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Abstract—This paper assesses the benefits of using Sliding Win-
dows Forward error codes (SWF) to protect transport protocol
sessions over a SATCOM link within IP tunnels. We consider two
commonly deployed protocols and congestion control algorithms :
TCP/CUBIC, currently deployed by default inside most of recent
OS kernels and a QUIC/BBR implementation named Picoquic.
Our objective is to evaluate the performance of these protocols
in challenging SATCOM environments and to assess if SWF
can contribute to improve their performance. We consider two
different scenarios based on real loss mobility patterns played
over the OpenSAND satellite emulator. Results show that using
SWF tunnels can hide losses to a CUBIC server: this reduces the
download time of 20MB by more than 90%. However, the main
finding is that SWF does not contribute to the download time
reduction for BBR, making useless its deployment. We conclude
that the use of BBR over SATCOM could be an efficient way
to perform communications over unreliable links, resulting from
a high mobility context for instance, considering BBR flows are
managed by an adequate QoS allocation.

Index Terms—TCP, QUIC, SATCOM, Sliding Window FEC,
CUBIC, BBR

I. INTRODUCTION

Satellite links represent an important part of the global
network. They provide Internet for rural and isolated areas
with no/low terrestrial network connectivity (fiber, ADSL or
mobile networks), but also for maritime and airborne areas.
High latency is one of the main characteristics of GEO satellite
networks, due to the distance of geosynchronous orbits which
induces a round-trip time (RTT) around 600ms. This latency
reduces the capability of congestion windows of congestion-
controlled transport protocols to grow rapidly at the start of the
transfer, or after deleterious events. As a matter of fact, these
events such as packets loss, have a major impact on the overall
transport performance and on the Quality of Experience (QoE)
of users [1], [2].

Performance Enhancing Proxies (PEP) [3] have been de-
signed to mitigate this high latency problem and speed up
TCP over SATCOM. However, QUIC protocol cannot benefit
from PEPs acceleration and retransmission. QUIC protocol has
been designed to perform on top of UDP and following its
privacy policy, encrypts data packet and control information,
preventing PEP technology to identify QUIC flows. Previous
studies over SATCOM [4], [5] pointed out QUIC issues due
to the absence of PEP acceleration. Furthermore, without PEP,
any lost packets will trigger retransmission that will cross the

whole path. QUIC global traffic share will certainly grow, as
HTTP3 is expected to use QUIC [6]. Therefore, there is a need
for solution for QUIC over SATCOM [7].

A potential solution for QUIC, or to prevent TCP retrans-
missions, can be to use Sliding Window Forward Erasure Cod-
ing tunnels [8] (denoted in the following Sliding Window FEC
or SWF). This idea follows certain Internet Engineering Task
Force (IETF) groups working on the possibility to use tunnels
over satellite link [9], [10]. Their objective is to robustify
transport sessions by enabling SWF tunnels, or integrating
SWF directly inside the QUIC protocol [11]. SWF brings
interesting decoding properties compared to the standard block
FEC scheme [8]. We explain in Section II-C why this scheme
is of interest over long delay link, and this motivates the
present study that aims to weight up the gain obtained by
using SWF tunnels over a satellite link.

The IRTF draft ”Coding and congestion control in transport”
[12], focuses on the deployment of FEC schemes variants
in congestion-controlled transport protocols. This paper con-
tributes to answer some of the points raised by this IRTF
draft. We also compare two congestion control algorithms (loss
based and delay based) to answer the Research Recommen-
dation #3 that proposes to discuss about the benefits between
using FEC (or in our case SWF) and replacing the congestion
control algorithm. Note that in our tests, SWF is always placed
below the layer transport protocol, which means that recovered
losses are hidden to the transport layer.

In this paper, we investigate the benefits of using a SWF
tunnel to protect TCP/CUBIC and QUIC/BBR (i.e. Pico-
quic implementation of BBR) over GEO satellite links. As
TCP/CUBIC is the default congestion control algorithm in
GNU/Linux servers [13], we consider TCP/CUBIC as a ref-
erence protocol for loss-based congestion control.

Picoquic implements its own BBR variant and enables
this congestion control by default. We choose Picoquic/BBR
compared to other implementations because the code is stable
and mature. Furthermore, Picoquic/BBR has been designed
with long-delay use-cases in-mind and demonstrates good per-
formance over SATCOM [14]. By the way, Picoquic has been
deeply discussed in the EToSat IRTF working group1. For the

1See: https://ietf.topicbox-scratch.com/groups/etosat/T88ef7ba0fac5b010/
side-meeting-on-quic-performance-over-high-bdp-networks



whole paper, QUIC/BBR refers to ”Picoquic implementation
with BBR congestion control” while BBR alone, to the BBR
congestion control. Respectively, TCP/CUBIC refers to the
”GNU/Linux kernel implementation of CUBIC” while CUBIC
alone, to the CUBIC congestion control.

The rest of this document is organized as follows: Section II
details related research, Section III presents our experimental
methodology and test cases, Section IV presents and analyzes
our results, and Section V summarizes our work.

II. BACKGROUND

In this section, we briefly introduce QUIC, the conges-
tion control algorithms tested, and the sliding window FEC
scheme.

A. QUIC

As presented in Section I, HTTP3 is expected to lay on
QUIC protocol [6], and the IETF standardized QUIC in May
2021 [15]. Nowadays, both Firefox and Chrome enable HTTP3
or QUIC by default.

QUIC protocol is built on top of UDP, therefore, QUIC
datagrams are encapsulated in UDP frames. However, in
contrast to UDP, QUIC uses some TCP features such as
the acknowledgment of received packets, flow and congestion
control. The overall goal behind QUIC is to make the Internet
faster and more secure. To provide a quicker connection, QUIC
uses a single UDP socket to send several QUIC streams han-
dling different files. All these streams are scheduled to ensure
fairness and enable priorities between them. By comparison,
TCP would need to have multiple concurrent TCP flows,
using multiple sockets, and the fairness would depend on
the congestion control algorithms of those flows without real
priority system. As UDP does not provide packet encryption,
QUIC brings cryptographic functions to secure communica-
tions. Therefore, each QUIC stream, from a given UDP flow,
can be decrypted separately, and does not increase the risk of
head of line blocking. To reduce startup latency, QUIC needs
only one round trip to both set up the connection and secure
it, while TCP needs at least two or three round trip to perform
the TCP handshake and the TLS negotiation. Furthermore,
QUIC implements a 0-RTT feature which allows to send data
immediately when a previous communication has already been
established to prevent a new connection negotiation.

As defined today, RFC9000 [15] is letting the possibility to
developers to make consistent choice among various options
while remaining compliant. A recent study [16] confirmed
this, where 45 different QUIC transport parameters settings
were found on Internet. Picoquic [17] is a good illustration
of an implementation of the QUIC protocol. As shown by the
amount of pull request of the Picoquic project, its developers
made various optimizations while remaining compliant with
the RFC.

In this paper, we consider QUIC only as a transport protocol
framework and thus we mainly focus on the performance of
the congestion control algorithm.

B. Congestion control algorithms

CUBIC was proposed in 2008 [18] as a step forward for
congestion control algorithms. CUBIC is used by default in
GNU/Linux since 2006 and in Windows Server since 2017.
With this congestion control algorithm, a packet loss is used as
an indicator of congestion. Therefore, the congestion window
size is reduced whenever a loss occurs. However, in case of
error-link losses, CUBIC limits the flows throughput to prevent
an inadequate reaction to non existent congestion.

By default in GNU/Linux, TCP/CUBIC starts with a specific
algorithm named Hybrid Slow start (Hystart), proposed in
2011 [19]. Hystart algorithm estimates when to leave the slow
start phase and when to enter the congestion avoidance phase.
To assess the limit of the available bandwidth, Hystart mainly
checks the RTT increases. With variable or high latency,
Hystart may exit prematurely the slow start phase [20], [21].
We evaluate its impact in Section III-C1.

BBRv1 was introduced by Cardwell et al. [22]. In 2019, the
same authors introduced BBRv2 [23], [24], a fairer version of
BBRv1 [25]. BBR assesses maximum available bandwidth and
the minimum measured RTT to determine the congestion win-
dow size. With a throughput equals to the measured available
bandwidth, BBR does not excessively and unnecessarily fills
bottleneck buffer. Therefore, BBR prevents the bufferbloat and
reduces the overall latency.

To probe the available bandwidth, BBR tries to send data
faster, then slower and finally at the same rate than its current
throughput. When the available bandwidth is evaluated and
every five seconds (as a default value), BBR probes the RTT.
To probe the RTT, it drains the bottleneck buffer by reducing
the throughput to half of the evaluated bandwidth. After one
round trip, BBR considers the buffer empty and measures the
minimum RTT. Basically, BBR alternates between these two
phases. Contrarily to BBRv1, BBRv2 also enables an in-flight
data limitation, which forces the reduction of the congestion
window when losses occur or when Explicit Congestion No-
tification (ECN) rate is too high. In the IRTF draft of BBRv2
[24], the default values of losses rate threshold and ECN
rate threshold are 2% and 50%, respectively. However, these
thresholds could be modified to make BBR less sensitive to
losses.

As seen previously, BBR implementation is still in a stan-
dardization process [24] and is still strongly discussed. This
leads to several variants and implementations proposed. For
example, Picoquic implements its own version of BBR. Based
on BBRv1 implementation, Picoquic BBR was modified to
match with BBRv2. However, some difference remains such
as a Hystart algorithm during its start phase, or the in-flight
data limitation which is not handled. In others words, we can
consider that the implementation of BBR in Picoquic does not
set the loss threshold from BBRv2. Finally, Picoquic BBR has
an evolving ACK rate during the connection, which is also not
present in Google BBR.

In 2018, 22.4% of Alexa top 250 sites were using CUBIC
and 25.2% were using BBRv1 [13]. Those results depict



the variety of the implementations deployed over Internet,
composed by a mix of different congestion control algorithms.
Furthermore, BBR is not, to our knowledge, present in Win-
dows server nor as a congestion control in GNU/Linux.

We recall that we choose CUBIC as a reference protocol,
and Picoquic sets by default with its own BBR implementa-
tion. As our goal is not to compare CUBIC and BBR but to
evaluate impact of SWF according to the congestion control
algorithm under test, it is important to keep in mind that on a
high RTT and a certain packet loss ratio, BBR would have a
significant advantage over CUBIC [26]. However, recent tests
done over a real satellite link, with almost no losses, showed
that the difference was not that important [27].

C. Sliding Window FEC (SWF)

Sliding Window FEC is a specific class of Forward Er-
ror Correction (FEC) based on a sliding encoding window
[8]. FEC block codes applied below the transport layer is
an efficient way to improve packet transmission over long
delay link, as it prevents retransmissions of lost packets. This
possibility to recover lost packets independently from the RTT
is a strong advantage considering the feedback response time
of a GEO link for instance. A FEC block code is built with
source and redundant data packets [28]. The rebuilt of lost
packets is only possible if their number is lesser than, or
equal to the number of redundant packets [29] within the
window. A good value for the block size is necessarily a
balance between the maximum FEC decoding latency at the
receiver, and the desired robustness against long loss bursts.
SWF uses an encoding window with a fixed or variable size,
that slides over the set of source data packets. FEC encoding is
launched whenever needed from the set of source data packets
currently present in the sliding encoding window at a given
time. This approach significantly reduces FEC-related latency,
since redundancy packets can be generated and passed to the
transport layer on-the-fly at any time, and can be regularly
received by receivers to quickly recover packet losses [29].
Using SWF codes is therefore highly beneficial to real-time
flows [29] but also for data transfer long delay link. SWF also
handles the problem of setting a block code size, making it
a good candidate for IP tunnels where flows are aggregated
between them.

We denote S(k,z), an SWF with parameters z the size of
the sliding window; and k the step size in packets where
k and z ∈ N∗ and k << z. Rj

i is a redundancy packet
combining a set of source packets P ranging from Pi to Pj

with i ∈ {1, k + 1, 2k + 1, ...nk + 1} and Pj ∈ {i + z − 1}.
During the startup phase, the window grows up to z and
then slides. Therefore, during this first round, we have Rj

1

where j ∈ {k, 2k, 3k..., z}. A sliding window S(4,20) and its
redundant packets are represented in Fig. 1. The computation
complexity grows as the number of packets and the sliding
window increase. This FEC scheme recently standardized
in [8] follows the same principle developed previously by
Martinian et al. in [30].

Fig. 1. Illustration with a Sliding Window FEC S(3,9), with a sliding window
size (z) of 9 packets and a redundant packet every 3 packets (k). Redundant
packets are colored in gray and source data packets in white. Rj

i represents
redundant packets, which covers original packets between i and j included.

Fig. 2. Cause and effect diagram of our system. We evaluate the performance
of the download time for different redundancy rates, scenarios, congestion
control algorithms and number of concurrent flows.

III. MEASUREMENT METHODOLOGY

We detail in this section the setup and scenarios chosen
to evaluate the gain of using SWF to protect TCP/CUBIC
or QUIC/BBR flows. We perform a sanity check (identified
as ideal scenario) to validate our experimental setup. In
this scenario there is no loss on the SATCOM link. Fig. 2
summarizes the input variables that must be considered as they
impact on the download time.

A. Experimental Setup

The experimental setup is built with two end-to-end nodes
(a client and a server) and three emulated devices : a satellite
terminal, a satellite gateway and a GEO satellite, all of them
emulated with OpenSAND [31], [32], an open-source end-
to-end satellite communication system emulator. OpenSAND
can be exploited to emulate SATCOM systems with a fair
representation [33]. A client is connected to the satellite
terminal, via either an emulated Wi-Fi link or a LAN network.
A server hosting the content (i.e. the files to be downloaded)
is placed behind the satellite gateway. Fig. 3 depicts this
topology.

To set a realistic public satellite Internet access, we config-
ure the OpenSAND satellite link with a forward bandwidth of
12Mb/s, a return bandwidth of 3Mb/s and a one-way delay of
250ms. We use real SATCOM packets loss scenario further
presented in this section. In addition, supplementary packet
loss ratio on the Wi-Fi link are either set to zero or one percent.
To prevent spurious retransmissions, we set the buffer size
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Fig. 3. Testbed topology with OpenSAND, the satellite emulator [31]–[33].

of the bottleneck to 1.2 times the Bandwidth Delay Product
(BDP).

For the sake of reproducibility, all tests are orchestrated
by OpenBACH [34], an open-source network metrology test
bench. OpenBACH allows both the reproducibility of the
platform and scenarios experimented by controlling the traffic
generation (driven by iPerf3 [35] (v3.7+) for TCP/CUBIC
or Picoquic (v0.34f) [17] for QUIC/BBR), as well as the
collection and post-treatment of QoS/QoE data.

We realize 30 iterations of two sets of tests, with either one
or five concurrent flows. Each flow runs within its own thread
to prevent a fair-share bias from the sending application and
ensure that the transport layer is the only one to manage the
congestion window. Either with one or five flows, each flow
transfers 20 MB of data to ensure that the download time is
long enough to obtain a noticeable difference between various
configurations. This size also prevents to mitigate the slow
start phase impact.

We use a SWF tunnel based on the SWIF-CODEC proposed
by IRTF-NWCRG [36]. To verify our hypothesis, we consider
four configurations. Only the rate of redundant packets varies
between the configurations, the sliding window size stays
constant to simplify the comparison:

1) without SWF (w/o SWF);
2) S(10,100): one redundant packet every ten source packets,

with a sliding window of one hundred packets, which
represents 9.09% of redundancy;

3) S(5,100): one redundant packet every five source packets,
with a sliding window of one hundred packets, which
represents 16.67% of redundancy;

4) S(2,100): one redundant packet every two source packets,
with a sliding window of one hundred packets, which
represents 33.33% of redundancy.

With a capacity sets to 12Mb/s, and a packet size limited to
1400B (to prevent fragmentation due to the tunneling), the
sliding window is set to 100 packets, which covers around
100ms. This configuration should cover our longest packet
losses burst of the tested scenarios.

B. Scenarios

We consider three different losses scenarios which cover a
fair wide variety of use-cases described below.

1) Optical scenario: This scenario is the optical satellite
use case. To be closer to a real optical satellite, we consider
collected data which were summarized on a Gilbert-Elliot

Fig. 4. Losses over time of the optical satellite scenario. Based on collected
data [37], traces are generated using a Gilbert-Elliot model (p = 0.01 and q
= 0.167).

Fig. 5. Losses over time of DVB satellite - mobile receptor scenario. These
traces have been collected on a moving train connected to DVB satellite.

model [37]. Based on this model, we generate time based
traces with parameters p = 0.01 and q = 0.167. OpenSAND
scheduling step is 10ms, meaning that a switch between a good
and bad GE state cannot be done below a 10ms window. The
loss burst length varies from 10 ms to 43 ms, with a mean loss
burst length at 16.70 ms. Over 30 seconds of traces, 0.768 s
corresponds to losses (2.56%). Over a 10-minute tests, a UDP
stream of 10 Mb/s gets 2.70% packets dropped. Fig. 4 shows
the losses over time.

2) DVB Mobile scenario: This scenario is based on col-
lected traces on a moving train connected through a DVB
satellite. Losses are mainly due to catenaries. Based on traces
previously used in other CNES2 studies, the loss packet bursts
are regular. They occur around every 258 ms and last for 15-
16 ms. Outside of those burst, the link is perfectly stable and
without losses. Overall, the loss time represents 5.89% of the
traces. With a UDP stream of 10 Mb/s for 10 minutes, 6.32%
of the packets are lost. Fig. 5 shows the losses over time.

3) Sub-scenarios: We add two sub-scenarios to the Optical
and DVB Mobile scenarios. The first one is ”without Wi-Fi”,
hence we do not add any losses on the user LAN. The second
one is ”with Wi-Fi”, and we add 1% of uniform random losses
between the satellite terminal and the client.

C. Ideal scenario: the case-control study

As previously explained, we validate the experimental setup
with no loss on the satellite or the Wi-Fi link. With this ”ideal
scenario”, we ensure that our experimental setup is working
as intended. As Hystart is known to be inefficient with high
RTT and large jitter (cf. Section II), first and foremost we
first compare CUBIC and BBR with and without Hystart
enabled. To estimate the overhead of the tunnel, we perform a

2The National Centre for Space Studies is the French government space
agency.



test within the tunnel and without SWF enabled. Finally, we
compare the various configurations to evaluate the redundancy
impact on a scenario where SWF is useless. Table I collects
all the results from the ideal scenario.

1) Hystart: We investigated the impact of Hystart [19].
We noticed some performance problems when enabled and
as recently reported in [38]. As a side note, we wish to point
out that the Hystart Picoquic implementation is quite different
from the TCP/CUBIC one. Furthermore, BBRv1 and BBRv2
do not use Hystart algorithm during start phase.

Our tests confirm that Hystart has a deleterious effect on the
TCP/CUBIC performance while beneficial with QUIC/BBR.
This effect is diluted over an aggregate for both protocols, but
it still negatively impacts on TCP/CUBIC standard deviation
(Table I). Considering these results, we deactivate Hystart on
TCP/CUBIC for the rest of our tests, and let it enabled on
QUIC/BBR.

2) Tunnel overhead: This set of tests ensure that the tunnel,
without redundancy, has no impact on the download time.
Results for both protocols show that the tunnel does not alter
significantly the download time (less than 3% for TCP/CUBIC
and QUIC/BBR) nor the standard deviation (less than 0.2
seconds for one flow and 0.9 seconds or less for 5 flows).

3) SWF overhead: When there is no loss, the SWF re-
dundancy packets have an overhead in terms of available
bandwidth. As expected, download time medians worsen as the
redundancy grows. Results also show that the negative effect
of SWF is stronger on QUIC/BBR than on TCP/CUBIC. To
clarify these results, we compare both steady-state through-
put. As a matter of fact, it seems that TCP/CUBIC without
SWF does not use the full available bandwidth. TCP/CUBIC
without SWF converges to a mean throughput equals to
10.62 Mb/s while QUIC/BBR obtains 11.71 Mb/s. To go
further, once TCP/CUBIC flow converges, the throughput still
has some important drops compare to QUIC/BBR, or protected
TCP/CUBIC flows.

IV. RESULTS

We measured the download time over the various scenarios
previously defined (cf. Section III) along with different config-
urations of SWF. Table II compiles all download time median
results, as well as the percentage difference between the results
without SWF and those with SWF. Fig. 6 and Fig. 7 presents
respectively TCP/CUBIC and QUIC/BBR results displayed as
whisker boxes, depending on scenarios and configurations.

A. Optical scenario

By way of reminder, with the optical satellite scenario,
losses pulse by burst following a Gilbert-Elliot model (cf.
Scenarios section).

1) Optical satellite without Wi-Fi: Losses in this scenario
negatively impact on TCP/CUBIC download time, i.e., without
losses on the link, one unprotected flow takes only 17.84
seconds to download 20 MB, and in this scenario it takes 91.42
seconds to download the same amount of data, which is more
than 4 times longer. With 16.67% or 33.33% of redundancy,

Fig. 6. TCP/CUBIC download time results for each scenario and configura-
tion. Number of sample: 30 for 1 flow and 150 for 5 flows.

respectively S(5,100) and S(2,100), we get closer to the ideal
scenario. On the other hand, the same losses do not have a
strong impact on QUIC/BBR. Even worse, SWF reduces the
effectiveness of QUIC/BBR.

2) Optical satellite with Wi-Fi: In the same scenario but
with Wi-Fi, which adds 1% of random packet losses on
the client LAN, TCP/CUBIC results are even worse. With
one and five TCP/CUBIC flows, the S(2,100) configuration
becomes necessary to stay close to the ideal scenario results.
With Wi-Fi, QUIC/BBR does not seem impacted, or at least
not enough to get benefits from tested SWF configurations.
Therefore, we did some additional tests on QUIC/BBR with
S(20,100) and S(50,100), i.e., 4.76% and 1.96% of redundancy
respectively. The results are not better with S(20,100) with
20.92 seconds and 85.84 seconds, respectively for one and five
flows. S(50,100) configuration results median slightly improve
one flow download time (20.51 seconds), but worsen five flows
(83.03 seconds).



TABLE I
DOWNLOAD TIME MEDIAN AND STANDARD DEVIATION OBTAIN WITH THE IDEAL SCENARIO

Ideal Scenario TCP/CUBIC median TCP/CUBIC standard QUIC/BBR median QUIC/BBR standard
download time (s) deviation (s) download time (s) deviation (s)

without SWF 1 flow 21.27 3.81 17.38 0.13
with Hystart 5 flows 65.67 10.26 76.63 11.18
without SWF 1 flow 17.84 0.34 19.24 7.36

without Hystart 5 flows 65.29 8.73 76.18 11.26

T
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/o
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rt
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w
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H
ys

ta
rt w/o SWF

with tunnel
1 flow 17.94 0.34 17.66 0.14
5 flows 66.73 7.83 75.97 11.93

S(10,100)
1 flow 19.04 0.34 19.23 0.15
5 flows 73.02 10.28 86.15 13.86

S(5,100)
1 flow 20.17 0.32 20.73 0.14
5 flows 79.78 9.00 93.98 15.47

S(2,100)
1 flow 24.12 0.29 25.32 0.10
5 flows 96.26 9.67 116.54 17.44

TABLE II
DOWNLOAD TIME MEDIAN (IN SECONDS) AND PERCENTAGE DIFFERENCE BETWEEN THE WITHOUT SWF (W/O SWF) CONFIGURATIONS AND SWF

CONFIGURATION, ON IDEAL, OPTICAL SATELLITE AND THE DVB SATELLITE - MOBILE RECEPTOR SCENARIOS.

Download time median 1 flow 5 flows
in seconds w/o SWF S(10,100) S(5,100) S(2,100) w/o SWF S(10,100) S(5,100) S(2,100)

Ideal scenario TCP/CUBIC 17.84 19.04 20.17 24.12 65.67 73.02 79.78 96.26
+6.73% +13.06% +35.20% +11.19% +21.49% +46.58%

QUIC/BBR 17.38 19.23 20.73 25.32 76.63 86.15 93.98 116.54
+10.64% +19.28% +45.68% +12.42% +22.64% +52.08%

Optical satellite
without Wi-Fi

TCP/CUBIC 91.42 54.03 24.42 24.55 163.35 121.99 83.99 96.89
-40.89% -74.38% -73.15% -25.32% -48.58% -40.68%

QUIC/BBR 19.90 21.29 21.72 25.53 80.90 91.44 94.46 116.86
+6.99% +9.15% +28.28% +13.03% +16.76% +44.46%

Optical satellite
with Wi-Fi

TCP/CUBIC 244.01 72.37 36.30 24.19 274.18 145.91 100.61 98.24
-70.34% -85.12% -90.09% -46.78% -63.31% -64.17%

QUIC/BBR 20.61 20.92 22.30 25.45 80.44 88.93 96.15 113.78
+1.53% +8.23% +23.50% +10.55% +19.53% +41.44%

DVB satellite -
mobile receptor
without Wi-Fi

TCP/CUBIC 405.91 291.02 31.11 24.67 454.30 313.26 88.61 96.74
-28.30% -92.34% -93.92% -31.04% -80.61% -78.71%

QUIC/BBR 23.56 23.67 23.68 25.51 83.49 93.56 87.78 114.67
+0.45% +0.51% +8.28% +12.07% +17.13% +37.35%

DVB satellite -
mobile receptor
with Wi-Fi

TCP/CUBIC 507.10 416.56 83.82 24.52 547.56 444.55 135.51 97.13
-17.85% -83.47% -95.16% -18.81% -75.25% -82.23%

QUIC/BBR 24.96 24.98 24.09 25.35 84.76 92.86 102.92 115.18
+0.07% -3.50% +1.54% +9.56% +21.41% +35.88%

B. DVB mobile scenario

We recall that in this scenario losses appear as regular bursts
(cf. III-B).

1) DVB satellite - mobile receptor without Wi-Fi: Unpro-
tected TCP/CUBIC flows are highly affected by the previous
scenario, they fall even more in the DVB satellite - mobile
receptor scenario. With one flow, only the S(2,100) configura-
tion reduces the download times to the ideal scenario level.
In the case of five flows, less redundancy, like the S(5,100)

configuration, is enough.On the other corner, unprotected
QUIC/BBR results are still not that far from the ideal ones.
As expected, the download time worsen as long as percentage
of losses grows. However, this represents a difference ranging
from 5 to 6 seconds from the ideal scenario, while the gap
for TCP/CUBIC is 380 seconds. As in the previous scenario,
SWF does not improve the results. Even though S(10,100) and
S(5,100) results are close to the unprotected results for one
flow. Nevertheless, it is not the case for five protected flows.

2) DVB satellite - mobile receptor with Wi-Fi: When
the Wi-Fi is added to the test, unsurprisingly, unprotected
TCP/CUBIC flows results are worse. The S(2,100) redundancy
configuration are the only solution which approaches the ideal
scenario results. It divides the download time of unprotected
flows by a bit more than 20 for one flow, and by more than
5 for five flows. Like in the previous scenarios, additional
losses do not affect BBR results. For one flow, redundancy
configurations bring little change compared to unprotected
flows. The median download time is not impacted, only the
result variations reduce as the redundancy increases. Even with
that much losses, with five flows, the unprotected QUIC/BBR
configuration stays the more efficient one. To try with lower
redundancy, we reused the S(20,100) configuration (4.76%
of redundancy). This configuration brings little improvement
to the unprotected one BBR flow, with 24.20 seconds to
download time. For five flows, SWF protection worsen the
results for QUIC/BBR.



Fig. 7. QUIC/BBR download time results over each scenario and configura-
tion. Number of sample: 30 for 1 flow and 150 for 5 flows.

C. Discussion about our results

The measurements presented allow us to discuss several
aspects both on CUBIC and BBR congestion controls. We
observe that, unlike CUBIC, BBR flows download time does
not get improvement from SWF. Indeed, a loss-based con-
gestion control algorithm, such as CUBIC, identifies all link
losses as congestion. Therefore, it might appear obvious that
the use of a FEC scheme over CUBIC flows would improve
the throughput performance in case of error-link losses. How-
ever, we learned that Sliding Window FEC scheme deployed
within a tunnel greatly enhances CUBIC performance without
complex configuration as for FEC block codes. Furthermore,
such tunnel can be easily deployed to protect from loss either
on a subnetwork of the path or on the end-to-end network.
This solution has been envisioned in [9], [10]. Thus, our study
confirms this possibility.

Regarding BBR, this congestion control takes both the loss
(considering the loss threshold set as in BBRv2) and the delay
as a congestion indication. It should be recalled that BBR
evaluates the available bandwidth, based on the RTT evolution,

TABLE III
CONCLUSION ON POTENTIAL GAINS AND COMPROMISES FROM SWF

PROTECTION OVER FLOW PERFORMANCE AND DEPLOYMENT

Gain Compromise

Pe
rf

or
m

an
ce

- CUBIC performance with one - Cost of capacity (network
and multiple flows point of view)

- Does not improve QUIC/BBR
- Cost of data (user point of view)
- Deleterious on a reliable link

or with oversized redundancy

D
ep

lo
ym

en
t

- Adapted to encrypted protocol - Congestion control parameters
- Could be deployed only on a can be tuned in QUIC

defaulting segment - SWF needs an end-to-end tunnel
- Still lot of TCP/CUBIC servers - Unknown number of

QUIC/CUBIC servers
- Require to apply only

on loss based CC

and sends just enough data to reach the available bandwidth,
without unnecessarily filling the bottleneck buffer. Therefore,
BBR measures a decrease of the available bandwidth when
redundancy packets are added. However, BBRv2 implements
a loss threshold (default: 2%) which reduces the throughput
when reached. We can suppose that SWF could be a solution
to protect BBRv2 over unreliable link, which would require
some test with BBRv2.

Finally, table III attempts to summarize the potential gain
of using SWF in the context of SATCOM.

V. CONCLUSION

In this paper, we evaluate the benefit of using SWF tunnel
to protect TCP/CUBIC and QUIC/BBR flows from losses and
improve their download time over several SATCOM mobile
scenarios. The results show that TCP/CUBIC benefits from
SWF over unreliable links. SWF protection over TCP/CUBIC
can divide by twenty the download time, compared to unpro-
tected flows. Whereas QUIC/BBR is much more resilient to
losses and consequently does not gain from SWF protection.
Even if this study exhibits little benefits for BBR over SAT-
COM, finding the right redundancy rate is not trivial and could
lead to unfairness along the whole packets path if badly sized.
As future work, we propose to study the impact of SWF on
BBRv2 flows to put to the test our suspicion of its benefits
over the loss threshold.
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