Pierre Lairez
email: pierre.lairez@inria.fr

Rafael Mohr
email: rafael.mohr@lip6.fr

Mohab Safey
email: mohab.safey@lip6.fr

El Din

A Signature-based Algorithm for Computing the Nondegenerate Locus of a Polynomial System

Keywords: Gröbner Basis, Ideal Decomposition, Algorithm

des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Problem Statement. Fix a field K with an algebraic closure K and a polynomial ring R := K[x 1 , . . . , x n] over K. Let f 1 , . . . , f c ∈ R and V := p ∈ K n f 1 (p) =

• • • = f c (p) = 0 . Further define the ideal I := ⟨f 1 , . . . , f c ⟩ = { c i=1 q i f i | q i ∈ R}. The algebraic set V is a finite union of irreducible components. By the ⋆ This work has been supported by European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Actions, grant agreement 813211 (POEMA) by European Research Council under the European Union's Horizon Europe research and innovation programme, grant agreement 101040794 (10000 DIGITS); by the joint ANR-FWF grant ANR-19-CE48-0015 (ECARP), the ANR grant ANR-19-CE40-0018 (De Rerum Natura), the DFG Sonderforschungsbereich TRR 195, and the Forschungsinitiative Rheinland-Pfalz.

Principal Ideal Theorem [START_REF] Eisenbud | Commutative Algebra: With a View toward Algebraic Geometry[END_REF]Theorem 10.2] the codimension of the K-irreducible components of V is at most c. Let V c denote the union of the components of V of codimension exactly c. In particular V c = ∅ when c > n.

The goal of this paper is to compute a Gröbner basis of an ideal whose zero set is V c , which we call the nondegenerate locus of the system f 1 , . . . , f c (note that we may not compute a radical ideal).

Prior works and scientific locks. State-of-the-art algorithms to compute the nondegenerate locus of f 1 , . . . , f c rely on the more general problem of computing the equidimensional decomposition of the ideal that they generate. There is a vast body of literature split along what data structure is used for the output into two research lines.

The first family of algorithms computes a Gröbner basis of the ideal of each component. There are two different approaches in this line. The first uses projections, computed with elimination orderings, to reduce the problem to a problem for hypersurfaces [START_REF] Gianni | Gröbner bases and primary decomposition of polynomial ideals[END_REF][START_REF] Krick | An algorithm for the computation of the radical of an ideal in the ring of polynomials[END_REF][START_REF] Caboara | Yet another ideal decomposition algorithm[END_REF]. The second relies on homological characterizations of the dimension and the computation of free resolutions [START_REF] Eisenbud | Direct methods for primary decomposition[END_REF]. See [START_REF] Decker | Primary decomposition: Algorithms and comparisons[END_REF][START_REF] Greuel | A Singular Introduction to Commutative Algebra[END_REF][START_REF] Vasconcelos | Computational Methods in Commutative Algebra and Algebraic Geometry[END_REF] and references therein for further references. Both approaches use Gröbner basis algorithms as a black box for performing various ideal-theoretic operations, in particular ideal quotients (also known as colon ideals).

A second family of algorithms outputs equidimensional components of I or its radical through lazy representations, i.e. as complete intersections over a non-empty Zariski open set. This is the case for the so-called regular chains which go back to Wu-Ritt characteristic sets [START_REF] Wu | Basic principles of mechanical theorem proving in elementary geometries[END_REF]. Algorithms based on regular chains put into practice a kind of D5 principle [START_REF] Della Dora | About a new method for computing in algebraic number fields[END_REF] to split geometric objects by enforcing an equiprojectability property. See [START_REF] Hubert | Notes on triangular sets and triangulation-decomposition algorithms I[END_REF][START_REF] Wang | An elimination method for polynomial systems[END_REF][START_REF] Wang | Elimination Methods. Texts and Monographs in Symbolic Computation[END_REF][START_REF] Chou | Ritt-Wu's decomposition algorithm and geometry theorem proving[END_REF][START_REF] Aubry | On the Theories of Triangular Sets[END_REF][START_REF] Lemaire | When does ⟨T⟩ equal sat(T)?[END_REF] and references therein for further references.

When the base field K has characteristic 0 (or large enough characteristic), geometric resolution algorithms [START_REF] Giusti | A Gröbner free alternative for polynomial system solving[END_REF] can also be used. This class of algorithms culminates with the incremental algorithm in [START_REF] Lecerf | Computing an equidimensional decomposition of an algebraic variety by means of geometric resolutions[END_REF][START_REF] Lecerf | Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers[END_REF] which avoids equiprojectability issues by performing a linear change of variables to ensure Noether position properties. One feature is that input polynomials are encoded with straight-line programs to take advantage of evaluation properties. See also [START_REF] Jeronimo | Effective equidimensional decomposition of affine varieties[END_REF] for a similar approach. It also gives the best known complexity for equidimensional decomposition: linear in the evaluation complexity of the input system and polynomial in some algebraic degree.

As of software, the computer algebra systems Singular [START_REF] Decker | Singular 4-3-0 -A computer algebra system for polynomial computations[END_REF], Macaulay2 [START_REF] Grayson | Macaulay2, a software system for research in algebraic geometry[END_REF] and Magma [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF] implement the algorithm of [START_REF] Eisenbud | Direct methods for primary decomposition[END_REF] to perform equidimensional decomposition. Maple implements algorithms for computing regular chains [START_REF] Dahan | Lifting techniques for triangular decompositions[END_REF][START_REF] Dahan | Change of order for regular chains in positive dimension[END_REF][START_REF] Chen | Comprehensive triangular decomposition[END_REF][START_REF] Chen | Efficient computations of irredundant triangular decompositions with the regularchains library[END_REF][START_REF] Li | Computations modulo regular chains[END_REF] and algorithms based on Gröbner bases. The algorithm by Gianni et al. [START_REF] Gianni | Gröbner bases and primary decomposition of polynomial ideals[END_REF] is used for prime decomposition and, combined with techniques from [START_REF] Becker | Gröbner Bases[END_REF], for equidimensional decomposition. All these implementations use Gröbner basis algorithms as a black box.

Main results. By contrast with previous work, we only focus on computing the nondegenerate locus of a system, not the full equidimensional decomposition of the corresponding ideal. The main difference to other Gröbner basis based tech-niques to compute equidimensional decompositions is that we enlarge I while a Gröbner basis for I is computed and return a Gröbner basis of a nondegenerate locus of I when this Gröbner basis computation is finished. Modifying or splitting the ideal in question in the middle of Gröbner basis algorithms is a natural and appealing idea [e.g. [START_REF] Gräbe | Minimal primary decomposition and factorized Gröbner bases[END_REF].

This idea requires one to answer (i) when the ideal in question should be enlarged and (ii) how to minimize the cost of enlarging the ideal in question. The algorithm we propose tackles both issues.

We tackle problem (i) by following the incremental structure of certain signature-based Gröbner basis (sGB) algorithms on which our work is based [START_REF] Faugère | A new efficient algorithm for computing Gröbner bases without reduction to zero (F5)[END_REF][START_REF] Gao | A new incremental algorithm for computing Gröbner bases[END_REF][START_REF] Gao | A new framework for computing Gröbner bases[END_REF]. We describe a version of such an sGB algorithm in section 3. Incremental means here that these algorithms proceed by computing first a Gröbner basis for ⟨f 1 , f 2 ⟩ then use the result to compute a Gröbner basis for ⟨f 1 , f 2 , f 3 ⟩ and so on. In addition, sGB algorithms keep track of an auxiliary data structure, called a signature, which is attached to each considered polynomial. This enables one to exclude certain polynomials from the set of polynomials to be processed by reduction in Buchberger's algorithm.

As a consequence these algorithms have the feature that, having computed a Gröbner basis for I i-1 := ⟨f 1 , . . . , f i-1 ⟩, a reduction to zero happens in the Gröbner basis computation for I i if any only if f i is a zero divisor modulo I i-1 . In this case V i-1 := V (I i-1) has irreducible components on which f i is identically zero (the union of which is henceforth denoted V i-1,fi=0) and components which are not contained in the hypersurface V (f i) (the union of which is henceforth denoted V i-1,fi̸ =0). Assuming that V (I i-1) is equidimensional of codimension i -1, to compute an ideal representing the nondegenerate locus of V (I i) we may then proceed as follows (see Algorithm 1):

1. Compute ideals representing V i-1,fi=0 and V i-1,fi̸ =0 (via the ideal-theoretic operation of saturation).

Compute an ideal representing

W := V i-1,fi̸ =0 ∩ V (f i).
3. Remove from W all components contained in V i-1,fi=0 (again via saturation).

Iterating over the set of input equations with these three steps, using the result of each iterative step as input for the next invocation of this loop and slightly adapting the third step to remove all components which are contained in components of higher dimension then yields an ideal representing the nondegenerate locus of I. We describe this algorithm from a purely algebraic perspective in section 2.

To tackle problem (ii) we exploit a feature of the incremental sGB algorithms first captured in the G2V algorithm [START_REF] Gao | A new incremental algorithm for computing Gröbner bases[END_REF]: The data of a signature can be enlarged so as to simultaneously compute a Gröbner basis for I i and the quotient ideal

(I i-1 : f i) := {g ∈ R | gf i ∈ I i-1 } (which, if I i-1 is a radical ideal, corresponds precisely to V (I i-1,fi̸ =0)) in each incremental step.
Using this idea we modify the baseline sGB algorithm we use to simultaneously perform steps 1 and 2 of the above loop (i.e. in a single Gröbner basis computation). This is done essentially by immediately inserting an element g ∈ (I i-1 : f i) once it is identified during the run of the sGB algorithm. We manage this insertion of elements that do not lie in the original ideal I with a data structure we call an sGB tree (see section 3.3) which allows us to perform this modification with the needed technical properties of signatures ensured. This yields a signature-based version of Algorithm 1, Algorithm 8. Besides managing the insertion of new generators into some initial ideal, the sGB data structure also leaves open the future possibility of designing signature-based ideal decomposition algorithms.

We finally show experimentally in section 5.2 that the consequence of this simple modification is a massive cost reduction in the overhead compared to a "naive" implementation of Algorithm 1 where one uses saturation procedures as a blackbox. As is also shown, it additionally enables us to compute the nondegenerate locus of systems which are out of the reach of equidimensional decomposition algorithms available in state of the art computer algebra systems.

The basic algorithm

Consider a codimension k irreducible variety X ⊆ K n and a polynomial f ∈ R. Assume that X ∩ V (f) ̸ = ∅. Either X ⊆ V (f), and so X ∩ V (f) = X, or X ∩ V (f) is equidimensional of codimension k + 1 (that is, all the irreducible components of X ∩ V (f) have codimension k + 1). If X is not irreducible, then X ∩ V (f)
may not be equidimensional. Yet, the alternative above applies to each irreducible component of X. The components of X which are not included in V (f) are exactly the components of the closure of X \ V (f), while the components of X which are included in V (f) are exacly the components of the closure of X \(X \ V (f)). This leads to the decomposition of X ∩V (f) as the union of two equidimensional varieties of codimension k and k + 1 respectively:

X ∩ V (f) = X \ X \ V (f) ∪ X \ V (f) ∩ V (f) .
This is the basic identity that we leverage to compute, incrementally, the codimension c components of an ideal ⟨f 1 , . . . , f c ⟩. In an ideal theoretic language, this reformulates as follows.

For two ideals I, J ⊆ R, we write I rad = J for the equality of the radicals √ I = √ J. An ideal I is equidimensional if all the irreducible components of V (I) have the same dimension. Recall that I : J is the ideal {p ∈ R | pJ ⊆ I}. Recall also that I : J k yields an increasing sequence of ideals as k → ∞, so it eventually stabilizes in an ideal denoted I : J ∞ , the saturation of I by J. If J is generated by a single element f , it is simply denoted I : f ∞ . Lemma 2.1. For any ideal J ⊆ R and any f ∈ R we have

J + ⟨f ⟩ rad = (J : f ∞) + ⟨f ⟩ ∩ J : (J : f ∞)
Moreover, if J is equidimensional of codimension c < n then ((J : f ∞) + ⟨f ⟩) is either the unit ideal or equidimensional of codimension c + 1 and (J : (J : f ∞)) is either the unit ideal or equidimensional of codimension c.

Proof. For the left-to-right inclusion, it is clear that J is included in the righthand side, so it remains to check that f is in the radical of both terms of the intersection. It is obvious that f ∈ (J : f ∞) + ⟨f ⟩, so it remains to prove that f is in the radical of J : (J : f ∞). So let g ∈ J : f ∞ , that is gf ℓ ∈ J for some ℓ ≥ 0, which we may rewrite as f ∈ √ J : g. To conclude, we observe that

J : (J : f ∞) = g∈J:f ∞ J : g, so f ∈ J : (J : f ∞).
Conversely, let p ∈ ((J : f ∞) + ⟨f ⟩) ∩ (J : (J : f ∞)). Write p = q + af where q ∈ (J : f ∞) and a ∈ R. Since p ∈ (J : (J : f ∞)), we have pq ∈ J. But pq = q 2 + aqf , so q 2 ∈ J + ⟨f ⟩. It follows that q ∈ J + ⟨f ⟩, thus proving the stated equality.

For the statement on equidimensionality, assume that neither of the two ideals on the right hand side are the unit ideal. We may rely on the geometric interpretation above: the zero set of J : f ∞ +⟨f ⟩ is X \ V (f)∩V (f), where X = V (J). It thus only remains to show the equidimensionality of J : (J : f ∞). Note that the equidimensionality of J : (J : f ∞) ∞ is clear because its associated algebraic set consists of the union of the components of X on which f identically vanishes. Now it holds that J : (J : [START_REF] Ishihara | Effective localization using double ideal quotient and its implementation[END_REF]Proposition 23]. This shows the equidimensionality of J : (J : f ∞).

f ∞) rad = J : (J : f ∞) ∞ , see e.g.
We are now ready to describe Algorithm 1. To do this we suppose for now that we have an algorithm for computing the quotient ideal J : K and the saturation J : K ∞ , given generators for J and K. Given c ≤ n elements f 1 , . . . , f c ∈ R the core loop of Algorithm 1 starts with the ideal J = ⟨f 1 ⟩ and continously replaces it with (J : f ∞ k) + ⟨f k ⟩ for each k. By Lemma 2.1 the resulting ideal will be equidimensional of codimension c. Note however that it may have components that the original ideal I = ⟨f 1 , . . . , f c ⟩ does not have, as shown by the following example. In the algorithm, these additional components are removed with saturations at every iterative step with the loop on line 7. To prove the correctness of Algorithm 1 we also need the following proposition: Lemma 2.3. For any ideals I, J ⊆ R and any f ∈ R, we have

(i) (I ∩ J) + ⟨f ⟩ rad = (I + ⟨f ⟩) ∩ (J + ⟨f ⟩); (ii) I ∩ J rad = (I : J ∞) ∩ J; (iii) if f ∈ I, then I : J ∞ = I : (J + ⟨f ⟩) ∞ .

Algorithm 1 Computation of the nondegenerate locus

Input: A set of generators f 1 , . . . , f c for an ideal I in R where c ≤ n Output: A set of generators G for the nondegenerate part of f 1 , . . . , f c 1: J ← 0, as an ideal of R 2: K ← ∅ 3: for k from 1 to c do 4:

H ← J : f ∞ k 5: K ← K ∪ {J : H} 6: J ← H + ⟨f k ⟩ 7:
for K ∈ K do 8:

J ← J : K ∞ 9:
end for 10: end for 11: return J Proof. For the first item,

(I + ⟨f ⟩) ∩ (J + ⟨f ⟩) rad = (I + ⟨f ⟩)(J + ⟨f ⟩) rad = IJ + ⟨f ⟩ rad = (I ∩ J) + ⟨f ⟩.
For the second one, the left-to-right inclusion is clear. Conversely, let f ∈ (I :

J ∞) ∩ J and let k > 0 such that f J k ⊆ I. In particular f k+1 ∈ I. So f ∈ √ I.
For the last item is trivial from the definition of saturation.

Theorem 2.4. On input f 1 , . . . , f c ∈ R with c ≤ n, Algorithm 1 terminates and outputs an ideal J such that V (J) is the nondegenerate locus of the input system.

Proof. We define J 0 := ⟨0⟩, and then recursively

K i := (J i-1 : (J i-1 : f ∞ i)),
and

J i := (J i-1 : f ∞ i) + ⟨f i ⟩ : i j=1 K j ∞ .
It is clear that Algorithm 1 returns the ideal J c . Now, let I i = ⟨f 1 , . . . , f i ⟩. The main loop invariant, that we prove by induction on i, is

I i rad = J i ∩ i j=1 (K j + ⟨f j+1 , . . . , f i ⟩) . (1)
From this, we deduce that the zero set of J c is contained in the algebraic set defined by

f 1 = • • • = f c = 0.
We will prove later that J c is equidimensional of codimension c, that the components of the ideals (K j + ⟨f j+1 , . . . , f c ⟩) have codimension less than c and do not contain any components of J c .

It is trivially true that (1) holds for i = 0. For i > 0, we have

I i = I i-1 + ⟨f i ⟩ rad =   J i-1 ∩ i-1 j=1 (K j + ⟨f j+1 , . . . , f i-1 ⟩)   + ⟨f i ⟩ rad = (J i-1 + ⟨f i ⟩) ∩ i-1 j=1 (K j + ⟨f j+1 , . . . , f i ⟩) , by Lemma 2.3(i).
Besides, by Lemma 2.1,

J i-1 + ⟨f i ⟩ rad = ((J i-1 : f ∞ i) + ⟨f i ⟩) ∩ (J i-1 : (J i-1 : f ∞ i)) = ((J i-1 : f ∞ i) + ⟨f i ⟩) ∩ K i .
For short, let

J ′ i = (J i-1 : f ∞ i) + ⟨f i ⟩.
Combining the equalities above, we have

I i rad = J ′ i ∩ i j=1 (K j + ⟨f j+1 , . . . , f i ⟩) rad = J ′ i : i j=1 K j ∞ ∩ i j=1 (K j + ⟨f j+1 , . . . , f i ⟩) , using Lemma 2.3(ii) and (iii) (note that f 1 , . . . , f i ∈ J ′ i)
. This last equality is exactly [START_REF]OSCAR -open source computer algebra research system[END_REF]. Now, we analyze the dimensions and show that V (J i) is exactly the nondegenerate locus of f 1 , . . . , f i . Indeed, using Lemma 2.1, we check by induction on i that J i is equidimensional of codimension i (unless J i = ⟨1⟩ in which case the nondegenerate locus of f 1 , . . . , f i is the unit ideal) and that K i is equidimensional of codimension i -1 (unless K i = ⟨1⟩ in which case the nondegenerate locus of f 1 , . . . , f i is the one of f 1 , . . . , f i-1 plus ⟨f i ⟩). It follows that all the components of K j + ⟨f j+1 , . . . , f i ⟩ have codimension at most i -1. Moreover, no component of J i is included in any K j , for j ≤ i, since J i is saturated by the K j . Therefore, using (1), the codimension i components of I i are exactly the components of J i .

Hence, we deduce that J c is equidimensional of codimension c whose components are not contained in the ones of K j + ⟨f j+1 , . . . , f c ⟩, the components of which have codimention less than c. Besides, we already observed that its zero set is contained in the one defined by the input polynomials f 1 , . . . , f c . Since (1) holds, we conclude that V (J c) is the nondegenerate locus of the input system.

Signature-based Gröbner basis computations

We will rely on the theory of signature-based Gröbner bases in order to efficiently implement Algorithm 1.

Signatures and extended sig-poly pairs

We fix in the following a monomial order on R and a sequence of polynomials f 1 , . . . , f r ∈ R. Let I := ⟨f 1 , . . . , f r ⟩ and I i := ⟨f 1 , . . . , f i ⟩. We describe an algorithm which computes a Gröbner basis for I and presents the following features:

1. It computes a Gröbner basis for I incrementally, i.e. first for ⟨f 1 ⟩ then for ⟨f 1 , f 2 ⟩ etc.

It simultaneously computes Gröbner bases for each ideal

(⟨f 1 , . . . , f i-1 ⟩ : f i), i = 2, . . . , r.
This algorithm belongs to the class of so called signature-based Gröbner basis algorithms, the first of which was the F5 algorithm presented in [START_REF] Faugère | A new efficient algorithm for computing Gröbner bases without reduction to zero (F5)[END_REF]. Since then the class of signature-based algorithms has been greatly extended, see [START_REF] Eder | A survey on signature-based algorithms for computing Gröbner bases[END_REF] for a survey. The idea of leveraging signature-based algorithms to compute simultaneously some colon ideals first appeared in [START_REF] Gao | A new incremental algorithm for computing Gröbner bases[END_REF]. The algorithm we present here is closely related, with some elements from the F5 algorithm. The algorithm presented in this section is fully encompassed by the general algorithmic framework presented in [START_REF] Eder | A survey on signature-based algorithms for computing Gröbner bases[END_REF]. We start by defining signatures. We order the signatures lexicographically, i.e. by writing (i, m) < (j, n) ⇔ i < j or i = j and m < n.

The product of a monomial a ∈ R and a signature σ = (i, h) is defined by aσ = (i, ah). A signature σ divides another signature τ if there is a monomial a such that aσ = τ , so in particular ind(σ) = ind(τ).

The possible indices of a signature are the indices of the input equations. This relation between the index of a signature and one of the equations f i is made stronger by the following object: Definition 3.2. An extended sig-poly pair is a triple α = (f, σ, h), where f, h ∈ R and σ is a signature such that lm(h) is equal to the monomial part of σ. The first component f is called the polynomial part of α, denoted poly(α), the second component σ is called the signature, denoted s(α), and the third component is called the quotient, denoted quo(α). The index of α, denoted ind(α) is the index of its signature. We further impose that

poly(α) -quo(α)f ind(α) ∈ I ind(α)-1 .
(

) 2
The product of a monomial a ∈ R and an extended sig-poly pair α is defined by poly(aα) = a poly(α), s(aα) = as(α), and quo(aα) = a quo(α).

Algorithm 2 Regular reduction

1: procedure RegularReduction(α, G) 2: f ← poly(α) 3: h ← quo(α) 4: while R := {(b, β) ∈ R × G | b lm(poly(β)) = lm(f), bs(β) < s(α)} ̸ = ∅ do 5: (b, β) ← some element in R 6: f ← f -b poly(β) 7: if ind(β) = ind(α) then 8: h ← h -b quo(β) 9: end if 10:
end while

11: return (f, s(α), h) 12: end procedure
The concept of an S-pair from Buchberger's algorithm extends to extended sig-poly pairs. Given two extended sig-poly pairs α and β with poly(α) ̸ = 0 and poly(β) ̸ = 0 let c = lcm(lm(poly(α)), lm(poly(β))), a = c/ lt(poly(α)) and b = c/ lt(poly(β)), then define the S-pair of α and β, denoted sp(α, β) by

poly(sp(α, β)) = a poly(α) -b poly(β), s(sp(α, β)) = max(s(aα), s(bβ)), and
quo(sp(α, β)) =      a quo(α) if ind(α) > ind(β), a quo(α) -b quo(β) if ind(α) = ind(β), -b quo(β) if ind(α) < ind(β).
In particular, the polynomial part of sp(α, β) is the usual S-pair of poly(α) and poly(β). We say that α and β form a regular S-pair if s(aα) ̸ = s(bβ). (We will only consider such S-pairs.) It is easy to check that Invariant (2) is preserved.

The regular reduction of an extended sig-poly pair α with respect to a set G of sig-poly pairs is defined to be the output of Algorithm 2. The procedure tries to reduce the leading term of poly(α) using some multiple bβ of an extended sig-poly pair β ∈ G such that bs(β) < s(α). The procedure stops when there is no such reducer. Compared to the usual division algorithm in polynomial rings, only reduction by lower signature elements is allowed. Moreover, there is some extra computations to preserve Invariant [START_REF] Aubry | On the Theories of Triangular Sets[END_REF].

We may now describe a variant of Buchberger's algorithm using extended sig-poly pairs and regular reduction, see Algorithm 3. In line 6 we always choose the S-pair with minimal signature for reduction, and signatures are ordered first by indices. As a result, signatures are processed in index 1 (which may produce further S-pairs with index ≥ 1), then in index 2 (which may produce further Spairs with index ≥ 2), etc. So a Gröbner basis for I is computed incrementally: first for ⟨f 1 ⟩, then for ⟨f 1 , f 2 ⟩ etc. Computing with extended sig-poly pairs Algorithm 3 Buchberger with signatures

Input: f 1 , . . . , f r ∈ R Output: Gröbner bases of ⟨f 1 , . . . , f r ⟩ and of ⟨f 1 , . . . , f k-1 ⟩ : f k (1 ≤ k ≤ r) 1: procedure Buchberger(f 1 , . . . , f r) 2: G ← {(f i , (i, 1), 1) | 1 ≤ i ≤ r} 3: S 1 , . . . , S r ← ∅ 4: P ← {(α, β) | α, β ∈ G form a regular S-pair} 5:
while P ̸ = ∅ do 6:

(α, β) ← the pair in P with s(sp(α, β)) minimal 7:

P ← P \ {(α, β)} 8: γ ← RegularReduction(sp(α, β), G) 9: G ← G ∪ {γ} 10:
if poly(γ) ̸ = 0 then 11: else (record the quotient of the zero reduction) return {poly(β) | β ∈ G}, S 1 , . . . , S r 17: end procedure makes it possible to simultaneously compute a Gröbner basis for I and for all the ideals (⟨f 1 , . . . , f i-1 ⟩ : f i) for i = 2, . . . , r. Indeed, if for an extended sig-poly pair γ we find during the run of Algorithm 3 that poly(γ) = 0, then quo(γ) is an element of the quotient ideal I ind(γ)-1 : f ind(γ) , in view of Definition 3.2. Proposition 3.3. On input f 1 , . . . , f r ∈ R, Algorithm 3 terminates and the set {poly(α) | α ∈ G} is a Gröbner basis of the ideal ⟨f 1 , . . . , f r ⟩. The sets S i are Gröbner bases of the ideals ⟨f 1 , . . . , f i-1 ⟩ : f i for each i = 2, . . . , r.

P ← P ∪{(γ, β) | β ∈ G, poly(β) ̸ = 0,
We skip the proof as we will only rely on the stronger Theorem 3.5 below.

From Buchberger to sGB

The signature and the quotient of each extended sig-poly pair in the data makes it possible to compute the colon ideals ⟨f 1 , . . . , f i-1 ⟩ : f i as a by-product of an incremental computation of a Gröbner basis of ⟨f 1 , . . . , f r ⟩. Moreover, this is the discovery of Faugère [START_REF] Faugère | A new efficient algorithm for computing Gröbner bases without reduction to zero (F5)[END_REF], signatures make it possible to discard many Spairs while preserving the essential properties of Algorithm 3. The overarching principle is the following: at most one sig-poly pair has to be regular-reduced at each signature. This is made precise by the following statement. for δ ∈ G do 3:

if s(δ) divides s(mα) and δ was added to G later than α then 4:

return true (Singular criterion)

5:
else if s(δ) divides s(mα) and poly(δ) = 0 then 6:

return true (Syzygy criterion)

7:
else if ind(δ) < ind(α) and lm(poly(δ)) divides lm(quo(α)) then 8:

return true (Koszul criterion)

9:
end if

10:
end for 11:

return false 12: end procedure This leads to Algorithm 5. It is similar to Algorithm 3, the only difference is the check on line 9, the rewritability check, which trims many computations. At a given signature, this check will retain at most one element of P . The condition on line 7 discards even more S-pairs by predicting that they will reduce to zero.

More precisely, in the context of Lemma 3.4, we can predict that all Spairs with signature σ will reduce to the same element. The first effect of the rewritability check is the removal of all S-pairs with signature σ, except at most one. Secondly, Lemma 3.4 may be used to predict that an S-pair will reduce to zero. There are two criteria for that:

Syzygy criterion If an element in signature τ has reduced to zero, then every element in signature aτ (for any monomial a) will reduce to zero;

Koszul criterion If we have a sig-poly pair with polynomial part h and index < ind(σ), then every element in signature (a lm h, ind(σ)) will reduce to zero, (because hf ind(σ) will obviously reduce to zero).

This explains the different checks in the rewritability criterion (Algorithm 3.2), see [18, section 7.1] for a detailed discussion.

Theorem 3.5. On input f 1 , . . . , f r ∈ R, Algorithm 5 terminates and outputs subsets G, S 1 , . . . , S r of R such that:

(i) G is a Gröbner basis of ⟨f 1 , . . . , f r ⟩;

(ii)

I i-1 + ⟨S i ⟩ = I i-1 : f i .
Moreover, on line 15, when a polynomial g is inserted in some S i , then lm(g) is not divisible by the leading monomial of any element of I i-1 or any element previously inserted in S i .

Algorithm 5 sGB with recording of syzygies

Input: f 1 , . . . , f r ∈ R Output: See Theorem 3.5 1: procedure sGB(f 1 , . . . , f r) 2: G ← {(f i , (i, 1), 1) | 1 ≤ i ≤ r} 3: S 1 , . . . , S r ← ∅ 4: P ← {(α, β) | α, β ∈ G form a regular S-pair} 5:
while P ̸ = ∅ do 6:

(α, β) ← the element in P with minimal signature 7:

P ← P \ {(α, β)} 8:
a, b ← the monomials such that a poly(α)-b poly(β) = poly(sp(α, β))

9:
if not Rewritable(α, a, G) and not Rewritable(β, b, G) then if poly(γ) ̸ = 0 then else (record the quotient of the zero reduction) return {poly(β) | β ∈ G}, S 1 , . . . , S r 20: end procedure Proof. Termination and the first two points are a special case of [18, Theorem 7.1], where we only compute partial information about the syzygy module.

The last point is a consequence from the rewritability check. We first note that every time a polynomial h is inserted into S i , the extended sig-poly pair (0, (i, lm h), h) has been inserted into G just before. (The monomial part of the signature is always the leading monomial of the quotient, this is an invariant of sig-poly pairs.) Next, in the context of line 15, if g = quo(γ), then s(γ) = (ind(γ), lm(g)). Moreover, γ comes from a S-pair sp(α, β), so s(γ) = as(α) or bs(β), and both Rewritable(α, a, G) and Rewritable(β, b, G) were false.

The Syzygy criterion implies that s(γ) is not divisible by any s(δ), where δ ∈ G and poly(δ) = 0. In other words, lm(g) is not divisible by any lm h, where h has been previously inserted into S i .

The Koszul criterion implies that lm(g) is not divisible by any lm(poly(δ)), where δ ∈ G and ind(δ) < i. But due to the incremental nature of the algorithm, the set {poly(δ) | δ ∈ G, ind(δ) < i} is a Gröbner basis of I i-1 . So lm(g) is not divisible by any element in I i-1 .

The sGB tree datastructure

Specification

We now specify a data structure, called sGB tree. It is meant to extend the sGB algorithm presented above in two ways: by offering the possibility to add new input equations during the computation; and by offering the possibility to split the computation into different branches while sharing the common base.

An sGB tree represents a rooted tree T where each node holds an element of the polynomial ring R. The nodes are partially ordered by the ancestordescendant relation: ν ≤ T µ if ν is on the unique path from µ to the root of T (or, equivalently, if µ is in the subtree rooted at ν). For a node ν, the polynomial contained in ν is denoted poly(ν), and the ideal generated by the polynomials contained by the ancestors of ν (not including ν) is denoted I <ν . An sGB tree offers the following three operations. How we implement them is the matter of the next section.

Node insertion Insert a new node, containing a given polynomial f , anywhere in the tree, as a new leaf or on an existing edge. Denoted InsertNode(T , f , position).

Gröbner basis Given a node ν, outputs a Gröbner basis of the ideal generated by the polynomials contained in the nodes ≤ T ν. Denoted Basis(T , ν).

Get a syzygy Given a node ν, outputs an element of I <ν : poly(ν). Denoted GetSyzygy(T , ν).

If GetSyzygy(T , ν) outputs zero, then I <ν + J = I <ν : poly(ν), where J is the ideal generated by all previous invocations of GetSyzygy(T , ν).

It is guaranteed that GetSyzygy(T , ν) eventually outputs zero after sufficiently many invocation, even if nodes are inserted or GetSyzygy is called on other nodes in between.

Implementation

From the point of implementation, an sGB tree is made of: The sets G, P and S ν have the same role as their counterparts in the sGB algorithm (Algorithm 5). The main difference is a twist in the definition of signatures and indices. In §3.1, an index (that is the first component of a signature) is a nonnegative integer. From now on, indices are nodes in T . Indices are partially ordered by the ancestor-descendant relation ≤ T . Note that for a given node ν, the subset {µ | µ ≤ T ν} is totally ordered: it is the set of nodes on the path from the root of T to ν. Lastly, we adjust the definition of a regular S-pair. We say that sig-poly pairs α and β form a regular S-pair if ind(α) and ind(β) are comparable (that is either ind(α) ≤ T ind(β) or ind(β) ≤ T ind(α)) and s(aα) ̸ = s(bβ), with a and b as in §3.1. To analyze the behavior of the sGB tree data structure, we always consider totally ordered subsets of indices, thus reducing to the context of Algorithm 5.

To implement Basis(T , ν), we process the S-pairs with index ≤ T ν. The indices of these S-pairs are totally ordered, so we are actually in the situation of §3.2 and we may apply the main loop of Algorithm 5. The body of this loop is isolated in the procedure ProcessSPair (Algorithm 6), with the appropriate alterations.

The implementation of GetSyzygy(T , ν) is similar, with the difference that we abort the computation as soon as the set S ν is not empty and return an element of it, see Algorithm 6. If S ν is still empty after having processed all S-pairs which may lead to new elements in S ν , the value 0 is returned.

We assume that the state of a sGB tree always results from a sequence of calls to InsertNode, Basis or GetSyzygy applied to an initially empty tree. Proposition 3.6. Let T be a sGB tree and let ν be a node of T . Basis(T , ν) (Algorithm 6) terminates and outputs a Gröbner basis of

I ≤ν := {poly(µ) | µ ≤ ν}.
Proof. This algorithm considers only S-pairs whose signatures are above a given node ν. After this restriction, the signatures are totally ordered, so Basis behaves exacly like Algorithm 5 (sGB). We note that, contrary to sGB, Basis may start in a state where several S-pairs have already been processed, in an unspecified order, by earlier calls to Basis or GetSyzygy on different nodes. This does not invalidate neither the termination proof given in [START_REF] Eder | Signature rewriting in Gröbner basis computation[END_REF], nor the proof of correctness. Proposition 3.7. Let T be a sGB tree and let ν be a node of T . Get-Syzygy(T , ν) (Algorithm 6) terminates and outputs some f ∈ R such that: Algorithm 6 Implementation of the sGB tree data structure Input: An sGB tree T and a label ν of T Output: Process the pair in P with index above ν with smallest signature 1: procedure ProcessSPair(T , ν)

2:

(restrict to S-pairs whose indices are above ν)

3:

P ′ ← {(α, β) | α, β ∈ G, max {ind(α), ind(β)} < T ν} 4: if P ′ ̸ = ∅ then 5:
(α, β) ← the pair in P ′ with s(sp(α, β)) minimal 6:

P ← P \ {(α, β)} 7:
a, b ← the monomials such that a poly(α)-b poly(β) = poly(sp(α, β))

8:
if not Rewritable(α, a, G) and not Rewritable(β, b, G) then

9:
γ ← RegularReduction(sp(α, β), G)

10: G ← G ∪ {γ} 11:
if poly(g) ̸ = 0 then else (record the quotient of the zero reduction) end if 18: end procedure Input: A sGB tree T and a label ν of T Output: A Gröbner basis of I <ν 1: procedure Basis(T , ν)

2:
while there is a pair in P with index ≤ T ν do 3:

ProcessSPair(T , ν)

4:
end while

5:

return {poly(α) | α ∈ G and ind(α) ≤ T ν} 6: end procedure Input: A sGB tree T and a label ν of T Output: An element of the quotient ideal I <ν : poly(ν) not contained in I <ν 1: procedure GetSyzygy(T , ν)

2:
while there is a pair in P with index ≤ T ν and S ν = ∅ do 3:

ProcessSPair(T , ν)

4:
end while

5: if S ν ̸ = ∅ then 6:
pick and remove some h in S ν ν ← (largest label in T) + 1

3:

insert a node in T with label ν, as described by "position"

4:

S ν ← ∅ 5:
ϵ ← (f, (ν, 1), 1)

6: P ← {(ϵ, β) | β ∈ G and (ϵ, β) forms a regular S-pair} 7: G ← G ∪ {ϵ} 8:
return ν 9: end procedure (i) f ∈ I <ν : poly(ν);

(ii) if f ̸ = 0, then lm(f) is not divisible by the leading monomial of any other polynomial previously output by GetSyzygy(T , ν), or any polynomial in I <ν ;

(iii) if f = 0, then I <ν : poly(ν) is generated by I <ν and the polynomials previously output by GetSyzygy(T , ν).

Proof. Termination follows from the termination of Basis since the main loop is similar, but with the possibility of earlier termination. Correctness follows from Theorem 3.5 after restricting to indices above ν.

As a consequence of Proposition 3.7(ii), it is guaranteed that GetSyzygy(T , ν) eventually outputs zero after sufficiently many invocation, even if nodes are inserted or GetSyzygy is called on other nodes in between. Indeed, the leading monomial of a nonzero output of GetSyzygy(T , ν) is constrained to be outside the monomial ideal generated by the leading monomials of previous output. By Dickson's lemma, this may only happen finitely many times.

Computation of the nondegenerate locus

The sGB tree data structure can be used to implement an efficient variant of Algorithm 1 for computing the nondegenerate locus. We use an sGB tree to efficiently compute saturations I : f ∞ , and also double quotient I : (I : f ∞), with the idea to exploit as soon as possible newly discovered relations to simplify further computations. This leads to Algorithm 8, which we describe informally as follows.

Similarly to Algorithm 1, we introduce the equations f 1 , . . . , f r one after the other. We maintain a sGB tree which, at the beginning of the kth iteration, that is after having processed f 1 , . . . , f k-1 , has the following shape:

g 1 ← f 1 ← p 1 ← • • • ← g k-1 ← f k-1 ← p k-1 ← 0 ν ↙ h 1 ← h 2 . . . ,
where bold letters represent a sequence of zero, one or several nodes. The tree grows from the node labeled ν, by adding new leaf nodes, or inserting nodes just above ν. Using the notations of Algorithm 1, the nodes g i are related to the saturation by the f i , the leaf nodes h i are generic elements of the ideals in the set K, and the nodes p i are related to the cleaning steps G : K ∞ . We added g 1 for the consistency of the above picture although it will always be empty and so f 1 is the root of the tree.

Remark 4.1 (Deterministic variant). The leaf nodes h i are generic in the sense that they are linear combinations of generators of the ideals in K where all coefficients are either random scalars or new variables. Algorithm 8 chooses either a random scalar or a new variable in line 12. For a randomized algorithm, favoring speed over certain correctness, choose t to be a random scalar, this choice is justified by lemma 4.2. For a deterministic algorithm, choose t to be a slack variable, unused in the input equation. It is guaranteed that such a t is generic enough. In this case the monomial order on R has to be extended to R[t] by a monomial order that eliminates t. The implementation discussed in the next section exclusively chooses t to be a random scalar.

The kth iteration proceeds as follows. Firstly, a new node µ containing f k is created just above ν:

• • • ← f k µ ← 0 ν ← • • • .
As long as GetSyzygy(T , µ) returns nonzero elements (g 1 , g 2 , . . .), we insert them above µ:

• • • ← g 1 ← g 2 ← • • • ← f k µ ← 0 ν ← • • • .
This saturation has the effect of completing I <µ into I <µ : f ∞ k . Each time we insert a polynomial g i in a node, say γ, we also record the syzygies Get-Syzygy(T , γ), take a generic linear combination and insert it as a new leaf node. These syzygies are related to the double quotient I <µ : (I <µ : f ∞ k). Before going to the next iteration, insert above ν all the syzygies obtained from the children of ν. Which again has the effect of saturating I <ν by the polynomials contained in these nodes.

After all the input equations have been processed, the ideal I <ν is a nondegenerate part of the input ideal, which we prove by comparing with Algorithm 1. Lemma 4.2. Let I, J ⊆ R be two ideals with J = ⟨g 1 , . . . , g u ⟩.

Algorithm 8 Computation of the nondegenerate locus with an sGB tree Input: f 1 , . . . , f c ∈ R Output: A Gröbner basis G of a nondegenerate locus of (f 1 , . . . , f c) 1: T ← an empty sGB tree 2: ν ← InsertNode(T , 0) 3: for k from 1 to c do 4:

µ ← InsertNode(T , f k , just above ν)

5: loop 6:
g ← GetSyzygy(T , µ)

7:
if g = 0 then γ ← InsertNode(T , g, just above µ)

11: h ← 0 12:
t ← a random scalar (or the slack variable, see Remark

h ′ ← GetSyzygy(T , γ)

if h ′ = 0 then InsertNode(T , h, as a child of ν)

21:
end loop

22:

for all child β of ν do end for 31: end for 32: return Basis(ν)

1. If S = R[t 1 , . . . , t u] then (I : J ∞) = (IS : (u j=1 t j g j) ∞) ∩ R. 2.
There exists a Zarisiki-open subset D ⊂ K u such that for any (a 1 , . . . , a u) ∈ D we have (I : J ∞) = (I : (

u j=1 a j g j) ∞). 3. If K rad = J then (I : K ∞) rad = (I : J ∞).
Proof. (1) and (2) follows e.g. from [START_REF] Eisenbud | Commutative Algebra: With a View toward Algebraic Geometry[END_REF]Exercise 15.41]. For (3), if p ∈ R such that p k J l ⊂ I for k, l ∈ N then for a suitably large m ∈ N we have K m ⊆ J l so p k K m ⊂ I and hence p ∈ (I : K ∞).

Theorem 4.3. Algorithm 8 terminates. Algorithm 8 is correct, provided that one chooses t as a new variable in line 12 or that t is chosen as a random scalar in a suitable Zariski open subset of K.

Proof. Termination follows from the assumption that for any node ν of an sGB tree T , GetSyzygy(T , ν) eventually returns 0 after sufficiently many calls.

To prove correctness, we show that Algorithm 8 computes the same ideal as Algorithm 1. Let J k-1 be the value of I ν at the beginning of the kth iteration. After line 4, we also have

I <µ = J k-1 , while I <ν = I <µ + ⟨f k ⟩.
We first examine the loop on line 5. It inserts above the node µ all the polynomials obtained from GetSyzygy(T , µ). Every node inserted on line 10 is in I <µ : f k . No other node is inserted above µ. So by induction, it follows that all along the loop, we have

J k-1 ⊆ I <µ ⊆ J k-1 : f ∞ k .
Moreover, after the loop terminates, we have I <µ : f k = I <µ , due to the specification of GetSyzygy (Proposition 3.7). If now g ∈ J k-1 : f ∞ k then g ∈ I <µ : f ∞ k = I <µ and so all in all it follows that before line 22, we have

I <µ = J k-1 : f ∞ k and I <ν = (J k-1 : f ∞ k) + ⟨f k ⟩. (3)
Next, we examine the loop on line 22 and its inner loop on line 23. By the same argument as above, the inner loop has the effect of saturating I <ν by pol(β). So after the loop on line 22, we have

I <ν = J k = ((J k-1 : f ∞ k) + ⟨f k ⟩) : β child of ν pol(β) ∞ . (4)
It remains to understand the nature of the children of ν. They all come from the insertion of h on line 20. And h is simply a generic linear combination of the return values of GetSyzygy(T , γ). So h is a generic linear combination of some h 1 , . . . , h r such that I <γ + ⟨h 1 , . . . , h r ⟩ = I <γ : poly(γ) (by Proposition 3.7). For each node γ inserted on line 10, let L γ denote the ideal I <γ : poly(γ). If g 1 , . . . , g s are the successive return values of GetSyzygy(T , µ) on line 6, and γ 1 , . . . , γ r the corresponding nodes, we have L <γi = I <γi : g i and I <γi = J k-1 + ⟨g 1 , . . . , g i ⟩. By Lemma 4.4, it follows that

L γ1 ∩ • • • ∩ L γr rad = J k-1 : ⟨g 1 , . . . , g r ⟩ ∞ . (5)
Moreover, by (3), we obtain that before line 22

I <µ = J k-1 + ⟨g 1 , . . . , g r ⟩ = J k-1 : f ∞ k , (6)
so, combining with [START_REF] Bezanson | Julia: A fresh approach to numerical computing[END_REF],

L γ1 ∩ • • • ∩ L γr rad = J k-1 : ⟨g 1 , . . . , g r ⟩ ∞ (7) = J k-1 : J k-1 + ⟨g 1 , . . . , g r ⟩ ∞ (8
) rad = J k-1 : (J k-1 : f ∞ k). (9)
As remarked above, the loop on line 23 has the effect of saturating I <ν by pol(β). By the analysis above, pol(β) is actually a generic linear combination of some h 1 , . . . , h r such that I <γ + ⟨h 1 , . . . , h r ⟩ = L γ , for some node γ above ν. By Lemma 4.2, saturating by pol(β) is the same as saturating by ⟨h 1 , . . . , h r ⟩ (assuming that pol(β) is sufficiently generically in the case where Algorithm 8 chooses random scalars in line 12). Besides, I <ν contains I <γ , so saturating I <ν by ⟨h 1 , . . . , h r ⟩ is the same as saturating by L γ . Back to (4), we conclude from (9) that saturating I <ν by all the pol(β) is the same as saturating by all the ideals J i-1 : (J i-1 : f ∞ i), for i ≤ k. Therefore J k satisfies the same recurrence relation as its analogue defined the proof of Theorem 2.4:

J k = (J k-1 : f ∞ k) + ⟨f k ⟩ : i≤k J i-1 : (J i-1 : f ∞ i) ∞ . (10)
This proves that Algorithm 8 and Algorithm 1 compute the same ideal. Proof. The inclusion "⊆" is obvious. Now, let p ∈ R be such that

p m ∈ (I : g 1) ∩ ((I + ⟨g 1 ⟩) : g 2) ∩ • • • ∩ ((I + ⟨g 1 , . . . , g t-1 ⟩) : g t)
for some m ∈ N. Then we have in particular p m g 1 ∈ I. Now let i > 1. By induction, if for some k ∈ N we have p k g j ∈ I for all j ≤ i then

p km g i+1 = p k f + p k a 1 g 1 + • • • + p k a i g i ∈ I
for a suitable f ∈ I, a 1 , . . . , a i ∈ R and so p km ∈ (I : g i+1). We deduce that a power of p actually lies in (I : J) which ends the proof.

Implementation and Experiments

Further Implementational Considerations

We start by describing some further optimizations in our implementations of Algorithms 5 and 8.

Both these implementations use an F4-like reduction strategy. This means that several S-pairs are selected out of the pairset at once and are subsequently, together with their regular reducers, organized in a matrix whose rows are labeled by the selected extended sig-poly pairs and whose columns are labeled by all the monomials occuring in the polynomial parts of these extended sigpoly pairs. This matrix is then put into row echelon form and the rows of this reduced matrix whose first entry has changed during the computation of this row echelon form are then processed as new basis elements or newly identified zero divisors, depending on if this reduced row is zero or not. Compared to the original F4 algorithm, one has to make sure during the computation of this row echelon form that a row is only reduced by rows whose corresponding sig-poly pair has lower signature. We refer to [START_REF] Faugère | A new efficient algorithm for computing Gröbner bases (F4)[END_REF] for details on the original F4 algorithm or to [18, section 13] for a more thorough explanation as to how to combine the F4 algorithm with signature-based techniques.

For Algorithm 8, this has the consequence that the GetSyzygy routine has the ability to return several zero divisors g 1 , . . . , g s at once and Algorithm 8 may benefit from it. We implemented the following probabilistic optimization: We replaced g 1 by a random linear combination g ′ 1 := s j=1 a i g i . Let ν 1 , . . . , ν s be the nodes assigned to g ′ 1 , g 2 , . . . , g s in Algorithm 8. Then, if the choice of the a i was "sufficiently random", we know by Lemma 4.2 that for h ∈ R we have

hg ′ 1 ∈ I <ν1 ⇔ hg i ∈ I <ν1 ∀i.
If then GetSyzygy(T , ν 1) returned such an element h ̸ = 0 we regarded the signatures (ν 2 , lm(h)), . . . , (ν s , lm(h)) as known signatures of syzygies during the calls to Rewriteable, i.e. GetSyzygy(T , ν i) would, for i = 2, . . . , s, only return a non-zero result if there exists an element h ′ ∈ (I <νi : g i) with lm(h ′) not divisible by lm(h). Furthermore, only the zero divisors h of g ′ 1 as above were considered in the loop from line 14-20 of Algorithm 8.

We implemented both Algorithm 5 and 8 in the programming language Julia [START_REF] Bezanson | Julia: A fresh approach to numerical computing[END_REF] with an interface to the Singular.jl Julia-library [START_REF] Decker | Singular 4-3-0 -A computer algebra system for polynomial computations[END_REF]. An interface to the new computer algebra system OSCAR [START_REF]OSCAR -open source computer algebra research system[END_REF] is planned for the future. The implementation is available at https://github.com/RafaelDavidMohr/SignatureGB.jl

In this implementation we use our own data structures for polynomials and polynomial arithmetic. The linear algebra routines for computing row echelon forms in our implementations closely follow the corresponding routines presented in [START_REF] Monagan | A compact parallel implementation of F4[END_REF]. Additionally, our implementation makes use of the modifications to Algorithm 5 presented in [START_REF] Eder | F5C: A variant of Faugère's F5 algorithm with reduced gröbner bases[END_REF]. Currently the implementation works only for fields of finite characteristic.

While our implementation is currently not competitive with optimized implementations of Gröbner basis algorithms such as in Maple [START_REF] Maplesoft | [END_REF] or msolve [START_REF] Berthomieu | Msolve: A library for solving polynomial systems[END_REF], we do make use of some standard optimization techniques in Gröbner basis algorithm implementations such as monomial hash tables and divisor bitmasks (see e.g. [START_REF] Roune | Practical gröbner basis computation[END_REF] for a description of these techniques).

Experimental Results

We used the following examples to benchmark our implementations. All computations were made over the field Z/65521Z 1. Cyclic [START_REF] Caboara | Yet another ideal decomposition algorithm[END_REF], coming from the classical Cyclic(n) benchmark.

2. Pseudo(n), encoding pseudo-singularities via polynomials

f 1 , . . . , f n-1 , g 1 , . . . , g n-1 with f i ∈ K[x 1 , . . . , x n-2 , z 1 , z 2], g i ∈ K[y 1 , . . . , y n-2 , z 1 , z 2]
, the f i being chosen as a random dense quadrics, and g i chosen such that g i (x 1 , . . . , x n-2 , z 1 , z 2) = f , i.e. as a copy of f i in the variables y 1 , . . . , y n-2 , z 1 , z 2 .

3. Sos(s, n), encoding the critical points of the restriction of the projection on the first coordinate to a hypersurface which is a sum of s random dense quadrics

in K[x 1 , . . . , x n]. f, ∂f ∂x 2 , . . . , ∂f ∂x n , f = s i=1 g 2 i .
4. Sing(n), encoding the critical points of the restriction of the projection on the first coordinate to a (generically singular) hypersurface which is defined by the resultant of two random dense quadrics A, B in K[x 1 , . . . , x n+1]:

f, ∂f ∂x 2 , . . . , ∂f ∂x n , f = resultant(A, B, x n+1).

5. The Steiner polynomial system, coming from [START_REF] Breiding | 3264 conics in a second[END_REF].

All these systems are generated by a number of polynomials equal to the number of variables of the underlying polynomial ring. They all have components of different dimensions, one of those being zero-dimensional, i.e. they have a nontrivial nondegenerate locus.

In Table 1 we compare Algorithm 8 and a straightforward implementation of ours of Algorithm 1 in Maple. In this implementation, we saturated an ideal J by an ideal K by picking a random linear combination p of generators of K and saturating J by p using Maple's internal saturation routine. Table 1 shows the improvement of Algorithm 8 over Algorithm 1: While Maple's highly optimized Gröbner basis engine beats our implementation of Algorithm 5 by a wide margin the ratio between the timings of our F5 implementation and our implementation of Algorithm 8 is much better than the ratio between the time it took to compute a Gröbner basis in Maple and our Maple implementation of Algorithm 1. This indicates that the overhead over a Gröbner basis computation incurred by Algorithm 1 is significantly reduced by bringing in signature-based techniques as in Algorithm 8. This can be seen by looking at the two respect "ratio"-columns of table 1. To additionally show the overhead of Algorithm 8 over Algorithm 5 we noted the number of arithmetic operations in K when running each of the two algorithms on the polynomial system in question. Our implementation of Algorithm 8 never takes more than 10 times the number of arithmetic operations Algorithm 5 takes, on certain examples we compare very favorably in terms of arithmetic operations to Algorithm 5.

In Table 2 we compare Algorithm 8 to other ideal decomposition methods available in the computer algebra systems Singular, Maple and Macaulay2 [START_REF] Grayson | Macaulay2, a software system for research in algebraic geometry[END_REF]. In Singular there is an elimination method [START_REF] Decker | Primary decomposition: Algorithms and comparisons[END_REF] and an implementation of the algorithm for equidimensional decomposition presented in [START_REF] Eisenbud | Direct methods for primary decomposition[END_REF]. In Maple we compared against the Regular Chains package [START_REF] Chen | Algorithms for computing triangular decomposition of polynomial systems[END_REF][START_REF] Chen | Efficient computations of irredundant triangular decompositions with the regularchains library[END_REF]. In Macaulay2 one is able to compute the intersection of all components of non-minimal dimension again with the method presented in [START_REF] Eisenbud | Direct methods for primary decomposition[END_REF]. We then saturated the original ideal by the result to obtain the nondegenerate locus. On a high level, our algorithm works similarly, incrementally obtaining information about the component of higher dimension and then removing it via saturation. One should keep in mind that all of these methods, compared to Algorithm 8, work more generally: Except for what we tried in Macaulay2 they are all able to obtain a full equidimensional decomposition of the input ideal.

We gave all of these methods at least an hour for each polynomial system and at most roughly 50 times the time our implementation of Algorithm 8 took. We indicated when these times were exceeded by using ">" in Table 2. We computed all examples on a single Intel Xeon Gold 6244 CPU @ 3.60GHz with a limit of 200G memory. If this limit was exceeded, or if another segfault occured, we indicate it with 'segfault' in Table 2.

Example 2 . 2 .

 22 Let R = Q[x, y, z] and f 1 = xy, f 2 = xz. Then (⟨xy⟩ : xz ∞) + ⟨xz⟩ = ⟨y, xz⟩ which has the component ⟨y, x⟩ which is not a component of ⟨f 1 , f 2 ⟩ = ⟨x⟩ ∩ ⟨y, z⟩.

Definition 3 . 1 .

 31 A signature is a pair σ = (i, m) of an index in {1, . . . , r} and a monomial in R. The first component is called the index, and denoted ind(σ). The second component is called the monomial part of σ.

Lemma 3 . 4 (Algorithm 4

 344 [START_REF] Eder | Signature rewriting in Gröbner basis computation[END_REF] Lemma 4]). In the course of Algorithm 3, assume that only S-pairs in signature ≥ σ := (i, m) are left in P . Then for any extended sig-poly pairs γ and γ ′ with s(γ) = s(γ ′) = σ, poly(RegularReduction(γ, G)) = poly(RegularReduction(γ ′ , G)) The rewritability criterion Input: α an extended sig-poly pair, m a monomial, G a set of extended sig-poly pairs with α ∈ G Output: Returns true if mα is rewritable w.r.t. G; false otherwise 1: procedure Rewritable(α, m, G)2:

13 :P

 13 ← P ∪{(γ, β) | β ∈ G, poly(β) ̸ = 0, forms a regular S-pair with γ} 14:

 (a) a rooted tree T whose nodes are labelled with integer IDs; (b) a set G of extended sig-poly pairs whose indices are nodes of T (see below); (c) a set P of pairs of elements of G forming regular S-pairs; (d) for each node ν of T , a subset S ν of R.

12 :P

 12 ← P ∪{(γ, β) | β ∈ G, poly(β) ̸ = 0, forms a regular S-pair with γ} 13:

7

 7 The sGB tree data structure, insertion of a node Input: A sGB tree T , a polynomial f and a description of the position of the new node in T Output: The label of the newly inserted node 1: procedure InsertNode(T , f , position)2:

Lemma 4 . 4 .

 44 Let I, J ⊆ R be two ideals and let J = ⟨g 1 , . . . , g t ⟩. Then (I : J) rad = (I : g 1) ∩ ((I + ⟨g 1 ⟩) : g 2) ∩ • • • ∩ ((I + ⟨g 1 , . . . , g t-1 ⟩) : g t).

Table 1 :

 1 Comparing Algorithm 1 and Algorithm 8

		Alg. 5 arith. op.	Alg. 8 arith. op.	Alg. 5	Alg. 8	Ratio	GB in Maple	Alg. 1 in Maple	Ratio
	Cyclic 8	1.2 • 10 10	1.3 • 10 11	4m	40m	10	1.2s	154m	7700
	Pseudo(2, 12)	5.3 • 10 7	3.1 • 10 8	1.16s	5.2s	4.5	0.268s	3.44s	13
	Sing(2, 10)	5.6 • 10 7	6.5 • 10 7	1.9s	2.9s	1.5	0.11s	1.642s	14.5
	Sing(2, 9)	2.5 • 10 7	2.9 • 10 7	1.1s	1.4s	1.27	0.06s	0.788s	13.1
	Sos(2,5,4)	1.3 • 10 8	1.1 • 10 8	8.5s	7.3s	0.85	0.022s	0.479s	21.3
	Sos(2,6,3)	2.1 • 10 7	2.1 • 10 7	1.11s	1.4s	1.26	0.021s	0.261s	12.4
	Sos(2,6,4)	4.8 • 10 9	3.8 • 10 9	148s	169s	1.14	0.172s	22.7s	132
	Sos(2,6,5)	4.2 • 10 9	2.0 • 10 9	75s	43s	0.57	0.458s	10.38s	22.7
	Sos(2,7,3)	1.3 • 10 8	6.7 • 10 8	5.2s	41s	7.9	0.047s	7.162s	152.4
	Sos(2,7,4)	6.5 • 10 9	4.5 • 10 10	3m	32m	10.7	0.433s	1h	8314
	Sos(2,7,5)	7.2 • 10 10	3.5 • 10 11	25m	20h	48	2.294s	>359h	> 4.4 • 10 6
	Sos(2,7,6)	1.7 • 10 12	3.0 • 10 12	31h	73h	2.4	14.348s	5.5h	23
	Steiner	3.1 • 10 10	2.3 • 10 11	4.2m	42m	10	27s	13m	28.9

Table 2 :

 2 Comparing with other Decomposition Methods

Acknowledgments. We wish to thank the two anonymous referees for their helpful remarks and suggestions which allowed us to improve the exposition of several results in this article.

Algorithm 8

Singular: Elimination Method Singular: Algorithm in [START_REF] Eisenbud | Direct methods for primary decomposition[END_REF] Maple: Regular Chains Macaulay2 Cyclic 8 40m segfault >35h >35h >35h Pseudo(2, 10) 0.3s 40s >1h >1h >1h Pseudo(2, 12) 5.2s >1h >1h >1h >1h Pseudo(2, 6) 0.008s <1s <1s 0.29s 0.07s Pseudo(2, 8) 0.03s <1s 23m 5.82s 13.78s Sing(2, 10) 2.9s >1h >1h >1h >1h Sing(2, 4) 0.02s 1s >1h 91.32s 0.42s Sing(2, 5) 0.07s 4s >1h >1h 1.94s Sing(2, 6) 0.15s 56s >1h >1h 16.64s Sing(2, 7) 0.35s 8m >1h >1h 289s Sing(2, 8) 0.68s 23m >1h >1h >1h Sing(2, 9) 1.4s >1h >1h >1h >1h Sos(2,4,2) 0.03s <1s <1s 19.4s 0.16s Sos(2,4,3) 0.03s 1s 3m 14m 0.63s Sos(2,5,2) 0.02s <1s >1h >1h 0.37s Sos(2,5,3) 0.34s >1h >1h >1h 9.35s Sos(2,5,4) 7.3s >1h >1h >1h 183s Sos(2,6,2) 0.17s <1s >1h >1h 0.7s Sos(2,6,3) 1.4s >1h >1h >1h 107s Sos(2,6,4) 169s >140m >140m >140m >140m Sos(2,6,5) 43s >1h >1h >1h >1h Sos(2,7,2) 2.91s <1s >1h 2.94s 0.18s Sos(2,7,3) 41s >1h >1h >1h >1h Sos(2,7,4) 32m >26h segfault >26h >26h Sos(2,7,5) 20h segfault segfault >200h >200h Sos(2,7,6) 73h segfault segfault >334h >500h Steiner 42m >50h segfault >50h >50h