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SOME REMARKS ON SHARPLY 2-TRANSITIVE GROUPS

AND NEAR-DOMAINS

FRANK O. WAGNER

Abstract. A sharply 2-transitive permutation group of characteristic 0 whose
point stabiliser has an abelian subgroup of finite index splits. More generally,
a near-domain of characteristic 0 with a multiplicative subgroup of finite index
avoiding all multipliers da,b must be a near-field. In particular this answers question
12.48 b) of the Kourovka Notebook in characteristic 0.

1. Introduction

Recall that a permutation group G acting on a set X is sharply 2-transitive if for
any two pairs (x, y) and (x′, y′) of distinct elements of X there is a unique g ∈ G
with gx = x′ and gy = y′. Then G has involutions, and either involutions have fixed
points and G is of permutation characteristic 2, or the action on X is equivalent to
the conjugation action on the set I of involutions. In that case, all translations, i.e.
products of two distinct involutions, are also conjugate and have the same order p,
which is either an odd prime or ∞; the number p (or 0 if p = ∞) is the permutation
characteristic of G. We say that G splits if it has a regular normal subgroup N ; in
that case G = N ⋊ CG(i) for any involution i ∈ I. Note that Tent, Rips and Segev
have constructed non-split sharply 2-transitive permutation groups of characteristic
0 and 2.
V. D. Mazurov asked in the Kourovka Notebook (question 12.48):
Let G be a sharply 2-transitive permutation group.

(1) Does G possess a regular normal subgroup if a point stabilizer is locally finite?
(2) Does G possess a regular normal subgroup if a point stabilizer has an abelian

subgroup of finite index?

We shall answer question (b) affirmatively in permutation charateristic 0. In fact,
we shall show a more general result for near-domains.
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2. Near-domains and near-fields.

Instead of working with sharply 2-transitive groups, we shall work in the equivalent
setting of near-domains.

Definition 1. (K, 0, 1,+, ·) is a near-domain if for all a, b, c ∈ K

(1) (K, 0,+) is a loop, i.e. a + x = b and y + a = b have unique solutions, with
a+ 0 = 0 + a = a;

(2) (K \ {0}, 1, ·) is a group, and 0 · a = a · 0 = 0;
(3) left distributivity holds: a · (b+ c) = a · b+ a · c;
(4) for all a, b ∈ K there is da,b ∈ K such that a + (b+ x) = (a + b) + da,b · x for

all x.

A near-domain is a near-field if addition is associative.

Hence a near-field is a skew field iff right distributivity holds.

Fact 2 (Tits, Karzel). A sharply 2-transitive permutation group G is isomorphic

to the group of affine transformations of some near-domain K, i.e. of the set of

permutations {x 7→ a + bx : a, b ∈ K, b 6= 0}; the centraliser of any involution is

isomorphic to the multiplicative group K×. It is split iff K is a near-field.

Let E be the set {d ∈ K : 1 + d = d + 1}. Since the additive loop of K is power-
associative, it is easy to see that 1 generates a subfield of K contained in E, which is
either Q or Fp. Thus K has a characteristic, which is easily seen to be equal to the
permutation characteristic of G. Note that in characteristic > 2 there is a unique
maximal sub-near-field, which is equal to E.

Fact 3 ([1]). For all a, b, c ∈ K we have:

(1) da,a = 1.
(2) da,b(b+ a) = a+ b.
(3) cda,bc

−1 = dca,cb.
(4) da,b = da,cdc+a,−c+bd−c,b.

(5) If a, b ∈ E then (a+ b) 2 ∈ E.

(6) |K× : CK×(da,b)| = ∞ if da,b 6= 1.

Let now A be any subgroup of finite index in K× which avoids all non-trivial co-
efficients da,b for a, b ∈ K. Kerby [1, Theorem 8.26] has shown that K must be a
near-field in the following cases:

(1) charK = 0 and |K× : A| = 2,
(2) charK = 2, |K× : A| = 2 and |E| > 2,
(3) charK = p > 2 and |K× : A| < |E|.

We shall adapt the proof of (3) to characteristic 0.
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Lemma 4. Suppose da,1/k = 1. Then da,n/k = 1 for all n ∈ N.

Proof. By induction on n. This is clear for n = 0 and n = 1. So suppose it holds for
n, and consider
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Proposition 5. If A ≤ K× is a subgroup of finite index avoiding all nontrivial da,b
and char(K) = 0, then K is a near-field.

Proof. Recall that Q ⊆ E. If K = E, then da,b = 1 for all a, b ∈ K and K is a
near-field. So assume E ( K×, and take a ∈ K \ E 2−1. Let n = |K× : A|. Then
there are distinct i > j in {0, 1, 2, . . . , n}/n! with da,iA = da,jA; since d−j,i = 1 we
obtain

da,i = da,jdj+a,−j+id−j,i = da,jdj+a,−j+i.

Hence dj+a,−j+i ∈ A, and dj+a,−j+i = 1 by assumption.
Now d(i−j)−1(j+a),1 = dj+a,−j+i = 1, so (i−j)−1(j+a) ∈ E. Since −(i−j)−1j ∈ Q ⊆ E,
we have

[−(i− j)−1j + (i− j)−1(j + a)] 2 = (i− j)−1a 2 ∈ E,

and da2,i−j = 1. But 0 < (i− j)n! ≤ n is integer, and there is an integer k > 0 with
i− j = 1

k
. By Lemma 4 we obtain da2,1 = 1 and a 2 ∈ E, a contradiction. �

Corollary 6. Let G be a sharply doubly transitive permutation group of characteristic

0 whose point stabilizer is virtually abelian. Then G is split.

Proof. If K is the associated near-domain, K× has an abelian subgroup A of finite
index. Now any non-trivial da,b has a centralizer of infinite index in K×, so da,b /∈ A.
We finish by Proposition 5. �
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