma 5.4 of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF], since ϕ = Qψ, we have

∂ x2 Qϕ = ∂ x2
QQψ that no longer depends on γ. Now, with ϕ H 1 ({η =1}) Kν from Lemmas 2.7 and 2.8, we compute easily that

i ∂ x2 (Qψ)(1 -η) + Q∂ x2 ψηe ψ (1 -η) + ηe ψ , ϕ -iQ∂ x2 ψη, ϕ Kν ϕ H exp Q since the left hand side is supported in {η = 1}, therefore | i(c -c ) e 2 .H(ψ), ϕ | Kν ϕ 2 H exp Qc + |(c -c ) iQ∂ x2 ψη, ϕ |.
With the same computations as in subsection 7.3.2 of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF] (taking γ = 0), we check that

| iQ∂ x2 ψη, ϕ | K ϕ 2 H exp Q ,
therefore, using Lemma 2.7 and equation (2.12), for ν > 0 small enough,

|(c -c ) iQ∂ x2 ψη, ϕ | K|c -c | ϕ 2 H exp Q Kν ϕ 2 H exp Q .
This completes the proof of equation (2.18). We focus now on the proof of

| F (ψ), ϕ | Kν ϕ 2 H exp Q . (2.19)
We compute

R 2 Re(Qη(|Q| 2 S(ψ)) φ) = R 2 |Q| 4 η(e 2Re(ψ) -1 -2Re(ψ))Re(ψ),
and since, as already seen at the end of the proof of Lemma 2.10, we have Re(ψ) L ∞ ({r λ})

1 if ν ν 2 , we deduce |e 2Re(ψ) -1 -2Re(ψ)| KRe 2 (ψ)
and

R 2 Re(Qη(|Q| 2 S(ψ)) φ) K R 2 ηRe 3 (ψ) Kν R 2 ηRe 2 (ψ) Kν ϕ 2 H exp Q .
We are left with the estimation of R 2 Re(Qη(-∇ψ.∇ψ) φ), which will be slightly more delicate. First, we compute,

using ϕ = Qψ R 2 Re(Qη(-∇ψ.∇ψ) φ) = - R 2 |Q| 2 ηRe(∇ψ.∇ψ ψ) = - R 2 |Q| 2 ηRe(∇ψ.∇ψ)Re(ψ) - R 2 |Q| 2 ηIm(∇ψ.∇ψ)Im(ψ) = - R 2 |Q| 2 ηRe(∇ψ.∇ψ)Re(ψ) -2 R 2
|Q| 2 ηRe(∇ψ).Im(∇ψ)Im(ψ).

Remark that there exists a universal constant K > 0 such that Re(ψ) L ∞ ({r R}) Kν by Lemma 2.8 (considering the regions {r λ} with ψ and {r λ} with ϕ). Then, we estimate

- R 2 |Q| 2 ηRe(∇ψ.∇ψ)Re(ψ) Kν R 2 η|∇ψ| 2 Kν ϕ 2 H exp Q .
Now, by integration by parts (that can be justified as in [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF]), we have

R 2 |Q| 2 ηRe(∇ψ).Im(∇ψ)Im(ψ) = - R 2 ∇(|Q| 2 )ηRe(ψ).Im(∇ψ)Im(ψ) - R 2 |Q| 2 ∇ηRe(ψ).Im(∇ψ)Im(ψ) - R 2 |Q| 2 ηRe(ψ)Im(∆ψ)Im(ψ) - R 2
|Q| 2 ηRe(ψ)Im(∇ψ).Im(∇ψ), and with |∇(|Q| 2 )| K (1+r) 5/2 from equation (2.9) of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF] (for σ = 1/2) with K > 0 a universal constant, we have by Cauchy-Schwarz

R 2 ∇(|Q| 2 )ηRe(ψ).Im(∇ψ)Im(ψ) Kν R 2 η|∇ψ| 2 R 2 η |ψ| 2 (1 + r) 5 Kν ϕ 2 H exp Q and R 2 |Q| 2 ηRe(ψ)Im(∇ψ).Im(∇ψ) Kν R 2 η|∇ψ| 2 Kν ϕ 2 H exp Qc .
Since ∇η is supported in {0 < η < 1}, we check easily that

R 2 |Q| 2 ∇ηRe(ψ).Im(∇ψ)Im(ψ) Kν ϕ 2 H exp Q .
We focus now on the estimation of the last remaining term, R 2 |Q| 2 ηRe(ψ)Im(∆ψ)Im(ψ). For that purpose, we define more generally for n 1

A n := R 2 |Q| 2 η n Re n (ψ)Im(∆ψ)Im(ψ).
Remark that we want to estimate A 1 .

We compute, using that

(TW c )(Q) = 0, that L Q (ϕ) = Q -∆ψ -ic ∂ x2 ψ -2 ∇Q Q .∇ψ + 2Re(ψ)|Q| 2 ,
therefore, by Lemma 2.9, in {η = 0},

Im(∆ψ) = Im -ic ∂ x2 ψ -2 ∇Q Q .∇ψ + 2Re(ψ)|Q| 2 + -i(c -c ) e 2 .H(ψ) + NL loc (ψ) + F (ψ) Q = -c Re(∂ x2 ψ) -2Im ∇Q Q .∇ψ + Im -i(c -c ) e 2 .H(ψ) + NL loc (ψ) + F (ψ) Q .
We compute, by integration by parts, with Re n (ψ)Re(

∂ x2 ψ) = 1 n+1 ∂ x2 (Re n+1 (ψ)), that R 2 |Q| 2 η n Re n (ψ)c Re(∂ x2 ψ)Im(ψ) = -1 n + 1 R 2 (∂ x2 |Q| 2 )η n Re n+1 (ψ)c Im(ψ) - n n + 1 R 2 |Q| 2 ∂ x2 ηη n-1 Re n+1 (ψ)c Im(ψ) - 1 n + 1 R 2 |Q| 2 η n Re n+1 (ψ)c Im(∂ x2 ψ).
Since 

(∂ x2 |Q| 2 )η n Re n+1 (ψ)c Im(ψ) Kc ν n R 2 ηIm 2 (ψ)(∂ x2 |Q| 2 ) 2 R 2 ηRe 2 (ψ) Kν n ϕ 2 H exp Q , (2.20) R 2 |Q| 2 ∂ x2 ηη n-1 Re n+1 (ψ)c Im(ψ) Kν n ϕ 2 H exp Q (2.21) and R 2 |Q| 2 η n Re n+1 (ψ)c Im(∂ x2 ψ) Kν n R 2 η|∇ψ| 2 R 2 ηRe 2 (ψ) Kν n ϕ 2 H exp Q . (2.22)
We deduce that

R 2 |Q| 2 η n Re n (ψ)c Re(∂ x2 ψ)Im(ψ) (Kν) n ϕ 2 H exp Q . (2.23) For R 2 |Q| 2 η n Re n (ψ)Im ∇Q Q .∇ψ Im(ψ), we compute Im ∇Q Q .∇ψ = Re ∇Q Q .Im(∇ψ) + Re(∇ψ).Im ∇Q Q ,
and with previous estimates, we check easily that

R 2 |Q| 2 η n Re n (ψ)Re ∇Q Q .Im(∇ψ)Im(ψ) (Kν) n R 2 η|∇ψ| 2 R 2 ηIm 2 (ψ)Re 2 ∇Q Q (Kν) n ϕ 2 H exp Q , (2.24) 
and by integration by parts, with computations similar to those for the proof of (2.23), using

∇.Im ∇Q Q K (1 + r) 3/2
from (2.9) to (2.11) of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF] (for σ = 1/2) for a universal constant K > 0 and Lemma 2.1, we infer that

R 2 |Q| 2 η n Re n (ψ)Re(∇ψ).Im ∇Q Q Im(ψ) (Kν) n ϕ 2 H exp Q , (2.25) 
and we check easily that

R 2 |Q| 2 η n Re n (ψ)Im NL loc (ψ) Q Im(ψ) (Kν) n ϕ 2 H exp Q . (2.26) Now, we look at R 2 |Q| 2 η n Re n (ψ)Im -i(c-c ) e2.H(ψ) Q Im(ψ)
, for the part of e 2 .H(ψ) related to the cutoff, the estimation can be done as previously, and we are left with the estimation of

(c -c ) R 2 |Q| 2 η n Re n (ψ)Im -i ∂ x2 Q Q -i∂ x2 ψ Im(ψ) = (c -c ) R 2 |Q| 2 η n Re n (ψ)Re ∂ x2 Q Q + ∂ x2 ψ Im(ψ).
From equation (2.5) and Lemma 2.7, we have |c -c | ν (diminishing ν 2 if necessary), and from equation (2.9) of [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF], Re

∂x 2 Q Q K (1+r) 5/2 , therefore (c -c ) R 2 |Q| 2 η n Re n (ψ)Re ∂ x2 Q Q Im(ψ) (Kν) n R 2 ηRe 2 (ψ) R 2 ηRe 2 ∂ x2 Q Q Im 2 (ψ) (Kν) n ϕ 2 H exp Q , (2.27) 
and we estimate

(c -c ) R 2 |Q| 2 η n Re n (ψ)Re(∂ x2 ψ)Im(ψ) (Kν) n ϕ 2 H exp Q (2.28)
by (2.23). For the last remaining term, since

Im F (ψ) Q = Im(-η∇ψ.∇ψ), we have R 2 |Q| 2 η n Re n (ψ)Im F (ψ) Q Im(ψ) = -2 R 2 |Q| 2 η n+1
Re n (ψ)Im(∇ψ).Re(∇ψ)Im(ψ). In particular,

R 2 |Q| 2 η n Re n (ψ)Im F (ψ) Q Im(ψ) (Kν) n ηIm(ψ) L ∞ (R 2 ) R 2 η|∇ψ| 2 (Kν) n ηIm(ψ) L ∞ (R 2 ) ϕ 2 H exp Q . (2.29)
Combining this result with the previous estimates, this implies that

|A n | (C 6 ν) n (1 + ηIm(ψ) L ∞ (R 2 ) ) ϕ 2 H exp Q (2.30)
for some universal constant C 6 > 0, but that is not enough to show that we have

R 2 |Q| 2 η n Re n (ψ)Im F (ψ) Q Im(ψ) (Kν) n ϕ 2 H exp Q , since we have no control on ηIm(ψ) L ∞ (R 2 )
other than the fact that it is a finite quantity. By integration by parts (integrating Re(∇ψ)), with computations similar as for the proof of (2.23), we infer that

2 R 2 |Q| 2 η n+1 Re n (ψ)Im(∇ψ).Re(∇ψ)Im(ψ) 2 R 2 |Q| 2 η n+1 Re n (ψ)Im(∆ψ)Re(ψ)Im(ψ) + (Kν) n ϕ 2 H exp Q 2|A n+1 | + (Kν) n ϕ 2 H exp Q .
Combining this result with estimates (2.20) to (2.29), we deduce that for some universal constant C 7 > 0,

|A n | 2|A n+1 | + (C 7 ν) n ϕ 2 H exp Q , therefore, by induction, |A 1 | 2 n |A n | + n-1 k=1 (2C 7 ν) k ϕ 2 H exp Q , hence, with (2.30), |A 1 | (2C 6 ν) n (1 + ηIm(ψ) L ∞ (R 2 ) ) + n-1 k=1 (2C 7 ν) k ϕ 2 H exp Q . Taking ν > 0 such that ν ν 2 and 2C 6 ν < 1/2 and 2C 7 ν < 1/2, then n 1 large enough (depending on ηIm(ψ) L ∞ (R 2 ) ) such that 1 2 n-1 (1 + ηIm(ψ) L ∞ (R 2 ) ) 1, we conclude that |A 1 | 2C 6 + 2C 7 n-2 k=0 1 2 k ν ϕ 2 H exp Q 2(C 6 + 2C 7 )ν ϕ 2 H exp Q .
This concludes the proof of equation (2.19).

Combining estimates (2.16) to (2.19) in equation (2.15), we deduce that

(1 -C 8 ν) ϕ 2 H exp Q 0
for some universal constant C 8 > 0, therefore, taking ν > 0 small enough such that the previous constraints are satisfied and C 8 ν < 1/2 , we have ϕ H exp Q = 0. From Lemma 2.10, we deduce c = c. The proof is complete.

Proof of Corollary 1.10

Take a function u satisfying the hypotheses of Corollary 1.10. Then, u is even in x 1 and it has finite energy. Furthermore, by Theorem 1.6 (for p = +∞), [START_REF] Chiron | Coercivity for travelling waves in the Gross-Pitaevskii equation in R 2 for small speed[END_REF]. We now fix the parameters. We first choose λ λ * large enough so that K/λ 1/(2λ * ). Then, we fix c 0 > 0 and ε > 0 so small that ε 1/(2λ * ), |cd c -1| ε(λ), d c 1/ε(λ) and ε + o c→0 (1) ε(λ) for c < c 0 . Therefore, u satisfies the hypotheses of Proposition 1.8 with d = d c , and this concludes.

u -V 1 (• -d c e 1 )V -1 (• + d c e 1 ) L ∞ (R 2 ) u -Q c L ∞ (R 2 ) + Q c -V 1 (• -d c e 1 )V -1 (• + d c e 1 ) L ∞ (R 2 ) ε + o c→0 (1). Next, |u| -1 L ∞ ({r d λ}) u -Q c L ∞ ({r d λ}) + |Q c | -1 L ∞ ({r d λ}) ε + K λ by equation (2.6) of
3 Properties of quasi-minimizers of the energy and proof of Theorem 1.11

Tools for the vortex analysis

We list in this section some results useful for the analysis of travelling waves for small speeds or, equivalently, large momentum, with vorticity. We shall denote u|v = Re(uv) the real scalar product of the complex numbers u, v.

The jacobian (or vorticity)

Jv := i∂ 1 v|∂ 2 v = 1 2 ∂ 1 iv|∂ 2 v - 1 2 ∂ 2 iv|∂ 1 v
is then relevant, and we shall use the following concentration property of the jacobian. We denote

E ε (u, Ω) := 1 2 Ω |∇u| 2 + 1 2ε 2 (1 -|u| 2 ) 2 dx.
Theorem 3.1 (Concentration of the Jacobian - [START_REF] Alberti | Variational convergence for functionals of Ginzburg-Landau type[END_REF], [START_REF] Jerrard | The Jacobian and the Ginzburg-Landau energy[END_REF]) Let M 0 > 0, R > 0 and β ∈]0, 1]. Then, for every δ > 0, there exists ε 0 > 0 (depending only on β, δ, R and M 0 ) such that for any 0 < ε < ε 0 , and for any

u ∈ H 1 (B(0, 4R)) such that E ε (u, B(0, 4R)) M 0 |ln ε| and |u| 1/2 in B(0, 4R) \ B(0, R), there exist N ∈ N, y 1 , . . . , y N ∈ B(0, R), d 1 , . . . , d N ∈ Z such that Ju -π N k=1 d k δ y k [C 0,β c (B(0,4R))] * δ and π N k=1 |d k | E ε (u, B(0, 4R)) |ln ε| + δ.
Finally, we may choose the points y k , 1 k N , in {|u| 1/2}.

Here, we recall that the space [C 0,β c (B(0, R))] * is endowed with the dual norm associated with

ζ C 0,β c (B(0,R)) = sup x =y∈B(0,R) |ζ(x)-ζ(y)| |x-y| β , for ζ ∈ C 0,β (B(0, R)) compactly supported. Remark 3.2
The above mentioned theorem is actually Lemma 3.3 in [START_REF] Bethuel | Vortex rings for the Gross-Pitaevskii equation[END_REF]. It is related to the works [START_REF] Alberti | Variational convergence for functionals of Ginzburg-Landau type[END_REF], [START_REF] Jerrard | The Jacobian and the Ginzburg-Landau energy[END_REF], which both correspond to the limit ε → 0, whereas we have here a statement (obtained by compactness) at fixed ε. The hypothesis "|u| 1/2 in B(0, 4R) \ B(0, R)" ensures that the vortices do not approach the boundary ∂B(0, 4R). Theorem 3.3 (Clearing-out Theorem - [START_REF] Bethuel | Vortex rings for the Gross-Pitaevskii equation[END_REF]) Let M 0 > 0 and σ > 0 be given. Then there exist 0 > 0 and η > 0, depending only on M 0 and σ, such that, if

R 0 = 1/(1 + M 0 ), if U : B(0, R 0 ) → C solves ∆U + ic∂ 2 U + 1 2 U (1 -|U | 2 ) = 0 (3.1) in B(0, R 0 ) ⊂ R 2 , with < 0 , |c| M 0 |ln |, and 
E (U, B(0, R 0 )) η|ln |, then |U (0)| 1 -σ.
For the elliptic PDE

∆U + 1 ε 2 U(1 -|U| 2 ) = 0, (3.2) 
that is without the transport term i∂ 2 U , this result has been shown in 2d in [START_REF] Bethuel | Progress in Nonlinear Differential Equations and their Applications[END_REF] for minimizing maps, then in [START_REF] Bethuel | Vortices for a variational problem related to superconductivity[END_REF] for the Ginzburg-Landau equation with magnetic field. In higher dimension, see [START_REF] Lin | Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents[END_REF] and [START_REF] Bethuel | Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions[END_REF] for (3.2) and [START_REF] Bethuel | Vortex rings for the Gross-Pitaevskii equation[END_REF] for an equation including the Ginzburg-Landau equation with magnetic field and (3.1). One may use the change of unknown U(x

) := (1 + c 2 2 /4) -1/2 e icx2/2 U (x), ε = (1 + c 2 2 /4) -1/2
to transform the equation (3.2) without the transport term into the equation (3.1) with the transport term. However, the assumptions E (U, B(0, R 0 )) η|ln | and E ε (U, B(0, R 0 )) η|ln ε| are not equivalent (due to the extra phase term).

Vortex structure for quasi-minimizers of E at fixed P

In this section, some Λ 0 > 0 is fixed and we consider a large momentum p and u p such that

E(u p ) 2π ln p + Λ 0 (3.3) 
and such that there exists c p > 0 (depending on u p ) such that

0 = (TW cp )(u p ) = -ic p ∂ x2 u p -∆u p -(1 -|u p | 2 )u p .
It then follows from [START_REF] Gravejat | Decay for travelling waves in the Gross-Pitaevskii equation[END_REF] (see Theorem 2.4) that we may assume, using the phase shift invariance, that u p → 1 at spatial infinity. In particular, we have

p = P 2 (u p ) = 1 2 R 2 i∂ 2 u p |u p -1 dx.
Our goal is to show that u p satisfies the hypothesis of Proposition 1.8. We shall follow [START_REF] Bethuel | Travelling waves for the Gross-Pitaevskii equation[END_REF] and [START_REF] Bethuel | Vortex rings for the Gross-Pitaevskii equation[END_REF] in order to analyze the vortex structure of u p .

Localizing the vorticity set at scale x/p

We define the following rescaling ûp of u p :

ûp (x) = u p (px). (3.4) 
Therefore, ûp solves

∆û p + ic p p∂ 2 ûp + p 2 ûp (1 -|û p | 2 ) = 0 (3.5)
which is a particular case of (3.1) with = 1/p, c = c p p.

The universal L ∞ bound on the gradient of Corollary 2.3 reads now

∇û p L ∞ (R 2 ) Kp. (3.6) 
We shall have, in the end, c p ∼ 1/p. The first step provides a rough upper bound for the speed c p (the Lagrange multiplier for the minimisation problem E min (p)).

Step 1: there exists p 1 = p 1 (Λ 0 ) such that, for p p 1 , we have

0 < c p 2E(u p ) p 13 ln p p .
In particular, c p 1/2 and ln p 2|ln c p |.

We shall use the Pohozaev identity (2.2), that is:

1 2 R 2 (1 -|u p | 2 ) 2 dx = c p p.
At this stage, we only have the rough upper bound 0

1 4 R 2 (1-|u p | 2 )
2 dx E(u p ) 2π ln p+Λ 0 , which concludes.

Another argument we could use for minimizers is that we know from [START_REF] Bethuel | Travelling waves for the Gross-Pitaevskii equation[END_REF] (see also [START_REF] Chiron | Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity[END_REF]) that 0 c p d + E min (p) E min (p)/p.

Step 2: there exists p 2 > p 1 , R * 1/8 and n * ∈ N, depending only on Λ 0 , such that, if p > p 2 , there exist n p points ẑp,j , 1 j n p with n p n * such that {|û p (x)| 1/2} ⊂ ∪ np j=1 B(ẑ p,j , R * ) and the disks B(ẑ p,j , 4R * ), 1 j n p , are mutually disjoint.

We apply Theorem 3.3 with = 1/p, c = c p p and σ = 1/2 to ûp . This is possible in view of the upper bound on 0 c p p 13 ln p of Step 1 (that is M 0 = 13). We then let R 0 := 1/(1 + 13) = 1/14 for p p 1 and denote η 1/2 the positive constant η given by Theorem 3.3.

We now proceed in this way: we choose (if it exists) some ẑp,

1 ∈ R 2 such that |û p (ẑ p,1 )| < 1/2. If {|û p | 1/2} ⊂ B(ẑ p,1 , 2R 0 ), then we stop. If not, we choose ẑp,2 ∈ R 2 \ B(ẑ p,1 , 2R 0 ) such that |û p (ẑ p,2 )| < 1/2. If {|û p | 1/2} ⊂ ∪ 2
j=1 B(ẑ p,j , 2R 0 ), then we stop, if not, we continue. This process ends in a finite number of steps (depending only on K 0 ) since, by construction, the disks B(ẑ p,j , R 0 ), 1 j n, are pairwise disjoint, hence, by Theorem 3.3, we have

2π ln p + K 0 E(u p ) = E 1/p (û p ) n j=1 E 1/p (û p , B(ẑ p,j , R 0 )) n × η 1/2 ln p, which implies n 2π ln p + K 0 η 1/2 ln p 7 η 1/2 for p large enough, say p p 2 .
At this stage, the disks B(ẑ p,j , 2R 0 ), 1 j n p , cover the vorticity set {|û p | 1/2}, but the disks B(ẑ p,j , 8R 0 ) may not be pairwise disjoint. To get this property, we argue as in [START_REF] Bethuel | Progress in Nonlinear Differential Equations and their Applications[END_REF] (Theorem IV.1). Let us recall the idea: if the disks B(ẑ p,j , 8R 0 ), 1 j n p are pairwise disjoint, then we are done with R * = 2R 0 . If not, then we have, for instance, |ẑ p,1 -ẑp,2 | 16R 0 . We then remove the disk B(ẑ p,1 , 8R 0 ) from the list and set R 1 def = 17R 0 . The disks B(ẑ p,j , R 1 ), 2 j n p cover ∪ 1 j np B(ẑ p,j , 2R 0 ), hence the vorticity set {|û p | 1/2}, and their number has decreased. In a finite number of steps (depending only on K 0 ), we obtain the conclusion. The radius

R * is necessarily R 0 × 17 np R 0 × 17 n * .
Similar arguments are given in [START_REF] Bethuel | Vortex rings for the Gross-Pitaevskii equation[END_REF], whereas in [START_REF] Bethuel | Travelling waves for the Gross-Pitaevskii equation[END_REF] the vorticity set is included in some disks of radii of order c γ p , which requires some extra work.

Step 3: we have

p 2 R 2 (1 -|û p | 2 ) 2 dx = o p→+∞ (ln p).
This follows exactly as in [START_REF] Bethuel | Vortex rings for the Gross-Pitaevskii equation[END_REF] (see Proposition A.1 in the Appendix there). Notice that the result in [START_REF] Bethuel | Vortex rings for the Gross-Pitaevskii equation[END_REF] is stated for the potential on a compact set in a domain Ω, but it holds as well in the entire plane.

We then define, as in [START_REF] Bethuel | Vortex rings for the Gross-Pitaevskii equation[END_REF], the function û p : R 2 → C by

û p (x) def =      ûp (x) if x ∈ ∪ np j=1 B(ẑ p,j , 2R * ) ûp(x) |ûp(x)| if x ∈ ∪ np j=1 B(ẑ p,j , 3R * ) (3 -|x -ẑp,j |/R * )û p (x) + (-2 + |x -ẑp,j |/R * ) ûp(x) |ûp(x)| if x ∈ B(ẑ p,j , 3R * ) \ B(ẑ p,j , 2R * )
for some 1 j n p (this last formula is valid since the disks B(ẑ p,j , 4R * ), 1 j n p , are mutually disjoint).

Step 4: we have, as p → +∞,

E 1/p (û p ) 2π ln p + o(ln p). Letting Ω R def = ∪ np j=1 B(ẑ p,j , R), we have R 2 (1 -|û p | 2 ) 2 dx = Ω 2R * (1 -|û p | 2 ) 2 dx + Ω 3R * \Ω 2R * (1 -|û p | 2 ) 2 dx
We notice that in Ω 3R * \ Ω 2R * , say for x ∈ B(ẑ p,j , 3R * ) \ B(ẑ p,j , 2R * ), we have

|û p (x)| = (3 -|x -ẑp,j |/R * )|û p (x)| + (-2 + |x -ẑp,j |/R * ) ∈ [|û p (x)|, 1], hence 1 -|û p (x)| 2 1 -|û p (x)| 2 and thus R 2 (1 -|û p | 2 ) 2 dx Ω 2R * (1 -|û p | 2 ) 2 dx + Ω 3R * \Ω 2R * (1 -|û p | 2 ) 2 dx = Ω 3R * (1 -|û p | 2 ) 2 dx. (3.7) 
For the kinetic term, we have

|∇û p (x)| 2 = |∇û p (x)| 2 if x ∈ Ω 2R * . Outside ∪ np j=1 B(ẑ p,j , R * ), then |û p | 1/2
and we may then lift, at least locally, ûp = Ae iφ and get

|∇û p | 2 = A 2 |∇φ| 2 + |∇A| 2 .
If x ∈ Ω 3R * , then, by (3.6),

|∇û p | 2 = |∇φ| 2 = A 2 |∇φ| 2 + 1 -A 2 A 2 × A 2 |∇φ| 2 |∇û p | 2 + 4Kp|1 -A 2 | × |∇û p | since A = |û p | 1/2 outside Ω R * .
Finally, in B(ẑ p,j , 3R * ) \ B(ẑ p,j , 2R * ) (for some unique 1 j n p ), we have

|∇û p | 2 = |∇φ| 2 (3 -|x -ẑp,j |/R * )A + (-2 + |x -ẑp,j |/R * ) 2 + ∇ (3 -|x -ẑp,j |/R * )A + (-2 + |x -ẑp,j |/R * ) 2 .
We then use that, since |û p (x)| 1/2 and letting θ = 3 -|x -ẑp,j |/R * ∈ [0, 1],

|∇φ| 2 (3 -|x -ẑp,j |/R * )A + (-2 + |x -ẑp,j |/R * ) 2 = A 2 |∇φ| 2 × 1 A 2 [1 + θ(A -1)] 2 A 2 |∇φ| 2 × (1 + K|A 2 -1|) A 2 |∇φ| 2 + Kp|∇û p | × |A 2 -1|, by Corollary 2.3. On the other hand, since |•| is 1-Lipschitz continuous, ∇ (3 -|x -ẑp,j |/R * )A + (-2 + |x -ẑp,j |/R * ) 2 1 R 2 * |1 -A| 2 + |∇A| 2 + 2 R * |1 -A| × |∇A| |∇A| 2 + K(A 2 -1) 2 + K|∇A| × |A 2 -1|.
Therefore, by Cauchy-Schwarz inequality, for some absolute constant K > 0,

R 2 |∇û p | 2 dx R 2 |∇û p | 2 dx + K R 2 p 2 (1 -|û p | 2 ) 2 dx 1/2 R 2 |∇û p | 2 dx 1/2 + K R 2 (1 -|û p | 2 ) 2 dx.
Combining this with (3.7) yields

E 1/p (û p ) E p (û p ) + K E p (û p ) R 2 p 2 (1 -|û p | 2 ) 2 dx 1/2 + K E p (û p ) p 2 2π ln p + o(ln p),
by the upper bound (3.3) and the estimate for the potential term of Step 3.

Step 5: we claim that for any δ ∈]0, π/2[, there exist p † δ > p 2 such that for all p p † δ , we are in one of the following cases: case (I) for any 1 j n p , J û p [C 0,1 c (B(ẑp,j ,4R * ))] * δ case (II) there exists (up to a relabelling) two points ŷp,± ∈ R 2 , depending on ûp , such that max We finally notice that the degree of û p on some large circle ∂B(0, R) (with R Combining this with (3.10), we deduce that if we are not in Case (I), then one of the d p,j,k must be equal to +1 and another one must be equal to -1, which is Case (II).

Notice that for Case (II), if B(ẑ p,j , 4R * ) contains neither y p,+ nor y p,-, then J û p [C 0,1 c (B(ẑp,j ,4R * ))] * δ.

As in [START_REF] Bethuel | Travelling waves for the Gross-Pitaevskii equation[END_REF], we now relate the location of the points ŷp,± to the momentum P (û p ).

Step 6: Case (I) does not occur for p sufficiently large, say p p 3 . In addition, we have

1 = P (û p ) = π (ŷ p,+ ) 1 -(ŷ p,-) 1 + o(1)
.

First, we have, by computations similar to those of Step 3, ûp = Ae iϕ locally outside Ω R * , hence iû p |∇û p = A 2 ∇ϕ and then, outside Ω 3R * ,

iû p |∇û p -iû p |∇û p = A 2 ∇ϕ -∇ϕ = A 2 -1 A × A∇ϕ.
In B(ẑ p,j , 3R * ) \ B(ẑ p,j , 2R * ), we obtain

| iû p |∇û p -iû p |∇û p | = |A 2 ∇ϕ -|û p | 2 ∇ϕ| |A 2 -1| A × |A∇ϕ|, since |û p | ∈ [|û p |, 1]. Therefore, iû p |∇û p -iû p |∇û p L 1 (R 2 ) K R 2 \Ω 2R * 1 -|û p | 2 × |∇û p | dx K p E 1/p (û p ) K ln p p . (3.12) 
Following [START_REF] Bethuel | Travelling waves for the Gross-Pitaevskii equation[END_REF], [START_REF] Bethuel | Vortex rings for the Gross-Pitaevskii equation[END_REF], we write

1 = P (u p ) p = P (û p ) = 1 2 R 2 i∂ 2 ûp |û p -1 dx = 1 2 R 2 i∂ 2 û p |û p -1 dx + 1 2 R 2 ( i∂ 2 ûp |û p -1 -i∂ 2 û p |û p -1 ) dx.
For the second integral, we write that, on the one hand, R We then integrate by parts to get

( iû p |∂ 2 ûp -iû p |∂ 2 û p ) dx iû p |∇û p -iû p |∇û p L 1 (R 2 ) K ln p p → 2 
1 2 R 2 i∂ 2 û p |û p -1 dx = 1 2 R 2 ∂ 1 x1 i∂ 2 û p |û p -1 -∂ 2 x1 i∂ 1 û p |û p -1 dx = R 2 J û p x1 dx.
The integration by parts is justified by the algebraic decay at infinity given in Theorem 2.4:

x1 i∂ 2 û p |û p -1 = O(1/|x| 2 ).
Then, since J û p is supported in Ω R * , we obtain J û p dx.

We then fix χ ∈ C ∞ c (B(0, 4R * )) such that χ ≡ 1 on B(0, 3R * ). Next, for any 1 j n p , we write, B(ẑp,j ,3R * )

(x 1 -(ẑ p,j ) 1 )J û p dx = B(ẑp,j ,4R * ) (x 1 -(ẑ p,j ) 1 )χ(x -ẑp,j )J û p dx = B(ẑp,j ,4R * ) (x 1 -(ẑ p,j ) 1 )χ(x -ẑp,j ) J û p -π Np,j k=1 d p,j,k δ y p,j,k dx + π Np,j k=1 d p,j,k (y p,j,k ) 1 -(ẑ p,j ) 1 .
We now estimate the first integral (actually, a duality bracket) by using Step 5: Since P (û p ) = 1, it follows that for p large enough, we can not be in Case (I), and the conclusion is a recasting of (3.13).

B(ẑp,j ,2R * ) (x 1 -(ẑ p,j ) 1 )χ(• -ẑp,j ) J û p -π
Step We emphasize that at this stage, we have |ŷ p,+ -ŷp,-| 1, but we do not know whether |ŷ p,+ -ŷp,-| 1 or |ŷ p,+ -ŷp,-| 1. We may now take advantage of the fact that ûp is by hypothesis symmetric with respect to the x 2 axis (i.e. ûp (-x 1 , x2 ) = ûp (x 1 , x2 )), so that, possibly translating along the x 2 -axis, we may assume

(ŷ p,-) 2 = (ŷ p,+ ) 2 = 0 and -(ŷ p,-) 1 = (ŷ p,+ ) 1 → 1 2π . (3.14) 
If we do not assume a priori the symmetry in x 1 , then we may remove the translation invariance by imposing ŷp,+ + ŷp,-= 0, and then we may still show that ŷp,+ = -ŷ p,-→ (1/(2π), 0) by using the Hopf differential as in [START_REF] Bethuel | Progress in Nonlinear Differential Equations and their Applications[END_REF] (chapter VII).

Strong convergence outside the vorticity set at scale x/p

We start with a W 1,p loc bound at scale x, for 1 p < 2.

Step 1: for any 1 p < 2, there exists C p such that, for any X ∈ R 2 , we have

B( X,1) |∇û p | p dx C p .
We shall adapt the proof of [START_REF] Bethuel | Vortex rings for the Gross-Pitaevskii equation[END_REF] (see proof of Theorem 4, Step 3, p. 83) to the two-dimensional case. Actually, the only modification to make in the estimate is to replace (C.26) there by the standard convolution 

ψ 0,i (x) = - ln r 2π ω 0,i (x) = - 1 2π Supp(ω0,i) ω 0,i ( 
|∇ψ 0,± (x)| = 1 2π Supp(ω0,±) ω 0,i (ŷ)∇ x ln |x -ŷ| dŷ 1 2π ω 0,± [C 0,1 c (B(ŷp,±,2R * ))] * (x -ŷ)/|x -ŷ| 2 C 0,1 (B(ŷp,±,3R * )) K (the estimate ψ 0,± C k (R 2 
\B(ŷp,±,3R * )) C k does not hold since the two dimensional fundamental solution (ln r)/(2π) goes to +∞ at spatial infinity, but ∇ψ 0,± C k (R 2 \B(ŷp,±,3R * )) C k is true). The rest of the proof remains unchanged.

Step 2: for any X ∈ R 2 \ (B(ŷ p,+ , 2/10) ∪ B(ŷ p,-, 2/10)), we may write ûp = Ae iφ in B( X, 1/20), with, for any k ∈ N,

2(1 -A) - c p p ∂ 2 φ C k (B( X,1/20)) C k p 2 , ∇φ C k (B( X,1/20)) C k , (3.15) 
for some constant C k independent of X.

The proof (relying on Step 1) follows the lines of the proof of Step 7 (p. 48) of Theorem 1 in [START_REF] Bethuel | Vortex rings for the Gross-Pitaevskii equation[END_REF] and is omitted.

In view of the upper bound of Step 1 of subsection 3.2.1, we infer the uniform estimate

1 -|û p | C k (B( X,1/20)) C k ln p p 2 , (3.16) 
for X ∈ R 2 \ (B(ŷ p,+ , 2/10) ∪ B(ŷ p,-, 2/10)).

Lower bound for the energy and upper bound for the potential energy

Step 1: upper bound for the potential. We claim that

R 2 ∇|û p | 2 + p 2 2 (1 -|û p | 2 ) 2 dx C(Λ 0 )
and that R 2 \(B(ŷp,+,2/10)∪B(ŷp,-,2/10))

|∇û p | 2 + p 2 2 (1 -|û p | 2 ) 2 dx C(Λ 0 ).
The proof of this upper bound will be a direct consequence of the lower bounds established in [START_REF] Sandier | Lower bounds for the energy of unit vector fields and applications[END_REF] (see Theorems 2 and 3 there).

Theorem 3.4 ([43]) Let Ω ⊂ R 2 be a bounded smooth domain. Assume that u ∈ H 1 (Ω, C) and that u |∂Ω ∈ C 1 (∂Ω, S 1 ). Let δ ∈]0, 1[. (i)
There exists a constant Λ 1 , depending on Ω and u |∂Ω C 1 , such that

1 2 Ω |∇u| 2 + 1 2δ 2 (1 -|u| 2 ) 2 π|deg(u |∂Ω , ∂Ω)| ln(1/δ) -Λ 1 .
(ii) If, moreover, for some constant Λ 2 , we have

1 2 Ω |∇u| 2 + 1 2δ 2 (1 -|u| 2 ) 2 π|deg(u |∂Ω , ∂Ω)| ln(1/δ) + Λ 2 , then 1 2 Ω ∇|u| 2 + 1 2δ 2 (1 -|u| 2 ) 2 C(Ω, Λ 2 , u |∂Ω C 1 ).
We shall apply this result with δ = 1/p 

∇|û p | 2 + p 2 2 (1 -|û p | 2 ) 2 dx C(Λ 0 ).
We conclude by using once again the upper bound (3.3). Actually, ûp does not belong to C 1 (∂B(ŷ p,± , 2/10)), but it is easy, using (3.15), to construct an extension of ûp on B(ŷ p,± , 3/10) with the required properties by linear interpolation (see, for instance the Lemma on p. 395-396 in [START_REF] Sandier | Lower bounds for the energy of unit vector fields and applications[END_REF]).

Step 2: there exists σ 0 > 0 such that we have, for R 1,

R 2 \B(0,R) |∇û p | 2 + p 2 2 (1 -|û p | 2 ) 2 dx C(Λ 0 ) R σ0 .
The proof is similar to that of Lemma 5.1 (p. 50) in [START_REF] Bethuel | Vortex rings for the Gross-Pitaevskii equation[END_REF], and relies on the fact that |û p | 1/2 in R 2 \B(0, 1) (hence we may write the PDE in terms of modulus and phase), and the upper bound in R 2 \(B(ŷ p,+ , 2/10)∪B(ŷ p,-, 2/10)) ⊃ R 2 \ B(0, 1) of the energy of ûp (in [START_REF] Bethuel | Vortex rings for the Gross-Pitaevskii equation[END_REF], this last upper bound was derived differently).

Convergence on the scale x/p

By Step 1 of subsection 3.2.3 and (3.14), we have, as p → +∞, ŷp,± → ŷ∞,± := ±(1/(2π), 0) ∈ R 2 .

(3.17)

We then define (identifying R 2 and C)

û∞ (x) := x -ŷ∞,+ |x -ŷ∞,+ | × x + ŷ∞,- |x + ŷ∞,-| .
Step 1: for any p ∈ [1, 2[, there holds, in W 1,p loc (R 2 ), ûp û∞ .

From the W 1,p loc upper bound of Step 1 in subsection 3.2.2 and by weak compactness, there exists

Û ∈ W 1,p loc (R 2 ) such that ûp Û in W 1,p loc (R 2 ). Moreover, Û ∈ C ∞ loc (R 2 \ {ŷ ∞,+ , ŷ∞,-}) and the convergence holds in C k loc (R 2 \ {ŷ ∞,+ , ŷ∞,-}) by
Step 2 of subsection 3.2.2 (for any k ∈ N). In order to determine Û , we shall pass to the limit in 

the system ∇ • (û p ∧ ∇û p ) = -1 2 c p p∂ 2 (|û p | 2 -1) ∇ ⊥ • (û p ∧ ∇û p ) = 2J
∇ • ( Û ∧ ∇ Û ) = 0 ∇ ⊥ • ( Û ∧ ∇ Û ) = 2π(δ ŷ∞,+ -δ ŷ∞,-).
It then follows that Û ∧ ∇ Û = û∞ ∧ ∇û ∞ , hence the existence of Θ ∈ R such that Û = e iΘ û∞ . We finally use the x 1 -symmetry to infer Θ = 0.

Step 2: as p → +∞, we have

pc p = p 2 2 R 2 (1 -|û p | 2 ) 2 dx → 2π.
This is claimed in [START_REF] Bethuel | Travelling waves for the Gross-Pitaevskii equation[END_REF] (Proposition VI.7 there), but the proof is not clearly given. One way to prove this point is to use the Hopf differential as in [START_REF] Bethuel | Progress in Nonlinear Differential Equations and their Applications[END_REF] (chapter VII). We shall follow the alternative proof of Theorem VII.2 given in section VII.1 there. The first equality is the Pohozaev identity (2.2).

First, notice that 

W p := p 2 2 (1 -|û p | 2 ) 2 is a nonnegative function which is bounded in L 1 (R 2 )
W p µ + δ ŷ∞,+ + µ -δ ŷ∞,-
in the weak * topology of C b (R 2 ), for some two reals µ ± 0, with µ + + µ -= lim p→+∞ R 2 W p .

We shall now compute µ + (the case of µ -is similar). First, we write, for some R 5 2/10, the Pohozaev identity for ûp on B(ŷ ∞,+ , R 5 ) (obtained by multiplying the equation by the conjugate of (x -ŷ∞,+ ) • ∇û p and integrating the real part over B(ŷ ∞,+ , R 5 )), which yields

B(ŷ∞,+,R5) p 2 2 (1 -|û p | 2 ) 2 + c p p B(ŷ∞,+,R5) (x 1 -ŷ∞,+,1 ) i∂ 2 ûp |∂ 1 ûp = R 5 2 ∂B(ŷ∞,+,R5) |∂ τ ûp | 2 -|∂ ν ûp | 2 + p 2 4 (1 -|û p | 2 ) 2 .
We then pass to the limit p → +∞. For the boundary term, we use the strong convergences outside the vorticity set; for the second term of the first line, we prove that it tends to zero by following the arguments given for Step 6 in subsection 3.2.1. We then get

µ + = R 5 2 ∂B(ŷ∞,+,R5) |∂ τ û∞ | 2 -|∂ ν û∞ | 2 .
By Step 1, we know that û∞ = exp(iArg(x -ŷ∞,+ ) -iArg(x -ŷ∞,-)) on ∂B(ŷ ∞,+ , R 5 ), and the second term Arg(x -ŷ∞,-) is smooth and harmonic in D(ŷ ∞,+ , R 5 ). As a consequence, we have the Pohozaev identity for Arg(• -ŷ∞,-)

0 = R 5 2 ∂B(ŷ∞,+,R5) |∂ τ Arg(x -ŷ∞,-)| 2 -|∂ ν Arg(x -ŷ∞,-)| 2 ,
∂ τ Arg(x -ŷ∞,+ = 1/R 5 , ∂ ν Arg(x -ŷ∞,+ ) = 0, and thus by expansion

µ + = R 5 2 ∂B(ŷ∞,+,R5) |∂ τ û∞ | 2 -|∂ ν û∞ | 2 = R 5 2 ∂B(ŷ∞,+,R5) 1/R 2 5 + 2∂ τ Arg(x -ŷ∞,-)/R 5 = π.
This concludes the proof.

Convergence on the scale x

We shall now focus on the verification of hypothesis 2 of Proposition 1.8. The main tool is the following result. We now work on the scale x. Then, from the uniform bounds of Theorem 2.2 and Corollary 2.3, we may assume, up to a subsequence, that

U p → U ∞ (3.18) in C k loc (R 2 ) with |U ∞ (0)| < 1, ∆U ∞ + U ∞ (1 -|U ∞ | 2 ) = 0 and, by Fatou's lemma, R 2 (1 -|U ∞ | 2 ) 2 dy 4π.
By [START_REF] Brezis | Quantization effects for -∆u = u(1 -|u| 2 ) in R 2[END_REF], we know that R 2 from [START_REF] Mironescu | Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont à symétrie radiale[END_REF] that U ∞ = e iβ V d for some β ∈ R.
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We may now localize the set {|û p | 1 -1 λ * }, where λ * is as in Proposition 1.8, rather precisely.

Step 1: there exists p 6 large such that, for p p 6 , ûp has exactly two zeros ẑp,± . Up to a translation in the x 2 direction, we may assume R × {0} ẑp,± → (±1/(2π), 0) ∈ R 2 .

Moroever, there exists R 0 > 0 such that {|û p | 1 -1 λ * } ⊂ B(ẑ p,+ , R 0 /p) ∪ B(ẑ p,-, R 0 /p). Here, λ * > 0 is the large universal constant appearing in Proposition 1.8.

By Step 8 of subsection 3.2.1, we know (due to the nonzero degree) that ûp has at least two zeroes, one in each disk B(ŷ p,± , 3/20). Now, if ẑp is a zero of ûp , we know by Proposition 3.5 that, for some β ∈ R (depending on the sequence (ẑ p ) p ) and d 0 = ±1, we have ûp (ẑ p + py) → e iβ V d0 (y) (3.19) in C k loc (R 2 ). As noticed in [START_REF] Qing | Zeros of wave functions in Ginzburg-Landau model for small[END_REF], since V ± : R 2 → C ≈ R 2 has nonzero jacobian at the origin, we deduce that for any R > 0, and for p p R large enough 0 is the only zero of U p in B(0, R). Roughly speaking, there does not exist zeroes ẑ, ẑ of ûp such that 0 < |ẑ -ẑ | = O(1/p).

We now fix R 0 > 0 sufficiently large so that {|y| R0/2}

(1 -|V 1 (y)| 2 ) 2 dy 3π 2 .

and we assume that (for any large p), {|û p | 1 -1 λ * } (where λ * > 0 is the one appearing in Proposition 1.8) is not included in B(ẑ p,+ , R 0 /p) ∪ B(ẑ p,-, R 0 /p). This means that there exists Ẑp ∈ B(ẑ p,+ , 3/20) \ B(ẑ p,+ , R 0 /p) (say) with |û p ( Ẑp )| 1 -1 λ * . By Proposition 3.5, the rescaled mapping U p (y) def = ûp ( Ẑp + py) converges (up to a subsequence) in C k loc (R 2 ) to U ∞ ∈ S 1 V ± and we know (from [START_REF] Brezis | Quantization effects for -∆u = u(1 -|u| 2 ) in R 2[END_REF]) that R 2 We deduce from Step 2 of subsection 3.2.4 that

d p ∼ p 2π ∼ 1 c p ,
so that hypothesis 4 of Proposition 1.8 is satisfied for p large enough (still for λ = max(R 0 , λ * )). Furthermore, hypothesis 2 of Proposition 1.8 is satisfied by taking p large enough, associated with the choice λ = max(R 0 , λ * ).

Step 2: conclusion. Applying Proposition 1.8 to e -iβ u p , we infer that there exists γ p ∈ R such that (for large p)

u p = e iγp Q cp
(no translation is needed in the x 2 direction at this stage since the zeros of ûp are on the x 1 -axis).

Decay slightly away from the vortices

In this section, we provide some estimates for ûp in the region B(ẑ p,+ , 2R 0 )∪B(ẑ p,-, 2R 0 ). For the Ginzburg-Landau (stationary) model, such estimates have been first given in [START_REF] Mironescu | Explicit bounds for solutions to a Ginzburg-Landau type equation[END_REF] for minimizing solutions and later generalized in [START_REF] Comte | The behavior of a Ginzburg-Landau minimizer near its zeroes[END_REF] to non-minimizing solutions. However, the paper [START_REF] Mironescu | Explicit bounds for solutions to a Ginzburg-Landau type equation[END_REF] being difficult to find, we give here a proof of these estimates that includes the transport term. They improve some estimates in [START_REF] Chiron | Smooth branch of travelling waves for the Gross-Pitaevskii equation in R 2 for small speed[END_REF] and are not specific to the way we construct the solutions. with Âp and φp real-valued and smooth in the annulus (θ is the polar angle centered at ẑp,+ ). Then, we obtain the system ∆ Âp - and scaling back this yields the conclusion, at least for δ = 2/(p|ŷ|) sufficiently small, say p|ŷ| δ 0 /2, but the estimate is easy to show if p|ŷ| δ 0 /2. 2

Âp |∇ φp | 2 + p 2 Âp |V 1 | 2 (1 -Â2 p ) -2 Âp

Some remarks on the non symmetrical case

In the case where we do not assume the x 1 symmetry for u p , the location of the vortices ŷp,± is more delicate. Indeed, we can no longer assume (3.14), that is (ŷ p,-) 2 = (ŷ p,+ ) 2 = 0 and -(ŷ p,-) 1 = (ŷ p,+ ) 1 → 1 2π .

Up to a translation, we may assume ŷp,+ + ŷp,-= 0, and it remains true that ŷp,+,1 -ŷp,-,1 → 1/π, but we may have |ŷ p,+ -ŷp,-| 1. By following carefully the proof in [START_REF] Sandier | Lower bounds for the energy of unit vector fields and applications[END_REF], one could show that |ŷ p,+ -ŷp,-| C.

Then, the location of the limiting vortices ŷ∞,± = lim p→+∞ ŷp,± can be obtained through the use of the Hopf differential as in [START_REF] Bethuel | Progress in Nonlinear Differential Equations and their Applications[END_REF] (chapter VII), and would lead as before to ŷ∞,± = (±1/(2π), 0). This is of course related to the fact that the only critical point of the action functional The term Θ is somewhat the phase at infinity, even though we do not claim some uniformity at infinity in space.

Next, for the local convergences, there are two phases β ± ∈ R such that ûp (ẑ p,± + p•) → e iβ± V ± (3.23) in C k loc (R 2 ) for any k ∈ N. We are then simply able to show that β ± = Θ, but this is not enough for the uniqueness result. This follows from the arguments given in [START_REF] Shafrir | L ∞ -approximation for minimizers of the Ginzburg-Landau functional[END_REF], as we explain.

We work for the + sign. Integrating 

  6. There, for d ∈ R, we use the notation rd = min(|. -d -→ e 1 |, |. + d -→ e 1 |).

  Since 1+o c →0 (1) c = d c = d by Theorem 1.6, and |dc -1| ν, we have d|c -c | Kν.

  in the connected annulus B( d + , 2λ) \ B( d + , λ). By symmetry in x 1 , this is also true in the annulus B( d -, 2λ) \ B( d -, λ). It then suffices to extend ψ by the formula ψ = ψ † + 2imπ in {r λ} to obtain the formula u -Q = (1 -η)ϕ + ηQ(e ψ -1). In the region {r λ}, the relation u = Qe ψ yields

  First, from equation (2.5) and Lemma 2.7, taking ν > 0 small enough, we have |c -c| |c -c | + |c -c| Kc .

J

  û p -π(δ ŷp,+ -δ ŷp,-)[C 0,1 c (B(ẑp,j ,4R * ))] * δWe apply Theorem 3.1 to û p on each disk B(ẑ p,j , 4R * ), 1 j n p . This yields points ŷp,j,k∈ {|û p | 1/2} ⊂ B(ẑ p,j , R * ) ⊂ B(ẑ p,j , 4R * ) and integers d p,j,k ∈ Z, 1 k N p,j such that J û p -π Np,j k=1 d p,j,k δ ŷp,j,k [C 0,1 c (B(ẑp,j ,4R * ))] j,k | E 1/p (û p , B(ẑ p,j , 4R * )) ln p + δ.(3.9)By summing over 1 j n p the inequalities (3.9), we inferπ j,k | E 1/p (û p , Ω 4R * ) ln p + δ 2.5πby using δ < π/2 and Step 3, and for p large enough. Therefore, may occur: all the integers d p,j,k are zero (this is Case (I)) or at least one of the integers d p,j,k is not zero.In addition, we have, for 1 j n p , Np,j k=1 d p,j,k = deg(û p , ∂B(ẑ p,j , 3R * )).(3.11) Indeed, since |û p | = 1 on B(ẑ p,j , 4R * )\B(ẑ p,j , 3R * ), we have J û p = 0 there. Therefore, by fixingχ ∈ C ∞ c (B(0, 4R * )) such that χ ≡ 1 on B(0, 3R * ), we deduce Np,j k=1 d p,j,k -deg(û p , ∂B(ẑ p,j , 3R * )) = B(ẑp,j ,3R * ) Np,j k=1 d p,j,k δ ŷp,j,k dx -1 π B(ẑp,j ,4R * ) J û p dx j,k δ ŷp,j,k -J û p dx 1 π χ × J û p -π Np,j k=1 d p,j,k δ ŷp,j,k [C 0,1 c ( D(ẑp,j ,4R * ))] *by(3.8). Since the left-hand side is an integer and the right-hand side is 1/2 provided p p 2,1 (δ, Λ 0 ), (3.11) follows.

max 1 j

 1 np |ẑ p,j |) is zero, for otherwise û p (and ûp ) would have infinite kinetic energy. Therefore, 0 = np j=1 deg(û p , ∂B(ẑ p,j , 3R * )) =

2 (ν 2

 22 when p → +∞; on the other hand, by the decays given in Theorem 2.4,R i∂ 2 ûp |1 -i∂ 2 û p |1 ) dx = limr→+∞ ∂B(0,r) Im(û p -û p ) d lim r→+∞ ∂B(0,r) |A -1| d = lim r→+∞ O(1/r) = 0.

R 2 ẑp,j, 1 B

 21 x1 J û p dx = np j=1 B(ẑp,j ,3R * ) x1 J û p dx = np j=1 B(ẑp,j ,3R * ) (x 1 -(ẑ p,j ) 1 )J û p dx + np j=1 (ẑp,j ,3R * )

  j,k δ y p,j,k dx (x 1 -(ẑ p,j ) 1 )χ(• -ẑp,j ) C 0,1 c (B(ẑp,j ,2R * )) J û p -π Np,j k=1 d p,j,k δ y p,j,k [C 0,1 c (B(ẑp,j ,2R * ))] * Ko(1). As a consequence of (3.11), which implies, for each 1 j n p , Np,j k=1 d p,j,k = deg(û p , ∂B(ẑ p,j , 3R * )) = deg(û p , ∂B(ẑ p,j , 3R * )) = B(ẑp,j ,3R * ) J û p dx, we infer, after some cancellation, P (û p ) -π

  ŷ) ln |x -ŷ| dŷ, and then use, for |x -ŷp,± | 3R * , that

  ûp obtained from (3.5) and the definition of the Jacobian. From (3.3) (implying c p p∂ 2 (|û p | 2 -1) → 0 in the distributional or the H -1 sense) and Step 5 of subsection 3.2.1, we then infer

Proposition 3 . 5 2 ( 1 -

 3521 Assume that ẑp ∈ R 2 is such that lim sup p→+∞ |û p (ẑ p )| < 1 and consider the rescaled mapping U p (y) def = ûp (ẑ p + y/p).Then, there exists a sign ± and β ∈ R (depending on the choice of the family (ẑ p )) such that, up to a subsequence, we have, in C k loc (R 2 ) for any k ∈ N,U p → e iβ V ± .Proof. The rescaling U p solves∆U p + ic p ∂ 2 U p + U p (1 -|U p | 2 ) =0 and satisfies lim sup p→+∞ |U p (0)| < 1 and, by Step 2 of subsection 3.2.4, R |U p | 2 ) 2 dy = 4π + o p→+∞ (1).

( 1 -

 1 |U ∞ | 2 ) 2 dy = 2πd 2 , where d ∈ Z is the degree of U ∞ at infinity. It follows that |d| 1, and that the case d = 0 is excluded since |U ∞ (0)| < 1, hence |U ∞ | ≡ 1. Therefore d = ±1. It then follows

( 1 - 2 B-→ e 1 →

 121 |U ∞ | 2 ) 2 dy = 2π. As a consequence, since |ẑ p,+ -Ẑp | R 0 /p, 2π + o(1) = p 2 B(ŷp,+,3/20) (1 -|û p | 2 ) 2 dx p (ẑp,+,R0/(2p)) (1 -|û p | 2 ) 2 dx + p 2 B( Ẑp,R0/(2p)) (1 -|û p | 2 ) 2 dx {|y| R0/2} (1 -|V 1 | 2 ) 2 dy + {|y| R0/2} (1 -|U ∞ | 2 ) 2 dy + o(1)which is absurd. We then conclude |u p | -1 L ∞ ({r d R0}) 1 λ * for p sufficiently large, then proving hypothesis 3 of Proposition 1.8 with λ = max(R 0 , λ * ). Another consequence of this fact is that ûp possesses at most two (simple) zeroes ẑp,± .We then define d = d p such that the unique zero ẑp,+ of ûp in the right half-plane is ẑp,+ = d p p (1/(2π), 0) ∈ R 2 .

Proposition 3 . 6

 36 We have, for |ŷ|3 20 ,|û p (ẑ p,± + ŷ)| -1 C p 2 |ŷ| 2 , ∇|û p |(ẑ p,± + ŷ) C p 2 |ŷ| 3 , ∇û p (ẑ p,± + ŷ) C |ŷ| .Proof. We work near ẑp,+ (the minus sign is similar), say in the annulus B(ẑ p,+ , 1/10) \ B(ẑ p,+ , 1/p) and set ûp (ẑ p,+ + ŷ) = Âp (ŷ)e iθ+i φp(ŷ)

∂ θ ϕ r 2 - 20 )- 1 )M 0 δ|ln δ| 40 3p ln 2 c p = 2π p + o( 1 )

 22011 c p p Âp ∂ 2 φp -c p p cos θ r Âp = 0 Âp ∆ φp + 2∇ Âp • ∇ φp + 2 ∂ θ Âp r 2 + c p p∂ 2 Âp = 0. The second equation may be recast as Multiplying by φp and integrating over DB(0, 3/20) \ B(0, R 0 /p), we obtain B(0,3/20)\B(0,R0/p) Â2 p |∇ φp | 2 dŷ = B(0,3/20)\B(0,R0/p) φp ν 2 d .By Cauchy-Schwarz inequality, (3.3) and Step 1 of subsection 3.2.3, we infer ∇ φp 2 L 2 (B(0,3/20)\B(0,R0/p)) C(1 + c p ) ∇ φp L 2 (B(0,3/20)\B(0,R0/p)) + C where, for the contribution of the integral over ∂B(0, 3/20), we have used (3.16) and (3.15) (see Step 2 of subsection 3.2.2). This implies ∇ φp L 2 (B(0,3/20)\B(0,R0/p)) C. (3.21) We fix ŷ ∈ R 2 such that 2R 0 /p |ŷ| 3 20 . Then, since |û p | 1/2 in the annulus B(0, 3/20) \ B(0, R 0 /p) ⊃ B(ŷ, |ŷ|/2), we deduce B(ŷ,|ŷ|/2) Â2 p |∇ φp + e θ /r| 2 dx C B(ŷ,|ŷ|/2) |∇ φp | 2 + 1 r 2 dx C by (3.21) and the fact that r = |x| |ŷ|/2. By Step 1 of subsection 3.2.3, we then infer the upper bound (also shown in [37]) E 1/p (û p , B(ŷ, |ŷ|/2)) C. (3.22)We now make some rescaling and consider v(X)def = ûp ŷ + |ŷ| 2 Xin B(0, 1) (v depends on ŷ and p), which solves∆v + i c p δ ∂ 2 v + 1 δ 2 v(1 -|v| 2 ) = 0 in B(0,1), with δ := 2/(p|ŷ|). This equation is of the type (3.1) with " = δ" and "c = c p /δ". Let us check that the assumption |c| M 0 |ln | is satisfied with M 0 = 1. As a matter of fact, we have δ = 2/(p|ŷ|) ∈]40/(3p), 1/2], thus by Step 2 of subsection 3.2.4 (note 40(ln 2)/3 ≈ 9.24(1) > 2π). Furthermore, the upper bound (3.22) reads now E δ (v, B(0, 1)) C. It then follows from the proof of Step 7 (p. 48) of Theorem 1 in [8] that, for δ sufficiently small, 2δ -2 (1 -|v|) -c p δ -1 ∂ 2 arg(v) C 1 (B(0,1/2)) C, ∇ arg(v) C 1 (B(0,1/2)) C. Therefore, by Step 2 of subsection 3.2.3, 1 -|v(0)| + ∇|v|(0) Cc p δ + Cδ 2 C p 2 |ŷ| 2 , ∇ arg(v)(0) C,

F

  (ŷ ∞,+ , ŷ∞,-) := 2π 2 ln|ŷ ∞,+ -ŷ∞,-| -2π (ŷ ∞,+ ) 1 -(ŷ ∞,-) 1 associated with the action of the Kirchhoff energy is (ŷ ∞,+ , ŷ∞,-) = (1/(2π), -1/(2π)) ∈ C 2 (up to translation).Next, Step 1 of subsection 3.2.4 becomes, for any p ∈ [1, 2[, and in W 1,p loc (R 2 ), ûp e iΘ û∞ .

  (3.20) over the disk B(0, R) yields∂B(0,R) Â2 p ∂ φp ∂ν d + c p p ∂B(0,R) ν 2 ( Â2 p -1) d = 0.

  ) by(1.2), that is if u is a critical point of E -c * P 2 at the good critical value, then we must have P 2 (u) = P 2 (Q c * ). Furthermore, we know that E min is concave in R + (Proposition 1.5), and that E min is of class C 1 and strictly concave on [p 0 , +∞[ (by statement 1. of Theorem 1.13). Therefore, if P 2

	Indeed, by the Pohozaev identity (2.2), we have		
	c * P 2 (u) =	1 2 R 2	(1 -|u| 2 ) 2 dx 0,
	hence P 2 (u) 0.		

  |c | ν by equation (2.5) (diminishing ν 2 if necessary), Lemma 2.7 and the hypotheses of Proposition 1.8, ϕ C 1 ({r λ}) + Re(ψ) L ∞ ({r λ}) Kν by Lemma 2.8 and |∇(|Q| 2 )|

	K (1+r) 5/2 from equation (2.9) of [14], we
	infer by Cauchy-Schwarz that
	R 2

  7: there exists p 4 large such that, for p p 4 , we have {|û p | 1/2} ⊂ B(ŷ p,+ , 3/20) ∪ B(ŷ p,-, 3/20) and deg(u, ∂B(ŷ p,± , 3/20)) = ±1. From Step 6, we know that 1 = P (û p ) = π((ŷ p,+ ) 1 -(ŷ p,-) 1 ) + o(1), hence the two points ŷp,± are far away from each other : |ŷ p,+ -ŷp,-| 4/10 (since 1/π ≈ 0.318 < 4/10) for p large enough (but they may be, at this stage, very far away from each other). By applying Theorem 1.1 (i) of [2] or Theorem 3.1 of [29] (this is not very far from Theorem 3.1), since J ûp (ŷ p,± + •) → ±πδ 0 weakly, we deduce E 1/p (û p , B(ŷ p,± , 1/10)) (π + o(1)) ln p, hence, by the upper bound (3.3), E 1/p (û p , R 2 \ (B(ŷ p,+ , 1/10) ∪ B(ŷ p,-, 1/10))) o(ln p), and this in turn implies, by the clearing-out theorem (Theorem 3.3), that if p is large enough, say p p 4 , then ∀x ∈ R 2 \ (B(ŷ p,+ , 3/20) ∪ B(ŷ p,-, 3/20)),

	|û p (x)| 3/4,
	as wished. In particular, ẑp,± ∈ B(ŷ p,+ , 3/20) ∪ B(ŷ p,-, 3/20).

  ±1, and in view of the upper bound (3.3) on the energy of ûp , this yields

	B(ŷp,±,2/10)	|∇û p | 2 +	p 2 2	(1 -|û

1, Ω = B(ŷ p,± , 2/10) and u = ûp . Since deg(û p , ∂B(ŷ p,± , 2/10)) = p | 2 ) 2 dx π ln p -Λ 1 and B(ŷp,±,2/10)

  by Step 1 of subsection 3.2.3 and enjoys the decay estimate of Step 2 of subsection 3.2.3. In addition, by (3.16) (see Step 2 of subsection 3.2.2), we have W p → 0 locally uniformly in R 2 \ {±(1/(2π), 0)}. Up to a subsequence, we may then assume that
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We now consider the average β p (r) := 1 2πr ∂B(0,r) φp d which satisfies, for 1/p r 0 r 1 3/20,

Therefore, by Step 5,

We now fix η ∈]0, 1]. Taking r 0 = 1/( √ ηp) and r 1 = 3/20, we infer

Moreover, by (3.23), we have

as p → +∞, and by Step 1 of subsection 3.2.4, we deduce

As a consequence, |β + -Θ| Cη, and the conclusion follows by letting η → 0.