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Abstract

In this paper, we propose to explore the Time-Reversed Absorbing Condition (TRAC)
method in the case of dissipative homogeneous media. In previous work, the TRAC method
was derived from the time-reversibility of the (undamped) wave equation and proved to be effi-
cient in both the time-domain and the frequency-domain. Namely, two main utilisations of the
TRAC method have been probed: (a) redatuming, i.e., moving virtually the measurements by
reconstructing the wavefield and (b) tracking down the location of a possible inclusion inside the
domain.

However, many applications working with waves, and in need of redatuming for instance,
require to add a dissipative component to their model. Accordingly, a study of the TRAC
method in the case of dissipation is relevant and, in particular, we will see that performing the
standard TRAC method, i.e., ignoring the dissipation, does not give satisfactory results.

An analysis is provided in the frequency-domain and one-space dimension and shows satis-
factory updated versions of the TRAC method. Numerical examples in 1D and 2D are presented
to illustrate the results.

1 Introduction, principle and motivation
It has been about thirty years since Time Reversal (TR) was introduced by Matthias Fink as
a response to imaging problems [1, 2]. The principle of TR is to take advantage of the time
reversibility of the undamped wave equation to reconstruct the wavefield from measurements
recorded on a receivers’ array, also called Time Reversal Mirror (TRM) [3, 4]. These data are
time-reversed and sent back into the domain, creating a wavefield propagating back, and through,
any heterogeneous components included in the domain. This has been widely advertised as
“recreating the past” in the TR community.

Many work on TR has been done since the seminal papers. In particular, even though Time
Reversal is a powerful tool and is robust even with respect to complex media, the generated
time-reversed wavefield back-propagating in the ambient medium to its original source has a
non-decreasing energy due to the diffraction limit [1, 5]. Therefore, a focal spot is observed at
the location of the source, which prevents a good resolution of the image. In [6, 7], the authors
proposed a way to limit the effects of the diffraction limit while working with Time Reversal
Mirrors. To tackle this issue, a study about the Time Reversal Operator Decomposition was
also achieved to gain a better understanding of the technique [8, 9]. Other techniques using



filtering also examined ways to reduce the diffraction limit and improve the resolution of the
image [10, 11, 12] in the context of heterogeneous media, summarised in 2013 in [13]. Some
theoretical results were also proposed for dissipative media in [14, 15].

About ten years ago, an alternative was proposed in order to remove the issue of the
diffraction limit, via a numerical method called TRAC for Time Reversed Absorbing Condi-
tion [16, 17, 18]. The main idea of this method is to introduce an artificial sink, also called
trial domain, in the computational domain that encloses the source or the scatterer acting as a
passive source. The choice of the boundary condition to impose on the new artificial boundary is
crucial and it has been proven that a time-reversed absorbing boundary condition was the right
condition [16], hence the name of the method. Then, the type and order of the chosen absorbing
boundary condition (ABC) totally depends on the shape of the artificial boundary and the level
of accuracy one wants to reach.

There has been many work on absorbing or non-reflecting boundary conditions, since the
first papers [19, 20, 21], namely for different shapes like in [22, 23, 24] for an ellipse and [25, 26]
for arbitrary shapes. A wide literature also consider the question of the accuracy by developing
always higher-order of approximation of the ABC, see for instance [27, 28, 29, 30, 31, 32].
Moreover, the ABC actually depends on the model as well. Therefore, many types of ABCs have
been designed for the acoustic waves in the case of heterogeneous media [29, 33] and multiple
scattering [34, 35, 36]. Then, for the Maxwell equations, non-reflecting boundary conditions are
proposed in [37, 38, 39], and for the elastic waves see [40, 41, 42, 43].

The TRAC method has two main applications. The first application is the ability to reduce
the size of the computational domain by moving virtually the measured data from the receivers’
array to the artificial trial domain. This principle is known as redatuming and was first developed
for seismic waves [44] and later generalised in [45]. This first application has been explored for
the TRAC method in [46, 47] and coupled with inverse problem techniques to corroborate the
fact that the new gathered virtual data provide a good reconstruction of the expected image
in a considerably reduced computational domain. This naturally improved the cost in terms of
computational time and storage for the subsequent inverse problem. More recently, full waveform
redatuming has been explored via a least-squares version of the TRAC method in [48].

The second application of the TRACmethod consists of tracking inclusions or scatterers. The
method is using the information provided via the reconstruction of the wavefield to determine the
location of the scatterer. It has been indeed shown that a bad position of the trial domain, i.e.,
not enclosing entirely the scatterer, would lead to an erroneous reconstruction of the wavefield.
By considering the associated error, the position of the trial domain can be corrected to locate the
inclusion better. This has been studied in [17, 18, 49], but also for crack and source identification
in [50, 51, 52]. Recently, an algorithm for an automatic detection of the inclusion has been
proposed in [53].

The novelty of this paper is to consider a dissipative version of the TRAC method. Until
now, the computational domain was always assumed homogeneous, constant and non-dissipative,
which limited its utilisation in real applications containing dissipation. Therefore, we propose
a study of the method when an anti-dissipative term is added by time reversal. We will derive
simple absorbing boundary conditions including the dissipative component, since it seems that
very little work has been proposed on that topic. Only recently, Barucq et al. [54] designed
absorbing boundary conditions in the context of 3D atmospheric waves, whose model contains
a damping term. Our 1D and 2D results are consistent with the ABCs derived in [54]. A Part
II on heterogeneous media is planned to complete this study.

A reminder of the principle of the TRAC method in the frequency domain, followed by re-
search questions studied through this paper, complete this introductory section.
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In the rest of the paper, we consider the wave equation in the frequency domain1, which will
be explicitly expressed using the Helmholtz equation. By doing so, we are able to compute by
hand (or using symbolic calculators such as Maple) solutions to the forward problem and diverse
versions of the time reversed counterparts of the forward problem.

1.1 Principle of the TRAC method: a reminder in the frequency
domain
We consider an inclusion D living in some known medium, which can be assumed homogeneous
or not, dissipative or not. A source f generates an incident wavefield uI that impinges on the
inclusion, whose scattering response is recorded on a receivers’ array. The resulting forward total
wavefield uT satisfies:

−ω2κuT −∆uT = f, in Rd, (1)

with Sommerfeld radiation conditions. In (1), ω denotes the frequency, d is the dimension, likely
to be 1, 2 or 3. Parameter κ represents the physical properties of the medium and the inclusion,
and can be defined as:

κ(~x) :=
1

c2(~x)

(
1− iσ(~x)

ω

)
, (2)

where c is the wave propagation speed, σ the dissipation and i =
√
−1. Both c and σ are assumed

to be functions in space with possible discontinuity at the interface between the inclusion and
the surrounding medium. As such, we use the following notation: the subscript 0 is used for the
surrounding medium while the subscript D is for the inclusion. The characteristic function χD
defines the area delimited by the boundary of the inclusion D. Thus,

c(~x) := c0(~x) + (cD(~x)− c0(~x))χD(~x), and σ(~x) := σ0(~x) + (σD(~x)− σ0(~x))χD(~x).

Remark 1.1. For some applications using electromagnetic waves, the Helmholtz equation is
used as a good approximation [56, 57, 58]. In this case, the parameters involved are the electric
permittivity ε, the magnetic permeability µ and the electric conductivity σ, the latter inducing
damping. With these notations, κ becomes:

κ(~x) := µ(~x) (ε(~x)− iσ(~x)/ω) . �

Our aim is to reconstruct the total wavefield from measurements using time reversal tech-
niques [1, 2]. To do so, we introduce a bounded computational domain Ω. We also denote by Γ
the receivers’ array, which may be part or not of ∂Ω, and which may be continuous or discrete,
see Figure 1. To perform the TRAC method, we also introduce an artificial domain B, usually a
ball, which is assumed to enclose inclusion D. As already developed in previous papers [17, 18],
the time-reversed total wavefield vTR can be reconstructed when solving:

−ω2κvTR −∆vTR = 0, in Ω\B,

vTR = uT , on Γ,

TRAC(vTR) = TRAC(uI), on ∂B,

(3)

with appropriate radiation conditions on the boundary ∂Ω, if relevant. Note that time reversal in
the frequency domain corresponds to complex conjugation [17], which is denoted by an overline
here.

1using the following convention: the Fourier transform of the time derivative becomes iω, see [55].
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Figure 1: Geometry of the domain: trial domain B encloses perfectly inclusion D. The receivers’ array Γ may be on
the entire boundary of Ω or only partially.

Claim 1.1. If the chosen time reversed absorbing boundary condition in (3) is exact, the recon-
structed wavefield vTR is exactly the complex conjugate of uT in Ω\B, i.e.,

vTR ≡ uT |Ω\B.

Remark 1.2. Note that Claim 1.1 only holds in the case where trial domain B encloses entirely
the inclusion D. If by any chance, the location of B with respect to D is not satisfied, then the
reconstruction will not hold independently of the chosen TRAC [17, 18, 53]. �

1.2 Research questions
The TRAC method has already been extensively studied in the time domain [16, 17, 18, 52,
51, 53, 48], but only mentioned quickly in the frequency domain [17, 59]. Time reversal relies
on the reversibility in time of the wave equation. Therefore, the first studies never mentioned
dissipation or damping, which deprives the equation of the time reversibility. However, in many
applications, dissipation is present to some extent and the surrounding medium may not be
homogeneous. That is why, we propose to work on the TRAC method for more general media.

It is well-known that a damping term in the wave equation gives an attenuated solution over
time, modelled by a decreasing exponential. As a result, time reversal of such a term will induce
an increasing exponential in the solution. Hence, it is legitimate to wonder if a dissipation can
be considered for the TRAC method. Since we are working on a finite time frame (in the case
of the time-domain wave equation), it is likely that the solution does not have time to blow up
and the increasing exponential will not prevent a good reconstruction [60].

Question 1.1. To which extent does the anti-dissipative term in the TRAC method affect the
reconstruction of the total (or scattered) wavefield?

Adding dissipation and working with non-homogeneous2 media also raises the following ques-
tion:

Question 1.2. What can an absorbing boundary condition look like in case of dissipation? and
for non-homogeneous media?

2Answers about non-homogeneous media to be seeked in a Part II of this study.
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In this paper, we will derive absorbing boundary conditions for dissipative media and observe
that the resulting differential operator is hardly translatable from the frequency domain to the
time domain via an Inverse Fourier Transform. As a result, a last3 question comes to mind:

Question 1.3. If a non-dissipative TRAC problem is considered while there is clear dissipa-
tion in the experiment (physical or numeric), how wrong qualitatively and quantitatively is this
approximation for the reconstruction of the total (or scattered) wavefield?

To answer partly to the questions above, we will focus on time-harmonic TRAC for the study.

This paper is structured as follows: In Section 2 we propose an analysis in one-space dimen-
sion and frequency domain. Explicit calculations will be performed and error quantification will
be presented. Then, the two-space dimension case will be illustrated in Section 3 by numerical
results. Finally, after the conclusion, two appendices are added: (A) about the derivation of the
absorbing boundary conditions and (B) to prove the calculations made in Section 2.

2 Analysis in one-space dimension (and frequency do-
main)
For this section, we assume that the physical characteristic functions, c (or ε, µ) and σ, are
piecewise constant, i.e., constant in the surrounding medium and constant in the inclusion D.
Working in one-space dimension reduces the Helmholtz equation to a linear constant coefficient
second order ordinary differential equation that can be easily solved by hand to access analytical
solutions. Therefore, we show that the TRAC method provides exact reconstructions of the
total wavefield for the correct location of B with respect to D. We compare these solutions with
solutions to classical time reversal that model time reversal physical experiments.

In a second part of this section, we also consider an inexact time reversed absorbing condition
on the boundary of B. This consideration is meant to explore how wrong the TRAC method
can be in presence of dissipation. More precisely, the exact dissipative absorbing condition is
hardly translatable in the time-domain. Therefore, we are tempted to use the non-dissipative
condition even though we know that the surrounding medium is dissipative. We aim to quantify
the error made by this approximation.

2.1 Exact TRAC reconstruction in 1D

xL xRxD− xD+

D

f

Figure 2: Geometry for the forward problem in 1D: Source f emits a signal in numerically bounded domain Ω :=
[xL, xR]. The wavefield is impinging on inclusion D, delimited by [xD− , xD+ ].

In one-space dimension, see Figure 2, the acoustic total wavefield satisfies:
−ω2uT + iωσ(x)uT − c(x)2uT

′′
= 0, in (xL, xR),

iωσ0u
T − c0u

T ′ = 0, on {xL},

iωσ0u
T + c0u

T ′ = f, on {xR},

(4)

3at least for now in this paper...
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where

ωσ0 = ω

√
1− iσ0

ω
. (5)

The derivation of the boundary conditions is given in Appendix A.1. Problem (4) actually holds
for penetrable inclusions, i.e., inclusions that will also let part of the wavefield propagate through
itself. For sake of completeness, we consider fully reflective inclusions known as sound-soft and
sound-hard as well. The forward problem then reads:

−ω2uT + iωσ0u
T − c2

0u
T ′′ = 0, in (xL, xD−) ∪ (xD+ , xR),

uT = 0, on {xD−} ∪ {xD+} if sound-soft,

uT
′

= 0, on {xD−} ∪ {xD+} if sound-hard,

iωσ0u
T − c0u

T ′ = 0, on {xL},

iωσ0u
T + c0u

T ′ = f, on {xR}.

(6)

xL xRxD− xD+

D

B

xB− xB+

Figure 3: Geometry when performing TRAC in 1D: Artificial ball B = [xB− , xB+ ] is introduced and assumed to
enclose inclusion D.

Now assume that we record data at {xL} and {xR}. An artificial ball B = [xB− , xB+ ] is intro-
duced and assumed to enclose inclusion D, see Figure 3. Now, the computational domain Ω\B
corresponds to the two disconnected segments (xL, xB−) and (xB+ , xR). The TRAC problem to
reconstruct the total wavefield from measurements satisfies:

−ω2vTR − iωσ0v
T
R − c2

0v
T
R
′′

= 0, in (xL, xB−) ∪ (xB+ , xR),

−iωσ0 vTR − c0v
T
R
′

= −iωσ0 uI − c0uI
′
, on {xB−},

−iωσ0 vTR + c0v
T
R
′

= −iωσ0 uI + c0uI
′
, on {xB+},

vTR = uT , on {xL} ∪ {xR}.

(7)

Parameter ωσ in the Helmholtz equation is now complex conjugated and only takes the properties
of the surrounding medium. The last line of (7) corresponds to the time reversed measurements.
Note that in the case of sound-soft or sound-hard inclusions, the time reversed solution (as well
as the forward one) is constant equal to zero in [xL, xB− ] (as it was in [xL, xD− ], too). Therefore,
for sound-soft or sound-hard inclusions, we solve (7), and compare with the forward reference,
only in (xB+ , xR).

Proposition 2.1. The general solution to (7), independently of the form of the incident and the
total wavefield, is

vTR(x) =


uT (xL)e−ikσ0 (x−xL) +

TRAC−ex[uI ](xB−)

2iωσ0

(
e−ikσ0 (x+xB−−2xL) − eikσ0 (x−xB− )

)
, if x ∈ [xL, xB− ],

uT (xR)eikσ0 (x−xR) +
TRAC+

ex[uI ](xB+)

2iωσ0

(
eikσ0 (x+xB+−2xR) − e−ikσ0 (x−xB+ )

)
, if x ∈ [xB+ , xR],

(8)
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where operators TRAC±ex stand for

TRAC±ex[u] := −iωσ0 u ± c0u
′.

Proof. For sake of clarity, see Appendix B.3 for the calculations.

Corollary 2.1. If the trial domain encloses the inclusion, solving Problem (7) gives the exact
reconstruction of the total field, solution to (4), after conjugation, i.e.,

vTR ≡ uT |[xL,xB− ]∪[xB+ ,xR].

Remark 2.1. In the one-dimension case, an erroneous choice of location for B with respect
to D only occurs within (xD− , xB−) ∪ (xB+ , xD+), where the wavefield propagates inside the
inclusion with the physical properties of the surrounding medium. �

2.2 Classical time reversal reconstruction in 1D
Obviously, the TRAC method is a numerical method only. It is not possible to perform TRAC
on physical experiments. However, we can model time reversal techniques, which we will refer to
as Classical Time Reversal, as they would be in physical experiments for the sake of comparison.
With measurements on {xL} and {xR}, the classical TR problem reads: −ω

2wTR,2 − iωσ(x)wTR,2 − c(x)2wTR,2
′′

= 0, in (xL, xR),

wTR,2 = uT , on {xL} ∪ {xR}.
(9)

A similar problem can be written in the case of only one measurement on {xR} and an out-going
absorbing boundary condition4 on {xL}

−ω2wTR,1 − iωσ(x)wTR,1 − c(x)2wTR,1
′′

= 0, in (xL, xR),

−iωσwTR,1 − c0w
T
R,1
′

= 0, on {xL},

wTR,1 = uT , on {xR}.
(10)

Proposition 2.2. If the scatterer’s location and physical characteristics are known (e.g., the
inclusion is still present in the computational domain during the experiment), then the solution
to (9) or (10) is exact everywhere in [xL, xR].

Proof. We check the result with Maple. The detail of the derivation is fastidious and without
much interest as soon as symbolic computing can be used. Therefore, we prefer to skip these
calculations here, – refer Appendix B.2 for the calculations.
Note that the result is true independently of the choice of boundary condition at {xL}: data or
out-going ABC.

Proposition 2.3. Assume that we do not know the type and location of the inclusions. Then,
σ(x) = σ0 and c(x) = c0 by assumption for all x in the computational domain. When solving (9)
and (10) under these assumptions, the solutions respectively reads:

• two measurements are used, one at {xL} and the other at {xR}, aka (9):

wTR,2(x) =
uT (xR)

(
e−ikσ0 (x−xL) − eikσ0 (x−xL)

)
+ uT (xL)

(
eikσ0 (x−xR) − e−ikσ0 (x−xR)

)
e−ikσ0 (xR−xL) − eikσ0 (xR−xL)

, ∀x ∈ [xL, xR].

4time-reversed, aka. complex conjugated from the forward counterpart.
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• only one measurement at {xR} is available, aka (10):

wTR,1(x) = uT (xR)e−ikσ0 (x−xR), ∀x ∈ [xL, xR].

Proof. For the sake of clarity, please refer to Appendix B.2.
From the form of the solutions, we can see that only two plane waves travel in both directions,
which does not allow for any fluctuations (as in the case of penetrable inclusions) or abrupt
reflections (as for sound-soft or sound-hard inclusions). It is then visible that the solutions will
differ from the targeted total wavefield after complex conjugation. Note also that this result
applies for more than one inclusion of any type as long as {xL} and {xR} are located in the
surrounding medium.

In Figure 4, we display the solutions to the perfect time reversal together with both possible
numerical time reversal (9) and (10) when σ(x) = σ0 and c(x) = c0. We choose the following
parameters specified:

– the computational domain is (xL, xR) = (0, 10), and the inclusion is located at (xD− , xD+) =
(2, 5);

– in the surrounding medium c0 = 1 and σ0 = 0.01; in the case of a penetrable inclusion,
cD = 1.5 and σD = 0.2;

– source term f = 1 and frequency ω = 5.

The illustration confirms our incapacity in reconstructing the targeted total wavefield when
performing numerical time reversal (unknown inclusions).

Figure 4: 1D Classical TR – Real part (left), imaginary part (centre) and modulus (right) of the solution to time
reversal problems: perfect vs. numerical TR using one measurement vs. numerical TR using two measurements. The
dashed vertical lines show the location of the inclusion D.
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In some applications, namely in laboratories [6, 1], classical time reversal in the living medium
is possible. However, for many (large-scale) applications [5], performing time reversal experi-
ments in real media is not conceivable. Consequently, numerical experiments are used from
acquired measurements and inclusions to detect are usually unknown. In that case, classical
time reversal cannot be trusted to reconstruct the total (or scattered) wavefield as shown by
Proposition 2.3.

2.3 Erroneous TRAC reconstruction in 1D
In this paper, we focus our analysis in the frequency domain, since it allows for analytical
solutions and exact calculations. However, the underlying idea is to study the effect of an
approximate non-dissipative time reversed absorbing boundary condition when dissipation is in-
volved in the forward problem. We can already see that the exact absorbing boundary condition
in 1D and frequency domain is hardly translatable to the time domain, hence the need for an
approximation of the absorbing boundary condition and a quantification of the inherent error.
Some details of the calculations are available in Appendix B.3.

We will compare three levels of approximation to the exact TRAC problem (7):

• 1st-order approximation of the time-reversed ABC, aka ‘approx.’ TRAC

−iωσ := −iω
√

1 +
iσ0

ω
' −iω +

σ0

2
, for very small values of σ0.

• omission of the dissipation in the time-reversed ABC (or 0th-order), aka ‘wrong’ TRAC

−iωσ := −iω
√

1 +
iσ0

ω
≈ −iω.

• omission of the dissipation in the entire TRAC problem, aka ‘very wrong’ TRAC

ωσ ≈ ω, everywhere.

Let’s take the following notation for the absorbing boundary conditions:

TRAC±0th[u] := −iω u ± c0u
′, (11)

and TRAC±1st[u] :=
(
−iω +

σ0

2

)
u ± c0u

′ (12)

Proposition 2.4. The ‘approx.’ TRAC case:
A first-order approximation to the TRAC problem can be written as:

−ω2vTR,approx − iωσ0v
T
R,approx − c2

0v
T
R,approx

′′
= 0, in (xL, xB−) ∪ (xB+ , xR),

TRAC−1st[v
T
R,approx] = TRAC−1st[u

I ], on {xB−},

TRAC+
1st[v

T
R,approx] = TRAC+

1st[u
I ], on {xB+},

vTR,approx = uT , on {xL} ∪ {xR}.

(13)
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The general solution is:

vTR,approx(x) =



1

Ψ

[
uT (xL)

((
i(ωσ0 + ω)− σ0

2

)
e−ikσ0 (x−xB− ) +

(
i(ωσ0 − ω) + σ0

2

)
eikσ0 (x−xB− )

)
+TRAC−1st[u

I ](xB−)
(
e−ikσ0 (x−xL) − eikσ0 (x−xL)

)]
, if x ∈ [xL, xB− ],

1

Φ

[
uT (xR)

((
i(ωσ0 − ω) + σ0

2

)
e−ikσ0 (x−xB+ ) +

(
i(ωσ0 + ω)− σ0

2

)
eikσ0 (x−xB+ )

)
+TRAC+

1st[u
I ](xB+)

(
eikσ0 (x−xR) − e−ikσ0 (x−xR)

)]
, if x ∈ [xB+ , xR],

(14)
with

Φ =
(
i(ωσ0 − ω) +

σ0

2

)
eikσ0 (xB+−xR) +

(
i(ωσ0 + ω)− σ0

2

)
e−ikσ0 (xB+−xR)

and Ψ =
(
i(ωσ0 + ω)− σ0

2

)
eikσ0 (xB−−xL) +

(
i(ωσ0 − ω) +

σ0

2

)
e−ikσ0 (xB−−xL).

For the sake of illustration, we use the following parameters: f = 1, ω = 5, (xL, xR) = (0, 10),
(xD− , xD+) = (2, 5), (xB− , xB+) = (1.5, 6), and c0 = 1, σ0 = 0.7, cD = 1.5, σD = 2. In Fig-
ure 5, we plot the complex conjugated total wavefield for reference, together with the exact
TRAC reconstruction (8) and the approximated TRAC reconstruction (14). We observe that all
three curves are superimposed in (xL, xB−)∪ (xB+ , xR) for this choice of parameters, which also
reveals that (14) gives a very good approximation. The error will be quantified in a latter section.

Proposition 2.5. The ‘wrong’ TRAC case:
A zero-th-order approximation (omitting dissipation on the absorbing boundary conditions) to
the TRAC problem can be written as:

−ω2vTR,wrong − iωσ0v
T
R,wrong − c2

0v
T
R,wrong

′′
= 0, in (xL, xB−) ∪ (xB+ , xR),

TRAC−0th[vTR,wrong] = TRAC−0th[uI ], on {xB−},

TRAC+
0th[vTR,wrong] = TRAC+

0th[uI ], on {xB+},

vTR,wrong = uT , on {xL} ∪ {xR}.

(15)
The general solution is:

vTR,wrong(x) =



1

Ξ

[
uT (xL)

(
(ωσ0 + ω)e−ikσ0 (x−xB− ) + (ωσ0 − ω)eikσ0 (x−xB− )

)
+ iTRAC−0th[uI ](xB−)

(
eikσ0 (x−xL) − e−ikσ0 (x−xL)

)]
, if x ∈ [xL, xB− ],

1

Θ

[
uT (xR)

(
(ωσ0 − ω)e−ikσ0 (x−xB+ ) + (ωσ0 + ω)eikσ0 (x−xB+ )

)
+ iTRAC+

0th[uI ](xB+)
(
e−ikσ0 (x−xR) − eikσ0 (x−xR)

)]
, if x ∈ [xB+ , xR],

(16)
with

Θ = (ωσ0 − ω)eikσ0 (xB+−xR) + (ωσ0 + ω)e−ikσ0 (xB+−xR)

and Ξ = (ωσ0 + ω)eikσ0 (xB−−xL) + (ωσ0 − ω)e−ikσ0 (xB−−xL).

10



Figure 5: 1D approximated TRAC – Real part (left), imaginary part (centre) and modulus (right) of the solution to
time reversal problems: complex conjugated vs. exact TRAC vs. 1st-order approximated TRAC. The dashed vertical
lines show the location of the inclusion D. The dotted vertical lines show the location of the artificial domain B.

And finally, we propose to compute the reconstruction using the standard TRAC method,
which does not contain any dissipation term.

Proposition 2.6. The ‘very wrong’ TRAC case:
In the eventuality that the dissipation is unknown altogether, the erroneous TRAC problem be-
comes:

−ω2vTR,very − c2
0v
T
R,very

′′
= 0, in (xL, xB−) ∪ (xB+ , xR),

TRAC−0th[vTR,very] = TRAC−0th[uI ], on {xB−},

TRAC+
0th[vTR,very] = TRAC+

0th[uI ], on {xB+},

vTR,very = uT , on {xL} ∪ {xR}.

(17)

The general solution is:

vTR,very(x) =

 uT (xL)e−ik0(x−xL) + 1
2iωTRAC−0th[uI ](xB−)

(
e−ik0(x+xB−−2xL) − eik0(x−xB− )

)
, if x ∈ [xL, xB− ],

uT (xR)eik0(x−xR) + 1
2iωTRAC+

0th[uI ](xB+)
(
eik0(x+xB+−2xR) − e−ik0(x−xB+ )

)
, if x ∈ [xB+ , xR].

(18)

With the same parameters as before, we display in Figure 6 the reference solution together
with the ‘wrong’ TRAC reconstruction (16) and the ‘very wrong’ one (18). Although the ‘wrong’
solution seems to give an acceptable reconstruction (some discrepancy is still visible), it is clear
that the ‘very wrong’ one is not reliable at all.

11



The TRAC method in the presence of dissipation requires a anti-dissipative term in the
Helmholtz equation to be valid. We observe that, despite the anti-dissipative component, the
solutions to the different variations of the TRACmethod do not blow up or increase exponentially
in a way preventing the reconstruction.

Figure 6: 1D erroneous TRAC – Real part (left), imaginary part (centre) and modulus (right) of the solution to
time reversal problems: complex conjugated vs. ‘wrong’ TRAC vs. ‘very wrong’ TRAC. The dashed vertical lines
show the location of the inclusion D. The dotted vertical lines show the location of the artificial domain B.

2.4 Relative L2-error of TRAC reconstructions in 1D
In this section, we propose to quantify the error made when one of the three erroneous TRAC
methods is used instead of the exact one. The motivation is again that the term iωσ0 does
not provide a differential operator after inverse Fourier transform if we wish to transpose the
TRAC method with dissipation to the time domain. As a result, some approximations have
been proposed and we want to estimate the discrepancy between the targeted wavefield and the
reconstructed one.

To make the formulae more digest, we consider the following complex conjugated incident
wave

uI(x) = − f

2iωσ0
e−ikσ0 (x−xR).

The explicit TRAC operators are described in Appendix B.4 and will be used for the rest of this
section.

For each approximation of the TRAC methods, we can write the explicit absolute error
formula:

12



• ‘Approx.’ TRAC

Eapprox(x) = vTR(x)− vTR,approx(x)

=



i(ωσ0 − ω) + σ0
2

Ψ

(
uT (xL)

(
e−ikσ0 (x+xB−−2xL) − eikσ0 (x−xB− )

)
+

f

2iωσ0

(
e−ikσ0 (x+xB−−xR−xL) − eikσ0 (x−xB−+xR−xL)

))
, for x ∈ [xL, xB− ],

i(ωσ0 − ω) + σ0
2

Φ

(
uT (xR) +

f

2iωσ0

)(
eikσ0 (x+xB+−2xR) − e−ikσ0 (x−xB+ )

)
,

for x ∈ [xB+ , xR].
(19)

• ‘Wrong’ TRAC

Ewrong(x) = vTR(x)− vTR,wrong(x)

=



(ωσ0 − ω)

Ξ

(
uT (xL)

(
e−ikσ0 (x+xB−−2xL) − eikσ0 (x−xB− )

)
+

f

2iωσ0

(
e−ikσ0 (x+xB−−xR−xL) − eikσ0 (x−xB−+xR−xL)

))
, for x ∈ [xL, xB− ],

(ωσ0 − ω)

Θ

(
uT (xR) +

f

2iωσ0

)(
eikσ0 (x+xB+−2xR) − e−ikσ0 (x−xB+ )

)
,

for x ∈ [xB+ , xR].
(20)

• ‘Very wrong’ TRAC

Every(x) = vTR(x)− vTR,very(x)

=



uT (xL)
(
e−ikσ0 (x−xL) − e−ik0(x−xL)

)
+
f e−ikσ0 (xB−−xR)

2iωσ0

(ωσ0 − ω)

2ω

(
e−ik0(x+xB−−2xL) − eik0(x−xB− )

)
, for x ∈ [xL, xB− ],

uT (xR)
(
eikσ0 (x−xR) − eik0(x−xR)

)
− f

2iωσ0

(
e−ikσ0 (x−xR) − eikσ0 (x−xR)

)
+
f e−ikσ0 (xB+−xR)

2iωσ0

(ωσ0 + ω)

2ω

(
e−ik0(x−xB+ ) − eik0(x+xB+−2xR)

)
, for x ∈ [xB+ , xR].

(21)

By deriving the error formulae in the case of our three usual types of inclusion, we obtain
the following result:

Proposition 2.7. For the 1st-order approximation and the 0th-order approximation of the
TRAC method, the error in the case of a sound-soft inclusion is the opposite of the error in
the case of a sound-hard inclusion at the same location and with the same settings, for all
x ∈ [xB+ , xR].
However, we cannot conclude for the variant without dissipation.

Proof. The calculations were made with Maple and can be easily derived using Appendices B.3
and B.4.

Conjecture 2.1. For the 1st-order approximation and the 0th-order approximation of the TRAC
method, the modulus of the error in the case of a penetrable inclusion is smaller or equal than
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the modulus of the error in the case of a sound-hard inclusion at the same location and with the
same settings (and for any values of the penetrable inclusion).

|Epenetrable(x)| ≤ |Ehard(x)| = |Esoft(x)|, ∀x ∈ [xB+ , xR].

If the statement above is correct, then we can deduce the behaviour of the error by considering
the case of a sound-soft (or sound-hard) only, provided that all tests are using inclusions at the
same location and with the same settings.

Remark 2.2. To prove Conjecture 2.1, we need to show that

|Epenetrable(x)|
|Ehard(x)|

=

∣∣∣∣∣∣
(kσD

2 − kσ0
2
)
(
e−2ikσDxD− − e−2ikσDxD+

)
(kσD + kσ0)2e−2ikσDxD+ − (kσD − kσ0)2e−2ikσDxD−

∣∣∣∣∣∣ ≤ 1.

We have not managed to prove it, nor to find a counter-example. The question is still open. �

In Figure 7, we display the absolute errors for the following parameters: f = 1, ω = 5,
(xL, xR) = (0, 10), (xD− , xD+) = (2, 5), (xB− , xB+) = (1.5, 6), and c0 = 1, σ0 = 0.01, cD = 1.5,
σD = 2. We observe that the results in Proposition 2.7 are satisfied. Moreover, we clearly
see that the 1st-order approximation performs much better than the two others, with an error
bounded by 5 × 10−8 for ‘approx.’, by 10−4 for ‘wrong’ and 5 × 10−3 for ‘very wrong’. Note
that the error is particularly good because we took a small σ0. For instance, if we now consider
σ0 = 0.7 (the other parameters remain the same), then the error increases for the three approx-
imated TRAC problems: the error is bounded by 3× 10−4 for ‘approx.’, by 6× 10−3 for ‘wrong’
and 0.2 for ‘very wrong’.

Finally, we are interested in the behaviour of the error as a function of the ambient dissipa-
tion σ0, so that we can determine the values of σ0 for which the error is negligible or, on the
contrary, that will give a very poor reconstruction. We consider the relative L2-error for this
study

evariant(σ0) :=
‖Evariant‖L2

‖vTR‖L2

,

where variant refers to the different possible approximations of the TRAC method listed above
and we recall that vTR is the exact TRAC reconstruction. Note that the L2-norm is taken ei-
ther in [xL, xB− ] or in [xB+ , xR], since the behaviour differs on each interval. In particular,
for sound-soft or sound-hard inclusions (in the current settings), the reconstruction only occurs
in [xB+ , xR].

For the numerical test, we consider the same parameters as for Figure 7, except that σ0

varies in [0, 10] and in [0, 100]. In Figure 8, we display the relative L2-error calculated on the
interval [xB+ , xR]. We compare the error for the different types of inclusions. From the top
row zooming-in for values of σ0 ∈ [0, 10], the relative L2-error clearly has a maximum and
then seems to converge towards zero at the infinity for the ‘approx’ and the ‘wrong’ TRAC
methods. However, for the ‘very wrong’ TRAC method, we see a strictly increasing error, which
confirms that the standard TRAC method (omitting any dissipation) is not reliable. For other
two methods, we seek for the value of σ0 giving the maximal error and the range of values for σ0

so that the relative L2-error is below 1%. Note that the error is having its maximum for the
same value of σ0 independently of the type of inclusion. We summarise the results in Table 1.

While zooming-out, see bottom row of Figure 8, we actually realise that our conjecture on
the behaviour of the error for large values of σ0 was wrong. It rather seems to reach a point
where the error is 100% and stagnates at this value. Therefore, it seems that below a given value
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Figure 7: 1D approximated TRAC – Real part (left), imaginary part (centre) and modulus (right) of the absolute
error: 1st-order approximated TRAC (‘approx’, top row), 0th-order approximated TRAC (‘wrong’, middle row) and
standard TRAC without dissipation (‘very wrong’, bottom row). The dashed vertical lines show the location of the
inclusion D. The dotted vertical lines show the location of the artificial domain B.

Figure 8: 1D approximated TRAC – Relative L2-error between the approximations of the TRAC method and the
exact dissipative TRAC, computed in [xB+ , xR]: 1st-order approximated TRAC (‘approx’, left), 0th-order approxi-
mated TRAC (‘wrong’, centre) and standard TRAC without dissipation (‘very wrong’, right). The dotted horizontal
line shows the 1% threshold. The bottom row is a zoom-out of the top row for a wider range of σ0.
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method/σ0 < 10 < 1% before max max < 1% after max
‘approx’ <∼ 1.07 ∼ 1.36 >∼ 1.65
‘wrong’ <∼ 0.53 ∼ 0.77 >∼ 1.56
‘very wrong’ <∼ 0.0043 ∅ ∅

Table 1: 1D approximated TRAC – Relative L2-error between the approximations of the TRAC method and the
exact dissipative TRAC, computed in [xB+ , xR]: values of σ0 which give a maximum or an error below 1%, for the
parameters of the numerical experiments f = 1, ω = 5, (xL, xR) = (0, 10), (xD− , xD+) = (2, 5), (xB− , xB+) = (1.5, 6),
and c0 = 1, cD = 1.5, and σD = 2. Only values of σ0 < 10 are considered (Zoom-in).

of σ0, the error is acceptable and suddenly the approximation is not good enough to trust the
reconstruction.

Finally, we show the relative L2-error calculated in the interval [xL, xB− ] (for penetrable
inclusions only) in Figure 9. Overall, the error seems to increase less than in the other interval,
perhaps because the wavefield has been damped a lot while passing through the inclusion. We
also conjecture a convergence toward 100% as σ0 goes to infinity, which is consistent with the
results shown in Figure 8.

Remark 2.3. The observations made above concerned this specific test with the chosen param-
eters. However, it seems that the global behaviour remains even with other sets of parameters.
Unfortunately, this has not been proven yet, as the formulae for the relative L2-error with respect
to σ0 could not be explicit and analysed. �

Figure 9: 1D approximated TRAC – Relative L2-error between the approximations of the TRAC method and the
exact dissipative TRAC, computed in [xL, xB− ] (penetrable inclusion only). The dotted horizontal line shows the 1%
threshold, while the dashed horizontal line represents 100% error. The right picture is a zoom-out of the left one for
a wider range of σ0.

3 Numerical experiments in two-space dimensions (and
frequency domains)
As it is well known, 2D is not the best candidate for exact formulations. Therefore, we do not
present any proof for Claim 1.1. However, a good approximation for the absorbing boundary
condition may induce a good enough reconstruction of the total (or scattered) wavefield. For the
first studies on the TRAC method, the first order Bayliss-Turkel boundary condition was used
successfully for elliptic trial domain [16, 17, 18]. More recently, the second order Enquist-Madja
boundary condition was also proposed in [53] with excellent results, as well.

In this section, we follow [17] and [53], and consider both a first-order Bayliss-Turkel-like
absorbing boundary condition and a second-order Engquist-Madje-like ABC to perform the
TRAC method in 2D in dissipative (and non-homogeneous) media.

16



3.1 A numerical experiment in 2D – Forward problem
To illustrate the feasibility of the TRAC method with dissipation in two-space dimension and
frequency domain, we propose a benchmark example. For this, we assume that the surrounding
medium is constant and homogeneous, but contains a dissipative component. Also, we use the
Helmholtz equation with parameters from electromagnetism: electric permittivity ε, magnetic
permeability µ and electric conductivity σ, see Remark 1.1. Furthermore, we denote by ε0 and µ0

the electric permittivity and the magnetic permeability, respectively, in the vacuum.
Consider a square computational domain Ω, which contains one or several inclusions. We

assume that the surrounding medium is homogeneous and has a relative permittivity εr = 5, a
relative permeability µr = 1 and an electric conductivity σ0 = exp(−3) ∼ 0.05. These values
correspond to the permittivity, permeability and conductivity of the soil [61]. The size of Ω is
taken as 2m in width and 2m in depth. The inclusions are located somewhere around the centre
of Ω.

To solve the forward problem,

−ω2µ0µr (ωε0εr − iσ0)uT −∆uT = f, in Ω, (22)

we use the Finite Element method through the software FreeFem++ [62], namely P2 elements,
and the total-field/scattered-field (TF/SF) formulation [56, 57] with 2nd-order Engquist-Madja
boundary conditions. A point source is modelled by

f(x, y) =
i

4
·H(2)

0 (Re(ikσ
√

(x− xs)2 + (y − ys)2) · e(−Im(ikσ)
√

(x−xs)2+(y−ys)2), (23)

where H(2)
0 is the 0th-order Hankel function of Type 2, (xs, ys) are the coordinates of the point

source and kσ :=
√
ωµ0µr (ωε0εr − iσ0).

We work with different types of inclusions, still following the parameters from [61]:

– sound-hard, with εr = 1, µr = 104 and σ = 107. These would for instance correspond to
iron mines buried in the land;

– penetrable, with εr = 3, µr = 1 and σ = 0, to model mines with plastic wrapping.

We also consider two sizes for the inclusions: a small one with 10× 4cm2 and a large one with
60× 10cm2.

In Figure 10, we show the numerical results for the forward problem in the case of three in-
clusions. We take a computational domain Ω = [−1, 1]× [−1, 1] and the point source is located
at (0.3, 2), deliberately slightly uncentered to avoid a perfect alignment of all the components,
Figure 10(b). The ambient (or surrounding) medium considered is soil and, of the three in-
clusions, we look at two small iron mines (centered at (0.2, 0) and (0,−0.2), respectively) and
a larger plastic mine enclosing one of the small ones, see Figure 10(a). The large inclusion
is centered in the computational domain. We display the total wavefield computed using the
TF/SF formulation, with a layer wide of 0.2, in Figure 10(c), where the scattering due to the
inclusions is clearly identifiable, and the associate scattered field, obtained by subtracting the
incident wave to the total field, is shown in Figure 10(d). We observe all contributions from the
three inclusions.

Let’s now assume that we record the scattered wavefield on a square receivers’ array (bound-
ary of [−0.78, 0.78]× [−0.78, 0.78], i.e., slightly inside the region where the total field was com-
puted), i.e., here we consider a receivers’ array with full aperture and continuous, Γ = ∂Ω. From
these measurements, we will perform Time Reversal using the TRAC method.

17



(a) Geometry with three inclusions enclosed
in the surrounding medium

(b) Point source slightly offset, with dissi-
pation σ0 = exp(−3), (real part)

(c) Total wavefield (real part), solved by
TF/SF formulation

(d) Scattered wavefield (real part), i.e., dif-
ference between the incident and total fields

Figure 10: Numerical experiment in 2D – Forward problem: Presentation of the geometry and the resulting wave-
fields.

3.2 A quick analogy to the 1D case
Before we present the numerical results of the TRAC method with the dissipative component,
we propose a quick analog analysis in 1D to determine the potential problematic values of σ0 in
terms of accuracy of the reconstruction. To do so, we consider the case of one small sound-hard
inclusion located at the centre of the computational domain. To perform TRAC, we introduce
a trial ball enclosing the inclusion, as in Figure 11.

In Figure 12, we plot the obtained relative L2-error for this 1D analog version of the 2D
problem. We propose the three possible approximations, but really consider only the two on the
left and centred columns. The right column presents the case of the standard TRAC, that we
will not consider here. On the top row, we have a view for a large range of σ0 and we clearly
see that from σ0 ≈ 0.75, the error increases drastically up to 100%. As a result, we’d rather
work with values of the dissipation that are much smaller than 0.75. Moreover, a zoom-in allows
us to see a specific behaviour of the error for small values of the dissipation. We notice again
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Figure 11: Analogy 1D for the 2D problem aiming at estimating the values of σ0 potentially giving good reconstruc-
tions or very erroneous ones. The graph is not scaled!

a maximum at about 0.034. Note that for the forward problem proposed in Section 3.1, the
dissipation in the soil was exp(−3) ∼ 0.05, which is beyond that maximum. From the graphs,
it seems that the error decays but we cannot yet assess if this is only a result for the 1D case
and if this can be transposed in 2D. More precisely, we can expect that the error increases for
values of σ0 < 0.034, but it may be that the error does not necessarily decrease sufficiently for
larger values to give a satisfactory reconstruction. We will see a numerical confirmation of this
assumption in the next section.

Figure 12: 1D analog for the 2D example of dissipative TRAC – Relative L2-error between the approximations of
the TRAC method and the exact dissipative TRAC, computed in [xB+ , xR]: 1st-order approximated TRAC (‘approx’,
left), 0th-order approximated TRAC (‘wrong’, centre) and standard TRAC without dissipation (‘very wrong’, right).
The dotted horizontal line shows the 1% threshold. The bottom row is a zoom-in of the top row for a narrower range
of σ0 to exhibit the special behaviour as σ0 is small.

3.3 Numerical results – TRAC problem
Finally, we present the numerical results for the experiment described in Section 3.1. In the
following, we are solving the problem to reconstruct the scattered wavefield

−ω2µ0µr (ωε0εr + iσ0) vSR −∆vSR = 0, in Ω\B,

vSR = uS , on Γ(= ∂Ω),

TRAC[vSR] = 0, on ∂B,

(24)
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and we use three types of trial domains:

(i) a square with 0th-order Engquist-Majda-like complex conjugated boundary condition

TRAC0[vSR] =
∂vSR
∂n

+ ikσv
S
R ;

(ii) a circle with 1st-order Bayliss-Turkel-like complex conjugated boundary condition

TRAC1[vSR] =
∂vSR
∂n

+ ikσv
S
R −

vSR
2r

;

(iii) a square with 2nd-order Engquist-Majda-like complex conjugated boundary condition

TRAC2[vSR] =
∂vSR
∂n

+ ikσv
S
R −

1

2ikσ

∂2vSR
∂τ2

.

We give a derivation of the absorbing boundary conditions in 2D in Appendix A.2.1.

We show the resulting reconstructions in Figure 13. In the case of a square trial domain,
it occurs that the reconstruction was not satisfactory and we first wondered if the cause could
be a bad treatment of the corners. This is indeed a concern, see [53] for a description of this
treatment in the context of the TRAC method. However, when performing the reconstruction
with a circular trial domain, the same image seems to appear. Moreover, further tests have been
performed for smaller values of σ0, which gave satisfactory reconstructions: about 13% still for
σ0 = 0.01 and trial domain (iii), for comparison the relative error for σ0 = 0 was 11%. Thus, it
looks like there is indeed an upper bound for σ0 up to which the TRAC method may perform
in a satisfactory way.

Consequently, we plot the relative L2-error in Figure 14. We can observe two main things:
First, for large values of σ0 the curve seems to converge to 100%; Second, we can again exhibit a
specific behaviour for smaller values of σ0, with a local maximum occurring around σ0 = 0.02 for
trial domain types (i) and (ii), and σ0 = 0.034 for trial domain type (iii). Those are very similar
values to the calculated ones in the 1D analogy. However, although the curve is decreasing after
this local maximum, the relative error remains large, suggesting a bad reconstruction.

To conclude, if we want to work with the dissipation of the soil as proposed in the experiment
of Section 3.1, we may not be able to use the TRAC method with dissipation directly, but we
need to find an alternative, perhaps with a smaller value of σ0. This will be explored in further
work.

As a more positive note, we would like to show a last example where σ0 = 0.01, i.e., five times
smaller than previously but still significant. We also choose a hexagonal shape for trial domain B
to endorse the feasibility of the method for any shapes of B, with a 2nd-order Engquist-Majda-
like boundary condition. In Figure 15, we display the expected reconstruction versus the TRAC
one and we observe very little discrepancy, which is confirmed by a relative L2-error of 10.88%,
the smallest error observed for this example when compared with the square (13.26% using (iii),
26.64% using (i)) and circular (21.12% using (ii)) trial domain B. Definitely, under a given value
of the dissipation, reconstructions can be very accurate, i.e., error similar to the case without
dissipation. Therefore it is useful to make this analysis to check the eligibility of the dissipative
TRAC method depending on the dissipation present in the experiment.
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(a) Expected reconstruction for
a square trial domain (real part)

(b) Reconstruction with 0th

ABC (real part) – Error: 72.77%
(c) Reconstruction with 2nd

ABC (real part) – Error: 46.99%

(d) Expected reconstruction for
a circular trial domain (real
part)

(e) Reconstruction with 1st ABC
(real part) – Error: 102.31%

Figure 13: Numerical experiment in 2D – TRAC method with dissipation σ0 = exp(−3). Results depending on the
type of trial domain. The scale is the same for all the graphs.

Figure 14: Numerical experiment in 2D – TRAC method with varying dissipation σ0. Relative L2-error for the three
types of trial domains with respect to σ0 = [0, 0.0001, 0.001, 0.01, 0.02, 0.034, exp(−3), 0.1, 0.5, 2] (left) and zoom-in
(right).

4 Conclusion, discussion and perspective
In this paper, we explored the feasibility and the limit of the TRAC method in the presence
of dissipation in the model. Dissipation indeed annihilates the time reversibility of the wave
equation, and an anti-dissipative term is added in the time-reversed problem, which jeopardises
the stability of the solution. We then conducted an analysis in one-space dimension and fre-
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(a) Expected image for a hexag-
onal trial domain (real part)

(b) Reconstruction with 2nd

ABC (real part) – Error: 10.88%

Figure 15: Numerical experiment in 2D – TRAC method with dissipation σ0 = 0.01 with a hexagonal trial domain.
The scale is the same for all the graphs.

quency domain to prove that the TRAC method using an exact absorbing boundary condition
gives an exact reconstruction of the targeted wavefield. Furthermore, since the exact absorb-
ing boundary condition in the frequency domain does not lead to a differential operator in the
time domain after inverse Fourier Transform, we investigated three possible variants to the ex-
act TRAC method with different levels of approximation. Ranges of values for the dissipation
have been demonstrated for which the approximated TRAC methods can still give satisfactory
reconstructions. We also see that there exists a given value of the dissipation from which the
reconstruction will always be poor. Finally, we proposed a numerical example in the frequency
domain and two-space dimension to check the feasibility of the TRAC method in presence of
dissipation.

A part II studying heterogeneous media and a transition to the time domain is planned. As
it stands, the current dissipative version of the TRAC method is not yet transposable to the
time domain. Another level of approximation is needed to get a differential operator, nicer to
implement, after inverse Fourier Transform. This additional approximation will be investigated
in the frequency domain and two-space dimension for homogeneous dissipative media. A second
question to be explored is about heterogeneous media. We will study the TRAC method when
the heterogeneity of the ambient medium is known and, then, when only an average homogeneous
approximation is used. Finally, we plan to extend our findings to the time domain in two-space
dimensions.
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A Derivation of the ABC in presence of dissipation

A.1 In the frequency domain and one-space dimension (1D)
In this section, we propose to derive an artificial boundary condition for the Helmholtz equation
that allows us to model infinite domains while performing numerical simulations in homogeneous,
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but dissipative, media. We recall that the Helmholtz equation reads:

−ω2κu(x)− u′′(x) = 0, ∀x ∈ R, (25)

where ω denotes the frequency and κ ∈ C represents the physical properties:

κ =
1

c2

(
1− iσ

ω

)
,

Then, the general solution u can be written:

u(x) = C1 e
λσ x + C2 e

−λσ x, (26)

for two constants to be determined, C1, C2 ∈ C, and

λσ :=
√
−ω2κ = i

ω

c

√
1− iσ

ω
. (27)

We recall that all coefficients, c, ω are positive numbers and σ is nonnegative here. Hence,

λσ =
ω

c


√√√√1

2

(√
1 +

σ2

ω2
− 1

)
+ i

√√√√1

2

(√
1 +

σ2

ω2
+ 1

) .
Note that if σ = 0, λσ becomes the expected iω/c. From this form of λσ, we can deduce the
following:

– Re(λσ) ≥ 0 for any positive values of c, ω and nonnegative values of σ

– Im(λσ) ≥ ω/c > 0 for any positive values of c, ω and nonnegative values of σ

– the solution eλσ x is damped and vanishes when x goes to −∞, but will increase exponen-
tially as x goes to ∞

– the solution e−λσ x is damped and vanishes when x goes to ∞, but will increase exponen-
tially as x goes to −∞

As a result, we want to derive absorbing boundary conditions that will let pass the damped
solution and cancel the exponentially increasing one.

Proposition A.1. Assume that we want to solve (25) in the bounded domain (xL, xR) while mod-
elling an infinite domain. Then the absorbing boundary condition for the dissipative Helmholtz
equation in one-space dimension is exact and reads:

i
ω

c

√
1− iσ

ω
u− u′ = 0, on {xL},

i
ω

c

√
1− iσ

ω
u+ u′ = 0, on {xR}.

Proof. For the proof, we will use the notation λσ as defined in (27) for the sake of simplicity.

Let’s start by considering the boundary condition on {xL} from waves propagating towards −∞.
As said above, the only dissipative solution is eλσ x, while the other term will increase exponen-
tially. By plugging the general solution (26) into the absorbing boundary condition, we get:

λσu(xL)− u′(xL) = λσ(C1e
λσ xL + C2e

−λσ xL)− (C1λσe
λσ xL + C2(−λσ)e−λσ xL)

= 2λσC2e
−λσ xL

= 0,
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which can be only achieved if C2 = 0, i.e., only the dissipative wavefield eλσ x propagates
through {xL}.

The same calculation can be done on {xR} to show that C1 must vanish to keep only the
dissipative solution e−λσ x as x goes to +∞.

A.2 In the frequency domain and two-space dimension (2D)
Let’s first remind three well-known absorbing boundary conditions in 2D without dissipation:

1. First order Engquist-Majda boundary condition [19] on linear boundaries (also zero-th
order Bayliss-Turkel boundary condition [20] on circular boundaries):

iωu+ c
∂u

∂n
= 0,

where ∂/∂n denotes the external normal derivative;

2. First order Bayliss-Turkel boundary condition [20] on circular boundaries:

iωu+ c
∂u

∂n
+
cu

2r
= 0,

where ∂/∂n denotes the external normal derivative and r is the radius of the circular
boundary;

3. Second order Engquist-Majda boundary condition [19] on linear boundaries:

−ω2cu+ iω
∂u

∂n
+
c2

2

∂2u

∂τ2
= 0,

where ∂/∂n denotes the external normal derivative and ∂2/∂τ2 the second tangential
derivative.

A.2.1 Derivation for a planar boundary

For the purpose of this paper, we derive analog absorbing boundary conditions including the
dissipation term. We proceed as in [63] for planar boundaries, since our goal is to work with
second order boundary conditions on square computational domains. The dissipative Helmholtz
equation reads:

−ω2κu(x, y)− ∂2u

∂x2
(x, y)− ∂2u

∂y2
(x, y) = 0, ∀ (x, y) ∈ R2, (28)

the dissipation coefficient being in κ ∈ C as in (2) (or in Remark 1.1). To derive the boundary
condition, we first consider the solution u to (28) in the right half space x ≥ 0 independently
of the boundary condition satisfied at x = 0, as a first example. The other half-planes can be
derived similarly.

We take the Fourier transform in y ∈ R, using η as dual variable:

−ω2κû(x)− ∂2û

∂x2
(x) + η2û(x) = 0, ∀x ≥ 0. (29)

The solution to (29) takes the form:

û(x) = A−e
λ−σ x +A+e

λ+σ x, ∀x ≥ 0. (30)
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Since λ±σ := ±
√
η2 − ω2κ is a complex value, we need to check the sign of the real part and

the imaginary part, to consider only the solution with a vanishing evanescent component, i.e.,
a negative real part. To write down the square root of λ±σ , we use the following notation for
κ := α− iβ, α, β ≥ 0, and we get:

λ−σ = −

√
(η2 − ω2α) +

√
(η2 − ω2α)2 + (ω2β)2

2
− i

√
−(η2 − ω2α) +

√
(η2 − ω2α)2 + (ω2β)2

2
,

λ+
σ =

√
(η2 − ω2α) +

√
(η2 − ω2α)2 + (ω2β)2

2
+ i

√
−(η2 − ω2α) +

√
(η2 − ω2α)2 + (ω2β)2

2
.

By analysing the signs, we see that

– If η2 ≥ ω2α, then Re(λ+
σ ) ≥ (η2 − ω2α) ≥ 0 and Im(λ+) ≥ 0.

– If η2 ≤ ω2α, then Re(λ+
σ ) ≥ 0 and Im(λ+) ≥ |η2 − ω2α| ≥ 0.

– Symmetrical results can be obtained for λ−σ , namely, Re(λ−σ ) ≤ 0 and Im(λ−σ ) ≤ 0.

As a result, since we only consider the solution propagating towards the infinity, coefficient A+

must vanish, and the exact absorbing boundary condition for û(x) = A−e
λ−σ x read:

∂û

∂x
− λ−σ û = 0, at x = 0, (31)

with

λ−σ = −
√
η2 − ω2κ = −iω

√
κ

√
1− η2

ω2κ
. (32)

We need to take the inverse Fourier Transform to go back to the y-coordinate. In the current
form, the inverse Fourier transform of (31) will not be a differential equation, and thus, will not
be costly to implement. We propose to approximate it by a Taylor expansion. Let’s assume that
|η2/(ω2κ)| is small enough5, then the 0th-order approximation of (31) becomes:

∂û

∂x
+ iω

√
κû = 0, at x = 0,

which translates, after inverse Fourier Transform, into:

∂u

∂x
+ iω

√
κu = 0, at x = 0,∀ y ∈ R.

A second order approximation is also conceivable and yields:

∂û

∂x
+ iω

√
κ

(
1− η2

2ω2κ

)
û = 0, at x = 0,

which translates, after inverse Fourier Transform, into:

∂u

∂x
+ iω

√
κu− 1

2iω
√
κ

∂2u

∂y2
= 0, at x = 0, ∀ y ∈ R.

Similar derivation can be done for the other three half-planes and we obtained the following
absorbing conditions for straight boundaries, where n and τ denote respectively the normal and
the tangential coordinates:

5small values of |η2/(ω2κ)| correspond to waves whose propagation direction is close to the normal to the artificial
boundary, see [63]
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– 0th-order:
∂u

∂n
+ iω

√
κu = 0. (33)

– 2nd-order:
∂u

∂n
+ iω

√
κu− 1

2iω
√
κ

∂2u

∂τ2
= 0. (34)

Remark A.1. Note that these absorbing boundary conditions are easily implemented in the
frequency domain. However, the inverse Fourier Transform in time will again not lead to a
partial differential equation and may be too costly to implement. This is the main motivation
of this study. In the current form,

√
κ prevents a direct translation, though. Approximations

will need investigations, which we aim to study in a Part II. �

A.2.2 Numerical results

To conclude this section, we propose to show some numerical examples that validate the absorb-
ing boundary conditions (33) and (34). The numerical experiments will be performed using the
software FreeFem++ [62].

For this experiment, we choose a frequency ν equal to 1 GHz, and ω = 2πν denotes the
angular frequency in the Helmholtz equation. The medium is assumed to be homogeneous and
dissipative, and its physical characteristics are described using electromagnetic notations:

κ := µ0 (ε0 − iσ/ω) ,

where µ0 and ε0 denote the magnetic permeability and the electric permittivity in the vacuum,
respectively. Electric conductivity σ will be varying for the purpose of the numerical experiment.
We also introduce the wavelength, λ, computed from the speed of light c0 in the vacuum and
the frequency:

λ :=
c0

ν
=

1

ν
√
µ0ε0

.

We choose a squared domain with a point source at the centre:

f(x, y) := e−
x2+y2

δ2 ,

with δ = 10−3. At the boundary, we use either the 0th-order or the 2nd-order absorbing bound-
ary condition (33)-(34). For the discretisation, we use P2-Finite Elements.

• Experiment 1 – Illustration

In Figure 16, we display the real part of the solution to the dissipative Helmholtz equation.
We actually only show the north-east corner, and the rest can be deduced by symmetry. We
performed four tests using the dissipation σ = 0.05: (a) using (33) on a squared domain of
length 20λ, i.e., distance to the source of 10λ, (b) using (34) with a distance to the source of
10λ, (c) using (33) with a distance to the source of 20λ (length of squared domain of 40λ), and
(d) using (34) with a distance to the source of 20λ.
As expected, the solution is decaying faster than the non-dissipative counterpart (tests performed
but not displayed) and we also notice that the ABC becomes more accurate as the boundary is
farther from the source term. This is especially visible at the corners.
• Experiment 2 – Quantification of the error

Let’s take the solution performed with the 2nd-order absorbing boundary condition, P2-Finite
Elements, on a squared mesh of edge 40λ (distance to the source of 20λ) as our reference solution
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(a) Order 0 ABC,
source at 10λ

(b) Order 2 ABC,
source at 10λ

(c) Order 0 ABC,
source at 20λ

(d) Order 2 ABC,
source at 20λ

Figure 16: ABC in 2D – Experiment 1. Zoom in the corner x ≥ 0 and y ≥ 0 of the damped solution to the dissipative
Helmholtz equation with the boundary located at 10λ or 20λ from the point source. Dissipation σ0 = 0.005.

to evaluate the error due to the approximated absorbing boundary condition.
To compute the error, we consider the solution recorded on a vertical line well inside the compu-
tational domain x ∈ [−5λ, 5λ], at some distance from the point source. We perform the following
three tests for σ = 0 (no dissipation for reference), σ = 0.05 and σ = 0.2:

– the recordings are at 5
2
3λ from the source in a computational domain of half-length 6

2
3λ;

– the recordings are at 5
2
3λ from the source in a computational domain of half-length 10λ;

– the recordings are at 8λ from the source in a computational domain of half-length 10λ;

The relative L2-error is reported in Table 2 and we can clearly see that the absorbing boundary
condition is improved as the boundary is farther from the source. We also observe that the errors
are of similar range of values as in the non-dissipative case with a better performance from the
2nd-order ABC than the 0th-order ABC, which indicates that the absorbing boundary condition
is doing the right job.
We finally display the recordings (real part, imaginary part and modulus) in Figure 17. Again,
the 2nd-order ABC performs better than the 0th-order ABC (less oscillatory), and the ABCs are
more accurate on larger computational domains.

Order 0 ABC (33) Order 2 ABC (34)
Dissipation|Distance 5

2
3λ− 6

2
3λ 5

2
3λ− 10λ 8λ− 10λ 5

2
3λ− 6

2
3λ 5

2
3λ− 10λ 8λ− 10λ

None (σ = 0) 18.62% 4.53% 5.37% 16.87% 2.91% 2.96%
σ = 0.005 18.11% 2.85% 3.41% 16.61% 2.24% 2.25%
σ = 0.02 17.48% 1.97% 2.14% 16.50% 1.92% 1.91%

Table 2: ABC in 2D – Experiment 2. Relative L2-error computed at the receivers’ location. Comparison between
0th- and 2nd-order absorbing boundary conditions for different values of dissipation σ.

Remark A.2. One could try to derive higher order absorbing boundary conditions, for different
shapes of the boundary, or even for a specific model. For instance, we can also give the dis-
sipative equivalent to the 1st-order Bayliss-Turkel absorbing boundary condition, which recalls
Equations (Atmo RBC HF 0) and (Atmo RBC HF 1) in [64] designed for 3D,

∂u

∂n
+ iω

√
κu+

u

2r
= 0, r being the radius. (35)

For our purpose, only (33), (34) and (35) are actually used.
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Figure 17: ABC in 2D – Experiment 2. Plots of the solution at the recording location (left: real part, centre:
imaginary part, right: modulus) for the three tests and dissipation σ = 0.05

Figure 18: ABC in 2D – Experiment 2. Plots of the solution at the recording location (left: real part, centre:
imaginary part, right: modulus) for the four tests and dissipation σ = 0.05

In Figure 18, we take the same settings and compare the results of Figure 17 with the solution
obtained thanks to the dissipative 1st-order Bayliss-Turkel absorbing boundary condition (35).
The solution looks smoother (less oscillatory) and the amplitude is closer to the reference. This
confirms that (35) may be a good update in the case of dissipation. �
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B Calculations in the frequency domain and one-space
dimension (1D)
In this appendix, we compute all the solutions to the forward problems (4) and (6) and to the
time reversed problems from Sections 2.2-2.4. Since we assume that the physical characteristics
of the medium and the inclusion are piecewise constant functions, we can write the general
solution as:

u(x) = C1 e
ikσ x + C2 e

−ikσ x, (36)

where

kσ =
ωσ
c

and ωσ = ω

√
1− iσ

ω
.

Constants C1 and C2 are then to be determined thanks to the provided boundary conditions
specific to each problem.

Remark B.1. The derivation and computation of solutions is possible by hand for homogeneous
media, e.g., we performed them with Maple. However, the general results could be extended to
non-homogeneous media, since they do not rely on the homogeneity of the medium. We will not
perform all the calculations, though. �

B.1 Solutions to the forward cases
We assume that the computational domain is (xL, xR) and that an inclusion D is strictly en-
closed in it, i.e., [xD− , xD+ ] ( (xL, xR). We also assume that the source f is located at the
extremity xR.

Let’s start with the incident wavefield, i.e., there is no inclusion in the computational domain
yet.

Proposition B.1. The incident wavefield uI satisfies the problem
−ω2uI + iωσ0u

I − c2
0u
I ′′ = 0, in (xL, xR),

iωσ0u
I − c0u

I ′ = 0, on {xL},

iωσ0u
I + c0u

I ′ = f, on {xR}

and is given by

uI(x) =
f

2iωσ0
eikσ0 (x−xR), ∀x ∈ [xL, xR].

Proof. The dissipative Helmholtz equation in 1D here is a constant coefficients second order
ordinary differential equation with general solution

uI(x) = Ae−ikσ0x +Beikσ0x,

where A and B are two complex coefficients to determine from the boundary conditions. We
start by considering the absorbing boundary condition on {xL}:

iωσ0u
I − c0u

I ′ = iωσ0(Ae−ikσ0x +Beikσ0x)− c0(−ikσ0Ae−ikσ0x + ikσ0Be
ikσ0x)

= 2iωσ0Ae
−ikσ0x = 0 =⇒ A = 0.
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Now, B can be deduce from the absorbing boundary condition on {xR}:

iωσ0u
I(xR) + c0u

I ′(xR) = iωσ0Be
ikσ0 (xR) + c0(ikσ0)Beikσ0 (xR)

= 2iωσ0Be
ikσ0 (xR) = f =⇒ B =

f

2iωσ0
e−ikσ0 (xR).

For the purpose of readability, let’s also called scattered field the following:

uS(x) = − f

2iωσ0
eikσ0 (x+xR−2xD+ ), ∀x ∈ [xD+ , xR].

Proposition B.2. Assume that inclusion D is sound-soft. Then, the total wavefield uTsoft is
solution to

−ω2uTsoft + iωσ0u
T
soft − c2

0u
T
soft
′′

= 0, in (xL, xD−) ∪ (xD+ , xR),

iωσ0u
T
soft − c0u

T
soft
′

= 0, on {xL},

uTsoft = 0, on {xD−} and on {xD+},

iωσ0u
T
soft + c0u

T
soft
′

= f, on {xR},

and reads:

uTsoft =

 uI(x) + uS(x) =
f

2iωσ0

(
eikσ0 (x−xR) − e−ikσ0 (x+xR−2xD+ )

)
, ∀x ∈ [xD+ , xR],

0 otherwise.

Proof. As previously, the general solution reads

uTsoft(x) = Ae−ikσ0x +Beikσ0x,

where A and B are two complex coefficients to determine from the boundary conditions. We
start by considering the absorbing boundary condition on {xR}, which actually yields the same
coefficient B as for the incident wave. Now, we use the Dirichlet boundary condition on {xD+}
to determine A

uTsoft(xD+) = Ae−ikσ0xD+ +
f

2iωσ0
eikσ0 (xD+−xR),

= 0, =⇒ A =
f

2iωσ0
e−ik0(xR−2xD+ ).

Remark B.2. The scattered field is actually solution to
−ω2uS + iωσ0u

S − c2
0u
S ′′ = 0, in (xL, xD−) ∪ (xD+ , xR),

uS = −uI , on {xD+},

iωσ0u
S + c0u

S ′ = 0, on {xR},

and is equal to 0 in (xL, xD−), since no signal goes through the sound-soft inclusion. �
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Proposition B.3. Assume now that inclusion D is sound-hard. Then, the total wavefield uThard
is solution to

−ω2uThard + iωσ0u
T
hard − c2

0u
T
hard

′′
= 0, in (xL, xD−) ∪ (xD+ , xR),

iωσ0u
T
hard − c0u

T
hard

′
= 0, on {xL},

uThard
′

= 0, on {xD−} and on {xD+},

iωσ0u
T
hard + c0u

T
hard

′
= f, on {xR},

and its solution differs only by a sign from the sound-soft case (change from a Dirichlet to a
Neumann boundary condition):

uThard =

 uI(x)− uS(x) =
f

2iωσ0

(
eikσ0 (x−xR) + e−ikσ0 (x+xR−2xD+ )

)
, ∀x ∈ [xD+ , xR],

0 otherwise.

Proof. The proof is entirely similar to the proof in the case of a sound-soft inclusion. Note that
no signal goes through the sound-hard inclusion either.

Finally, in the case of penetrable inclusions, we assume that the physical characteristics are
piecewise constant

c(x) =

{
c0, in (xL, xD−) ∪ (xD+ , xR),

cD, in (xD− , xD+),
and σ(x) =

{
σ0, in (xL, xD−) ∪ (xD+ , xR),

σD, in (xD− , xD+),

Proposition B.4. For a penetrable inclusion, the forward problem can be expressed as
−ω2uT + iωσ(x)uT − c(x)2uT

′′
= 0, in (xL, xR),

iωσ0u
T − c0u

T ′ = 0, on {xL},

iωσ0u
T + c0u

T ′ = f, on {xR}.
The solution reads

uT =


GL(x)uI(x), ∀x ∈ [xL, xD− ],

GD

(
(kσD − kσ0)e−ikσD (x−xD++2xD− ) + (kσD − kσ0)eikσD (x+xD+ )

)
∀x ∈ [xD− , xD+ ],

uI(x) +GRu
S(x), ∀x ∈ [xD+ , xR].

with

GL(x) = 4kσDkσ0e
ikσD (xD++xD− )eikσ0 (xD+−xD− )/C,

GD = 2kσ0u
I(xD+)/C,

GR = (k2
σD
− k2

σ0)(eikσD xD− − eikσD xD+ )/C,

and C = (kσD + kσ0)2e2ikσD xD+ − (kσD − kσ0)2e2ikσD xD− .

Proof. The general solution can be decomposed into three formulae

uT =


AL e

ikσ0 x + BL e
−ikσ0 x, ∀x ∈ [xL, xD− ],

AD e
ikσD x + BD e

−ikσD x, ∀x ∈ [xD− , xD+ ],

AR e
ikσ0 x + BR e

−ikσ0 x, ∀x ∈ [xD+ , xR],

but must be C1(x−L, xR). Using continuity conditions on uT and its first derivative on {xD−}
and {xD+}, we can build a 4 × 4 system to obtain the coefficients. We used Maple for the
calculations, which we will not detail here.
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B.2 Solutions to the classical time reversal
As in Section 2.2, perfect classical time reversal occurs if the entire medium, with the inclusion,
is known. This is the case, for instance, when performing the physical experiment by sending
the recorded time-reversed signal in the original medium. Note the change of sign transforming
the dissipation term into an anti-dissipative component.

For the sound-soft and sound-hard cases, we only consider the perfect time reversal on
(xD+ , xR), since it is clear that no signal goes through these types of inclusion, i.e., the wavefield
is zero in (xL, xD−). We also assume that the only measurement is located at {xR} and that we
know the inclusion-type at {xD+}. As a result, the perfect time reversal problem is:

• for a sound-soft inclusion:
−ω2 vTsoft,R − iωσ0v

T
soft,R − c2

0v
T
soft,R

′′
= 0, in (xD+ , xR),

vTsoft,R = 0, on {xD+},

vTsoft,R = uTsoft, on {xR}.

• for a sound-hard inclusion:
−ω2 vThard,R − iωσ0v

T
hard,R − c0v

T
hard,R

′′
= 0, in (xD+ , xR),

vThard,R
′

= 0, on {xD+},

vThard,R = uThard, on {xR}.

In both cases, it can be easily computed by hand or using a symbolic computer6 that

vTsoft,R(x) = uTsoft(x) and vThard,R(x) = uThard(x)

for all x ∈ [xD+ , xR], and by extension for all x ∈ [xL, xD− ] ∪ [xD+ , xR].

The penetrable case is obviously more complicated as the parameters vary and we can con-
sider various configurations of receivers. We propose two possible configurations:

• Two measurements are used, one at {xL} and the other at {xR}: −ω
2 vTR − iωσ(x)vTR − c(x)2vTR

′′
= 0, in (xL, xR),

vTR = uT , on {xL} ∪ {xR}.

• Only one measurement at {xR} is available, we impose an out-going absorbing boundary
condition7 at {xL}:

−ω2 vTR − iωσ(x)vTR − c(x)2vTR
′′

= 0, in (xL, xR),

−iωσvTR − c0v
T
R
′

= 0, on {xL},

vTR = uT , on {xR}.

Here again, the classical time reversal reconstruction of the total wavefield coincides exactly with
the complex conjugated of the associated forward wavefield. The calculations require to split

6e.g., we used Maple.
7time-reversed, aka. complex conjugated from the forward counterpart.
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the general solution in three, as for the forward case, and to use the continuity conditions. The
result has been checked with Maple.

To perform numerical time reversal, it happens that the entire medium may not be known,
e.g., we do not have information about the inclusion, only about the surrounding medium. The
computation is then performed on (xL, xR) for any type of inclusions. As a result, classical
time reversal consists in solving the time-reversed problem assuming that the medium is only
composed with the surrounding characteristics, and we knowingly omit the presence of the
inclusion. It is to be expected that the solution to this numerical time reversal will differ from
the perfect time reversal, therefore, from the complex conjugate of the forward wavefield targeted.
In Section 2.2, we propose two possible configurations, similar to the perfect time reversal for
penetrable inclusions:

• two measurements are used, one at {xL} and the other at {xR} ;
• only one measurement at {xR} is available, we impose an out-going absorbing boundary

condition6 at {xL}.

Proof. of Proposition 2.3 Let’s start with the case of two measurements. We recall the problem −ω
2wTR,2 − iωσ0w

T
R,2 − c2

0w
T
R,2
′′

= 0, in (xL, xR),

wTR,2 = uT , on {xL} ∪ {xR}.

Then, the general solution is again

wTR,2(x) = Ae−ikσ0x +Beikσ0x.

From the Dirichlet boundary conditions, we obtain the 2× 2 system to solve(
e−ikσ0xL eikσ0xL

e−ikσ0xR eikσ0xR

)(
A

B

)
=

(
uT (xL)

uT (xR)

)
.

and we get the solution

wTR,2(x) =
uT (xR)

(
e−ikσ0 (x−xL) − eikσ0 (x−xL)

)
+ uT (xL)

(
eikσ0 (x−xR) − e−ikσ0 (x−xR)

)
e−ikσ0 (xR−xL) − eikσ0 (xR−xL)

, ∀x ∈ [xL, xR].

For the case of one measurement, we recall that
−ω2wTR,1 − iωσ0w

T
R,1 − c2

0w
T
R,1
′′

= 0, in (xL, xR),

−iωσwTR,1 − c0w
T
R,1
′

= 0, on {xL},

wTR,1 = uT , on {xR},

The general solution is again

wTR,1(x) = Ae−ikσ0x +Beikσ0x.

Thanks to the absorbing boundary condition on {xL}, we already see that B = 0. Finally, using
the Dirichlet boundary condition on {xR}, we obtain the result

wTR(x) = uT (xR)e−ikσ0 (x−xR), ∀x ∈ [xL, xR].

Note that these solutions hold for any type of inclusions: reflective or penetrable.
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B.3 Solutions to the TRAC problems
We have already described the exact TRAC problem and three approximations in Sections 2.1
and 2.3, and exhibit the general solution for each problem in terms of the total wavefield and
the incident wavefield. In this section, we give some detail of the derivation of the solutions and
apply the general formulae to three specific inclusion types. Thereafter, we also compute the
corresponding error formulae that are used for the illustrations in Section 2.

Proof. of Propositions 2.1, 2.4, 2.5 and 2.6 combined.
For the sake of simplicity, we only propose the derivation for the part of the solution in [xB+ , xR].
The solution in [xL, xB− ] results from the symmetrical handling of the derivation.

We first notice that the general solution of (7), (13) and (15) is of the form

Ae−ikσ0x +Beikσ0x, A,B ∈ C,

while for (17) it is

A0e
−ik0x +B0e

ik0x, A0, B0 ∈ C and k0 =
ω

c0
∈ R.

Second, we observe that the absorbing boundary conditions used in the exact TRAC problem (7)
and the standard TRAC problem (17) are the exact complex conjugated absorbing boundary
conditions associated to the physical equation. The derivation of their solution will then be
analog. Similarly, we can make the same conclusion about the derivation of the solutions to (13)
and (15).

Let’s consider the solution to the exact TRAC (7). From the complex conjugated absorbing
boundary conditions on {xB+}, we have

−iωσ0vT (xB+) + c0v
T ′(xB+) = −iωσ0

(
Ae−ikσ0xB+ +Beikσ0xB+

)
+c0

(
−ikσ0Ae−ikσ0xB+ + ikσ0Be

ikσ0xB+

)
= −2iωσ0Ae

−ikσ0xB+

= TRAC+
ex[uI ](xB+), =⇒ A =

TRAC+
ex[uI ](xB+)

−2iωσ0
eikσ0xB+ .

Now, from the measurement, i.e., the Dirichlet boundary condition on {xR}, we get

vT (xR) =
TRAC+

ex[uI ](xB+)

−2iωσ0
e−ikσ0 (xR−xB+ ) +Beikσ0xR

= uT (xR), =⇒ B = uT (xR)e−ikσ0xR +
TRAC+

ex[uI ](xB+)

2iωσ0
e−ikσ0 (2xR−xB+ ).

For the solution to (17), just replace ωσ0 by ω (therefore kσ0 by k0) and TRAC+
ex by TRAC+

0th.

For the other two problems, the complex conjugated absorbing boundary conditions is not
exact. As a result, we cannot deduce A and B independently as before, but a 2×2-system must
be solved((

i(ωσ0 − ω) + σ0
2

)
e−ikσ0xB+

(
i(ωσ0 + ω)− σ0

2

)
eikσ0xB+

e−ikσ0xR eikσ0xR

)(
A

B

)
=

(
TRAC+

1st[u
I ](xB+)

uT (xR)

)
.

We obtain the result thanks to Maple. Finally, for the solution to (15) just replace (i(ωσ0 ∓ ω)± σ0/2)
by i(ωσ0 ∓ ω) and TRAC+

1st by TRAC+
0th.
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B.4 Simplification of the right-hand-side in the complex conju-
gated absorbing boundary conditions
We now describe explicitly the TRAC operators:

TRAC+
ex[uI ](x) = −iωσ0uI(x) + c0uI

′
(x)

= −iωσ0
(
− f

2iωσ0
e−ikσ0 (x−xR)

)
+ c0

(
− f

2iωσ0
e−ikσ0 (x−xR)(−ikσ0)

)
= −2iωσ0

(
− f

2iωσ0
e−ikσ0 (x−xR)

)
= fe−ikσ0 (x−xR)

(
= −2iωσ0u

I(x)
)

and

TRAC−ex[uI ](x) = −iωσ0uI(x)− c0uI
′
(x)

= −iωσ0
(
− f

2iωσ0
e−ikσ0 (x−xR)

)
− c0

(
− f

2iωσ0
e−ikσ0 (x−xR)(−ikσ0)

)
= 0.

Thus TRAC+
ex[uI ](xB+) = fe−ikσ0 (xB+−xR) and TRAC−ex[uI ](xB−) = 0.

For each approximation of the TRAC methods, we also have:

• 1st-order approximation:

TRAC+
1st[u

I ](x) =
(
−i(ω + ωσ0) +

σ0

2

)( −f
2iωσ0

e−ikσ0 (x−xR)

)
TRAC−1st[u

I ](x) =
(
−i(ω − ωσ0) +

σ0

2

)( −f
2iωσ0

e−ikσ0 (x−xR)

)
• 0st-order approximation:

TRAC+
0th[uI ](x) = i(ω + ωσ0)

(
f

2iωσ0
e−ikσ0 (x−xR)

)
TRAC−0th[uI ](x) = i(ω − ωσ0)

(
f

2iωσ0
e−ikσ0 (x−xR)

)
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