
HAL Id: hal-03590675
https://hal.science/hal-03590675v1

Preprint submitted on 28 Feb 2022 (v1), last revised 10 Mar 2023 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Signature-based Algorithm for Computing the
Nondegenerate Locus of a Polynomial System

Christian Eder, Pierre Lairez, Rafael Mohr, Mohab Safey El Din

To cite this version:
Christian Eder, Pierre Lairez, Rafael Mohr, Mohab Safey El Din. A Signature-based Algorithm for
Computing the Nondegenerate Locus of a Polynomial System. 2022. �hal-03590675v1�

https://hal.science/hal-03590675v1
https://hal.archives-ouvertes.fr

A Signature-based Algorithm for
Computing the Nondegenerate Locus of a Polynomial System

Christian Eder ∗ Pierre Lairez † Rafael Mohr ∗‡ Mohab Safey El Din ‡

February 28, 2022

Abstract

Polynomial system solving arises in many application areas to model non-linear geometric properties.
In such settings, polynomial systems may come with degeneration which the end-user wants to exclude
from the solution set. The nondegenerate locus of a polynomial system is the set of points where the
codimension of the solution set matches the number of equations.

Computing the nondegenerate locus is classically done through ideal-theoretic operations in commu-
tative algebra such as saturation ideals or equidimensional decompositions to extract the component of
maximal codimension.

By exploiting the algebraic features of signature-based Gröbner basis algorithms we design an algo-
rithm which computes a Gröbner basis of the equations describing the closure of the nondegenerate locus
of a polynomial system, without computing first a Gröbner basis for the whole polynomial system.

1 Introduction
Problem Statement Fix a field K with an algebraic closure K and a polynomial ring R := K[x1, . . . , xn]
over K. Let f1, . . . , fc ∈ R with c ≤ n and V :=

{
p ∈ Kn ∣∣ f1(p) = · · · = fc(p) = 0

}
. This algebraic set is a

finite union of irreducible components. By the Principal Ideal Theorem [20, Theorem 10.2] the codimension
of the K-irreducible components of V is at most c. Let Vc denote the union of the components of V of
codimension exactly c.

The goal of this paper is to compute a Gröbner basis of an ideal whose zero set is Vc, which we call the
nondegenerate part of the system f1, . . . , fc (or rather a nondegenerate part, since this is unique only up to
radicality).

Prior works and scientific locks. The state-of-the-art algorithms to compute the nondegenerate part of
I rely on the more general problem of computing the equidimensional decomposition of I. There is a vast
body of literature split along what data structure is used for the output into two research lines.

The first family of algorithms computes a Gröbner basis of the ideal of each component. There are two
different approaches in this line. The first uses projections, computed with elimination orderings, to reduce
the problem to a problem for hypersurfaces [7; 25; 32]. The second relies on homological characterizations of
the dimension and the computation of free resolutions [21]. See Decker et al. [14] and Greuel and Pfister [29]
for further references. Both approaches use Gröbner basis algorithms as a black box for performing various
ideal-theoretic operations, in particular ideal quotients (also known as colon ideals).

∗TU Kaiserslautern, Germany
†Inria, Uni. Paris-Saclay, Palaiseau, France
‡Sorbonne Uni., CNRS, Paris, France

1

A second family of algorithms outputs equidimensional components of I or its radical through lazy
representations, i.e. as complete intersections over a non-empty Zariski open set. This is the case for the
so-called regular chains which go back to Wu-Ritt characteristic sets [43].

These put into practice a kind of D5 principle [17] to split geometric objects by enforcing an equipro-
jectability property. See [1; 11; 30; 35; 41; 42] for further references. When the base field k has characteristic
0 (or large enough characteristic), geometric resolution algorithms [26] can also be used. These culminate
with the incremental algorithm in [33; 34] which avoids equiprojectability issues by performing a linear
change of variables to ensure Noether position properties. One feature is that input polynomials are encoded
with straight-line programs to take advantage of evaluation properties. See also [31] for a similar approach. It
also gives the best known complexity for equidimensional decomposition: linear in the evaluation complexity
of the input system and polynomial in some algebraic degree.

On the software side, the computer algebra systems Singular [16], Macaulay2 [28] and Magma [5] imple-
ment the algorithm of Eisenbud et al. [21] to perform equidimensional decomposition. Maple implements
algorithms for computing regular chains [8; 9; 12; 13; 36] and algorithms based on Gröbner bases. The
algorithm by Gianni et al. [25] is used for prime decomposition and, combined with techniques from [2], for
equidimensional decomposition. All these implementations use Gröbner basis algorithms as a black box.

Main results. As opposed to previous work, we only focus on computing the nondegenerate part of an
ideal, not the full equidimensional decomposition. Introducing splitting techniques in the middle of Gröbner
basis algorithms is a natural idea [e.g. 27]. A topical issue is then to control the computational cost of these
splittings. This raises two scientific locks: (i) when should one proceed with a splitting attempt and (ii) how
to minimize the cost of each splitting by exploiting algebraic knowledge of previous computations.

In this paper, we do not provide any complexity result but address (i) and (ii). Problem (i) is solved,
following an old idea by Faugère [24], by revisiting the idea of using syzygies already present in [21] through
the prism of signature-based Gröbner basis algorithms such as the F5 algorithm [18; 23].

In order to compute a Gröbner basis of the ideal ⟨f1, . . . , fc⟩, the F5 algorithm computes Gröbner bases of
⟨f1, . . . , fi⟩ incrementally “à la Buchberger” but keeps track of an auxiliary data structure, called a signature,
which is attached to each considered polynomial. This enables one to avoid certain reductions to zero in
Buchberger’s algorithm, namely the ones coming from trivial a priori syzygies.

Concretely, in the F5 algorithm, a reduction to zero happens exactly when some fi+1 is a zero divisor in
R/⟨f1, . . . , fi⟩ [18, Corollary 7.2]. This gives a hint on when to apply a splitting procedure. We show how
to apply it through a procedure with successive saturations of polynomial ideals to mimic in algebraic terms
the set theoretic operations which consist in “computing” the intersection of V (fi+1) with the Zariski closure
of V (f1, . . . , fi)− V (fi+1). We then show how to remove superflous irreducible components from the result
via a ”cleanup” step. This solves Problem (i).

To tackle (ii), we further apply the properties of signatures which are maintained during the run of
the F5 algorithm. These enable one to keep track of crucial information of the syzygy module of the ideal
under consideration but in a lazy and compact way, which minimizes the impact of this extra data structure
to practical computations. It turns out that these signatures encompass enough information to efficiently
perform the saturation and ”cleanup” operations we need in the splitting procedure designed to solve (i).

All in all, we then show how to modify the F5 algorithm to successively compute the highest codimension
components of each intermediate ideal generated by the first i equations.

We implemented our algorithm using the programming language Julia [4]. We illustrate its efficiency by
first comparing it with our implementation of the F5 algorithm. Practical experiments show that the overhead
induced by our splitting techniques is significantly reduced by introducing signature-based techniques into
the procedure designe to solve (i). We also show that our implementation tackle examples which are out of
reach to current implementations in systems such as Macaulay2, Maple and Singular.

2

2 Auxiliary results
We refer the reader to e.g. [20] for further details on the notions of primary decomposition and dimension
used in this section.

Let I be an ideal of R as above.

Definition 2.1. The set of minimal associated primes of I, denoted MinAss(I), is the set of prime ideals of
R which contain I and are minimal w.r.t. inclusion. The algebraic sets associated to the minimal associated
primes of I are the irreducible components of V (I).

Let MinAssc(I) denote the set of minimal associated primes of I whose codimension is eactly c, We define
the locus of codimension c of I as Ic :=

⋂
p∈MinAssc(I)

p (and ⟨1⟩ if MinAssc(I) is empty). We say that I is
pure of codimension c if

√
I = Ic. If I = ⟨f1, . . . , fc⟩ is generated by c elements then any ideal J satisfying√

J = Ic is called the nondegenerate locus of f1, . . . , fc.

For two ideals J,K ⊆ R we write J
rad
=K if

√
J =
√
K, i.e. if V (I) = V (J).

Assume for the remainder of this section that we are given f1, . . . , fc ∈ R with c ≤ n and denote
I := ⟨f1, . . . , fc⟩. If c > n then the nondegenerate locus of f1, . . . , fc is trivial so we only treat the case c ≤ n
here. Any minimal associated prime of I has at most codimension c by the Principal Ideal Theorem [20,
Chap. 10].

The goal of this section is to obtain an algorithm which computes generators for the nondegenerate locus
J of f1, . . . , fc. For the moment, this algorithm will be described using the ideal theoretic operation of
computing the generators of the saturation of one ideal by another. Let us recall the definition:

Definition 2.2. Let J,K ⊆ R be two ideals. The colon ideal of J w.r.t. K is defined as (J : K) :=
{p ∈ R | pK ⊆ J} where pK := {pf | f ∈ K}. The saturation of J w.r.t. K is defined as

(J : K∞) =
{
p ∈ R

∣∣ ∃k ∈ N such that pKk ⊆ J
}
.

To obtain our algorithm, we gather some well known facts about colon ideals and saturations.

Proposition 2.3. Let J,K ⊆ R be two ideals and let J =
⋂r

i=1 Qi be a minimal primary decomposition.

1. We have

(J : K∞) =
⋂

K⊈
√
Qi

Qi.

In particular MinAss((J : K∞)) ⊆ MinAss(J).

2. If K is equal to the intersection of some of the Qi’s, say K =
⋂s

i=1 Qi for some s ≤ r, then

(J : K)
rad
=

r⋂
i=s+1

Qi.

Proof. For statement (1), see e.g. [21, Lemma 2.4]. To prove statement (2), note that if p ∈ (J : K) then,
for any of the Qi’s, we have, by the definition of a primary ideal, that either p ∈ Qi or K ⊂ Qi or both
p ∈
√
Qi and K ⊂

√
Qi. Since the chosen primary decomposition is minimal we hence must have p ∈

√
Qi

for all i ≥ s+ 1. The reverse inclusion is obvious.

The cornerstone of our algorithm will be the following statement.

3

Lemma 2.4. For any ideal J ⊆ R and any f ∈ R we have

J + ⟨f⟩rad= ((J : f∞) + ⟨f⟩) ∩ (J : (J : f∞))

If J is pure of codimension c < n then ((J : f∞) + ⟨f⟩) is pure of codimension c + 1 and (J : (J : f∞)) is
pure of codimension c.

Remark 2.1. Geometrically, by Proposition 2.3, the irreducible components of V ((J : f∞)) are the irreducible
components of V (J) which are transversely intersected by f and the irreducible components of V ((J : (J :
f∞))) are the irreducible components of V (J) on which f is identically zero.

Proof. Let p ∈ J + ⟨f⟩. We prove that p is in the radical of (J : f∞) + ⟨f⟩ and that of (J : (J : f∞)). The
former inclusion follows simply from J ⊆ (J : f∞). Concerning the latter, let g ∈ (J : f∞), so that gf ℓ ∈ J
for some ℓ ∈ N. We write p = q + af where q ∈ J and a ∈ R. Then pℓ = q′ + a′f ℓ for some q′ ∈ J , a′ ∈ R
and so

gpℓ = gq′ + a′gf ℓ ∈ J.

Therefore p ∈
√
J : (J : f∞).

Conversely, let p ∈ ((J : f∞) + ⟨f⟩) ∩ (J : (J : f∞)). Write p = q + af where q ∈ (J : f∞) and a ∈ R.
Since p ∈ (J : (J : f∞)), we have pq ∈ J . But pq = q2 + aqf , so q2 ∈ J + ⟨f⟩. It follows that q ∈

√
J + ⟨f⟩,

thus proving the stated equality.
To prove that the ideals on the right hand side are pure of codimension c+ 1 respectively c, note that if

(J : f∞) is contained in some primary component P of J and if Q is another primary components of J with√
P ⊆

√
Q then also (J : f∞) ⊆ Q. By Proposition 2.3 we hence have MinAss ((J : (J : f∞))) ⊆ MinAss(J).

Hence (J : (J : f∞)) is pure of codimension c. Also by Proposition 2.3 and the prime avoidance lemma
there exists g ∈ (J : f∞) such that f + g is not contained in any minimal associated prime of J and hence
is not a zero divisor modulo J . Hence there exists a regular sequence of length c+ 1 in (J : f∞) + ⟨f⟩. The
equidimensionality of (J : f∞) + ⟨f⟩ then follows from the Principal Ideal Theorem.

We are now ready to describe Algorithm 1. To do this we suppose for now that we have an algorithm sat
which given a set of generators for an ideal J and a set of generators for an ideal K returns a set of generators
for (J : K∞) and an analogous algorithm colon returning generators for (J : K). Given c ≤ n elements
f1, . . . , fc ∈ R the core loop of Algorithm 1 is now to start with the ideal J = ⟨f1⟩ and to continously replace
it with (J : f∞

k) + fk for each k. By Lemma 2.4 the resulting ideal will be equidimensional of codimension
c. Note however that it may have minimal associated primes that the original ideal I = ⟨f1, . . . , fc⟩ does not
have:

Example 2.5. Let R = k[x, y, z] and f1 = xy, f2 = xz. Then (xy : xz∞) + xz = ⟨y, xz⟩ which has the
minimal associated prime ⟨y, x⟩ which is not a minimal associated prime of ⟨f1, f2⟩ = ⟨x⟩ ∩ ⟨y, z⟩.

These additional components are removed at every iterative step with an additional saturation in lines 6
through 8 of Algorithm 1.

Proposition 2.6. Let J,K,L ⊆ R be ideals in R such that J rad
=K ∩ L. Then we have for any f ∈ R

J + ⟨f⟩rad= (K + ⟨f⟩) ∩ (L+ ⟨f⟩)

Proof. We have

(K + ⟨f⟩) ∩ (L+ ⟨f⟩)rad= (K + ⟨f⟩)(L+ ⟨f⟩)
rad
=KL+ ⟨f⟩rad= (K ∩ L) + ⟨f⟩
rad
= J + ⟨f⟩.

4

Algorithm 1 Computation of the nondegenerate part
Input: A set of generators f1, . . . , fc for an ideal I in R where c ≤ n
Output: A set of generators G for the nondegenerate part of f1, . . . , fc
1: G← {f1}
2: K ← ∅
3: for k ∈ {2, . . . , c} do
4: G← sat(G, fk) ∪ {fk}
5: K ← K ∪ {colon(G, sat(G, fk))}
6: for K ∈ K do
7: G← sat(G,K)
8: end for
9: end for

10: return G

Theorem 2.7. Algorithm 1 is correct.

Proof. Let c′ be minimal such that

I ′ := ⟨f1, . . . , fc′⟩ ≠ (⟨f1, . . . , fc′−1⟩ : f∞
c′) + ⟨fc′⟩.

By Lemma 2.4 and Proposition 2.6 we have

I
rad
= ((I ′ : f∞

c′) + ⟨fc′ , . . . , fc⟩)︸ ︷︷ ︸
=:I1

∩ ((I ′ : (I ′ : f∞
c′)) + ⟨fc′+1, . . . , fc⟩)︸ ︷︷ ︸

=:I2

and codim I2 < codim I1 ≤ c. Therefore by Proposition 2.3

(I1 : I∞2) = (I1 : (I ′ : (I ′ : f∞
c′))

∞)

has all minimal associated primes of codimension c of I as minimal associated primes. The claim now easily
follows by induction on the number of times ⟨G⟩ ≠ (⟨G⟩ : f∞

k) in line 4 of Algorithm 1.

3 The F5 Algorithm
Our presentation of the F5 algorithm in the following closely follows [18]. While Algorithm 3, which we call
F5, is slightly different from the original presentation of F5 in [23] it still follows the original F5 very closely.
See [18, section 8] for a detailed description of the exact differences between the original F5 and Algorithm
3.

In the following fix an ordered finite sequence (f1, . . . , fr) ⊂ R. A term in R will be a polynomial of the
form cm where c ∈ K and m is a monomial. We also fix a monomial ordering ≤R on the set of monomials
in R, i.e. a total ordering on the set of monomials in R extending the partial ordering given by divisibility.

Definition 3.1. If f ∈ R can be written as f =
∑s

k=1 ckmk with linearly independent terms ckmk,
k = 1, . . . , s, then the leading monomial of f , denoted lm(f), is defined as the ≤R-maximal element in
{m1, . . . ,mk}. If lm(f) := mℓ then the leading term of f , denoted lt f , is defined as lt(f) := cℓmℓ.

Denote by Rr the free module of rank r over R and by ei ∈ Rr the ith standard unit vector. We denote

5

by • : Rr → R the morphism

• : Rr → R

α =

r∑
i=1

αiei 7→ α :=

r∑
i=1

αifi.

For a set G ⊂ Rr denote by G the image of G under •.

Definition 3.2. An element in the kernel of • is called a syzygy of (f1, . . . , fr). For two elements α,β ∈ Rr

we define the Koszul syzygy of α and β by K(α,β) := βα−αβ ∈ Rr.

We extend the notions of monomials and leading monomials to Rr:

Definition 3.3. A module monomial is an element mei ∈ Rr where m is a monomial in R. The position
over term ordering on the set of module monomials in Rr is defined by

mei <POT nej ⇔ i < j or
i = j and m <R n.

The signature of an element α ∈ Rr, denoted s(α), is the ≤POT-maximal module monomial occuring in α.
A syzygy signature is the signature of a syzygy of (f1, . . . , fr). If s(α) = mei then we define the index of α
as ind(α) := i. We also say that i is the index corresponding to fi. The signature degree of α is the degree
of m.

When the context is clear we will denote both the ordering ≤R and ≤POT simply by ≤.
The classical method to compute a Gröbner basis for an ideal is Buchberger’s Algorithm. Its basic

structure is to build certain polynomials, called S-pairs, from two given polynomials in the intermediate basis
G of the output Gröbner basis, reduce, i.e. compute a certain multivariate remainder of, this polynomial by
G and add the result of this reduction to G if it is non-zero. Because a polynomial reducing to zero is hence
useless for the output of the algorithm we would like to avoid as many zero reductions as possible. In order
to achieve this, the F5 Algorithm modifies the basic structure of Buchberger’s algorithm in four steps:

Algorithmic Specification 3.1. 1. Replace every polynomial f occuring in Buchberger’s Algorithm by an
element α ∈ Rr such that α = f . A reduction of α by some β ∈ Rr is then an operation α− sβ for
some term s ∈ R such that the operation α− sβ cancels some term in α.

2. Allow only reductions that never change the signature of α, called regular s-reductions, i.e. in the
notation of (1) we require that s(mβ) < s(α) whenever we perform a reduction of α (see definition
3.4).

3. Process the S-pairs, which are now called s-pairs in the context of F5, by order of increasing signature
w.r.t ≤POT.

4. It then turns out that modifications (1)-(3) yield the following two improvements over the basic Buch-
berger Algorithm:

(a) Any s-pair whose signature is divisible by a syzygy signature is known to a priori reduce to zero,
i.e. does not need to be reduced explicitly (see Lemma 3.8).

(b) If there are several s-pairs of the same signature, all but one can be discarded (see Lemma 3.9).

6

Remark 3.1. It should be mentioned that in any practical implementation, if one’s goal is only to compute
a Gröbner basis for the ideal ⟨f1, . . . , fr⟩ via F5, one replaces each module element α by the pair (s(α),α).
Storing only this information turns out to be sufficient to be able to implement algorithmic specification 3.1.
However, for clarity of presentation, we work with full module elements in the following description of F5.

We will now introduce these modifications in more detail.
As mentioned above, the concept which replaces the usual polynomial reduction in Buchberger’s Algo-

rithm is that of a regular s-reduction:

Definition 3.4. Let α ∈ Rr. An s-reduction of α by an element β ∈ Rr is the operation α− sβ for some
term s such that s lt(β) = t for some term t in α and such that s(sβ) ≤ s(α). It is a top-s-reduction if
t = lt(α). The s-reduction is called regular if s(sβ) < s(α). An s-reduction of α by a set G ⊂ Rr to some
element γ ∈ Rr is a sequence of s-reductions of α by elements in G that yields γ as a result. One says that
α is fully regular s-reduced by G if there exists no regular s-reducer for α in G.

The notion of Gröbner bases is translated to the notion of signature Gröbner bases:

Definition 3.5. A signature Gröbner basis (of (f1, . . . , fr)) up to signature T is a finite subset G ⊂ Rr such
that every element α ∈ Rr with s(α) < T s-reduces to a syzygy by G. It is a signature Gröbner basis (of
(f1, . . . , fr)) if it is a signature Gröbner basis up to every signature.

Remark 3.2. Note that the definition of a signature Gröbner basis immediately implies that if G is a signature
Gröbner basis up to some signature T and α ∈ Rr with s(α) = T then α always regular s-reduces to the
same fully regular s-reduced result by G no matter which reducers we choose. In this context we can thus
speak of the result of regular s-reducing α by G. Because any monomial ordering is a well ordering, regular
s-reducing α by G always requires only finitely many s-reductions of α by elements in G.

Note that if G ⊂ Rr is a signature Gröbner basis then G := {α | α ∈ G} is a Gröbner basis of ⟨f1, . . . , fr⟩
[18, Lemma 4.1]. It should also be emphasized that while the notion of a Gröbner basis is independent of
any ordering of the elements f1, . . . , fr the notion of a signature Gröbner basis is very much not. This is
because the signature of an element in Rr depends on the module monomial ordering ≤POT which in turn
depends on the ordering of the f1, . . . , fr.

We replace the notion of S-pairs with the one of regular s-pairs.

Definition 3.6. Let α,β ∈ Rr. The s-pair of α and β is

sp(α,β) = aα− bβ

where

a =
lcm(lm(α), lm(β))

lt(α)
; b =

lcm(lm(α), lm(β))

lt(β)
.

The s-pair is called regular if s(aα) ̸= s(bβ).

We now have the following signature-analogue of Buchberger’s criterion [18, Theorem 4.1]:

Theorem 3.7. A subset G ⊂ Rr is a signature Gröbner basis up to signature T if and only if every ei with
ei < T and every regular s-pair sp(α,β) for α,β ∈ G with s(sp(α,β)) < T s-reduces to a syzygy by G.

From this we obtain Algorithm 2 as a signature-based analogue of Buchberger’s Algorithm.
Remark 3.3. The effect of the choice of the ordering ≤POT in Algorithm 2 is that for any 1 ≤ k < m a full
signature Gröbner basis for (f1, . . . , fk) will be computed before any s-pair in index k+1 is considered since
s-pairs in index k always have lower signature than s-pairs in index k + 1.

7

Algorithm 2 Buchberger with Signatures
Input: An ordered sequence (f1, . . . , fr) in R
Output: A signature Gröbner basis G of (f1, . . . , fr)
1: G← ∅
2: P ← {e1, . . . , er}
3: while P ̸= ∅ do
4: α← the ≤POT-minimal element in P
5: P ← P \ {α}
6: γ ← the result of fully regular s-reducing α by G
7: if γ is not a syzygy then
8: G← G ∪ {γ}
9: P ← P ∪ {sp(γ,β) | β ∈ G}

10: end if
11: end while
12: return G

Note that by Remark 3.2, line 8 in Algorithm 2 is a well defined operation. The fact that we compute our
signature Gröbner basis by order of increasing signature will be key for implementing algorithmic specification
3.1 (4). The following two lemmas allow us to do just that [18, Lemmas 6.1 and 6.2]:

Lemma 3.8 (Syzygy criterion). Let α ∈ Rr and let G be a signature Gröbner basis up to signature s(α).
Suppose that there exists a syzygy signature T with T | s(α). Then α s-reduces to a syzygy by G.

The syzygy criterion implies that any s-pair whose signature is divisible by a syzygy signature may be
discarded before reduction in Algorithm 2.

Lemma 3.9 (Singular criterion). Let α,β ∈ Rr and let G be a signature Gröbner basis up to signature
s(α) = s(β). Let γα and γβ be the results of regular s-reducing α respectively β by G. Then γα = γβ.

The singular criterion implies that out of any two s-pairs with the same signature one has to regular
s-reduce only one in Algorithm 2. Combining both criteria, we see that we have to regular s-reduce at most
one s-pair per signature. The choice of which s-pair then to reduce is made, for example, by the rewrite
criterion:

Definition 3.10. Let G be a signature Gröbner basis up to some signature T , let α ∈ G and let a ∈ R be a
monomial. The element aα with s(aα) = T is said to be rewritable w.r.t. G if either

• there exists β ∈ G with s(β) > s(α) and s(β) | s(aα) or

• There exists a syzygy signature T with T | s(aα).

Let again G′ be an intermediate state of G in Algorithm 2 and let sp(α,β) = aα− bβ for α,β ∈ G′. It
turns out that if either aα or bβ is rewriteable w.r.t. G′ then sp(α,β) will eventually s-reduce to a syzygy,
hence need not be reduced explicitly and can be discarded.

Remark 3.4. Definition 3.10 is very similar to the way in which the original F5 Algorithm chooses the s-pairs
to actually reduce. The idea behind it is that if α and β are elements added to G by algorithm 2 and if β
has higher signature than α then it has been added later to G than α by algorithm 2. We then expect β
to be ”further regular s-reduced” than α. Thus one expects s-pairs coming from β to be easier to regular
s-reduce than s-pairs coming from α. All currently known efficient methods of choosing which s-pairs to
reduce are summed up in the more general concept of a rewrite order, see [18, definition 7.1].

8

Algorithm 3 F5
Input: An ordered sequence (f1, . . . , fr) in R
Output: A signature Gröbner basis G of (f1, . . . , fr)
1: G← ∅
2: H ← ∅
3: P ← {e1, . . . , er}
4: while P ̸= ∅ do
5: aα− bβ ← the ≤POT-minimal element in P
6: P ← P \ {aα− bβ}
7: if aα and bβ are not rewritable w.r.t. G then
8: γ ← the result of regular s-reducing aα− bβ by G
9: if γ is not a syzygy then

10: G← G ∪ {γ}
11: P ← P ∪ {sp(γ,β) | β ∈ G}
12: else
13: H ← H ∪ {γ}
14: end if
15: end if
16: end while
17: return G

We obtain the F5 Algorithm, see [18, theorem 7.1] for correctness.

Remark 3.5. We also track the computed set of syzygies in line 13 of Algorithm 3 since we need this set for
the rewrite check in line 7. This rewrite check will also take the Koszul syzygies between elements α,β ∈ G
into account. By the definition of ≤POT, to check for rewriteability of an element aα against the Kostul
syzygies, we simply need to check whether any element in

{
lt(δ)eind(α)

∣∣ δ ∈ G, ind(δ) < ind(α)
}

divides the
signature of s(aα). If that is the case aα is rewritable by the syzygy criterion.

Remark 3.6. In practice, we combine Algorithm 3 with an F4-like reduction strategy (see [22] for an intro-
duction to the F4 Algorithm or [18, section 13] for how to combine this with F5). In essence, this means that
in line 5 and 6 we select several s-pairs at once, organize them and their reducers in a matrix whose rows are
these polynomials written in the coordinates of the set of all monomials occuring in the chosen polynomials,
and then compute the row echelon form of this matrix. Any non-zero row whose leading term has changed
is consequently added to the basis G.

We can now give the key lemma to relate Algorithm 3 to Algorithm 1, namely the following reformulation
of corollay 7.1 in [18]. We first introduce the following notation: For 1 ≤ k ≤ r denote by pk : Rr → R the
projection map

α =

r∑
i=1

αiei 7→ pk(α) := αk.

Recall also that an element p ∈ R is said to be top-reducible by a finite set S ⊂ R if there exists some
q ∈ S such that lm(q) | lt(p).

Lemma 3.11. Suppose that Algorithm 3 is done with considering s-pairs in index k, i.e. assume Algorithm
3 in an intermediate state where only s-pairs in index ≥ k+1 are left. Suppose also that fk /∈ ⟨f1, . . . , fk−1⟩.

9

Let H be the current set of syzygies stored in this intermediate state of Algorithm 3. Define

Gk−1 := {α ∈ G | ind(α) ≤ k − 1};
Bk := {pk(α) | α ∈ H, ind(α) = k};
Ak := Gk−1 ∪Bk.

Then Ak is a Gröbner basis of (f1, . . . , fk−1 : fk). Furthermore, no p ∈ Bk is top-reducible by any element
in Gk−1.

Proof. It is clear by [18, Theorem 7.1] that Ak is a Gröbner basis of (f1, . . . , fk−1 : fk). To prove that no
p ∈ Bk is top-reducible by any element in Gk−1 note that any such element comes from a syzygy γ with
lm(p)ek = s(γ). This γ in turn is the result of fully regular s-reducing some non-rewritable aα by G. If
there would exist some β ∈ Gk−1 with lm(β) | lt(p) then aα would be rewritable using the Koszul syzygy
βek − ekβ, a contradiction. This proves that p is not top-reducible by any element in Gk−1.

Remark 3.7. As mentioned already in Remark 3.1, in practice one replaces each element α ∈ Rr occuring in
Algorithm 3 with (s(α),α). This data is sufficient to implement all rewrite checks and regular s-reductions.
However, in order to exploit Lemma 3.11 as described in the next section we replace α with (pind(α)(α),α)
instead.

4 The nondegenerate part via F5
In this section we modify Algorithm 3 using Lemma 3.11 to obtain a probabilistic version of Algorithm 1.
The main ingredient is Algorithm 4 which obtains for a given ideal I ′ ⊆ R and an element f ∈ R a Gröbner
basis of (I ′ : f∞) + ⟨f⟩ and randomly generated elements in

√
(I ′ : (I ′ : f∞)) \ I ′. Using Proposition 4.4

these elements will generically suffice to implement lines 6-8 of Algorithm 1.
The basic idea of this algorithm is as follows: Given a Gröbner basis G′ := {q1, . . . , qm} of I ′ we

run F5 on the sequence (q1, . . . , qm, f). Suppose we then find, via Lemma 3.11, an element g /∈ I ′ with
gf ∈ I ′. We then compute a signature Gröbner basis for the sequence (q1, . . . , qm, g) before running F5
on the updated sequence (q1, . . . , qm, g, f), using the computed signature Gröbner basis of (q1, . . . , qm, g).
However, when calling F5 on the sequence (q1, . . . , qm, g, f), we have thrown out a set of elements S in the
index corresponding to f that were computed while running F5 on (q1, . . . , qm, f). These elements are fully
reduced with respect to {q1, . . . , qm}. We would therefore like to replace elements in the index corresponding
to f in the sequence (q1, . . . , qm, g, f) with appropriate multiples of elements in S. This is accomplished with
the following definition:

Definition 4.1. Let G ⊂ Rr be a signature Gröbner basis up to some signature T and let δ ∈ Rr with
s(δ) = T . If α ∈ S is the element with maximal signature in S satisfying s(bα) = s(δ) for some monomial
b ∈ R then we say that bα is the S-rewriter of δ. If no such element exists we call δ itself the S-rewriter of
δ.

Appropriately shifting the index of the elements in S to the one corresponding to f in the sequence
(q1, . . . , qm, g, f) we then replace any element that we want to reduce with its S-rewriter in Algorithm 4.

Note that in the pseudocode of Algorithm 4, the module representation is given by the sequence (q1, . . . , qm, g1, . . . , gr, f),
i.e. by the morphism

Rm+r+1 → R

ek 7→

qk if k ≤ m

gk if m+ 1 ≤ k ≤ m+ r

f if k = m+ r + 1

10

One should think of Algorithm 4 being initially called with Q = S = ∅. The two input arguments Q and
S are then only used in the recursive calls of Algorithm 4.

Algorithm 4 satF5
Input: A Gröbner basis G′ = {q1, . . . , qm} ⊂ R of some ideal I ′, a set Q = {g1, . . . , gr} ⊂ (I ′ : f∞), a set

S ⊂ Rm+r+1, an element f ∈ R
Output: A Gröbner basis G of (I ′ : f∞) + ⟨f⟩, random elements h1, . . . , hr ∈

√
(I ′ : (I ′ : f∞)) \ I ′

1: G← {e1, . . . , em}, H ← ∅,K ← ∅
2: P ← {em+1, . . . , em+r+1}
3: while P ̸= ∅ do
4: aα− bβ ← the ≤POT-minimal element in P
5: k ← ind(aα− bβ)
6: P ← P \ {aα− bβ}
7: if aα and bβ are not rewritable then
8: γ ← result of regular s-reducing S-rewriter(aα− bβ, S)
9: if γ is not a syzygy then

10: G← G ∪ {γ}
11: P ∪ {sp(γ,β) | β ∈ G}
12: else if k ̸= m+ r + 1 then
13: H ← H ∪ {γ}
14: else
15: g ← pi(γ)
16: S ← S ∪ {γ ∈ G | ind(γ) = m+ r + 1}
17: G′′,K ′ ← satF5

(
{γ ∈ G | ind(γ) ≤ m+ r}, {g}, S, f

)
18: return G′′,K ∪K ′

19: end if
20: end if
21: if min {ind(δ) | δ ∈ P} = k + 1 and k ̸= m+ r + 1 then
22: K ∪ {a random linear combination of the elements in
23: {pk(γ) | γ ∈ H; ind(γ) = k}}
24: end if
25: end while
26: return G,K

The algorithm is recursive in nature. Two further differences compared to Algorithm 3 stand out:

1. In line 1, we initialize G to {e1, . . . , em}, the unit vectors corresponding to {p1, . . . , pm}, which is a
Gröbner basis. Since these elements have lower index than any s-pair treated in the algorithm any
reduction by them of a handled s-pair is automatically a regular s-reduction. Thus the correctness is
not affected even though {e1, . . . , em} is not necessarily a signature Gröbner basis.

2. Note that in the notation of Algorithm 4 an index k ̸= m + r + 1 corresponds to one of the gi while
the index m + r + 1 corresponds to f . We now handle syzygies differently compared to Algorithm 3
based on these two cases:

(a) In line 15 we have identified an element g ∈ (I ′ : f∞). Using g, the recursive call in line 17
computes a Gröbner basis for I ′′ := I ′ + ⟨g1, . . . , gr, g⟩ using the computed Gröbner basis of
I ′ + ⟨g1, . . . , gr⟩ before attempting to find more elements g′ ∈ (I ′′ : f∞) = (I ′ : f∞).

11

(b) Conversely, in line 13 we have identified an element h ∈ I ′i := ((I ′ + ⟨g1, . . . , gi−1⟩) : gi) for i =
k−m. If the if-condition in line 21 is met we know that the set G′ ∪{pk(γ) | γ ∈ H; ind(γ) = k}
generates I ′i by Lemma 3.11. Then, in line 22, we add a random linear combination of the
identified elements in I ′i \ I ′ to K. By the following lemma such an element lies in the radical of
(I ′ : (I ′ : f∞)):

Lemma 4.2. Let I, J ⊆ R be two ideals and let J = ⟨g1, . . . , gt⟩. Then

(I : J)
rad
= (I : g1) ∩ ((I + ⟨g1⟩) : g2) ∩ · · · ∩ ((I + ⟨g1, . . . , gt−1⟩) : gt).

Proof. The inclusion ”⊆” is obvious. Not let p ∈ R be such that

pm ∈ (I : g1) ∩ ((I + ⟨g1⟩) : g2) ∩ · · · ∩ ((I + ⟨g1, . . . , gt−1⟩) : gt)

for some m ∈ N. Then we have in particular pmg1 ∈ I. Now let i > 1. By induction, if for some k ∈ N we
have pkgj ∈ I for all j ≤ i then

pkmgi+1 = pkf + pka1g1 + · · ·+ pkaigi ∈ I

for a suitable f ∈ I, a1, . . . , ai ∈ R and so pkm ∈ (I : gi+1).

Theorem 4.3. Algorithm 4 is correct and terminates.

Proof. The correctness of the output immediately follows from Lemma 3.11 and Lemma 4.2. The fact that
we can replace elements by their S-rewriter without affecting correctness follows from Lemma 3.9. The
termination follows from the termination of F5 and the fact that (I ′ : f∞) = (I ′ : f t) for some sufficiently
large t ∈ N. Hence, at some point, Algorithm 4 does not call line 17 anymore. Once this case is reached
Algorithm 4 terminates because Algorithm 3 terminates.

To finally obtain our F5-based implementation of Algorithm 1 we just replace lines 4 and 5 in Algorithm
1 by the corresponding call to Algorithm 4. This yields Algorithm 5. The set K in Algorithm 1 is replaced
by the union of all sets K obtained by each call to Algorithm 4. This is justified by the following proposition:

Proposition 4.4. Let I, J ⊆ R be two ideals with J = ⟨g1, . . . , gt⟩.

1. There exists a Zarisiki-open subset D ⊂ Kt such that for any (a1, . . . , at) ∈ D we have (I : J∞) = (I :
(
∑t

j=1 ajgj)
∞).

2. If Krad
= J then (I : K∞)

rad
= (I : J∞).

Proof. (1) easily follows e.g. from [20, Exercise 15.41]. For (2), if p ∈ R such that pkJ l ∈ I for k, l ∈ N then
for a suitably large m ∈ N we have Km ⊆ J l so pkKm ∈ I and hence p ∈

√
(I : K∞).

Theorem 4.5. Algorithm 5 terminates and is correct, i.e. returns a Gröbner basis of the nondegenerate
part of f1, . . . , fc if c ≤ n.

Proof. The termination follows from the termination of Algorithm 4. Define Ij := ⟨f1, . . . , fj−1⟩ and Kj :=
(Ij−1 : (Ij−1 : f∞

j). By Proposition 4.4, if the elements in the sets Kj are generic enough, then for the ideal
J generated by G after the calls in lines 4 and 5 terminate we have

(J :

k∏
j=1

K∞
j)

rad
= (J :

∏
h∈K

h∞),

and the correctness of Algorithm 5 follows from the one of Algorithm 1.

12

Algorithm 5 Computation of the nondegenerate part via F5
Input: An ordered sequence (f1, . . . , fc) in R with c ≤ n
Output: A GB G of the nondegenerate part of f1, . . . , fc
1: G← ⟨f1⟩
2: K ← ∅
3: for k ∈ {2, . . . , c} do
4: G,K ← result of calling algorithm 4 on G, ∅, ∅ and fk
5: K ← K ∪K
6: for h ∈ K do
7: G← a Gröbner basis of the ideal generated by sat(G, h)
8: end for
9: end for

10: return G

5 Implementation and Experiments

5.1 Optimizing our Algorithms
We start by describing some further optimizations to Algorithms 4 and 5. The first optimization is again
tied to the Singular Critetion (Lemma 3.9). We left these out of the pseudocode presented in section 4 to
make the mathematical presentation clearer.

Further Use of the Singular Criterion We can again use the notion of S-rewriteability to implement
a sat-routine suited to our needs. To do that, we make a slight modification to Algorithm 4 as follows.
Suppose we input a Gröbner basis for an ideal J , Q = ∅, S = ∅ and a polynomial h in Algorithm 4.
Now, due to the definition of ≤POT, if G is a signature Gröbner basis, then {α ∈ G | ind(α) ≤ k} is also a
signature Gröbner basis for any k ∈ N. In particular, we may just return, in the notation of Algorithm 4,
{α ∈ G | ind(α) ≤ m} which is a Gröbner basis of (J : h∞). Let K ⊂ R be another ideal. Having previously
computed a Gröbner basis of (J : h∞) we must now compute a Gröbner basis of (J +K : h∞). To do that
we can use the Singular Criterion as above: The set of elements S in index m+1 which are obtained during
the computation of (J : h∞) via Algorithm 4 can again replace elements in suitable signatures when we want
to compute a Gröbner basis for (J +K : h∞), using S-rewriteability similarly to how it is used in Algorithm
4.

Probabilistic Optimizations Recall by Remark 3.6 that in practice we select and reduce several s-pairs
at once in line 8 of Algorithm 4. In this case we also find several g′1, . . . , g′t in line 15. Replacing g′1 by a
random linear combination of g′1, . . . , g′t we can now, using Proposition 4.4, perform the following probabilistic
optimizations:

1. If, in the recursive call of Algorithm 4 in line 17, we find a syzygy signature mek in the index corre-
sponding to g′1, we also consider the signatures mek+1, . . . ,mek+t−1 as syzygy signatures during the
rewrite checks. This is justified because we generically expect that, for some

p ∈ R, pg′1 ∈ I ′ if and only if pg′i ∈ I ′ for all i = 2, . . . , t.

2. By the same reason it is justified to only add an element to K in line 22 if the index k corresponds to
the index of g′1. This turns out to reduce the number of additional saturation steps we have to perform
in lines 6-8 of Algorithm 5 by a significant amount.

13

With these optimizations in mind, we implemented both Algorithm 3 and 5 in the programming language
Julia [4] with an interface to the Singular.jl Julia-library [16]. An interface to the new computer algebra
system OSCAR [39] is planned for the future. The implementation is available at

https://github.com/RafaelDavidMohr/SignatureGB.jl

In this implementation we use our own data structures for polynomials and polynomial arithmetic.
The linear algebra routines for implementing Algorithms 3 and 4 closely follow the corresponding routines
presented in [38]. Additionally, our implementation makes use of the modifications to Algorithm 3 presented
in [19]. Currently the implementation works only for fields of finite characteristic.

While our implementation is currently not competitive with optimized implementations of Gröbner basis
algorithms such as in Maple [37] or msolve [3], we do make use of some standard optimization techniques in
Gröbner basis algorithm implementations such as monomial hash tables and divisor bitmasks (see e.g. [40]
for a description of these techniques).

5.2 Experimental Results
We used the following examples to benchmark implementations:

1. Cyclic(8), coming from the classical Cyclic(n) benchmark.

2. Pseudo(n), encoding pseudo-singularities as follows

f1 = · · · = fn−1 = g1 · · · = gn−1

with fi ∈ K[x1, . . . , xn−2, z1, z2], fi ∈ K[y1, . . . , yn−2, z1, z2], fi being chosen as a random dense quadric
and gi equalling fi when substituting y1, . . . , yn−2 by x1, . . . , xn−2.

3. Sos(s, n), encoding the critical points of the restriction of the projection on the first coordinate to a
hypersurface which is a sum of s random dense quadrics in K[x1, . . . , xn].

f,
∂f

∂x2
, . . . ,

∂f

∂xn
, f =

s∑
i=1

g2i .

4. Sing(n), encoding the critical points of the restriction of the projection on the first coordinate to a
(generically singular) hypersurface which is defined by the resultant of two random dense quadrics A,B
in K[x1, . . . , xn+1]:

f,
∂f

∂x2
, . . . ,

∂f

∂xn
, f = resultant(A,B, xn+1).

5. The Steiner polynomial system, coming from [6].

All these systems are generated by a number of polynomials equal to the number of variables of the underlying
polynomial ring. They all have components of different dimensions, one of those being zero-dimensional, i.e.
they have a nontrivial nondegenerate part.

In Table 1 we compare Algorithm 5 and a straightforward implementation of ours of Algorithm 1 in
Maple. In this implementation, we saturated an ideal J by an ideal K by picking a random linear com-
bination p of generators of K and saturating J by p using Maple’s internal saturation routine. Table 1
shows the improvement of Algorithm 5 over Algorithm 1: While Maple’s Gröbner basis engine beats our
implementation of Algorithm 3 by a wide margin the ratio between the timings of our F5 implementation
and our implementation of Algorithm 5 is much better than the ratio between the time it took to compute a

14

Gröbner basis in Maple and our Maple implementation of Algorithm 1. To additionally show the overhead
of Algorithm 5 over Algorithm 3 we noted the number of arithmetic operations in K when running each of
the two algorithms on the polynomial system in question. Our implementation of Algorithm 5 never takes
more than 10 times the number of arithmetic operations Algorithm 3 takes, on certain examples we compare
very favorably in terms of arithmetic operations to Algorithm 3.

In Table 2 we compare Algorithm 5 to other decomposition methods available in the computer algebra
systems Singular, Maple and Macaulay2 [28]. In Singular there is an elimination method [15] and an im-
plementation of the algorithm for equidimensional decomposition presented in [21]. In Maple we compared
against the Regular Chains package [9; 10]. In Macaulay2 one is able to compute the intersection of all
components of non-minimal dimension again with the method presented in [21]. We then saturated the
original ideal by the result to obtain the nondegenerate part. On a high level, our algorithm works similarly,
incrementally obtaining information about the component of higher dimension and then removing it via sat-
uration. One should keep in mind that all of these methods, compared to Algorithm 5, work more generally:
Except for what we tried in Macaulay2 they are all able to obtain a full equidimensional decomposition of
the input ideal.

We gave all of these methods at least an hour for each polynomial system and at most roughly 50 times
the time our implementation of Algorithm 5 took. We indicated when these times were exceeded by using
”>” in Table 2. We computed all examples on a single Intel Xeon Gold 6244 CPU @ 3.60GHz with a limit
of 200G memory. If this limit was exceeded, or if another segfault occured, we indicate it with ’segfault’ in
Table 2.

15

Table 1: Comparing Algorithm 1 and Algorithm 5
Alg. 3 arit. op. Alg. 5 arit. op. Alg. 3 Alg. 5 GB in Maple Alg. 1 in Maple

Cyclic 8 12*109 13*1010 4m 40m 1.2s 154m
Pseudo(2, 12) 53*106 31*107 1.16s 5.2s 0.268s 3.44s
Sing(2, 10) 56*106 65*106 1.9s 2.9s 0.11s 1.642s
Sing(2, 9) 25*106 29*106 1.1s 1.4s 0.06s 0.788s
Sos(2,5,4) 13*107 11*107 8.5s 7.3s 0.022s 0.479s
Sos(2,6,3) 21*106 21*106 1.11s 1.4s 0.021s 0.261s
Sos(2,6,4) 48*108 38*108 148s 169s 0.172s 22.7s
Sos(2,6,5) 42*108 20*108 75s 43s 0.458s 10.38s
Sos(2,7,3) 13*107 67*107 5.2s 41s 0.047s 7.162s
Sos(2,7,4) 65*108 45*109 3m 32m 0.433s 1h
Sos(2,7,5) 72*109 35*1010 25m 20h 2.294s >359h
Sos(2,7,6) 17*1011 30*1011 31h 73h 14.348s 5.5h
Steiner 31*109 23*1010 4.2m 42m 27s 13m

Table 2: Comparing with other Decomposition Methods
Algorithm 5 Singular: Elimination Method Singular: Algorithm in [21] Maple: Regular Chains Macaulay2

Cyclic 8 40m segfault >35h >35h >35h
Pseudo(2, 10) 0.3s 40s >1h >1h >1h
Pseudo(2, 12) 5.2s >1h >1h >1h >1h
Pseudo(2, 6) 0.008s <1s <1s 0.29s 0.07s
Pseudo(2, 8) 0.03s <1s 23m 5.82s 13.78s
Sing(2, 10) 2.9s >1h >1h >1h >1h
Sing(2, 4) 0.02s 1s >1h 91.32s 0.42s
Sing(2, 5) 0.07s 4s >1h >1h 1.94s
Sing(2, 6) 0.15s 56s >1h >1h 16.64s
Sing(2, 7) 0.35s 8m >1h >1h 289s
Sing(2, 8) 0.68s 23m >1h >1h >1h
Sing(2, 9) 1.4s >1h >1h >1h >1h
Sos(2,4,2) 0.03s <1s <1s 19.4s 0.16s
Sos(2,4,3) 0.03s 1s 3m 14m 0.63s
Sos(2,5,2) 0.02s <1s >1h >1h 0.37s
Sos(2,5,3) 0.34s >1h >1h >1h 9.35s
Sos(2,5,4) 7.3s >1h >1h >1h 183s
Sos(2,6,2) 0.17s <1s >1h >1h 0.7s
Sos(2,6,3) 1.4s >1h >1h >1h 107s
Sos(2,6,4) 169s >140m >140m >140m >140m
Sos(2,6,5) 43s >1h >1h >1h >1h
Sos(2,7,2) 2.91s <1s >1h 2.94s 0.18s
Sos(2,7,3) 41s >1h >1h >1h >1h
Sos(2,7,4) 32m >26h segfault >26h >26h
Sos(2,7,5) 20h segfault segfault >200h >200h
Sos(2,7,6) 73h segfault segfault >334h >500h
Steiner 42m >50h segfault >50h >50h

References
[1] P. Aubry, D. Lazard, and M. Moreno Maza. “On the Theories of Triangular Sets”. In: J. Symb. Comput.

28.1 (1999), pp. 105–124.

[2] T. Becker and V. Weispfenning. Gröbner bases. Vol. 141. Graduate Texts in Mathematics. A compu-
tational approach to commutative algebra, In cooperation with Heinz Kredel. Springer-Verlag, New
York, 1993.

[3] J. Berthomieu, C. Eder, and M. Safey El Din. “msolve: A Library for Solving Polynomial Systems”.
In: ISSAC’21. Saint Petersburg, Russia, 2021.

16

[4] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. “Julia: A fresh approach to numerical com-
puting”. In: SIAM review 59.1 (2017), pp. 65–98.

[5] W. Bosma, J. Cannon, and C. Playoust. “The Magma Algebra System. I. The User Language”. In: J.
Symbolic Comput. 24.3-4 (1997), pp. 235–265.

[6] P. Breiding, B. Sturmfels, and S. Timme. “3264 conics in a second”. In: Notices Amer. Math. Soc. 67.1
(2020), pp. 30–37.

[7] M. Caboara, P. Conti, and C. Traverse. “Yet Another Ideal Decomposition Algorithm”. In: Applied Al-
gebra, Algebraic Algorithms and Error-Correcting Codes. Lecture Notes in Computer Science. Springer,
1997, pp. 39–54.

[8] C. Chen, O. Golubitsky, F. Lemaire, M. M. Maza, and W. Pan. “Comprehensive triangular decom-
position”. In: International Workshop on Computer Algebra in Scientific Computing. Springer. 2007,
pp. 73–101.

[9] C. Chen, F. Lemaire, M. M. Maza, W. Pan, and Y. Xie. “Efficient computations of irredundant trian-
gular decompositions with the regularchains library”. In: International Conference on Computational
Science. Springer. 2007, pp. 268–271.

[10] C. Chen and M. Moreno Maza. “Algorithms for computing triangular decomposition of polynomial
systems”. In: J. Symbolic Comput. 47.6 (2012). Advances in Mathematics Mechanization, pp. 610–642.

[11] S.-C. Chou and X.-S. Gao. “Ritt-Wu’s Decomposition Algorithm and Geometry Theorem Proving”. In:
10th International Conference on Automated Deduction. Lecture Notes in Computer Science. Springer,
1990, pp. 207–220.

[12] X. Dahan, X. Jin, M. M. Maza, and É. Schost. “Change of order for regular chains in positive dimen-
sion”. In: Theoretical Computer Science 392.1-3 (2008), pp. 37–65.

[13] X. Dahan, M. Moreno Maza, E. Schost, W. Wu, and Y. Xie. “Lifting techniques for triangular decom-
positions”. In: ISSAC’05. ACM, New York, 2005, pp. 108–115.

[14] W. Decker, G.-M. Greuel, and G. Pfister. “Primary Decomposition: Algorithms and Comparisons”. In:
Algorithmic Algebra and Number Theory. Springer, 1999, pp. 187–220.

[15] W. Decker, G.-M. Greuel, and G. Pfister. “Primary Decomposition: Algorithms and Comparisons”.
In: Algorithmic Algebra and Number Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999,
pp. 187–220.

[16] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 4-3-0 — A Computer Algebra
System for Polynomial Computations. 2022.

[17] J. Della Dora, C. Dicrescenzo, and D. Duval. “About a New Method for Computing in Algebraic
Number Fields”. In: Research Contributions from the European Conference on Computer Algebra-
Volume 2. EUROCAL ’85. Springer-Verlag, 1985, pp. 289–290.

[18] C. Eder and J.-C. Faugère. “A survey on signature-based algorithms for computing Gröbner bases”.
In: J. Symbolic Comput. 80 (2017), pp. 719–784.

[19] C. Eder and J. Perry. “F5C: A variant of Faugère’s F5 algorithm with reduced Gröbner bases”. In: J.
Symbolic Comput. 45.12 (2010), pp. 1442–1458.

[20] D. Eisenbud. Commutative Algebra: with a View Toward Algebraic Geometry. New York, NY: Springer
New York, 1995.

[21] D. Eisenbud, C. Huneke, and W. Vasconcelos. “Direct Methods for Primary Decomposition”. In: Invent.
Math. 110.1 (1992), pp. 207–235.

17

[22] J.-C. Faugère. “A new efficient algorithm for computing Gröbner bases (F4)”. In: Journal of Pure and
Applied Algebra 139.1 (1999), pp. 61–88.

[23] J.-C. Faugère. “A new efficient algorithm for computing Gröbner bases without reduction to zero (F5)”.
In: ISSAC’02. 2002, pp. 75–83.

[24] J.-C. Faugère. “Finding All the Solutions of Cyclic 9 Using Gröbner Basis Techniques”. In: Computer
Mathematics. ASCM 2001. World Scientific, 2001, pp. 1–12.

[25] P. Gianni, B. Trager, and G. Zacharias. “Gröbner Bases and Primary Decomposition of Polynomial
Ideals”. In: J. Symb. Comput. 6.2 (1988), pp. 149–167.

[26] M. Giusti, G. Lecerf, and B. Salvy. “A Gröbner Free Alternative for Polynomial System Solving”. In:
J. Complexity 17.1 (2001), pp. 154–211.

[27] H.-G. Gräbe. “Minimal primary decomposition and factorized Gröbner bases”. In: Appl. Algebra Engrg.
Comm. Comput. 8.4 (1997), pp. 265–278.

[28] D. R. Grayson and M. E. Stillman. Macaulay2, a Software System for Research in Algebraic Geometry.
Available at http://www.math.uiuc.edu/Macaulay2/.

[29] G.-M. Greuel and G. Pfister. A Singular Introduction to Commutative Algebra. 2nd ed. Springer Berlin
Heidelberg, 2007.

[30] E. Hubert. “Notes on Triangular Sets and Triangulation-Decomposition Algorithms I”. In: Symbolic
and Numerical Scientific Computation. Lecture Notes in Computer Science. Springer, 2003, pp. 1–39.

[31] G. Jeronimo and J. Sabia. “Effective Equidimensional Decomposition of Affine Varieties”. In: Journal
of Pure and Applied Algebra 169.2 (2002), pp. 229–248.

[32] T. Krick and A. Logar. “An Algorithm for the Computation of the Radical of an Ideal in the Ring of
Polynomials”. In: AAECC 1991. Springer-Verlag, 1991, pp. 195–205.

[33] G. Lecerf. “Computing an equidimensional decomposition of an algebraic variety by means of geometric
resolutions”. In: ISSAC’00. 2000, pp. 209–216.

[34] G. Lecerf. “Computing the Equidimensional Decomposition of an Algebraic Closed Set by Means of
Lifting Fibers”. In: Journal of Complexity 19.4 (2003), pp. 564–596.

[35] F. Lemaire, M. Moreno Maza, W. Pan, and Y. Xie. “When does <T> equal sat(T)?” In: J. Symb.
Comput. 46.12 (2011), pp. 1291–1305.

[36] X. Li, M. Moreno Maza, and W. Pan. “Computations modulo regular chains”. In: ISSAC’09. ACM,
New York, 2009, pp. 239–246.

[37] Maplesoft, a division of Waterloo Maple Inc.. Maple. Version 2021. Waterloo, Ontario, 2021.

[38] M. Monagan and R. Pearce. “A compact parallel implementation of F4”. In: Proceedings of the 2015
International Workshop on Parallel Symbolic Computation. 2015, pp. 95–100.

[39] OSCAR – Open Source Computer Algebra Research system, Version 0.7.1. The OSCAR Team, 2022.

[40] B. H. Roune and M. Stillman. “Practical Gröbner basis computation”. In: ISSAC’12. 2012, pp. 203–210.

[41] D. Wang. “An Elimination Method for Polynomial Systems”. In: J. Symb. Comput. 16.2 (1993), pp. 83–
114.

[42] D. Wang. Elimination Methods. Texts and Monographs in Symbolic Computation. Springer Vienna,
2001.

[43] W.-T. Wu. “Basic Principles of Mechanical Theorem Proving in Elementary Geometries”. In: J. Autom.
Reason. 2.3 (1986), pp. 221–252.

18

