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Abstract: In the Central Himalayas, glaciers and snowmelt play an important hydrological role, as
they ensure the availability of surface water outside the monsoon period. To compensate for the lack of
field measurements in glaciology and hydrology, high temporal and spatial resolution optical remotely
sensed data are necessary. The French–Israeli VENµS Earth observation mission has been able to
complement field measurements since 2017. The aim of this paper is to evaluate the performance
of different reflectance products over the Everest region for constraining the energy balance of
glaciers and for cloud and snow cover mapping applied to hydrology. Firstly, the results indicate
that a complete radiometric correction of slope effects such as the Gamma one (direct and diffuse
illumination) provides better temporal and statistical metrics (R2 = 0.73 and RMSE = 0.11) versus
ground albedo datasets than a single cosine correction, even processed under a fine-resolution digital
elevation model (DEM). Secondly, a mixed spectral-textural approach on the VENµS images strongly
improves the cloud mapping by 15% compared with a spectral mask thresholding process. These
findings will improve the accuracy of snow cover mapping over the watershed areas downstream of
the Everest region.

Keywords: optical remote sensing; VENµS; glaciers; snow; mountains; cloud mapping

1. Introduction
1.1. Context

Hosting the highest mountains in the world and the largest glacierized area outside
of the polar regions, the Himalayas are a unique hydro-climatic system. The numerous
Himalayan watersheds supply more than 800 million people downstream, providing water
resources from 760,000 km2 of snow-covered areas and 40,800 km2 of glaciers (including
Karakoram and the Himalayas). Therefore these high mountains are often called “water
towers” for the buffering role they play in the Asian water cycle [1–3] with snow and
ice melt maintaining streamflow during periods of meteorological drought [3–5]. How-
ever, this region is a challenge for high-elevation glacio-hydrologic research. Distributed
hydro-meteorological information is limited by the difficulty of collecting in situ data [6],
translating into limited knowledge of the hydrological regime and its evolution. Gridded
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meteorological data are available in mountain areas (e.g., ERA5 [7] or HAR [8] climate
reanalysis) but they remain too coarse to directly resolve processes in mountain catchments.
Their performance on a larger scale in mountainous regions is also often unknown, again
due to the lack of sufficiently dense observational networks. These limitations create
considerable uncertainty about the future evolution of the Himalayan Water Towers [9,10].

The increasing resolution of spaceborne sensors and the lengthening of available time
series means that optical remote sensing is offering new opportunities to fill the data gap,
by up-scaling in situ measurements at the basin scale, and/or by monitoring unsurveyed
regions. This is especially true in the field of snow monitoring [11]. For example, in the
Everest region, MODIS (Moderate-Resolution Imaging Spectroradiometer) imagery has
been used to help constrain the contributions of snow and ice to streamflow [12–14] and
to track seasonal migration of the snow line [15]. A new technical step was reached in
terms of spatio-temporal resolution with the Copernicus Sentinel platforms from ESA
(European Space Agency), and the recent VENµS (Vegetation and Environment New Micro
Satellite) program.

1.2. Advantages of VENµS Reflectance Products

The VENµS micro satellite mission is jointly developed and managed by the French
Space Agency (CNES) and the Israeli Space Agency (ISA). Since August 2017, VENµS
sun-synchronous sensor has provided optical images every 2 days from 12 narrow spectral
bands from blue visible (0.424 µm) to near-infrared (0.910 µm), with a 5 m ground resolution.
For our study area, the registration time is 11:00 local time. The VENµS program aims
to highlight the benefits of repetitive high-resolution image acquisitions for monitoring
land surface dynamics. With its unique high spatio-temporal resolution characteristics, the
VENµS sensor is well suited to snow monitoring, particularly in high mountain areas that
are difficult to access. A total of 130 experimental sites worldwide were selected for the VM1
(VENµS Mission 1) step program (2017–2020), including Mount Everest and the Khumbu
valley in Nepal for this study (KHUMBU tile, “Pointing” project). L1C (Level 1C, single
date ortho-rectified image expressed in top-of-atmosphere reflectance) and L2A (Level 2A,
single date ortho-rectified image expressed in surface reflectance) images are processed
by CNES (MAJA chain [16]) providing surface reflectance (SRE) and flat reflectance (FRE)
output products, distributed by the THEIA site [17]. The 90 m SRTM (Shuttle Radar
Topography Mission) DEM is used by CNES to compute the FRE product with topographic
and radiometric corrections using the Gamma process [18,19]. In this way, CNES offers a
very high-quality reflectance product with a high revisit frequency and spatial resolution.
However, the 8 m HMA (High Mountain Asia) DEM is available in the Khumbu region and
could be used to apply the slope effect correction in place of the 90 m SRTM DEM. Thus,
we could analyze the influence of the DEM resolution on the topographic correction.

1.3. Snow and Cloud Discrimination in Optical Remote Sensing

Concerning the question of snow cover changes at a regional scale adapted to moun-
tainous watersheds, long-term databases offer regular snow map collection (albedo, Snow
Cover Area (SCA)); i.e., the National Snow and Ice Data Center (NSIDC) [20] or the Coper-
nicus Snow and Ice Monitoring Service [21]. For this purpose, different methods have
been developed to compute changes in terms of the snow cover duration (SCD in days)
and snow cover area (in km2). A complete review is given by [22]. The most efficient
method to separate clouds and snow is given by the NDSI (Normalized-Difference Snow
Index) [23] based on the normalized ratio between Green and SWIR (Short-Wave Infrared)
spectral bands:

NDSI =
Rgreen − Rswir

Rgreen + Rswir
(1)

where Rgreen is the surface reflectance in the green spectral band and Rswir is the surface
reflectance in the SWIR (1.6 µm) spectral band. Indeed, snow has a very low reflectance in
the SWIR band [24]. Mainly based on the NDSI method, MODIS datasets at regional scale
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have been widely used [25–29], as well as Sentinel-2 and -3 products [30,31] to compute
SCD and SCA. Unlike Sentinel-2 images, the lack of 1.6 µm SWIR spectral band on the
VENµS sensor prevents direct snow and ice mapping through the NDSI calculation [28];
thus, alternative methods are needed. Only a few studies have already addressed this issue
in other sensors. A method has been developed on Worldview-2 sensor by Bühler et al. [32]
using the visible and the highest NIR (Near Infra-Red) band in a normalized-difference
band ratios index. It should be noted that no atmospheric or radiometric correction has
been applied to these satellite images. In Marchane et al. [33], they apply a supervised
classification using the parallelepiped approach with the green, red and NIR bands of the
FORMOSAT-2 sensor to retrieve the snow cover. Recently, to overcome this constraint with
VENµS, Baba & Gascoin [34] suggested an approach using VENµS database (named the
NDSIµ index), based on the Red-edge and NIR spectral bands with classification method
for SCA mapping in mountainous environments. However, the 15 FORMOSAT-2 images
used in Marchane et al. had almost no clouds, which avoids the difficulty of differentiating
snow and cloud. Baba & Gascoin [34] used the VENµS cloud mask to exclude clouds in the
process. Therefore, the discrimination between snow and clouds remains unaddressed.

Cloud cover is a major constraint in optical remote sensing, impacting the retrieval
of surface properties. Different masking algorithms exist, based on multi-temporal or
elevation methods [35,36] but spectral similarity between cloud and snow can be challeng-
ing [37,38]. Most solutions developed recently to detect clouds in remote-sensed images
involve machine learning or deep learning methods [39–42] using convolutional neural
network architectures. Although these methods offer attractive results, the implementation
of such a process requires considerable computing resources and is often time consuming.
We intend to propose here a simple and parsimonious alternative. Generally, in “land-use”
thematic applications of optical remote sensing, images with strong cloud cover are not
processed or rejected because they prevent any analysis of the ground surfaces. On the
contrary, we decide in this study to use all available VENµS images, including those with
considerable cloud cover. Since CNES already provides a robust cloud mask for each
VENµS date, the purpose is to enhance it and to discriminate between clouds and snow.
This will allow us to study the seasonal and spatio-temporal evolution of clouds versus
orography and monsoon/non-monsoon impacts related to local precipitation, and to com-
plement climatological studies in the Himalayas. Moreover, such analysis at high spatial
resolutions might also be of interest for surface radiative forcing.

1.4. Aims

The aims of this paper are therefore: (i) to evaluate the performances of CNES re-
flectance products (SRE and FRE) relative to ground-based observation and to explore the
possibility of improving them by including a high resolution DEM in the processing chain;
(ii) to combine spectral and textural parameters to improve cloud mapping without the
help of manual intervention; and (iii) to use these improved cloud masks to provide better
SCA maps at a 5 m ground resolution and at a 2-day frequency.

We anticipate that more accurate remote-sensed surface reflectance products will offer
benefits across disciplines, including:

• in glaciology: to provide spatially distributed albedo maps, ideally every 2 days,
from optical remote-sensing data, as already documented by [12–14], and useful for
cryosphere modeling at a regional scale [43,44];

• in climatology: to analyze the occurrence of cloud cover and its spatio-temporal
variability at 5 m resolution for radiative impact on surface energy as given by [45,46];

• in hydrology: to provide snow cover area (SCA) maps at 2-day temporal and 5 m
spatial resolution, useful to optimize hydrological modeling in the Everest/Khumbu
basins [5,12,14].

Firstly, we describe the study area, materials and methods in Section 2. Results are
detailed and discussed in Sections 3 and 4 respectively. Finally, the conclusions of this
study are presented in Section 5.
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2. Study Area and Climate Settings

In this study, we work on the VENµS tile “KHUMBU” (N 86◦ 50′/E 27◦ 52′) that covers
the Everest region (Figure 1). We focus most of our analysis on the southern flank of the
Mount Everest area, where the Pheriche (146 km2) and Dingboche (136 km2) catchments are
located [5]. The overall region is largely glacierized (30% of the tile is covered by glaciers;
RGI 6.0), and spans a wide range of elevations, from 2200 m a.s.l. in the foothills of the
Himalayas, to the Everest summit (8849 m a.s.l.).

Figure 1. The map on the left shows the location of the study area. The VENµS tile “KHUMBU”
includes the Pheriche and Dingboche watersheds (dark blue outline), with the three measurement
sites of Pyramide, Changri Nup and South Col used in this study (red points). Light blue indicates
glacierized areas, and the brown area corresponds to the hillshade of the non-glacierized terrain
within the VENµS tile (indicated by the red rectangle). The map on the right shows the location of
the VENµS tile within Asia.

In the Khumbu area, winter (DJF) is cold, dry and windy, and the pre-monsoon
(MAM) sees a gradual increase in humidity and air temperature. The region’s climate
is influenced by the Indian Summer Monsoon, with approximately three quarters of the
annual precipitation falling in summer (JJAS) when moist air is advected from the Bay of
Bengal [47,48]. The monsoon ends sharply with a cessation of precipitation associated with
a drop in humidity and temperature at the beginning of the post-monsoon (ON) [49]. There
is a strong south–north horizontal precipitation gradient, with the southern flank of the
Himalayas being much wetter than the Tibetan Plateau [50].

3. Materials and Methods
3.1. Materials
3.1.1. VENµS Level-2A Products

The first phase of the VENµS mission has been dedicated since 2017 to scientific
application and ended in late October 2020. During this period, sites were surveyed with a
return frequency of two days. The French THEIA data center delivers the orthorectified
SRE and FRE reflectance level 2A products retrieved from the MAJA preprocessing chain,
including atmospheric correction and cloud screening [51]. Table 1 summarizes the design
of the sensor and output products used for our application; detailed information concerning
the multispectral camera and technical configuration is given in [52]. In our case study,
the sensor swath of 27.5 × 27.5 km needed two consecutive tiles with the aim to cover
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the complete application area (1485 km2). From 27 November 2017 to 2 June 2020, out
of 460 dates, 238 VENµS images were available and preprocessed by CNES over the
Everest/Khumbu area. Furthermore, 104 dates were not acquired for technical reasons and
118 images were discarded by CNES due to high cloud cover extent (over 70%), mainly
during the monsoon.

Table 1. Summary of VENµS characteristics and CNES products (SRE: surface reflectance; FRE:
flat reflectance).

Sensor Wavelengths
(µm)

Temporal
Resolution

Spatial
Resolution Tile Size (km2)

Number of SRE and FRE
Processed Images

VENµS 12 bands: 0.420 to 0.910 2-day 5-m 27.5 × 54 238 × 2

3.1.2. DEM Products

Concerning our Nepalese site, the CNES preprocessing chain in the VM1 phase used
two different DEM products: (i) the geometric orthorectification using the High Mountain
Asia (HMA) DEM at 8 m ground resolution, but (ii) the radiometric correction of slope
effects was only applied based on the SRTM DEM at 90 m resolution. In this study, we
use the HMA DEM, aiming to evaluate if a higher-resolution DEM could enhance the
reflectance product relative to CNES. The HMA DEM was resampled using the bicubic
method at 5 m resolution by S. Gascoin (CESBIO-CNES) to be phased with VENµS images.

3.1.3. In-Situ Measurements

The two watersheds of Pheriche and Dingboche have been instrumented with a wa-
ter pressure level sensor since 2010 for runoff monitoring [5]. Data from three automatic
weather stations (AWS) are included in our area: Pyramid (5035 m a.s.l.) on the edge of
Khumbu glacier, West Changri Nup glacier (5387 m a.s.l.) and the Everest South Col site
(7945 m a.s.l.) [6] (Figure 1). Table 2 provides the surface types for each AWS as well as the
sensor types of the in 3 data used for this study: albedo values are expressed here using
Equation (2). The AWSs also provide air temperature (◦C), snow height (m) (only available for
West Changri Nup site) and precipitation (mm water equivalent (w.e.), only for Pyramid site).

Albedo =
mean 24h(Swout)

mean 24h(Swin)
, (2)

where Swout and Swin are respectively reflected and incident short-wave radiation in W.m−2.

Table 2. Specifications (location, elevation, sensor types, surface types) of each AWS used for the
VENµS application.

Site Lat/long Elevation
(m a.s.l.) Albedo Air Temp. Snow Height Precip. Surface Type

Pyramid N 86◦48′47”/E
27◦57′32” 5035 Kipp and

Zonen CNR4
Vaisaila

HMP45C NA Geonor T-200 grassy surface

Changri Nup N 86◦46′40”/E
27◦58′57” 5387 Kipp and

Zonen CNR4
Vaisaila
HMP155

Campbell
SR50A NA Debris-covered

glacier

South Col N 27◦58′18”/E
86◦ 55′46” 7945 Hukseflux

NR01
Vaisala

HMP155 NA NA rocky bare surface

3.1.4. VENµS Cloud Mask “CLM_XS”

The CNES cloud mask (named CLM_XS) is an 8-bit image, and each bit refers to a
cloud type and a detection method (Table 3). To detect clouds on VENµS images, the
MAJA chain applies three tests using: (i) the 1.3 µm band available on LANDSAT-8 and
SENTINEL-2; (ii) a multi-temporal test on the blue surface reflectance increase and (iii) the
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correlation of the pixel neighborhood with previous images. For our study, we extracted
the 7th bit containing the high clouds detected by stereoscopy (value 128).

Table 3. CLM_XS product description.

Bit Value Description

0 1 All clouds except the thinnest and all shadows
1 2 All clouds (except the thinnest)
2 4 Cloud shadows cast by a detected cloud
3 8 Cloud shadows cast by a cloud outside image
4 16 Clouds detected via mono-temporal thresholds
5 32 Clouds detected via multi-temporal thresholds
6 64 Thinnest clouds
7 128 High clouds detected by stereoscopy

3.2. Methods
3.2.1. Slope Effect Correction

Atmospheric and radiometric slope effect corrections over mountainous areas are
necessary for state-of-the-art preprocessing in optical remote sensing [53,54]. This post-
processing is essential for surface albedo retrieval in rugged terrain, particularly for glaciers
and snow-covered areas [55–58]. We analyze the performance of two approaches to correct
the differential solar illumination effects: (1) the cosine correction taking into account only
the direct illumination (lambertian case) (Figure 2) [59,60]; and (2) the Gamma correction,
more complex, considering both direct and diffuse illuminations (non-Lambertian case) [18].
The Gamma process, logically more efficient for snow cover, is applied by CNES to generate
the VENµS FRE product (flat reflectance) from the SRE product (surface reflectance), but is
based on the coarse 90 m SRTM DEM.

Figure 2. Principles of relative geometry of sun, sensor and target. θs and ϕs are (respectively) the
sun zenithal and azimuthal angles (yellow); θn and ϕn are the slope value and orientation (green),
respectively. θv is the sensor zenith and ϕv is the sensor azimuth (blue). The illumination angle γ

(magenta) is the relative angle between the normal to the surface (slope) and the solar ray. All these
angles are linked by Equations (3) and (4) using Euler’s rotation theorem.

Our objective here is to test whether a simple correction of direct illumination (cosine
correction), if based on a higher-resolution DEM (8-m HMA DEM in this case), would be
more accurate than the Gamma reflectance correction applied by CNES. In order to apply
the cosine correction to the VENµS SRE product, we developed a Python script whose
major steps are described below and in Figure 3.
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Figure 3. TopCos HMA products (B11 and B7) processing flow chart. This workflow describes the
method used to correct VENµS surface reflectance (SRE) product with the cosine algorithm and the
HMA DEM.

As illustrated in Figure 2, the use of a DEM makes it possible to determine the
respective illumination cos(γ) of each specific slope applying the following formula:

cos(γ) = cos(θs) cos(θn) + sin(θs) sin(θn) cos(ϕs − ϕn), (3)

where θs and ϕs are the sun zenithal and azimuthal angles; θn and ϕn are the slope value and
orientation, respectively. Equation (3) creates the illumination angle and the normalized
horizontal reflectance is then calculated by Equation (4):

Rhor =

{
R×cos(θs)

cos(γ) , cos(γ) > 0.2
No Date Value, cos(γ) ≤ 0.2

(4)

where R is the input pixel sloping reflectance and Rhor is the output pixel corrected as
in horizontal condition. Due to the low reflectance values in shaded areas, artifacts are
created. We use a threshold fixed at 0.2 as in [53], below which Rhor data are discarded, as
the correlation between the ground reflectance data and the corrected reflectance of the
satellite images is too low. The cosine correction can be simply applied to any reflectance
band, but some low illumination angles are over-corrected [61]. The reason is that these
areas receive more diffuse radiation not accounted for in the cos(γ) direct calculation. We
apply Equations (3) and (4) using the HMA DEM. Our cosine output product is then named
TopCos HMA (referred to as such here-after). This model is run on the VENµS SRE product
for (i) the B11 near-infrared spectral band (865 µm) concerning albedo application, because
it is least impacted by atmospheric effects, and (ii) the B7 red spectral band (662 µm) for
cloud and snow mapping applications (Figure 3).

Additionally, we compute a fourth reflectance product, named TopCos SRTM (Table 4),
which is based on the SRE product corrected with the cosine correction using the SRTM
DEM (90 m). The aim is to analyze the influence of different DEM spatial resolutions with
the same radiometric correction method.
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Table 4. Summary of the DEM and corrections used for each reflectance product in this study.

Product Name DEM Correction

SRE None None
FRE SRTM 90-m Gamma

TopCos HMA HMA 8-m Cosine
TopCos SRTM SRTM 90-m Cosine

3.2.2. Reflectance Product Statistical Evaluation Strategy

A statistical comparison is conducted among the four reflectance products; thus, the
contribution of the bias and STD to the RMSE is calculated for each reflectance product.
Appendix A exhibit the detailed metrics results for each site. As a reminder, the root-
mean-square error (RMSE) is retrieved by the bias and dispersion (STD) calculations. Their
respective contribution (%) is simply given by:

Bias contribution =
100× Bias2

RMSE2 , (5)

and,

STD contribution =
100× STD2

RMSE2 , (6)

with:
RMSE2 = Bias2 + STD2, (7)

where RMSE is the root-mean-square error and STD is the standard deviation. The Pearson
coefficient R2 is also calculated with:

R2 = 1− SSres

SStot
, (8)

where SSres is the residual sum of squares and SStot is the total sum of squares.
Finally, in order to highlight the best product and the best site in terms of performance,

we use a normalized skill score. The transformation to a generic skill enables us to avoid
the problem of having different units for the different metrics. The normalized skill score
(NSS) for each kind of metric is calculated with:

NSSRMSE(site, product) = 1− RMSE (site, product)
max(RMSE)

, (9)

where NSSRMSE represents the normalized RMSE skill score for a specific site and product,
RMSE is the root-mean-square error for a specific site and product, and max(RMSE) is the
highest RMSE among all sites and products.

NSSBias(site, product) = 1− |Bias (site, product)|
max(|Bias|) , (10)

where NSSBias represents the normalized bias skill score for a specific site and product,
|Bias| is the bias absolute value for a specific site and product, and max(Bias) is the highest
bias among all sites and products.

NSSSTD(site, product) = 1− STD ( site, product)
max(STD)

, (11)
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where NSSSTD represents the normalized standard deviation skill score for a specific site
and product, STD is the standard deviation for a specific site and product, and max(STD)
is the highest STD among all sites and products.

NSSR2(site, product) =
R2 (site, product)

max(R2)
, (12)

where NSSR2 represents the normalized Pearson coefficient skill score for a specific site
and product, R2 is the Pearson coefficient for a specific site and product, and max

(
R2) is

the highest R2 among all sites and products. Once all skill scores are calculated for each
value at each site, we calculate the average normalized skill score (ANSS) for each type of
metric, by product and by site (ANSS by row and column). Higher values correspond to
better performance.

3.2.3. Cloud Mask Processing

As a reminder, in this study, our goal is not only to apply a cloud mask to the VENµS
images to retrieve a satisfactory snow mapping chain, but also to use all cloudy images
in the aim of mapping the cloud cover evolution over the measuring period for a climate
application (monsoon regime). Based on the Hagolle algorithm [51], we observe that the
CLM_XS product applied to the SRE product obscures several snow-covered areas in our
study site, which are clearly visible on the Level-1C images of VENµS. This is partly due to
the 2-pixel-wide dilation of the cloud mask at reduced resolution, applied to include thin
clouds at the edge of thicker clouds [16]. Due to the lack of a SWIR band on the VENµS
sensor, we have developed another approach dedicated to cloud mapping improvement.
We aim to leverage and refine the CNES cloud masks to retrieve mor e information about
the snow cover on the ground and create cloud and SCA maps databases with a 2-day
frequency, at a 5 m spatial resolution. We therefore propose a complementary process
based on a hybrid textural/radiometric approach in order to improve and optimize the
CLM_XS product. The Python algorithm to retrieve cloud masks for VENµS is part of the
VENuS_cosine_correction algorithm.

Mainly applied during the 1970s for geographical application, textural features ex-
traction from optical data are based on mathematical morphology applied to grey-tone
images. The Haralick textural decomposition is applied on co-occurrence matrices [62,63]
and offers attractive results using entropy and energy as parameters. Energy indicates
the angular second-moment feature (ASM), which is a measurement of local grey-level
uniformity. Taking into account the textural behavior of the snow and clouds according to
uniformity, the energy parameter is more appropriate for this study than entropy. Energy
is defined by the following relationship:

Energy =
√

ASM (13)

where:
ASM = ∑

i
∑

j
p2

d(i, j) (14)

with pd(i, j) as (i,j)-th element of the grey-level co-occurrence matrix [63]. We also use the
NDVI (Normalized-Difference Vegetation Index) between red and near-infrared bands
(respectively B7 and B11) to help separate snow, ice and cloud features from other land
uses. NDVI is defined as:

NDVI =
RNIR − Rred
RNIR + Rred

(15)

where RNIR is the surface reflectance in the NIR (861.1 nm) spectral band and Rred (666.2 nm)
is the surface reflectance in the red spectral band.

Our cloud mask product, named CloudCov, is the intersection of masks based on the
NDVI and Energy values (Table 5), and the CLM_XS product. Thresholds were determined
by radiometric tests on several VENµS dates in winter, with lots of snow. The CLM_XS
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product is a conservative mask, which overestimates the cloud cover. This is why we
intersect it (∩ denotes the intersection function) with the combination of NDVI and Energy,
which tends to miss some cloud-covered areas. The CloudCov product is defined according
to Equation (16):

CloudCov = NDVI ≥ −0.06∩NDVI ≤ 0.05∩CLM_XS = 128∩ Energy > 0.8 (16)

Table 5. NDVI and Energy thresholding window values.

NDVI ENERGY

Low High

Clouds −0.06 0.05 >0.8
Snow −0.16 −0.02 >0.8

Clouds over a snow-covered area that are not detected in CLM_XS are also not detected
as clouds in our cloud mask.

Once the CloudCov mask has been computed for each VENµS date using TopCos
HMA products (NDVI from B7 and B11), all TopCos HMA (B11 only) products (138 dates)
are re-computed, this time considering the CloudCov mask. This second process enables
the provision of TopCos HMA reflectance products where cloud pixels have the value
128, and thus can be easily discriminated for further applications (Figure 4 describes the
complete workflow).

Figure 4. CloudCov product processing flow chart. This workflow describes the method used to
enhance the CNES cloud mask (CLM_XS) with NDVI and Energy thresholds.

3.2.4. Cloud Mask Statistical Evaluation Strategy

In order to assess the concordance between a control sample and the cloud mask product,
we use the Kappa coefficient [64,65], equivalent to the Heidke Skill Score (HSS) [27,34,66].
By calculating the improvement in the algorithm’s behavior relative to a reference behavior
such as chance, the HSS measures relative skill. This is expressed as the proportion of pixels
correctly classified relative to the number of pixels correct by chance in the complete lack of
skill [66]. It allows us to evaluate the classification performances of the CloudCov mask at the
pixel scale. The CloudCov mask, manually corrected and improved, is considered to be the
actual situation. Table 6, based on Equations (17) and (18), summarizes the metrics used to
assess the CloudCov mask.
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Table 6. Confusion matrix statistics used to assess CLM and CloudCov products.

Recall Accuracy Precision Kappa (HSS)
TP

TP+FN
TP+TN

Total
TP

TP+FP
p0−pe
1−pe

The Kappa coefficient is retrieved using:

p0 =
TP + TN

TP + FP + FN + TN
(17)

and:

pe =
(TN + FP)× (TN + FN) + (FN + TP)× (TP + FP)

(TP + FP + FN + TN)4 (18)

where p0 is the observed proportionate agreement, pe is the overall random agreement
probability, TN is the true negative pixels; TP is the true positive pixels; FN is the false
negative pixels and FP is the false positive pixels. TN means the algorithm correctly
predicted that the pixel has no cloud. TP means the algorithm correctly predicted that the
pixel has clouds.

3.2.5. SCA Outputs

The SCA product is generated using the TopCos and CloudCov chains. Following
a similar reasoning to the CloudCov mask, snow pixels are extracted by calculating the
following intersection (Equation (19)). Note that a CloudCov value of 0 means no cloud.

Snow pixels = NDVI ≥ −0.16∩NDVI ≤ −0.02∩CloudCov = 0∩ Energy > 0.8 (19)

If these conditions are fulfilled, a snow pixel will get the value 1. Then we code cloud
pixels with the value 128 (using the CloudCov mask computed formerly) and other land
uses with a value of 0. Figure 5 describes the SCA product workflow and example of
maps are given in Figure A1. Under cloudy conditions, our classification algorithm clearly
distinguishes snow from clouds. Note that bare ice areas of glaciers are not classified
as “snow”, while accumulation areas are. Snow-covered lakes are included, and if not
snow-covered, are classified as 0 (other land use).

Figure 5. SCA product processing flow chart. This workflow presents the method used to retrieve
snow cover area maps using the CloudCov mask and thresholds on the NDVI and Energy.
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4. Results
4.1. Producing Reflectance Maps from VENµS Images as a Proxy of Albedo Maps
4.1.1. Comparison of TopCos Products (HMA, SRTM) and CNES Products (SRE, FRE)

To compare those four products, we select a subset (Figure 1) in the NE part of the
VENµS tile, representative of fully snow-covered areas without cloud coverage (Figure A2).
Figure 6 presents the frequency of reflectance occurrences for SRE, FRE and the two TopCos
products, HMA and SRTM. Note that for Figure 6, normalization of all data was performed
using Equation (20):

zi =
xi −min(x)

max(x)−min(x)
, (20)

where zi is the ith normalized data and x = (x1, . . . , xn) is the reflectance for each pixel.

Figure 6. Histograms for SRE, FRE and TopCos (HMA and SRTM) normalized products for a subset
of the 2018-03-27 VENµS image.

The plots in Figure 6 are representative of the general pattern observed in the complete
database. On the one hand, for SRE and FRE products, over the entire range of values,
the frequency of occurrence of each reflectance value is homogeneous. On the other hand,
TopCos products (HMA and SRTM) indicate reflectance values with a peak around 0.25
(Figure 6). As a reminder, when charting the normalized reflectance occurrence frequency,
peak values are left-shifted, to fit the 0–1 interval. Low reflectance values with limited
dispersion mean that the image has limited radiometric contrast. The TopCos products
have less contrasts than the SRE and FRE. In TopCos, there is indeed a reduction in the
difference between illuminated and shaded areas induced by the cosine correction [67].

Figure 7 shows the probability density of the reflectances for the four reflectance prod-
ucts on the same subset as Figure 6. All products have their mode close to 1, characteristic
of the snow response. On the one hand, SRE and FRE reflectances are constrained to 1.3 due
to a LUTs (Look Up Tables) limit in the atmospheric correction process of VENµS images.
On the other hand, the cosine method is known for its overcorrection effect, especially on
less illuminated regions: the lower the value of cos(γ), the higher the overcorrection [53].
This phenomenon may be accentuated by the darker pixels in neighboring shadow areas
(no correction applies since cos(γ) is negative or zero) [59]. Here, the cosine method is
applied only for cos(γ) > 0.2 (γ < 78◦) to avoid artifacts. The larger reflectance amplitude
observed for TopCos products is logically induced by the cosine correction, whereas FRE
computed via the Gamma method (direct and diffuse illumination) is closer to broad band
albedo from ground data. It should be noted that the fine HMA DEM (5 m) reduces this
overcorrection in regard to the larger SRTM one (90 m), suggesting that a finer DEM enables
better consideration of local topography, and thus more realistic reflectances.
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Figure 7. Statistical probability for SRE, FRE and TopCos products (HMA and SRTM) for a subset of
the 27 March 2018 VENµS image.

4.1.2. Difference between the Four Reflectance Products

In order to understand the high-resolution DEM influence on the radiometric correc-
tion, we analyzed the differences between the various reflectance products (Figure A3). The
analysis is carried out here on the 7 December 2017 VENµS image, with no cloud and aver-
age snow cover extent. As a reminder, a summary of all the products computed is available
in Table 4. Comparison between the two CNES products (SRE and FRE) shows that surfaces
with steep slopes exposed to the sun are corrected negatively, with the reflectance of these
areas decreasing when the gamma correction is applied. In contrast, flat areas less exposed
to the sun are corrected positively (i.e., reflectance increases in the FRE product). The
difference between the SRE and TopCos HMA indicates that the DEM resolution increases
the level of detail and thus the TopCos HMA product should be preferred. Comparison
between the two corrected products FRE and TopCos HMA reveals that the TopCos HMA
product further reduces the high reflectance values in sun-exposed areas.

Finally, to analyze only the influence of DEM resolution, we compare the two TopCos
products (HMA and SRTM); the difference between them shows the same mean bias
correction all over the tile (around 0.01 difference in their mean values). Use of an initial
DEM with an 8 m resolution, close to the VENµS spatial resolution (5-m) offers a sharp
relief description and more variation in the reflectance within a neighborhood which is a
benefit in snow detection.

4.1.3. Comparison of TopCos and CNES Products with Shortwave Albedo Measurements

• Temporal evolution

Here we compare satellite data registered in a spectral band of near-infrared (B11,
865 µm), with a narrow bandwidth of 40 µm, with broadband albedo sensors on the ground
(0.305 < λ < 2.8 µm) for incident and reflected short-wave radiation. Although not a like-
for-like comparison, we pursue this comparison to explore the possibility of using the
remotely sensed data to infer broadband albedo relevant for the surface energy balance.
Figure 8 illustrates the results for the three ground measurement sites. It is important to
note that during the monsoon (JJAS), Pyramid site is not covered with snow due to its lower
elevation (5 035 m a.s.l.), leading to low reflectance values. Apart from the monsoon, the
four reflectance products follow the ground albedo pattern with each instance of snowfall
characterized by a sharp albedo increase, followed by a decay. At Pyramid (Figure 8a),
when there is snow on the ground, TopCos HMA and FRE products are both closer to
the terrain albedo values, whereas the SRE and TopCos SRTM products are respectively
impacted by (i) the lack of slope radiometric correction, and (ii) the low DEM resolution
effect. Changri Nup site (Figure 8b) is regularly covered by snow in winter (DJF), and



Remote Sens. 2022, 14, 1098 14 of 29

unlike Pyramid site, is consistent with more frequent high reflectance values. During the
monsoon, there is no snow on the ground, the reflectance values are low and similar to the
ground albedo values as for the Pyramid site. When snowfall occurs in the winter period,
the four reflectance images follow the temporal variability of the in situ albedo values; the
reflectance increases, then slowly decreases (gradual melting of the snow), and the four
products offer a similar response considering alternatively each pair of products as for
Pyramid site. At South Col site (Figure 8c) we can observe several high reflectance values
during the monsoon, suggesting significant snow cover, induced by solid precipitation at
such elevation (7945 m a.s.l.).

Figure 8. Temporal comparison between four reflectance products and terrain albedo measurements;
(a) Pyramid site (May 2019 to June 2020); (b) Changri Nup site (Dec 2017 to Nov 2019); (c) South Col
site (May 2019 to June 2020).
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The three sites of this study have distinct seasonal behavior due to their specific
locations and surface states (Table 2), but similar temporal variabilities occur between the
four reflectance products and ground measurements: (i) when there is little or no snow on
the ground, all four reflectance products exhibit low reflectances close to the in situ albedo
measurements. The three corrected products (FRE, TopCos HMA and TopCos SRTM) are
close to each other; (ii) during snowfalls the four products follow the ground albedo rise.
More precisely, TopCos products (HMA and SRTM) are closer to the terrain albedo when
the site is snow-covered while CNES products (SRE and FRE) tend to underestimate the in
situ albedo values. The raw SRE products are the furthest from the observations.

• Statistical comparison

Table 7 offers a synthesis of all metrics for the four reflectance products compared to
albedo measured in situ. The details of the normalized skill scores used to calculate the
ANSS are described in Table A1. We can observe that, globally, all metrics offer satisfactory
results. In particular, we can see that (i) for the FRE product, RMSE values are low on
the three sites, and (ii) from the three corrected products (FRE, TopCos HMA and TopCos
SRTM), the FRE product has the best mean RMSE on the three sites. The dispersion is always
the most impactful on the RMSE. Using the average normalized skill score (ANSS) reveals
that the best product according to statistical performances is the FRE from CNES, and the
site for which this is most effective is Pyramid (Figure A4). However, since Pyramid site is
rarely snow-covered, observing the correlation between reflectance products and in situ
albedo is more difficult than the two other sites. Changri Nup (Figure A5) is the site with
the lowest performance but it has more temporal variability. On the one hand, the CNES
FRE and SRE products are similar and FRE introduces great metrics (STD contributing to
the RMSE for 84% while the bias contributes only for 11%). On the other hand, the TopCos
HMA has a dispersion and bias that similarly impact the RMSE (60% and 40% respectively)
and TopCos products present significant biases (around 0.1). South Col site (Figure A6)
is the second-best site of application according to Table 7. The two CNES products are
similar, likewise at the Changri Nup site. The FRE product offers great metrics; however,
its RMSE is larger than TopCos products (dispersion and bias contribute equally to the
RMSE of the FRE product, respectively 51% and 41%). TopCos HMA product shows a low
RMSE and the lowest bias, so it would therefore be less affected by overcorrection effects
(dispersion and bias contributions to RMSE are 100% and 2% respectively). We can observe
that Pyramid and South Col sites have limited temporal variability, with respectively little
or much snow cover throughout the year, which impacts the statistical results.

Table 7. Average normalized skill score derived from metrics comparison between SRE, FRE, TopCos
HMA, and TopCos SRTM products and in situ albedo AWS data for the three studied sites.

Site Metrics SRE FRE TopCos HMA TopCos SRTM
Average Normalized

Skill Score (ANSS) by
Site

Pyramid

RMSE 0.10 0.08 0.08 0.11 0.58
Bias −0.05 −0.03 -0.03 −0.05 0.71
STD 0.09 0.08 0.08 0.09 0.50
R2 0.72 0.71 0.71 0.72 0.94

Changri Nup

RMSE 0.12 0.12 0.22 0.18 0.27
Bias −0.04 −0.04 −0.14 −0.10 0.43
STD 0.12 0.11 0.17 0.14 0.21
R2 0.76 0.76 0.73 0.74 0.98

South Col

RMSE 0.14 0.14 0.13 0.12 0.40
Bias 0.08 0.09 0.02 0.04 0.59
STD 0.11 0.10 0.13 0.11 0.34
R2 0.71 0.73 0.71 0.73 0.95

Average Normalized
Skill Score (ANSS) by

product

ANSS RMSE 0.45 0.48 0.35 0.38
ANSS Bias 0.60 0.62 0.55 0.55
ANSS STD 0.37 0.43 0.25 0.33
ANSS R2 0.96 0.96 0.94 0.96
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4.1.4. Distribution of Reflectance Values according to the Correction Used

By presenting the reflectance values under classes, an analysis of the reflectance
distribution according to each reflectance product, and thus according to the correction
method, can be performed (Figure 9). Pyramid site (low snow cover) (Figure 9a) reveals
a similar behavior for the four reflectance products in low reflectances (<0.4). Above 0.4,
SRE and TopCos SRTM products follow the same trend, as does the FRE-TopCos HMA
pair. For reflectance higher than 0.6, Figure 9a suggests that the cosine correction algorithm
used to compute TopCos HMA has the same effect as the MAJA Gamma algorithm (CNES).
However, most reflectance values are below 0.7, which means Pyramid site is rarely covered
by snow. Results on the Changri Nup site (more often snow-covered) (Figure 9b) indicate
that for reflectances below 0.6, all the studied products are very similar to each other.
However, for higher reflectances, two product pairs can be distinguished: the TopCos
products show analogous behavior between each other, as do CNES products. At South Col
site (Figure 9c) the behavior of all the products remains the same for low reflectances (<0.6).
Above this threshold, the same two pairings as in the Changri Nup site are observed.

Figure 9. Boxplot comparison between the four reflectance products; (a) Pyramid site; (b) Changri
Nup site; (c) South Col site.
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4.2. Cloud Mapping
4.2.1. Statistical Analysis of the CloudCov Product

Our algorithm developed to retrieve cloud cover is presented in Section 3.2.3. (Table 5
and Figure 4) and an example is presented in Figure 10. The cloud mask produced is
named CloudCov. Our approach enables significant optimization of the CNES cloud mask
CLM_XS (Figure 10b). A representative example (8 August 2018), describing more precisely
the cloud outlines versus snow-covered and non-snow-covered areas on the ground, is
presented in Figure 10c. On average, the CLM_XS mask classifies 27% of the pixel as clouds,
while CloudCov classifies only 12% as clouds on the same images. This is a significant gain
in usable imagery. However, as the CloudCov product extends near the edge of the clouds,
it also contains fewer cloud-cast shadows (Figure 10). Depending on the objective, one can
still favor the CLM_XS mask as it is more conservative.
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The CloudCov product estimated from our algorithm is then manually corrected
(manual delineation) and used as a reference in the confusion matrix (Figure 11), computed
on the 238 VENµS dates, to quantify the gain obtained with the CloudCov mask. Our
cloud mask contains 96% well-classified pixels, while CLM_XS cloud mask only has 81%
(Figure 11 and Table 8). Thus, the CloudCov mask is 15% more accurate than CLM_XS
mask, but the precision improvement is even more significant, with a 35% gain compared
to the CLM_XS mask.

Table 8. Confusion matrix statistics between CLM and CloudCov products.

Recall Accuracy Precision Kappa (HSS)

CLM_XS 99.9% 80.9% 37.6% 45.6%

CloudCov 99.7% 95.5% 72.1% 81.2%

We compare both the CNES CLM mask and the CloudCov mask retrieved from our
algorithm to the actual situation. Table 8 summarizes the results for the CNES CLM_XS
mask and the CloudCov mask pixel study. While the CLM_XS mask has an HSS score
under 50%, the CloudCov mask computed by our algorithm seems to perform very well
with a Kappa score above 80%.
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Figure 11. Mean confusion matrix. Left: on the CLM_XS (CNES) cloud mask, right: on the
CloudCov mask.

4.2.2. Temporal Analysis

Figure 12 shows the synthesis of the CloudCov masks computed over the complete
VENµS acquisition period and seasonally aggregated. This figure enables the monitoring of
cloud behavior through the different seasons of the year. Post-monsoon and winter are the least
cloudy seasons, with a mean cloud occurrence of 10%, while monsoon is the cloudiest one with
a mean occurrence of 40% (note that the monsoon cloud occurrence is likely underestimated,
as fully cloud covered images are not available—118 VENµS images were discarded).

4.3. Snow Cover Area Mapping
4.3.1. Comparison of Snow Cover with Meteorological Data

For unavailable VENµS data due to high cloud cover, we selected the MAJA chain
cloud percentage and filled the cloud cover percentage database retrieved from available
images. We compared ground data versus estimations of the extent of snow and cloud
covers in Pheriche basin from VENµS images, in order to verify their consistency (Figure 13).
We consider here the complete VENµS time period database (November 2018 to June 2020).
Figure 13 (top) shows the precipitation at Pyramid site. Outside the rainy season, high
cloud cover events are observed intermittently. During the monsoon, periods of high cloud
cover persist for several days, whereas outside the rainy season they are more short-lived
(Figure 13, bottom). Looking at Pyramid site’s precipitation, two phenomena are apparent:
(i) the high frequency of pre-monsoon precipitation coincides with the snow height in
this period (and so with the cloud cover percentage increase), and (ii) the even greater
precipitation frequency during the monsoon. However, the link between cloud cover and
precipitation is not obvious and heavy cloud cover does not mean heavy precipitation, or
precipitation at all. In addition, the analysis is partial, due to the unavailability of images
during the monsoon (high cloud cover percentage), which induce a lack of information
on the extent of snow cover. The comparison between cloud cover, snow cover and snow
height does not show an obvious link (Figure 13, bottom). Some increases in snow height
are related to high cloud cover, but not systematically. Surface snow cover is more persistent
in the winter months, with coverage then increasing in the Feb–May pre-monsoon period,
before accelerating and then declining during the monsoon. Note that this decline may
be an artefact from the strong cloudiness in the monsoon, which prevents detection of the
snow cover on the ground. As expected, at Changri Nup site, the snow is higher in the
winter season and before the monsoon; the Pheriche basin snow cover percentage follows
the same pattern. By joining those data, it seems that for the Pheriche watershed, there is a
decrease in the extent of snow cover at the beginning of the monsoon, but likely an increase
in the thickness of the snow cover at elevations higher than the glacier equilibrium line, i.e.,
approx. 5500 m a.s.l.
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Figure 12. Cloud cover statistical and temporal occurrence comparison according to seasonal time
periods. (a) post-monsoon and winter, (b) pre-monsoon, (c) monsoon, (d) location map. Since we
ceased adding to our database on 2 June 2020, only one date of the 2020 monsoon is available; thus, it
has been discarded from Figure 12 and only 237 VENµS images are considered here.
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Figure 13. VENµS clouds estimation in Pheriche watershed compared to Pyramid daily cumulative
precipitation (top), Changri Nup snow height and Pheriche basin interpolated snow coverage. Time
period is Nov 2018 to June 2020 (bottom). VENµS data availability online is also presented. Snow-
covered area has been interpolated in between available Venus images.

4.3.2. Seasonal Evolution of SCA versus Cloud Cover at the Watershed Scale

With snow cover area maps (SCA) retrieval, a comparison between the two watersheds
of Dingboche and Pheriche is conducted. An example of VENµS SCA maps is presented in
Figure A1. For each basin, Figure 14 presents the percentage of the surface area covered by
snow or clouds. Although VENµS images with high cloud cover are not available online, the
cloud cover percentage has been set to 100% for dates where the CNES’ MAJA chain detects
100% cloudiness. The two watersheds offer a similar pattern, coherent with the season. In
post monsoon and winter from October to February, there are few clouds and snow coverage
is quite constant. In 2018 and 2019, during the pre-monsoon, from April to May, the snow
cover progressively decreases and the cloud cover increases. Then, in the monsoon, from June
to September, there is little snow cover detected because of the high cloud cover and of the
lack of available VENµS images during massive cloud cover episodes.

Figure 14. Time evolution 2018–2020 of snow and cloud covers for (a) Dingboche and (b) Pheriche
watersheds. Dashed lines express a linear interpolation.
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5. Discussion
5.1. TopCos HMA Product

As a reminder, we compare in situ albedo measurements (broad band albedo, 0.305–2.8 µm)
to narrow reflectance observations (0.865 µm). Overall, none of the reflectance products stands
out as an ideal proxy for albedo when compared with field measurements. While all the
reflectance products follow the right temporal evolution of albedo, they appear to have biases
and performances that are site dependent. This means that empirical calibration is required
before using FRE or TopCos HMA reflectances as albedo proxies for applications, such as snow
and ice surface energy balance computation. The FRE product seems to be the best product
among all sites (Table 7); however, the TopCos HMA product has a better NSS for the Pyramid
and South Col sites than for the Changri Nup site (Table A1). Additional reflectance bands in
long-wave infrared are required to calculate albedo [68]. The lack of such measurements from
the VENµS plateform is a limitation in snow and glaciological applications for energy balance.
However, both FRE and TopCos HMA products have satisfactory results with a low RMSE,
especially at South Col site: 0.14 for the FRE product and 0.13 for the TopCos HMA product.
They show great potential in differentiating snow from rock or bare ice.

Figure 9 highlights the overcorrection in the TopCos HMA reflectance image. A
threshold of 0.2 is set on the cos(γ), equivalent to a maximum illumination angle of 78.5◦,
whereas in Teillet et al. [59], a threshold of 55◦ is recommended. We made this choice to
retain sufficient data, knowing some artifacts and overcorrection could appear. Indeed, an
illumination angle close to 90◦ leads to a high dividing factor and thus to an overcorrection.

Looking at the statistical analysis, the high-resolution HMA DEM does not yield better
results than the FRE product corrected with SRTM. In [67], radiometric slope correction
using coarse spatial resolution of SRTM offers slightly better results than using fine spatial-
resolution DEM from an optical sensor, due to the better vertical accuracy in SRTM retrieved
from the active radar (SAR) mode. This means that the cosine correction is likely not the
most efficient correction in the rough terrain of the study area. The MAJA processing chains
that calculate indirect and ambient reflection (Gamma correction) seem to be better suited
(FRE), despite being applied on a lower resolution DEM. It would be worthwhile to test the
MAJA chain using HMA DEM as input DEM.

5.2. CloudCov Product

Different methods exist in the literature for cloud detection processes and a recent and
complete review is given by Nepal et al. [69]. Cloud detection in remote sensing, based
on deep learning and machine learning using dense neural networks, actually represents
a way of interest to detect clouds (clustering) with better accuracy than existing mask
generation methods, i.e., threshold-based methods [70,71]. However, these algorithms need
strong calculation architecture that we could not apply for this brief project. This is the
reason why we proposed a simple scheme based on a hybrid method which combines
co-occurrence textural matrices and radiometric parameters to improve the CLM_XS mask.
Another advantage of the CloudCov product is that it enables working at the VENµS
ground resolution, since we used a pixel-wise study. Moreover, to our current knowledge,
no other study has used VENµS or any other satellite sensor with high spatial and temporal
resolution to monitor the spatio-temporal evolution of cloud cover.

In Figure 12, a striking topographic effect is observed in post-monsoon, winter and
pre-monsoon at the level of the Mount Everest (Figure 12a,b). Westerly winds blow the
snow, creating a snow plume and an orographic banner cloud on the leeward eastern side
of Everest’s summit, above the Kangshung glacier [72]. During the pre-monsoon, the early
stages of the monsoon can be observed with clouds coming from South to North in the
low-elevation valleys, and the Everest plume emphasizes this. Cloud intrusions from the
South, in the pre-monsoon and monsoon, are constrained to elevation below 5000 m a.s.l.
In the pre-monsoon and monsoon, the Tibetan plateau on the leeward side is less impacted
by clouds. As a reminder, the quality and reliability of those maps is related to the amount
of VENµS images available through the seasons. Note, however, that most of the monsoon
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images are not available for analysis here because of the impact of cloud cover (24 images
not acquired for technical reason and 65 images discarded in 2018 and 2019 monsoons).
To enhance the CloudCov product, an altitudinal threshold could be added in the process
for the mapping of low clouds. The step of combining with solar angle could give us the
cloud shadow projection on the ground. Thus, cloud shadows would be integrated into the
CloudCov product. In addition, we could experiment with this method on the 6th bit of
the CLM_XS mask to try to detect thin clouds.

5.3. SCA Maps

Many applications using optical remote sensing to retrieve SCA maps in Himalayas
are proposed in the literature [73–75], particularly for this Nepalese region using MODIS
images [5,14]. The GR4J [73] or the J2000 [75] hydrological models could be improved by
using the SCA 5 m maps retrieved from the VENµS dataset thanks to their high spatial
resolution. Indeed, the great asset of this SCA database retrieved from VENµS images relies
on the high spatial (5 m) and temporal (2-day) resolution of this sensor. These SCA maps
will be dedicated to the validation of the snow module from a distributed hydrological
model DHSVM-GDM currently applied at IGE [5,13], and actually only based on a daily
MODIS 500 m images dataset. The very high temporal resolution of the VENµS satellite
is an asset, especially in monsoon conditions, even if there are clouds. Furthermore, such
a database is of interest to the community studying the hydro-glaciological context of
the region.

In the recent study from Baba & Gascoin [34], an unsupervised classification method
has been performed and compared to a supervised classification method to detect snow in
VENµS images, showing that a supervised classification gives better results. Since one of
the main limitations of this approach is the cloud detection (due to the absence of SWIR
band on VENµS sensor) our CloudCov mask, with a 5 m resolution, could be applied ahead
of the classification. Then, their method could be tested on this new product, to better
discriminate clouds from snow and improve the computed SCA maps.

6. Conclusions

The aim of this study was to evaluate and quantify the performance of different
products retrieved by the CNES processing of the VENµS database over the Everest region
in Nepal for glaciological and hydro-climatic applications. In such a high-mountain context,
the focus was set on the interest in adding a fine DEM to the processing chain to enhance the
pre-existing quality of the high temporal and spatial resolution from remote data provided
by the VENµS sensor. The major findings are the following:

(i) No consistent benefits for assessing the spatio-temporal evolution of surface albedo are
retrieved using a cosine radiometric correction enhanced by a fine 5 m DEM regarding
the Gamma one carried out with 90 m SRTM by CNES. The CNES FRE product offers
efficient results versus in situ measurements for albedo retrieval, because Gamma
correction takes into account both direct and diffuse illumination contributions. The
cosine correction based only on the direct illumination can induce higher values
versus broad band albedo from ground data, even using a precise DEM intended to
better reduce the radiometric slope effects.

(ii) We obtained a significant improvement with the TopCos product as an enhancement
for cloud cover mapping and satisfactory results for seasonal snow mapping. Our
novelty is to compute a hybrid product by merging a radiometric index (NDVI) and a
textural approach (Haralick energy matrix) to overtake the CNES initial cloud mask
performance.

(iii) Furthermore, SCA maps are also improved since they are obtained using the Cloud-
Cov mask.

It appears that no other study using VENµS or any Very High Resolution (VHR)
sensor dedicated to monitoring the spatio-temporal evolution of cloud cover has been
conducted. Using images usually discarded because of cloudiness to study the spatio-
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temporal evolution of clouds in this region could be of interest, in particular to track
cloud cover over the year. In conclusion, the recommendation (for users of future VENµS
missions) is to apply a Gamma pre-processing chain with fine DEM at the same sensor
resolution (i.e., 5 m for VENµS) and a mixed spectral-textural approach on the CNES cloud
mask to improve the cloud masking/tracking in high mountain environments, including
snow and glacial areas.
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Appendix A

Figure A1. Snow-covered area (SCA) mapping for Pheriche and Dingboche watersheds. Example of
VENµS image of 2 March 2019.
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Figure A2. Subset of the SRE product on which the TopCos no data mask is applied. Blue pixels
signify no data due to the cos(γ) threshold. VENµS image of 27 March 2018.

Figure A3. Mapping comparison of radiometric differences between the four reflectance products.
No data values are in white.



Remote Sens. 2022, 14, 1098 25 of 29

Table A1. Normalized skill scores (NSS) between SRE, FRE, TopCos HMA, and TopCos SRTM
products and in situ albedo AWS data for the three studied sites.

Site Metrics SRE FRE TopCos
HMA TopCos SRTM

Pyramid

NSS RMSE 0.55 0.64 0.64 0.50
NSS Bias 0.64 0.79 0.79 0.64
NSS STD 0.47 0.53 0.53 0.47
NSS R2 0.95 0.93 0.93 0.95

Changri Nup

NSS RMSE 0.45 0.45 0.00 0.18
NSS Bias 0.71 0.71 0.00 0.29
NSS STD 0.29 0.35 0.00 0.18
NSS R2 1.00 1.00 0.96 0.97

South Col

NSS RMSE 0.36 0.36 0.41 0.45
NSS Bias 0.43 0.36 0.86 0.71
NSS STD 0.35 0.41 0.24 0.35
NSS R2 0.93 0.96 0.93 0.96

Figure A4. Comparison between daily field-measured albedo at Pyramid site and four reflectance
products (85 days). Top: SRE vs. TopCos SRTM. Bottom: FRE vs. TopCos HMA.
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Figure A5. Comparison between daily field-measured albedo at Changri Nup site and four reflectance
products (155 days). Top: SRE vs. TopCos SRTM. Bottom: FRE vs. TopCos HMA.

Figure A6. Comparison between daily field-measured albedo at South Col site and four reflectance
products (84 days). Top: SRE vs. TopCos SRTM. Bottom: FRE vs. TopCos HMA.
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