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Nested Sequents or Tree-hypersequents – A
survey

Björn Lellmann and Francesca Poggiolesi

Abstract This paper presents an overview of the methods of nested sequents or tree-
hypersequents that were originally introduced to provide a comprehensive proof
theory for modal logic. The paper retraces the history of how these methods have de-
veloped. Its aim is also to present, in an unified and harmonious way, the most recent
results that have been obtained in this framework. These results encompass several
technical achievements, such as the interpolation theorem and the construction of
countermodels. Special emphasis is also given to the application to logics other than
the standard modal ones as well as to relations to other proof theoretic formalisms.

1 Introduction

The sequent calculus, introduced in Gentzen (1935), was designed to construct
derivations for classical (and intuitionistic) logic and to prove that any of these
derivations can be analytic, where a derivation is analytic when each formula that
occurs in it is a subformula of its conclusion. Several successive studies have shown
that the classical sequent calculus Gcl (see Figure 1) displays different properties
that have both a technical and philosophical value. For example, the logical rules of
the classical sequent calculus are:1

• explicit, i.e. the introduction rules for a constant ? are explicit if they exhibit ?
in their lower sequent only and they exhibit only one occurrence of ?.
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1 SeeAvron (1996); Poggiolesi (2008c, 2010b) andWansing (2002) for a discussion these properties,
as well as for others.

1

lellmann@logic.at
poggiolesi@gmail.com


2 Björn Lellmann and Francesca Poggiolesi

Axioms:
p ⇒ p

Structural rules:

M ⇒ N
α, M ⇒ N

WL
M ⇒ N

M ⇒ N, α
WR

α, α, M ⇒ N

α, M ⇒ N
CL

M ⇒ N, α, α

M ⇒ N, α
CR

Logical rules:

M ⇒ N, α

¬α, M ⇒ N
¬L

α, M ⇒ N

M ⇒ N, ¬α
¬R

αi, M ⇒ N

α0 ∧ α1, M ⇒ N
∧L

M ⇒ N, α M ⇒ N, β

M ⇒ N, α ∧ β
∧R

Cut rule:
M ⇒ N, α α, P ⇒ Q

M, P ⇒ N,Q
Cutα

Fig. 1 The classical sequent calculus Gcl

• separated, i.e. the introduction rules for a constant? are separated if they do not
exhibit any other connective other than ?.

Moreover, it can be proved that the classical structural rules are admissible, i.e. a
rule is admissible when whatever can be proved with the aide of that rule, can also be
proved without, e.g. see Troelestra and Schwichtenberg (1996). Finally, the classical
sequent calculus introduced by Gentzen does not contain any explicit semantic
element, i.e. we say that a sequent S does not contain a semantic element if every
element that serves to define the sequent itself can be translated in such a way that it
forms, together with the translation of the other elements of S, a formula equivalent
to S, see Poggiolesi (2010b); Stouppa (2007); Stewart and Stouppa (2004).

Since 1935, an impressive number of different logics have been developed.
Amongst them, one family which has proved to be particularly successful, is that of
modal logic, that is obtained by adding to classical logic the two operators � and ^
for necessity and possibility, respectively. The blossoming of modal logic is directly
linked to the introduction, in the middle of the 1960, of the Kripke possible worlds
semantics (see Kripke, 1963b, 1965, 1963a); by means of such semantics, the modal
connectives � and ^ are interpreted very naturally. In this interpretation, a formula
α is necessarily true if, and only if, it is true in every possible word (of a Kripke
model), while a formula α is possibly true if, and only if, there exists some world (of
a Kripke model) where it is true. Since its introduction, Kripke semantics have been
modified, extended and analyzed in a wide plethora of ways and it has given rise to
a great numbers of outcomes.

These outstanding results soon led to the investigation of the links between the
sequent calculus andmodal logic. From the 1950s until the 1980s, the first approaches
consisted in adding to the standard sequent calculus Gcl for classical logic (see
Figure 1) new rules for introducing on the left or on the right of the sequent the
modal operators � and ^, see, e.g., Curry (1952), Goble (1974), Leivant (1981),
Ohnishi and Matsumoto (1957), and Sambin and Valentini (1982). However, it did
not take long to realize that these new modal sequent calculi no longer enjoyed most
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of the properties satisfied by Gcl: in certain cases, it even turned out to be difficult
to have a cut-free sequent calculus. Hence, the problem did not seem to be that of
choosing suitable rules for modal logic, but that of finding rules, and calculi, that
did satisfy certain properties. In other words, it seemed that the move from classical
logic to modal logic could not be simply made by adding a new connective with rules
governing it, but by extending one’s conception of the objects to be manipulated by
such rules. Generalizing the sequent calculus in order to obtain an adequate proof
theory for modal logic was thus seen as a necessary step.

But how does one generalize the sequent calculus? Consider the main object of
the sequent calculus, namely a sequent:

M ⇒ N

where M and N are multisets of classical formulae, the antecedent and consequent,
respectively, separated by the sequent arrow. Now try to find a more abstract version
of it. Then, several possibilities arise:2

• one might want to deal with more than one antecedent or one consequent;
• one might want to deal with more than just one type of sequent arrow;
• one might want to deal with more than just one way (the comma) of separating
one formula from another;

• one might want to deal with more than one sequent at a time.

Each of these possibilities has given rise to a different rigorous way for improving
the standard sequent calculus; in particular, they have led to higher-arity sequent
calculi (e.g. see Blamey and Humberstone, 1991), multiple sequent calculi (e.g. In-
drezejczak, 1997), display calculi (e.g.Wansing, 2002), and the framework which we
consider here, introduced independently under the names of nested sequents in Bull
(1992); Kashima (1994), deep sequents in Brünnler (2006), and tree-hypersequents
in Poggiolesi (2008b). Arguably, tree-hypersequents or nested sequents are one of the
most successful approaches to the proof theory of modal logic: not only because of
the several results and applications that have been obtained with them and which will
be described in detail in the next sections (i.e. admissibility of the structural rules,
cut-elimination, decidability, interpolation), but also because tree-hypersequents or
nested sequents seem to best preserve the original spirit of Gentzen sequent calculus
for classical logic: for example, these calculi do not contain any explicit semantic
element, and the rules are (often) explicit and separated.

The aim of this paper is to present an overview3 of the tree-hypersequents or
nested-sequents calculi in the proof theory for modal logic and beyond. As far as
we know, no such overview exists so far, and given the wide variety of results
obtained, it seems to be needed. We have tried to be reasonably comprehensive but

2 Note that here we do not mention all extensions of the sequent calculus, the list being too long.
Moreover, we completely omit the sequent calculi for modal logic obtained not by changing the
standard sequent, but by indexing formulae of the language of modal logic, e.g. see Kanger (1957);
Simpson (1994); Viganò (2000).
3 We will present only sketches of proofs and give references to the original papers.
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due to space constraints we needed to concentrate on some aspects. Of course we
might also have unintentionally overlooked some results. The reader is referred in
addition, e.g., to the list of publications on nested sequents on the website http:
//alessio.guglielmi.name/res/cos/index.html.

The paper is organized as follows. In Sec. 2 we provide the basic definitions
of nested sequent calculi for the standard normal modal logics, we prove the ad-
missibility of structural rules, soundness and completeness plus cut-elimination. In
Sec. 3 we show how nested sequents can be applied for countermodel construction
(Sec. 3.1) as well as for proving decidability and interpolation results (Sec.s 3.2
and 3.3). Sec. 4 contains an overview of other logics which have been considered in
the nested sequent framework, including intuitionistic and first-order logic (Sec. 4.1)
as well as other kinds of modal logics such as intuitionistic and constructive modal
logic (Sec. 4.2), epistemic modal logics and propositional dynamic logic (Sec. 4.3),
and non-normal modal logics and conditional logics (Sec. 4.4). Finally, in Sec. 5 we
situate the nested sequent framework in relation to other proof theoretic frameworks
including standard sequents (Sec. 5.1), hypersequents (Sec. 5.2), prefixed tableaux
(Sec. 5.4), labelled sequents (Sec. 5.5) and display calculi (Sec. 5.7). We also con-
sider the restriction to linear nested sequents (Sec. 5.3) and the extension to indexed
nested sequents (Sec. 5.6).

2 The formalism

We use this section to introduce the nested sequents method.4 We will do it in the
following way: we will first recall some basic notions of modal logic which, although
quite well-known, will be important for what follows. Secondly, we will explain the
basic ideas behind nested sequents; finally, we will introduce the method formally.

Definition 2.1 Let L be the modal propositional language composed of proposi-
tional atoms p, q, r, ..., the logical symbols ¬,∧,�, and parentheses (, ). The con-
nectives ∨, → and ↔ are defined as usual and might be occasionally used as
abbreviations. The same hols for the diamond ♦, which is defined as ¬�¬. Formulae
are build up in the usual way and are denoted by greek letters α, β, .... We use the
capital letters M, N ... to denote multisets of formulae.

Definition 2.2 A normal modal system is a set of well formed formulae of L such
that it contains all the classical tautologies and the distribution axiom :

�(α→ β) → (�α→ �β)

It also contains modus ponens, uniform subsitution and the necessitation rule namely
the rule:

if ` α then ` �α

4 From now till the end of the paper, we adopt the name nested sequent instead of tree-hypersequent,
or deep sequent since it is historically the first and also the most used one.

http://alessio.guglielmi.name/res/cos/index.html
http://alessio.guglielmi.name/res/cos/index.html
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K

KD

KT

KB

KDB

KTB

K5

KD5

K4 K45 KB5

KD4 KD45

S4 S5

d �A→ ♦A (seriality)
t �A→ A (reflexivity)
4 �A→ ��A (transitivity)
b A→ �♦A (symmetry)
5 ♦A→ �♦A (euclideaness)

Fig. 2 The modal logic cube together with the axioms and the corresponding frame porperties.

The modal Hilbert system K is the weakest normal modal system: it contains the
axioms and rules that we have listed above. The other normal modal systems are
obtained by adding to K combinations of the axioms listed in Figure 2: they are
named according to the concatenation of the names of their axioms. An exception
is provided by systems S4 and S5: the former is obtained by adding to the system K
the axioms T and 4, the latter the axioms T , 4 and B. These Hilbert normal modal
systems are taken to be the main or standard systems of modal logic and they form
the so-called modal logic cube, see Figure 2.

Let us introduce some basic semantic notions.

Definition 2.3 A frame F is a pair (W, R) such that:

- W is a non empty set (of possible worlds), and
- R ⊆W×W is a binary relation onW. R is usually called the accessibility relation.

Definition 2.4 A tree-frame T , or simpler a tree, is a frame (W, R) that forms a
directed, connected and acyclic graph; the nodes of the graph are labelled by the
variables i, j, ... of the set W , and the connection between nodes is established by the
relation R.

Definition 2.5 AmodelM is a pair (F , v), where F is a frame and v is the following
valuation on F :

v := W ⊗ PL→ {0, 1}

We say that a modelM = (F , v) is based on the frame F .

Definition 2.6 Given a modelM = 〈(W, R), v〉, i ∈ W , and a formula α, the relation

i |=M α [or v(i, α) = 1, or α is true at the world i of the modelM]

usually called the satisfability relation, is inductively defined in the following way:
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- i |=M p iff v(i, p) = 1

- i |=M ¬β iff i 6 |=M β

- i |=M β ∧ γ iff i |=M β and i |=M γ

- i |=M �β iff (∀ j ∈W) (iR j → j |=M β)

Definition 2.7 We say that a formula α is true in a modelM, in symbols: |=M α, if
it is true at every world in the model. We say that a formula α is valid in a frame
F , in symbols: |=F α, if α is true in every model based on that frame. We say that
a formula α is valid in a class C of frames, in symbols: |=C α, if α is valid in every
frame which belongs to that class.

Each of the Hilbert normal modal systems forming the modal logic cube is sound
and complete with respect to a different class of frames enjoying the property(ies)
linked to the corresponding axiom(s), e.g. see (Poggiolesi, 2010b, p. 44).

Let us now introduce the nested sequents method by presenting first of all the
basic intuition behind it. We do that by passing through the semantic link between
classical and modal logic. One way of looking at this link is the following: both
classical and modal logic evaluate (the truth values of) formulae with respect to
possible words, but while in modal logic we have a set of different possible worlds,
in classical logic there is only one possible world (which is therefore often omitted).

Let us look at a sequent M ⇒ N as describing one possible world; we will use the
expression world-sequent to denote this perspective. Since in classical logic there
is only one world, only one sequent is required. In modal logic, instead, we deal
with n possible words; syntactically, we will then need to deal with n sequents at a
time. This is the first step toward a generalization of the sequent calculus. However,
as clarified by the previous definitions, worlds obey a structure regulated by an
accessibility relation. In the case where the accessibility relation is an equivalence
relation (this is what happens in S5), i.e. in the case where the n possible worlds can
be looked at as just a set of worlds divided by an equivalence relation, syntactically,
we can simply work with a set of n sequents, those in a single equivalence class. A
set of n sequents is the object standardly called a hypersequent.5 In the cases where,
on the other hand, the accessibility relation amongst worlds enjoys some properties
(possibly none), then the n world-sequents need to be arranged somehow. Thanks to
the property called the tree-model property (which tells us that any satisfiable formula
is satisfiable in a model based on a tree-frame, see Blackburn et al., 2001), attention
in modal logic can be restricted to tree-frames; consequently, world-sequents can be
arranged so as to form a tree. Such a structure is what is called a nested sequent, deep
sequent, or tree-hypersequent structure. Hence a nested sequent is simply a bunch
of sequents arranged as a tree.

Nested sequent calculi were independently introduced by Bull (1992), Kashima
(1994), Brünnler (2006), and Poggiolesi (2008b, 2010b). Different notations come

5 See Subsection 4.2 (and also Poggiolesi, 2010c) for the links between nested sequents and
hypersequents.
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M ⇒ N, [P ⇒ Q, [S ⇒ T ], [Z ⇒W ]]

M ⇒ N, [P ⇒ Q, [S ⇒ T ]], [U ⇒ V, [Z ⇒W ]]

Fig. 3 Two examples of nested sequents with the corresponding tree structure

with the different authors, where the main difference is that between a single-sided
and a two-sided formulation. Here we adopt the two-sided formulation in a notation
which seems to have become standard and can be found in Bull (1992), Fitting
(2014), Ramanayake (2018). See Sec. 2.1 below for a brief comparison with the
single-sided formulation.

Definition 2.8 (Nested sequent). A nested sequent is a finite object defined recur-
sively as follows:

• if M ⇒ N is a sequent, then it is a nested sequent,
• if M ⇒ N is a sequent and G1, ... Gn are nested sequents, then M ⇒ N, [G1],
... [Gn] is a nested sequent.

In the following we often use G,H, . . . to stand for nested sequents. Intuitively
then, where a nested sequent can be seen as a tree with each node labelled with an
ordinary sequent, the nesting operator [.] in a nested sequent captures the successor
relation in the underlying tree. From a more syntactic perspective, the nesting opera-
tor can be seen as a structural connective corresponding to the logical connective �,
in the same way that, e.g., the comma on the right hand side of an ordinary sequent
can be seen as the structural connective corresponding to disjunction. This gives rise
to the following formula interpretation of nested sequents.

Definition 2.9 (Nested sequent). The standard interpretation τ of a nested-sequent
is defined recursively as follows:

• (M ⇒ N)τ :=
∧

M →
∨

N,
• (M ⇒ N, [G1], ..., [Gn])

τ := (M → N)t ∨ �(G1)
τ ∨ .... ∨ �(Gn)

τ .

Figure 3 shows two examples of nested sequents with the corresponding tree-
frames of Kripke semantics. Before considering the rules of the nested calculi for the
main systems of modal logic, we need to introduce a notational device that allows us
to display these rules. Such a device is called a context and it is the occurrence of the
symbol { } in a nested sequent (which does not occur inside formulae). Informally,
a context allows us to focus on any part of a nested sequent, where the symbol { }
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acts as a placeholder for a subtree starting at a node of the nested sequent; formally
it is defined as follows.

Definition 2.10 The notion of a nested sequent with a context is inductively defined
by:

• { } is a nested sequent with a context of depth 0,
• if M ⇒ N, [H1], . . . , [Hn] is a nested sequent and G{ } is a nested sequent with
context of depth m, then M ⇒ N, [H1], . . . , [Hn], [G{ }] is a nested sequent with
context of depth m + 1.

The result of filling a nested sequent with a context G{} with another nested sequent
H is written as G{H} and is obtained by replacing the symbol {} in G{} with H.

Note that the depth of a context in a nested sequent is simply the length of the path
from the node labelled with { } to the root. Note also that when showing the rules of
the calculi, we might abuse notation and only write N instead of N, [G1], . . . , [Gn]

As stressed by (Poggiolesi, 2010b, p. 8-9) and (Troelestra and Schwichtenberg,
1996, p. 51), Gentzen systems generally come in variants. Consider for example
classical logic; there are at least two variants of the sequent calculus for classical
logic: the general variant and the logical variant. The general variant for classical
logic is a sequent calculus where structural and logical rules are taken as primitive
and their roles are kept separate. The logical variant (see Dragalin, 1988) is a sequent
calculus that is composed by generalized axioms as well the rules ¬R and ¬L and
∧R; as for the rule introducing the conjunction connective on the left side of the
sequent, we consider its multiplicative version, namely the rule

α, β, M ⇒ N
α ∧ β, M ⇒ N

∧L′

The logical variant is called in this way because it contains no structural rule: the
force of the structural rules is absorbed by the axioms and the logical rules. Variants
of Gentzen systems are different sequent calculi; however, since they are different
sequent calculi for the same logic, i.e. different sequent calculi that prove the same
sequents, it is profitable to think of them as variants of a same core. In what follows,
we chose to mainly work with the logical variant of nested calculi. Indeed, not only
is the logical variant the closest to the semantic interpretation of modal logic, but
also it is through this variant that most of the results can be more elegantly presented.

The nested calculus NSk for the basic modal system K is composed of the axioms
and rules given in Figure 4. The rules that introduce negation and conjunction
on the left and on the right of the sequent are the standard rules adapted to the
nested framework: they state that the classical propositional rules can be applied
in any world-sequent. As for the modal rules, they reflect at the syntactic level the
satisfaction of a formula of the form �α in a world x of a Kripke-model. Indeed, the
rule �R states, if read bottom up, that if �α is false in a world-sequent x, then there
exists a world-sequent y accessible from x where α is false. The rule �L, in contrast,
states that if �α is true in a world-sequent x, then in any world-sequent y accessible
from x, α is true.



Nested Sequents or Tree-hypersequents – A survey 9

Initial Nested Sequents
G {p, M ⇒ N, p}

Logical Rules

G {M ⇒ N, α}

G {¬α, M ⇒ N }
¬L

G {α, M ⇒ N }

G {M ⇒ N, ¬α}
¬R

G {α0, α1, M ⇒ N }

G {α0 ∧ α1, M ⇒ N }
∧L

G {M ⇒ N, α0 } G {M ⇒ N, α1 }

G {M ⇒ N, α0 ∧ α1 }
∧R

G {�α, M ⇒ N, [α, P ⇒ Q]}

G {�α, M ⇒ N, [P ⇒ Q]}
�L

G {M ⇒ N, [ ⇒ α]}

G {M ⇒ N, �α}
�R

Fig. 4 The basic nested sequent calculus NSk for modal logic K.

G {�α, M ⇒ N, [α⇒]}

G {�α, M ⇒ N }
d

G {�α, α, M ⇒ N }

G {�α, M ⇒ N }
t

G {�α, M ⇒ N, [�α, P ⇒ Q]}

G {�α, M ⇒ N, [P ⇒ Q]}
4

G {α, M ⇒ N, [�α, P ⇒ Q]}

G {M ⇒ N, [�α, P ⇒ Q]}
b

Fig. 5 The special logical rules for extensions of modal logic K.

In order to obtain the calculi for the remaining modal normal systems, we add
combinations of the special logical rules given in Figure 5 to the calculus NSK.
The resulting calculus is written NSK ∪ X where X is the set of additional rules.
Indeed, each rule corresponds to one of the axioms listed in Figure 2. In the calculi
containing the rules 4 and b, we also need to add the following rule:

G{�α, M ⇒ N, [�α, P⇒ Q]}
G{M ⇒ N, [�α, P⇒ Q]}

5

Contrary to all the other rules, 5 does not reflect the strength and the power of
the corresponding axiom: indeed the calculus NSK plus 5 is not cut-free, while the
calculus NSK plus the rules 5 and t is not complete. Therefore, the rule 5 just serves
to complete the calculi obtained by adding the rules 4 and b to the calculus NSK. We
call this proviso the 5-closure of a calculus:6

Definition 2.11 A set X ⊆ {d, t, b, 4} satisfies the 5-closure proviso if whenever
{b, 4} ⊆ X , then 5 ∈ X .

6 See Brünnler (2009); Poggiolesi (2008d).
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2.1 Single-sided nested sequents

As in the case of standard sequents, nested sequents have also been considered in
a single-sided formulation, most prominently in the series of works starting from
Kashima (1994) and Brünnler (2006). Similarly to the case of classical propositional
logic, for normal modal logics based on classical logics the two formulations can
be translated into each other. The benefit of the single-sided formulation is that the
presentation of nested sequents and nested sequent rules is much more economic.
The downside of this is that formulae are often assumed to be in negation normal
form, i.e., negation is allowed only immediately in front of propositional variables,
and that because of this we need to assume that we have the dual operators of the
modal box, i.e., the modal diamond, as well as of conjunction, i.e., disjunction, in
the language.

Definition 2.12 A single-sided nested sequent is a structure

M, [G1], . . . , [Gn]

where M is a multiset of formulae in negation normal form, n ≥ 0 andG1, . . . ,Gn are
single-sided nested sequents. The standard interpretation τ of single-sided nested
sequents is given by (M, [G1], . . . , [Gn])

τ :=
∨

M ∨ �Gτ
1 ∨ · · · ∨ �Gτ

n.

Thus, in a single-sided nested sequent the nodes of the underlying tree are la-
belled with single-sided sequents, i.e., multisets of formulae in negation normal
form, instead of two-sided sequents. The notions of context, depth, etc., are defined
analogously to the two-sided formulation. The modal rules of the single-sided nested
sequent system for modal logic K then take the following form:

G{M, [α]}

G{M,�α}
�R

G{M, ♦α, [H, α]}
G{M, ♦α, [H]}

�L

The rules for extensions are formulated analogously. We refer the reader to, e.g.,
Kashima (1994), Brünnler (2006), andMarin and Straßburger (2014) for the detailed
description of the systems.

2.2 Admissibility and invertibility results

We use this section for showing that all structural rules are admissible in the nested
calculi for the main normal systems of modal logic. We will also show that the
logical rules are invertible.

Lemma 2.13 (Generalized initial sequents) For any X ⊆ {d, t, b, 4} under the 5-
closure proviso, the nested sequents of the form G{α, M ⇒ N, α} are derivable in
NSk∪X .
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G {M ⇒ N }

G {α, M ⇒ N }
WL

G {M ⇒ N }

G {M ⇒ N, α}
WR

G {M ⇒ N }

G {M ⇒ N, [P ⇒ Q]}
EW

G {α, α, M ⇒ N ]

G {α, M ⇒ N }
CL

G {M ⇒ N, α, α}

G {M ⇒ N, α}
CR

G {M ⇒ N, [P ⇒ Q], [S ⇒ T ]}

G {M ⇒ N, [P, S ⇒ Q, T ]}
merge

G

⇒ [G]
NR

Fig. 6 Structural Rules

Proof By induction on α. �

The structural rules of standard sequent calculi are adapted to the nested structure:
they can be applied to any world-sequent (see rulesWL,WR and CL,CR). In addition
to them we also have rules manipulating the nested sequent structure, namely the ex-
ternal structural rules of external weakening (EW), merge (merge) and necessitation
(NR), see Figure 6. It can be shown that all these rules are height-preserving admis-
sible, i.e., that whenever their premisses are derivable with derivations of height at
most n, then so is their conclusion.

Lemma 2.14 (Admissibility of the structural rules) For any X ⊆ {d, t, b, 4} under
the 5-closure proviso, the rulesWL,WR, EW, CL, CR, NR and merge (see Figure 6)
are height-preserving admissible in NSk∪X .

Proof By induction on the derivation of the premiss. �

Using the previous lemma we can then show that the logical and special logical
rules are height-preserving invertible, i.e., whenever their conclusion is derivable
with a derivation of height at most n, then so are their premisses.

Lemma 2.15 (Invertibility) For any X ⊆ {d, t, b, 4} under the 5-closure proviso, the
logical, modal and special logical rules are height-preserving invertible in NSk∪X .

Proof By induction on the derivation of the premiss, using Lem. 2.14. �

As we have seen above, each of the axioms listed in Figure 2 corresponds to a
special logical rule (see Figure 3); however, it also corresponds to a special structural
rule, see Figure 8. Each of the special structural rules mirrors the frame property
corresponding to the axiom to which it is linked. E.g., rule d̃ ensures that every
node in a nested sequent can be equipped with a successor, corresponding to the
seriality property linked to the axiom d. Given the special logical rules, we then have
admissibility of the corresponding special structural rules.

Lemma 2.16 (Admissibility of the special structural rules)For any X ⊆ {d, t, b, 4, 5},
let X̃ be the corresponding subset in {d̃, t̃, b̃, 4̃, 5̃} (see Figure 8). For any X ⊆
{d, t, b, 4, 5}, the rules in X̃ are height-preserving admissible in NSk∪X .

Proof By induction on the derivation of the premiss. �
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M1 ⇒ N1

M2 ⇒ N2

Mn ⇒ Nn, α

P1 ⇒ Q1

P2 ⇒ Q2

α, Pn ⇒ Qn

M1, P1 ⇒ N1,Q1

M2, P2 ⇒ N2,Q2

Mn, Pn ⇒ Nn,Qn

Fig. 7 A visual representation of the premisses and conclusion of the (context-splitting) cut rule
for nested sequents.

2.3 Cut-elimination, soundness and completeness

One of the technical benefits of the nested sequent framework is that it can be used
in purely syntactic cut elimination proofs. However, defining the cut rule in this
framework is not entirely trivial, since we need to generalise it to the tree structure
of nested sequents. As usual we have the choice between the context-sharing and the
context-splitting variant of the rule. The context-sharing variant is given by:

G{M ⇒ N, α} G{α, M ⇒ N}
G{M ⇒ N}

cutcs

While cut elimination can indeed be shown syntactically for the context-sharing
variant of the cut rule (see, e.g., Brünnler, 2009), this entails a certain overhead in
terms of the structural rules to ensure that the context of the premisses is always the
same. Hence in the following we consider the context-splitting variant. The intuition
is that considering the rule bottom-up from conclusion to premisses, the nested
sequent is split along the branch from the root to the node where the cut formula
is introduced. Dually, considering the rule from premisses to conclusion, the nested
sequents corresponding to the premisses are merged or zipped together along the
branch from their roots to the node containing the cut formula. The graphical intuition
for this is shown in Figure 7. Formally, this is captured as follows (recall that we
abuse notation and write, e.g., M1 ⇒ N1 for M1 ⇒ N1, [G1], . . . , [Gm]):

Definition 2.17 For two nested sequent contexts
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G{ } = M1 ⇒ N1, [. . . [Mn ⇒ Nn, [{ }]] . . . ]

H{ } = P1 ⇒ Q1, [. . . [Pn ⇒ Qn, [{ }]] . . . ]

the merge is the following nested sequent context:

G ⊕ H{ } := M1, P1 ⇒ N1,Q1, [. . . [Mn, Pn ⇒ Nn,Qn, [{ }]] . . . ] .

Intuitively, in G ⊕ H{ } the two nested sequent contexts are “zipped together” along
the path from root to the context symbol { }. In particular, this means that the context
symbol { } occurs at the same depth both in G and H.

The context-splitting cut rule in the nested sequent framework then is the following
rule, where the context has the same depth in G{ } and H{ }:

G{M ⇒ N, α} H{α, P⇒ Q}
G ⊕ H{M, P⇒ N,Q}

cut

The cut elimination result is then shown as follows.

Lemma 2.18 (Cut elimination) Let G{M ⇒ N, α} and H{α, P⇒ Q} be two nested
sequents where the context symbol { } occurs at the same depth both in G and H. If

.... d1

G{M ⇒ N, α}

.... d2

H{α, P⇒ Q}]
G ⊕ H{M, P⇒ N,Q}

cut

and d1 and d2 do not contain any other application of the cut-rule, then we can
construct a derivation of G ⊕ H{M, P⇒ N,Q} with no application of the cut-rule.

Proof The proof is by induction on the complexity of the cut-formula α, with
subinduction on the sum of the heights of the derivations of the premisses of the
cut-rule. The details of the proof can be found in (Poggiolesi, 2008b, Section 7); here
we just illustrate some significant case. Suppose the cut-formula α is of the form �β
and it has been introduced in the left premiss by the rule �R and in the right premiss
by the rule �L. Hence we have the following situation:

G{M ⇒ N, [⇒ β]}

G{M ⇒ N,�β} �R
H{�β, P⇒ Q, [β, S ⇒ T]}
H{�β, P⇒ Q, [S ⇒ T]} �L

G ⊕ H{M, P⇒ N,Q, [S ⇒ T]}
cut

We reduce to

G{M ⇒ N, [⇒ β]}

G{M ⇒ N,�β} H{�β, P⇒ Q, [β, S ⇒ T]}
G ⊕ H{M, P⇒ N,Q, [β, S ⇒ T]}

cut

G ⊕ G ⊕ H{M, M, P⇒ N, N,Q, [S ⇒ T]}
cut

G ⊕ H{M, P⇒ N,Q, [S ⇒ T]} X
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where the first cut is eliminable by induction on the height of the proof, whilst the
second cut is eliminable by induction on the complexity of the cut-formula. The X
denotes several applications of internal contraction rules and merge.

Several other interesting cases of cut emerge whenever the cut-formula α is still
of the form �β, the left premiss has been introduced by the rule �R and the right
premiss has been introduced by one of the special logical rulesY . In the cases where
Y is either t, d or b, the strategy is the same: in order to reduce, we need to use the
corresponding admissible special structural rule Ỹ , see Lemma 2.16, on the nested
sequent above the left premiss of the cut. As an example, we show the case of the
rule t.

G{M ⇒ N, [⇒ β]}

G{M ⇒ N,�β} �R
H{�β, β, P⇒ Q}
H{�β, P⇒ Q}

t

G ⊕ H{M, P⇒ N,Q}
cut

We reduce to

G{M ⇒ N, [⇒ β]}

G{M ⇒ N, β} t̃
G{M ⇒ N,�β} H{�β, β, P⇒ Q}

G ⊕ H{β, M, P⇒ N,Q}
cut

G ⊕ G ⊕ H{M, M, P⇒ N, N,Q}
cut

G ⊕ H{M, P⇒ N,Q} X

where the first cut is eliminable by induction on the height of the proof, whilst the
second cut is eliminable by induction on the complexity of the cut-formula. The X
denotes several applications of internal contraction rules and merge.

In the cases where the special logical rule used to introduce the right premiss of
the cut-rule is either 4 or 5, then the strategy is analogous to the one above except
for the fact that one should further distinguish cases on what may have introduced
the nested sequent above the right premiss of the cut-rule. �

Theorem 2.19 For any X ⊆ {d, t, b, 4} under the 5-closure proviso, every derivation
in NSk∪X ∪ {cut} can be effectively transformed into a derivation d ′ in NSk ∪ X ,
i.e., where there is no application of the cut-rule.

Proof It follows from the previous Lemma by induction on the number of cuts. �

We can now close the section by establishing soundness and completeness for the
nested calculi.

Theorem 2.20 For any X ⊆ {d, t, b, 4} under the 5-closure proviso, the nested calcu-
lus NSk∪X is sound and complete with respect to the corresponding Hilbert system.

Proof The soundness proof is by induction on the height of derivations in Hilbert
systems and can be found in (Poggiolesi, 2010b, §6.3). The completeness proof
consists in showing that we can construct in nested sequent calculi derivations of
the axioms and the inference rules that compose the corresponding Hilbert system.
Here we show the derivation of the distribution axiom; the others derivations can be
found in (Poggiolesi, 2010b, §6.3).
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G {M ⇒ N, [⇒]}

G {M ⇒ N }
d̃

G {M ⇒ N, [P ⇒ Q]}

G {M, P ⇒ N,Q}
t̃

G {M ⇒ N, [P ⇒ Q]}

G {M ⇒ N, [ ⇒ [P ⇒ Q]]}
4̃

G {M ⇒ N, [S ⇒ T, [P ⇒ Q]]}

G {M, P ⇒ N,Q, [S ⇒ T ]}
b̃

G {M ⇒ N, [S ⇒ T, [P ⇒ Q]]}

G {M ⇒ N, [S ⇒ T, P ⇒ Q]}
5̃

Fig. 8 The special structural rules for extensions of modal logic K.

�(α→ β),�α⇒ [α⇒ α, β] �(α→ β),�α⇒ [α, β⇒ β]

�(α→ β),�α⇒ [α→ β, α⇒ β]
→L

�(α→ β),�α⇒ [α⇒ β]
�L

�(α→ β),�α⇒ [ ⇒ β]
�L

�(α→ β),�α⇒ �β
�R

�(α→ β) ⇒ �α→ �β
→R

⇒ �(α→ β) → �α→ �β
→R

Note that in the completeness proof, use of a nested form of the cut rule to
simulate applications of modus ponens in the Hilbert-system is required. There also
exists a completeness proof based on the construction of counter-models that can be
found in Brünnler (2006). We will look at this proof in detail in Sec. 3.1. �

The nested calculi so far introduced enjoy several interesting properties that we
hope to have underlined; however they also display a defect which is the lack of
modularity.7 The nested calculi presented are not modular because the axiom 5 is
not systematically reflected by the rule 5. As shown byMarin and Straßburger (2014),
this lack of modularity can be repaired by giving up the logical variant of the nested
calculi. Indeed, if we consider nested sequent calculi where: (i) the contraction rules
CL and CR are added (see Figure 6), (ii) in the rule �L as well as in the special
logical rules, the formula �α which is not the main formula of the rule is erased,
(ii) for each modal axiom, the corresponding special logical and structural rule are
taken as primitive rules, then we have a more general version of the rules 5 and 5̃
which allow the calculi to be modular.

3 Applications

We use this section to illustrate three applications of the nested sequent method; in
particular, we will dwell on countermodels, decidability and interpolation results.

7 Consider a Hilbert system S′ which is obtained by adding an axiom A to the Hilbert system
H . The modularity property demands the Gentzen system G′ for the system S′ to be obtained
from the system G for the Hilbert system S by adding n rules that systematically reflect at the
proof-theoretical level the axiom A.
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3.1 Countermodel construction

In this sectionwewill focus on the completeness of nested calculi via the construction
of countermodels. More precisely, we show the strategy of this proof in the case of
the nested calculus NSk. Note that the completeness proof via countermodels can be
proved for all the nested calculi NSk∪X , for any X ⊆ {d, t, b, 4} under the 5-closure
proviso; in these cases, the proof is analogous to that for the nested calculus NSk,
except that properties of the accessibility relation in Kripke frames need to be taken
into account as well, see Brünnler (2006) and (Poggiolesi, 2010b, Section 8).

For each rule R of NSk we consider the Kleene’d version, i.e., the rule R+ that
is the same as R except that it mantains the main formula of the conclusion in the
premiss (analogously to the G3 systems in Kleene, 1952). For example, if R is the
rule ¬R, then R+ will be:

G{α, M ⇒ N,¬α}
G{M ⇒ N,¬α} ¬

+R

Let NSk
+ be the calculus obtained by replacing each rule R in NSk with the

corresponding rule R+. It is straightforward to show that the calculi NSk
+ and NSk

are equivalent (see Brünnler, 2006). Thuswe can essentially consider nested sequents
based on sets instead of multisets:

Definition 3.1 The set nested sequent of the nested sequent M ⇒ N, [G1], ..., [Gn]

is the nested sequent P ⇒ Q, [H1], ..., [Hn], where P and Q are the underlying sets
of M and N , respectively, and H1, ...,Hn are the set nested sequents of G1, ...,Gn,
respectively. Clearly the set nested sequent of a nested sequent is still a nested sequent
since a set is a multiset.

Definition 3.2 A leaf of a nested sequent (thinking of the nested sequent as a tree-
frame of Kripke semantics) is cyclic if in its branch there exists a second sequent
that contains the same set of formulae.

Definition 3.3 A sequent occurring in a nested sequent is saturated for a nested
sequent calculus Y if no rule of that calculus can be applied to one of its formulae
to obtain a formula which is not already present in that sequent. A nested sequent is
finished for a nested sequent calculus Y if all sequents that compose it are finished
or cyclic.

Definition 3.4 We define a procedure prove(G,NS+k ), which takes a nested sequent
G and the calculus NSk

+, and builds a derivation tree for G by applying rules from
that calculus to non-initial and unfinished derivation leaves in a bottom-up fashion,
as follows:

1. keep applying all the rules of NSk
+ which are not the rule (�K)+;

2. wherever possible, apply the rule (�K)+ once.
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Repeat this operation until each non-initial derivation leaf of the nested sequent G
is finished. If prove(G,NS+k ) terminates and all derivation leaves are initial then it
succeeds; otherwise, i.e. if it terminates and there is a non-initial derivation leaf, it
fails.

Definition 3.5 The set of subformulae of a nested sequent G, denoted sf(G), is the
set of all subformulae of all formulae that compose all sequents that belong to the
nested sequent.

Lemma 3.6 For all nested sequentsG, the procedure prove(G,NS+k ) terminates after
at most 2O(|s f (G) |) iterations.

Proof Consider a sequence of nested sequents along a given branch of the derivation
starting from the root. None of the rules that we can apply in accordance with step 1
creates new sequents in the nested sequents, but each of them causes the set of
formulae of some sequent belonging to the nested sequent to strictly grow. By the
subformula property, only |s f (G)|many formulae can occur in each side of a sequent,
so step 1 terminates. If after step 1 there is an unfinished leaf in a nested sequent, then
the size of the nested sequent strictly grows in step 2. Since there are only 2 |s f (G) |
different sets of formulae that can occur, each unfinished nested sequent leaf has to
be cyclic eventually.

In this following definition we exploit the strong analogy between nested sequents
and tree-frames of Kripke semantics (see Definition 2.4).

Definition 3.7 A nested sequent H is an immediate subtree of a nested sequent G
if G is of the form M ⇒ N, [H], [H1], ..., [Hn]. It is a proper subtree if it is an
immediate subtree either of G or of a proper subtree of G, and it is a subtree if it is
either a proper subtree of G or G = H. The set of all subtrees of G is denoted by
st(G).

Lemma 3.8 For all nested sequents G, if prove(G,NS+k ) fails, then there is a coun-
termodel for G.

Proof We give a sketch of the proof by indicating how to construct the countermodel
forG after prove(G,NS+k ) has failed.AKripkemodel (seeDefinition 2.5) is composed
of (i) a set of worlds W , (ii) an accessibility relation amongst worlds→ and (iii) an
evaluation function v mapping formulae and worlds into truth values. Here is howwe
construct each of the elements of the Kripke modelM intended to be a countermodel
for G.

(i) Let G∗ be the set nested sequent of the non-initial nested sequent obtained by
the failure of prove(G,NS+k ). Let Υ be the set of all cyclic leaves in G∗. Then in the
model M the set of worlds is obtained by considering the set of all subtrees of G∗
minus Υ, i.e. W = st(G∗)\Υ. Let f : Υ→ W be some function which maps a cyclic
leaf to a nested sequent in W whose root contains the same set of formulae, and
extend f to st(G∗) by the identity on W .
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(ii) The accessibility relation on W is defined in the following way. For all G
and H, G → H if, and only if, either H is an immediate subtree of G, or G has an
immediate subtree H1, such that H1 ∈ Υ and f (H1) = H.

(iii) Finally the evaluation v from propositional atoms and nested sequents to truth
values is defined in the following way. An atom p is true in a world-nested sequent
G if it occurs on the left side of a sequent belonging to the nested sequent. It is false,
otherwise.

The rest of the proof aims at showing that the modelM is a countermodel for G,
see Brünnler (2006) and (Poggiolesi, 2010b, pp. 173-174). �

The definition of validity of a nested sequent is tedious but it is a quite straight-
forward generalization of the notion of validity of a sequent. Its definition can be
found in (Poggiolesi, 2010b, p. 165-166).

Theorem 3.9 For all nested sequents G, if G is valid with respect to the class of all
frames, then the nested sequent calculus NSk is such that ` G in NSk.

Proof It follows from the previous Lemma and the fact that the calculi NSk and
NSk

+ are equivalent. �

3.2 Decidability

Another notable feature of nested calculi is that most of them are decidable: given
a nested sequent G, there is an algorithm determining whether G is provable or not.
We dedicate this section to a brief presentation of decidability in nested calculi;8 as
we have done in the previous sections, for our purposes we will focus on the calculus
NSk; however decidability can be proved for (most of)9 the nested calculi NSk∪X ,
for any X ⊆ {d, t, b, 4} under the 5-closure proviso; only in the case of the system
for S4 a certain attention needs to be dedicated to the interaction between the rules
4 and the rule �K which might create endless chain of sequents: however, thanks to
the use of the rule t the problem is easily fixed, see (Poggiolesi, 2010b, p. 161).

We start by noticing that in a calculus enjoying the cut-elimination theorem, the
subformula property - in any of its rules the formulae occurring in the premiss(es)
are subformulae of the formulae occurring in the conclusion - and contraction-
admissibility, any source of potential non-terminating proof-search seems to be
avoided. Although the calculus NSk enjoys all these features, because of the rule
�L where the same formula �α occurs in the conclusion as well as in the premiss,
we still have potentially endless applications. In order to overcome this problem, a
solution is to work with minimal derivations namely derivations where shortening
are not possible in the sense that every subderivation is of minimal height. Suppose

8 Note that decidability for modal logic is a well-known result since the 1960s, e.g. see Segerberg
(1968).
9 The nested calculi for which a dedicability proof is developed are NSk , NSkt, NSkd, NSkb, NSkbt,
NSS4, NSS5
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that the rule �L is used twice on the same pair of sequents in a minimal derivations,
then we can show that such derivation is no longer minimal and hence that the rule
�L can at most be used once. Thanks to this device, we can prove that the calculus
NSk allows for terminating proof-search.

As shown in Poggiolesi (2010b), in the other nested calculi the problem raised by
the rule �L also arises with the special logical rules. However, minimal derivations
represent again the solution to such a problem: in these derivations special logical
rules cannot be applied more than once on the same formula or pair of sequents.

Lemma 3.10 The rule �L permutes down with respect to the propositional rules.
It also permutes with instances of the rule �R in the case where their auxiliary
formulae, α and �α, respectively, are not active in the sequent where the auxiliary
formula of �R occurs.

Proof The proof is straightforward. �

Corollary 3.11 In a minimal derivation in NSk, the rule �L cannot be applied more
than once on the same pair of formulas belonging to the same pairs of sequents of
any branch.

Proof Let us suppose we have a minimal derivation where the rule �L has been
applied twice on the same pair of sequents,

G{�α, M ′⇒ N ′, [α, P′⇒ Q′]}
G{�α, M ′⇒ N ′, [P′⇒ Q′]} �L

....
G{�α, M ⇒ N, [α, P⇒ Q]}
G{�α, M ⇒ N, [P⇒ Q]} �L

By permuting down �L with respect to the steps in the dotted part of the derivation,
we obtain a derivation of the same height ending with

G{�α, M ⇒ N, [α, α, P⇒ Q]}
G{�α, M ⇒ N, [α, P⇒ Q]}
G{�α, M ⇒ N, [P⇒ Q]} �L

�L

By applying the height-preserving admissible rule CL to the two occurrences of the
formula α in place of the upper �L, we obtain a shortened derivation, contrary to
the assumption of minimality. �

We can finally prove that the modal logic K is decidable by means of showing
effective bounds on proof search in the calculus NSk.

Theorem 3.12 The calculus NSk allows terminating proof search.

Proof Place a nested sequent G, for which we are looking for a proof search, at the
root of the procedure. Apply first the propositional rules and then the modal rules.
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The propositional rules reduce the complexity of the nested sequent. The rule �R
removes the modal constant �, and adds a new sequent, the rule �L increases the
complexity. However, by the corollary above, the rule �L cannot be applied more
than once to the same pair of sequents with the same principal formula. Therefore,
the number of applications of the rule �L is bounded by the number of subformulae
of the conclusion and the number of sequents that may appear in the derivation.
The latter, in its turn, is bounded by the number of sequents belonging to the nested
sequents to prove, and the sequents that can be introduced by applications of the rule
�R. �

3.3 Interpolation

A logic L is said to enjoy theCraig Interpolation Property, for shortCIP, if whenever,
A `L B, there exists a formula C, called the interpolant, that stands in between A
and B in terms of derivability, namely such that A `L C, C `L B and C contains
only propositional variables common to A and B. Since in many logics where the
CIP is proved, it is possible to define an implication enjoying modus ponens and
the deduction theorem, a more common formulation of CIP uses `L A→ B instead
of A `L B. The CIP is a deep feature of a logic: it has notable applications in
computer science (e.g. consistency proofs, model checking), it is connected to Beth
definability (e.g. see Hodges, 1997) and it can be translated to the amalgamation
property of algebraic varieties (e.g. see Day and Jaroslav, 1984). However the CIP
might fail even in some reasonable fundamental logics, such as intuitionistic logic
with constant domains, see Mints et al. (2013).

The topic of this section is the Craig Interpolation Property for the main systems
of modal logic. There are several different ways to prove this result (e.g. see Fitting,
1983); in these pages the focus goes on a constructivemethod for proving interpolants
for modal logic, namely using induction on derivations in nested calculi. The first
research in this direction has been initiated byBílková (2011) for the stronger uniform
interpolation property. An extensive body of work was further developed starting
from Fitting and Kuznets (2015) and Kuznets (2018). In Lyon et al. (2020) the
technique adopted by Fitting and Kuznets has been developed in a purely syntactical
variant independent of the semantics of the corresponding logics and applied to the
realm of logics with converser modalities including tense bi-intuitionistic logics. In
what follows, we will mainly rely on Fitting and Kuznets’s results; however, given
the length and complexity of these results, we will not dwell on the details but only
sketch their main features and key-points.

In order to understand how the CIP can be proved via nested calculi, let us start
from how it is proved in a simpler framework, namely that of sequent calculi for
classical logic. Consider then a theorem of classical logic of the form A→ B; since
it is a theorem, there will be a derivation in the sequent calculus Gcl of the sequent
A⇒ B and the derivation will possibly involve other sequents of the form M ⇒ N .
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For constructing the interpolantC, we do not look at the sequents A⇒ B or M ⇒ N
themselves, but to their split version, namely:

A;⇒; B M1; M2 ⇒ N1; N2

The need of splitting sequents comes from the fact that certain rules, e.g., for
the propositional negation and implication, move formulae around between the an-
tecedent and consequent and thus disqualify them from being the stable left and right
side to be interpolated. Because of the split of the sequents, it is not entirely correct
to say that Craig interpolation is proved by induction on the sequent derivation. In
reality, one finds a suitable generalization of CIP and proves that by induction on the
split version of the sequent derivation. Formally, it is proved that, for any derivable
sequent M ⇒ N and for any partition of M = M1

⋃
M2 and N = N1

⋃
N2 into two

parts each, there exists a formula C such that;:

- `CL M1 ⇒ N1,C,
- `CL C, M2 ⇒ N2,
- each atomic proposition occurring in C occurs both in M1 ⇒ N1 and M2 ⇒ N2.

The fact that C is an interpolant is ensured by the standard interpretation of
sequents. Indeed we have (see Section 2):

(M1, M2 ⇒ N1, N2)
τ =

∧
M1 ∧

∧
M2 →

∨
N1 ∧

∧
N2

that is equivalent to

¬(
∧

M1 →
∨

N1) → (
∧

M2 →
∨

N2)

The idea of split sequents can be found in Maehara (1961) and is a key feature
of what is called the Maehara method for constructing interpolants via the Gentzen
system. Since such a method is extended and employed by Fitting and Kuznets for
nested calculi for modal logics, let us briefly describe it. Given a cut-free sequent
calculus for the logic CL, and a theorem of the form A→ B of CL:

1. find a sequent derivation of A⇒ B,
2. split the endsequent to be A;⇒; B,
3. propagate this split from the endsequent to the leaves turning the derivation into

a split derivation,
4. find interpolants for each split initial sequent in a leaf,
5. propagate interpolants from the leaves to the endsequent using rules for trans-

forming interpolants for each rule.

Such method comes with tables presenting split initial sequents, split sequent
rules, but also with sufficient interpolant transformations. We will not present these
tables here, they can be found in (Kuznets, 2018, 1377-1378).

Let us now move to modal logic and to nested calculi. At the first glance it might
seem that the Maehara method can be straightforwardly applied to this extension of
classical logic given that nested calculi are cut-free and they only contain logical



22 Björn Lellmann and Francesca Poggiolesi

rules. Unfortunately, this is not so obvious and for the following reason. Consider a
quite simple nested sequent of the following form:

M ⇒ N, [P⇒ Q], [S ⇒ T]

The splitting should be performed by splitting each of the sequent components:

M1, M2 ⇒ N1, N2, [P1, P2 ⇒ Q1,Q2], [S1, S2 ⇒ T1,T2]

According to the standard interpretation of a nested sequent (see Definition 2.9), this
nested sequent corresponds to the following formula:

(
∧

M1 ∧
∧

M2 →
∨

N1 ∨
∨

N2) ∨ �(
∧

P1 ∧
∧

P2 →
∨

Q1 ∨
∨

Q2)∨

�(
∧

S1 ∧
∧

S2 ⇒
∨

T1 ∨
∨

T2)

As far as it is known, it seems there is no way to find an equivalent syntactical
representation of this formula as an implication having M1, N1, P1,Q1, S1,T1 in its
antecedent and M2, N2, P2,Q2, S2,T2 in its consequent. Does this mean that the Mae-
hara method cannot be applied to modal logics (via nested sequents) or is there
another way of splitting a nested sequent? Thanks to a careful use of semantic
methods, Fitting and Kuznets propose a novel and fine-grained way to split a nested
sequent.

Definition 3.13 LetM = (W, R, v) be a Kripke model with the set of worlds W , ∅,
the accessibility relation R amongst worlds, and the propositional valuation v. We
define M-decorated nested objects G? as a nested sequent with each sequent node
decorated by a world from W in such a way that the world decorating a child of a
given sequent node is R-accessible from the world decorating the sequent node itself.

Definition 3.14 LetM = (W, R, v) be aKripkemodel. AnM-decorated nested object
G? is true if at least one formula from G? holds at the world of W that decorates
the sequent node of this formula. We write |=M G? to denote that G? is true in the
modelM.

The crucial idea behind this definition is that decorations help us to look at nested
sequents as disjunctions of member formulae, similar to the standard interpretation
of normal sequents. However, while in the case of standard sequents, all formulae
are evaluated at the same world of the Kripke model, in the nested case, formulae
from different sequent nodes are evaluated at different worlds of the Kripke model.

Consider again the nested sequent above, namely:

M1, M2 ⇒ N1, N2, [P1, P2 ⇒ Q1,Q2], [S1, S2 ⇒ T1,T2]

Then appropriately decorate this nested sequent by the three worlds w,w1,w2, such
that wRw1 and wRw2. We can finally define the split of the nested sequent in the
following adequate way:
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|=M M1 ⇒ N1, [P1 ⇒ Q1], [S1 ⇒ T1] implies |=M M2 ⇒ N2, [P2 ⇒ Q2], [S2 ⇒ T2]

We have defined how to split a nested sequent and how to evaluate it by decorating
sequent nodes. It remains to define interpolants, which will be intermediaries of
implications of the types above. However, implications of this sort are not purely
syntactic anymore: they involve sequents as well as multiple worlds where these
sequents are evaluated. As a consequence, interpolants will have a similar form: they
will not be mere formulae or mere sequents, but generalized nested sequents, namely
amix of nested sequents and worlds, with a particular tree-structure analogous to that
of the nested sequents they are the intemediaries for. Generalized nested sequents
are defined in (Fitting and Kuznets, 2015, p. 284).

In order to prove the CIP via nested calculi, in (Fitting and Kuznets, 2015, p. 284)
as well as in Kuznets (2018) (although with different notation and names), tables
for splitting initial nested sequents, splitting nested sequent rules, but also tables
with sufficient interpolant transformations are given. We are forced to omit all these
tables together with the definitions and properties of generalized nested sequents
because they are all too long and laborious to be briefly summed up here. However
they represent the other key-ingredient to apply the Mahera method to the case of
modal logic.

Theorem 3.15 For any X ⊆ {d, t, b, 4} under the 5-closure proviso, the nested cal-
culus NSk∪X allow to prove that the corresponding modal logic enjoys the Craig
interpolation property.

4 Other logics

In line with the predominant historical development of the nested sequent formalism
in this article so far we concentrated on the application of this formalism to modal
logics, and in particular to normal modal logics. Due to its expressiveness and
flexibility the formalims however also has been applied to other logics. In this
section we present a brief overview over the range of such applications. For space
reasons we only sketch some examples of calculi and refer to the cited literature for
the details. We also do not discuss the applications to substructural logics via linear
nested sequents in detail and refer the interested reader instead to Guerrini et al.
(1998) and Lellmann et al. (2017).

4.1 Intuitionistic and first order logics

Due to the close connection between normal modal logics and intuitionistic or
intermediate logics via Kripke or possible world semantics it is rather natural that the
nested sequent formalism was also applied to intuitionistic logic. This has been done
first in Postniece (2009) and Postniece (2010), based on the previously developed
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calculi from Goré et al. (2008). Perhaps owing to previous works on display calculi,
these works consider calculi for bi-intuitionistic logic, an extension of intuitionistic
logic with a co-implication. Restricting to the language without the co-implication
however immediately yields a nested sequent calculus for intuitionistic logic, hence
for the sake of presentation here we restrict ourselves to this case. In line with the
idea that different components in the nested sequent correspond to different worlds
in the Kripke model, the nesting operator in the framework of intuitionistic logic
now corresponds to the implication instead of the modal box. Thus, the formula
translation of a nested sequent in this setting is obtained by deleting the boxes from
the modal formula interpretation of Sec. 2. E.g., the nested sequent (M ⇒ N, [P1 ⇒
Q1], . . . , [Pn ⇒ Qn]) where N,Q1, . . . ,Qn only contain formulae is given by∧

M →
∨

N ∨
(∧

P1 →
∨

Q1

)
∨ · · · ∨

(∧
Pn →

∨
Qn

)
.

Note that the nesting operator is interpreted by the intuitionistic implication, hence
several layers of nestings correspond to nested implications. This corresponds in-
tuitively to the fact that in Kripke semantics for intuitionistic logic the implication
is evaluated via the successor worlds. Hence, again, the different nodes of a nested
sequent correspond to worlds in a Kripke model. The logical rules for the implication
then are (for the sake of clarity in the form where formula contraction is not absorbed
into the rule set, i.e., the principal formula is not repeated in the premisses):

G{M, β⇒ N} G{M ⇒ N, α}
G{M, α→ β⇒ N}

→L
G{M ⇒ N, [α⇒ β]}

G{M ⇒ N, α→ β}
→R

The system of Postniece (2009) contains further structural rules to capture the
additional properties of Kripke models for intuitionistic logic, but it was shown later
in Fitting (2014) that it suffices to add a slight reformulation of one of these rules,
sometimes called the lift rule:

G{M ⇒ N, [P, α⇒ Q]}
G{M, α⇒ N, [P⇒ Q]}

lift

Intuitively, this rule captures the condition that valuations in Kripke models for in-
tuitionistic logic need to be persistent, resulting in the fact that truth of a formula is
preserved when moving to successor worlds. Completeness of the full calculi was
shown by simulating previously existing so-called shallow sequent systems in Post-
niece (2009) (see op. cit. for the details) and by syntactic cut elimination in Postniece
(2010). For the intuitionistic fragments it was also shown by correspondence to pre-
fixed tableaux in Fitting (2014), by simulating Maehara’s standard multi-conclusion
sequent calculus in Lellmann (2015), and by translating from a labelled sequent
calculus in Lyon (2020a).

The similarity between the truth conditions for the intuitionistic implication and
the universal quantifier was further exploited in Fitting (2014) to obtain nested se-
quent calculi for first-order intuitionistic logic, both in the constant-domain and non-
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constant domain formulations. In particular the nested sequent system for constant-
domain intuitionistic logic is rather elegant, since only the “standard” quantifier rules
need to be added.Writing b for a parameter, i.e., one of a number of special variables
for instantiating quantified variables, in the case of the universal quantifier these are:

G{M, ∀x α(x), α(b) ⇒ N}
G{M, ∀x α(x) ⇒ N}

∀L

b arbitrary

G{M ⇒ N, ∀x α(x), α(b)}
G{M ⇒ N, ∀x α(x)}

∀R

b not in conclusion

The fact that the nested sequents in the conclusions of these rules contain all the
worlds of a so-far constructed countermodel together with the restriction of the ∀R

rule that b does not occur in the conclusion of this nested sequent rule captures the
requirement that the domains are constant across all worlds of the model. In the
non-constant domain version these rules need to be adjusted and are more similar
to the implication rules. Again, alternative completeness proofs can be given for the
different versions by simulating a standard sequent system Lellmann (2015) or by
translation from a labelled sequent calculus Lyon (2020a).

In the classical setting, the analogy between quantifiers and modalities was ex-
ploited even earlier, to obtain nested sequent calculi for first-order classical logic in
Brünnler (2010). In this setting the nesting is seen as a structural connective corre-
sponding to the quantifier, with the advantage that due to the presence of different
structural connectives for the quantifiers (i.e., the nesting operator) and the propo-
sitional connectives (i.e., the comma and the sequent arrow) it is easier to adjust
the system to other logics by varying the rules for the (structural) quantifiers. In
particular, in op. cit. this gives rise to a nested sequent system for free logic, i.e.,
classical first-order logic where the domain might be empty.

4.2 Intuitionistic and constructive modal logics

Considering modal logics based on intuitionistic instead of classical propositional
logic leads to the area of intuitionistic and constructive modal logics. Semantically,
these logics are typically given by Kripke-frames with two accessibility relations ≤
and R, with the intuitionistic implication interpreted using the accessibility relation
≤ as usual, and the box modality understood as truth in all R-successors of all
≤-successors of the current world. The presence of two accessibility relations then
gives rise to a number of different possible interaction principles and in turn to a
number of different possible logics (see, e.g., Simpson (1994) for an introduction).
Unfortunately, from the perspective of nested sequents, many of these interaction
principles are similar to “diamond” or “confluence” principles such as∀x, y, z (xRy∧
xRz → ∃w.(yRw ∧ zRw)) which gave rise to the extension of nested sequents to
indexed nested sequents (see Sec. 5.6 below). Hence it is not clear whether they
could be captured by combining the systems for modal logic from Sec. 2 with those
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for intuitionistic logic from Sec. 4.1, e.g., by considering two nesting operators for
the modal and intuitionistic accessibility relations respectively.

Using a different approach, however, nested sequent systems for intuitionistic and
constructive modal logics were proposed successfully by considering essentially a
single-conclusion version of nested sequents. While the literature on nested sequents
for these logics mainly makes use of the single-sided formulation of nested sequents,
extended with a marker for a single designated output formula, i.e., the formula on
the right hand side of the corresponding two-sided nested sequent, for the sake of
consistency of notation here we stick to the two-sided notation. The system from
Straßburger (2013) then reads as follows.

Definition 4.1 An intuitionistic nested sequent is a nested sequent where the right
hand side of exactly one component is non-empty and contains exactly one formula,
called its output formula. The output pruning of an intuitionistic nested sequent G
is obtained by removing its (unique) output formula and is written as G↓.

It is worth noting that the modalities� and ♦ are not interdefinable in intuitionistic
and constructive modal logics. This together with the fact that an intuitionistic nested
sequent contains only one output formula, and hence only one formula should appear
on the right hand side of its formula interpretation leads to a slightly more involved
definition of the latter:

Definition 4.2 The formula interpretation of an intuitionistic nested sequent G is
written as Gι and defined as follows, where G1, . . . ,Gn do not contain the output
formula but O does:

(M ⇒ [G1], . . . , [Gn])
ι =

∧
M ∧ ♦(Gι

1) ∧ · · · ∧ ♦(G
ι
n)

(M ⇒ [G1], . . . , [Gn], α)
ι =

∧
M ∧ ♦(Gι

1) ∧ · · · ∧ ♦(G
ι
n) → α

(M ⇒ [G1], . . . , [Gn], [O])ι =
∧

M ∧ ♦(Gι
1) ∧ · · · ∧ ♦(G

ι
n) → �(O

ι) .

Thus the nesting operator is interpreted as the modal box on the right hand side
of the implication whenever the structure inside contains the output formula, and as
the modal diamond on the left hand side of the implication otherwise. The rules for
the modal box then are essentially the same as in the classical setting:

G{M,�α⇒ N, [P, α⇒ Q]}
G{M,�α⇒ N, [P⇒ Q]}

�L
G{M ⇒ N, [ ⇒ α]}

G{M ⇒ N,�α}
�R

Since the modal operators are not inter-definable, in addition we also need the
following rules for the modal diamond:

G{M ⇒ N, [α⇒ ]}
G{M, ♦α⇒ N}

♦L
G{M ⇒ N, [P⇒ Q, α]}

G{M ⇒ N, [P⇒ Q], ♦α}
♦R

The intuitionistic character of the system is then captured on the level of propositional
logic by adjusting the implication rules in the same way as is done for single-
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conclusion standard sequent systems for intuitionistic logic:

G↓{M, α→ β⇒ N, α} G{M, β⇒ N}
G{M, α→ β⇒ N}

→L
G{M, α⇒ N, β}

G{M ⇒ N, α→ β}
→R

Notice that the left premiss of the→L rule contains α as the output formula, so the
output formula of G needs to be removed by considering the output pruning G↓.
This in turn may drastically change the formula interpretation of the subtree which
contained the output formula before the output pruning. The remaining propositional
rules are the standard ones. The resulting nested sequent system is shown to be
sound and complete for intuitionistic modal logic IK in Straßburger (2013) via a
cut elimination argument. The same work further contains extensions to all other
logics of the intuitionistic version of the modal cube. Fully modular versions of
these calculi are introduced in Marin and Straßburger (2014), and the systems are
adapted to constructive modal logics in Arisaka et al. (2015). An implementation
is presented in Girlando and Straßburger (2020). A Maehara-style multi-conclusion
version of the calculi was introduced in Kuznets and Straßburger (2018) and used
to obtain countermodels from failed proof search. Calculi for the more general class
of logics extending IK with seriality and so-called Horn Scott-Lemmon axioms, i.e.,
axioms of the shape (♦n�A → �k A) ∧ (♦k A → �n♦A) were proposed recently
in Lyon (2021a). The single-conclusion nested sequent calculi for the logics of the
intuitionistic modal cube were also developed independently in Galmiche and Salhi
(2018) under the name of tree sequents, based on the natural deduction systems of
Galmiche and Salhi (2010).

4.3 Other non standard normal modal logics

Modal logic was firstly introduced to formalize the concepts of necessity and pos-
sibility; however, soon after the introduction of Kripke possible worlds semantics
modal logic was used to formalize other notions such as knowledge, belief or obli-
gation. In accordance with these new interpretations of the modal operator, new
logical systems have been developed. We use this subsection to briefly present the
application of nested calculi to some of these alternative interpretations of � and ♦.

An important interpretation of the modalities is given in the context of modal
tense logics, where �α is interpreted as “at every point in the future it will be the
case that α”. Dually, ♦α is interpreted as “at some point in the future it will be the
case that α”. Analogously to these forward looking modalities, modal tense logics
also contain the backward looking modality � and its dual �, interpreted as “at
every point in the past it was the case that” and “at some point in the past it was
the case that”, respectively. As usual, ♦ and � can be taken to be defined in terms
of � and �, respectively. The tense analogue of modal logic K is denoted Kt and
given by Hilbert-style axiomatisations of modal logic K for both the forward and the
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backward looking modalities together with the axioms α→ ��α and α→ �♦α for
the connection between the forward and backward looking modalities.

Historically, modal tense logics were one of the areas which sparked the creation
of the nested sequent framework in Kashima (1994) (originally formulated in the
one-sided setting, see Sec. 2.1). For capturing both the forward and backward looking
modalities, nested sequents for modal tense logics contain a forward or future nesting
operator F [.] as well as a backward or past nesting operator P[.]. The rules for the
basic logic Kt are essentially the nested sequent rules for K for both modalities � and
� together with the following two rules for their interaction:

G{Γ, α⇒ ∆, F [Σ⇒ Π]}

G{Γ⇒ ∆, F [Σ,�α⇒ Π]}

G{Γ, α⇒ ∆, P[Σ⇒ Π]}

G{Γ⇒ ∆, P[Σ,�α⇒ Π]}

Nested sequent calculi for basic extensions ofmodal tense logicwith frame properties
like reflexivity, transitivity, connectedness or totality were also already considered
in Kashima (1994). However, very general completeness results for large classes of
modal tense logics were given later. In particular, Goré et al. (2011) obtain cut-free
deep inference calculi for modal tense logics given by Scott-Lemmon axioms, i.e.,
axioms of the form ♦h�iα→ �j♦kα for h, i, j, k ≥ 0 (see also Sec. 5.6 below), some
of which also yield cut-free nested sequent calculi, and for modal tense logics given
by path axioms, i.e., axioms of the form 〈〉1 . . . , 〈〉nα→ 〈〉α, where n ≥ 0 and each
of 〈〉1, . . . , 〈〉n, 〈〉 is either ♦ or �. Since normal modal logics can be understood as
the restriction of modal tense logic to the forward looking modalities, by appropriate
conservativity results shown in op. cit. the calculi for the Scott-Lemmon axioms
also give rise to nested sequent calculi for the corresponding normal modal logics.
It should be noted, however, that these calculi might still contain the backward
looking structural connective, and hence their structures might not have a formula
interpretation in the language of standard (non-tense) normal modal logic. Even
further, general completeness results for grammar logics, i.e., multimodal tense
logics, where loosely speaking the connections between the modalities are given by
rewriting rules, were shown in Tiu et al. (2012). For space reasons we do not consider
all the details here. The interested reader is referred to the mentioned literature.

The second non-alethic interpretation ofmodal logic that we present in this section
is the epistemic interpretation, namely the interpretation of the � in terms of “it is
known that.” More precisely, in order to express the fact that different agents may
have different knowledges, we add indexes to the �: one index for each agent of the
group of agents considered in the language. The system that seems to best represent
an epistemic multiagent interpretation of modal logic is S5. We can implement the
multi-agent version of S5 by adding a new operator i for common knowledge, where
common knowledge is standardly defined as the infinite conjunction “all agents know
α, and all agents know that all agents know α and so on." We will denote the multi-
agent version of the Hilbert system S5 plus common knowledge by the name CS5.
In CS5 we capture common knowledge by means of a fixed point axiom, which
states that common knowledge is a fixed point, and an induction rule that states
that this fixed point is the greatest fixed point. From a semantic point of view, the
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common knowledge operator is formally defined as the modality of reachability that
uses accessibility edges corresponding to any of the knowledge operators for the
agents.10

In order to get a nested calculus for CS5, the first mandatory step is to index
nested sequents with agents. However, as explained in Poggiolesi (2010c), there
are two nested calculi for S5: one that simply uses hypersequents (if we look at
hypersequents as nested sequents where the accessibility relation has collapsed,
see Section 5.2.) and one with full nested sequents apparatus that include rules for
reflexivity, transitivity, and asymmetry (see Section 2). Since the former is simpler,
it seems the more adequate to work with in the epistemic context. Hence, first of all,
the hypersequents for S5 are indexed with indexes denoting agents,11 and then rules
for the operator of common knowledge are introduced.

The difficulty of dealing with the common knowledge operator is that it has deep
infinitary features; hence at the Gentzen level, it has been taken into account in
either of the following two ways: either with finitary calculi (that often do not enjoy
cut-elimination, e.g. see Alberucci and Jager, 2005) , or with infinitary rules (e.g.
see Tanaka, 2003). In the nested framework both ways have been explored. We will
briefly present them.

Definition 4.3 We consider a language L�
h
with a set Φ of agents {a, b, c, ...}.

Propositions S are atoms. Formulae are given by the following grammar:

α ::= S | ¬α | (α ∧ α) | �zα | i α

where z ∈ Φ, the formula �zα is read as “agent z knows α" and the formula iα is
read as “α is common knowledge". We will use the formula �α as an abbreviation
for “everybody knows α":

�α = �aα ∧ ... ∧ �zα

In Brünnler and Stüder (2009) the following two rules for common knowledge in
the framework of nested calculi are considered:12

G{A : �kα, M ⇒ N}
G{A : iα, M ⇒ N} iL

G{A : M ⇒ N,�kα} f or all k > 1
G{A : M ⇒ N, iα} iR

Although these rules allow a cut-elimination procedure, the rule iR, being infini-
tary, vanish any proof-search attempt. A more fine-grained result can then be found

10 For the Hilbert-system and the semantics for CS5, e.g. see Fagin et al. (2004).
11 See also Section 5.6.
12 In the rules, the notation A stands for a set of agents that satisfy certain features. We omit to
describe these features here for the sake of brevity; they can be found in Hill and Poggiolesi (2015).
Note also that in Brünnler and Stüder (2009) the rules for common knowledge are added to the
multiagent version of the nested calculus for NSk . However, for the sake of uniformity, they can
also be thought as added to the multiagent version of the hypersequent system for S5.
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in Hill and Poggiolesi (2015), where common knowledge is treated by means of the
following three rules in an hypersequent framework:

G | A : iα,�α, M ⇒ N
G | A : iα, M ⇒ N

iL1

G | A : iα, M ⇒ N | B : iα, P⇒ Q
G | A : iα, M ⇒ N | B : P⇒ Q

iL2

G | A : M ⇒ N, β β⇒ �α β⇒ �β

G | A : M ⇒ N, iα
iR

The rules are finitary, the calculus they belong to is cut-free; moreover, in order
to control proof-search, it has been shown that the rule iR can be restricted to a
certain type of formulae only, i.e. it has been shown that the formula β occurring in
the premiss can only be of a certain form. Details can be found in Hill and Poggiolesi
(2015).

Let us now move to a third different interpretation of the modal operator and
related logic, incidentally one of the first treated by the nested sequent method in
Bull (1992). Propositional dynamic logic, or PDL for short, is a (modal) logic based
on the idea of associating with each program term a of a programming language a
modality [a]. This means that in PDL we still deal with boxed formulae as we do in
modal logic, but the box is no longer empty but filled with program terms.

Several different programs can fill the box: atomic programs (a0, a1, a2, ...),
but also more complex ones, which are denoted by the capital letters A, B,C....
These latter are constructed by means of the following program operators: the union
operator, A ∪ B, that should be interpreted as: “do A or B non-deterministically;”
the composition operator, A ⊗ B, that should be interpreted as: “first do A and then
do B;" the test operator, α?, that should be interpreted as: “verify that α is true;"
and finally the iteration operator, A∗, that should be interpreted as: “repeat A a finite
number of times." In PDL, we thus deal with formulae of the following form: [a]α,
[A ∪ B]α, [A ⊗ B]α, [β?]α, [A∗]α, each of which should be read as: “α is true after
every terminating execution of the program that is in the box.”

From the point of view of Hilbert systems, propositional dynamic logic is well-
defined. Indeed, the system for PDL is obtained by adding to classical propositional
logic: (i) the distribution axiom schema, that has the form: [A](α→ β) → ([A]α→
[A]β), for each program α; (ii) modus ponens and the rule of necessitation; and
(iii) at least one axiom schema or inference rule for each program operator. As for
the Gentzen perspective, the steps and difficulties to formulate a satisfactory nested
calculus are analogous to those for common knowledge.13 On the one hand, just as
in the epistemic case nested sequents were indexed by agents, now nested sequents
are indexed by (atomic) programs; on the other hand, just as the common knowledge
operator involved an infinitary rule, so it is the case in PDL for the program operator
∗. Hence the nested calculus for PDL is obtained by adding to the usual initial

13 Note that if PDL is considered without the program operator ∗, then the first nested sequent
calculus for it has been formulated by Bull (1992).
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nested sequents and nested rules for the propositional and modal connectives,14 the
following rules:15

G{[B]α, [C]α, M ⇒ N}
G{[B ∪ C]α, M ⇒ N} ∪L

G{M ⇒ N, [B]α} G{M ⇒ N, [C]α}
G{M ⇒ N, [B ∪ C]α} ∪R

G{[B] [C]α, M ⇒ N}
G{[B ⊗ C]α, M ⇒ N}

⊗L
G{M ⇒ N, [B] [C]α}
G{M ⇒ N, [B ⊗ C]α}

⊗R

G{M ⇒ N, α} G{β, M ⇒ N}
G{[α?]β, M ⇒ N} ?L

G{α, M ⇒ N, β}
G{M ⇒ N, [α?] β} ?R

G{[B∗]α, [B]n α, M ⇒ N}
G{[B∗]α, M ⇒ N} ∗L

G{M ⇒ N, [B]n α} for each n < ω

G{M ⇒ N, [B∗]α} ∗R

In the calculus so obtained all structural rules are (height-preserving) admissible,
the logical rules are invertible and the calculus is cut-free, see Hill and Poggiolesi
(2010).

Let us end the section by briefly mentioning some further applications of the
nested sequent method. Nested sequent calculi for a class of multimodal logics called
simply dependent multimodal logics can be obtained from the linear nested sequent
calculi (see also Sec. 5.3) for these logics constructed in Lellmann and Pimentel
(2019). However, since these logics all have standard sequent calculi already, we do
not consider the details here but refer the interested reader to op. cit. instead. Another
application concerns themodal logic of provability - also called the logicGL from the
initials of Gödel and Löb -which is the modal logic resulting from the interpretation
of the � in terms of “it is provable in Peano Arithmetic that.” The Hilbert system
GL is obtained by adding to the system K4 the GL axiom: �(�α → α) → �α.
The nested sequent method can be successfully applied to the system GL. Since this
logic provides a good showcase of the connection between the standard and nested
sequent frameworks we will discuss the resulting system in Sec. 5.1 below. A system
for the logic GLP, a different flavor of provability logic related to ordinal analysis
of arithmetic, is developed in Shamkanov (2015). Nested sequents have also been
applied to justification logic, the logic introduced by Artemov (2008), where the �
is substituted by terms or justifications that have the the form t, f , r, .... Whilst in
Fitting (2012) one may find a nested calculus for justification logic which is cut-free
but not analytic, in Hill and Poggiolesi (2019) hypersequents are used to provide a
cut-free and analytic calculus for justification logic. However, the process to obtain
analyticity is quite long and laborious so we completely omit it here.

14 Modal rules are adapted to the fact that the � contains a program.
15 Note that in both the rules ∗L and ∗R, we use the notation [B]n α, which is inductively defined
in the following way:

• [A]0 α := α
• [A]k+1 α := [A] [A]k α
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4.4 Non-normal modal logics and conditional logics

All the modal logics considered so far share a common property, whether based
on classical or intuitionistic propositional logic: they are normal in the sense that
they satisfy the necessitation rule, or alternatively, that the formula �> is a theorem.
However, already in Kripke (1965), the Kripke semantics was extended to cover also
non-normalmodal logics. In fact, historically many of the first systems proposed for
modal logic were non-normal (see the references in op. cit.). Thus it is an interesting
question whether the nested sequent formalism can be extended to cover non-normal
modal logics aswell. Unfortunately, for non-normalmodal logics the parallel between
the tree structure of the models and the tree structure of nested sequents breaks
down to some extent, since non-normality of the modal logic necessitates additional
structure on the models. This could be the addition of non-normal worlds, where
the formula �> is false in Kripke (1965), or the more fine-grained analysis of the
accessibility relation in what is known under the alternative names of neighbourhood
semantics, Scott-Montague semantics orminimal model semantics, see, e.g., Chellas
(1980). Perhaps evenmore problematic is the fact that in every nested sequent system
which contains the standard (local) propositional rules of Sec. 2 and interprets the
nesting operator [.] as a connective ◦ using rules analogous to the standard left and
right rules for � we have the following derivations:

⇒ [ ⇒ >]

⇒ ◦>
◦R

◦p, ◦q⇒ [p, q⇒ p] ◦p, ◦q⇒ [p, q⇒ q]
◦p, ◦q⇒ [p, q⇒ p ∧ q]

∧R

◦p, ◦q⇒ [ ⇒ p ∧ q]
◦L, ◦L

◦p, ◦q⇒ ◦(p ∧ q)
◦R

Hence in every such system we can derive the axioms ◦> as well as ◦p ∧ ◦q →
◦(p ∧ q). Similarly, every such system also derives the converse of the latter, i.e.,
◦(p ∧ q) → ◦p. These three axioms together, however, characterise ◦ as a normal
modality. Hence it is not possible to simply reinterpret the nesting operator as a
non-normal modality while keeping the standard propositional rules intact.

While the development of a general proof theory for non-normal modal logics
in the nested sequent framework and in particular a general link to the semantics
is still an open problem, first steps were taken in Lellmann (2019). The main idea
in that approach is to make use of the fact from Brown (1988) that neighbourhood
structures can be seen to give rise to both a non-normal and a normal modality at
the same time. On the level of nested sequents this means that in order to capture
certain non-normal modal logics it is enough to add a second nesting operator 〈.〉
which acts as a structural connective for the non-normal modality. To model both
the normal and the non-normal modality arising from neighbourhood structures, we
extend the language to include the (non-normal) modality 〈 ] as well as the normal
modality �. Note that due to the inherently normal nature of any interpretation of
the standard nesting operator [.] as considered above we can only obtain a formula
interpretation of nested sequents with this operator if we include a normal modality
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in the language, or if in the considered logic it is definable in terms of the non-normal
modality. The latter is in general not the case.

Definition 4.4 A non-normal nested sequent is a finite object

M ⇒ N,
〈
P1 ⇒ Q1

〉
, . . . ,

〈
Pn ⇒ Qn

〉
, [G1], . . . , [Gm]

where M ⇒ N as well as Pi ⇒ Qi for i ≤ n is a sequent and where G j for j ≤ m is
a non-normal nested sequent. Its formula interpretation Gτ is given by:

Gτ :=
∧

M →
∨

N ∨
∨

i≤n
〈 ](

∧
Pi →

∨
Qi) ∨

∨
j≤m
�(G j)

τ .

The crucial point is that in a non-normal nested sequent other nested sequents
can occur only in the scope of the normal nesting operator [.], not the non-normal
one 〈.〉. Further, in order to prevent the derivation of the axioms for normality above,
the application of all rules needs to be restricted not to occur in the scope of the
non-normal nesting operator 〈.〉. The resulting modal rules then are the standard
rules �L and �R for the normal operator together with the left and right rules for the
non-normal modality

G{M ⇒ N, [P, α⇒ Q]}

G{M, 〈 ]α⇒ N,
〈
P⇒ Q

〉
}
〈 ]L

G{M ⇒ N,
〈
⇒ α

〉
}

G{M ⇒ N, 〈 ]α}
〈 ]R

and a single interaction rule for the relation between the normal and non-normal
modalities:

G{M ⇒ N, [P⇒ Q]}

G{M ⇒ N,�α,
〈
P⇒ Q

〉
}

I
.

This rule corresponds to the interaction axiom �β→ �α∨ 〈]β and essentially states
(seen bottom-up) that whenever there is any boxed formula on the right hand side of
the conclusion, then a non-normal nesting operator can be converted into a normal
one.

Note that since no rule can be applied inside 〈.〉, and the only rules which mention
this operator in the conclusion change it to the normal nesting operator in the premiss,
essentially the only property which can be derived for the language with only the
non-normal modality 〈 ] is 〈 ]α → 〈]β for derivable α → β. Correspondingly, this
system restricted to this language yields a nested sequent system for non-normal
monotone modal logic. The system was further modified to cover some extensions in
op. cit. Purely syntactic systems exploiting the idea of translating standard sequent
calculi to a (linear) nested framework (see Sec. 5.1 below) were also considered in
Lellmann and Pimentel (2019). This approach yields modular systems for a non-
normal analogue of the modal cube, the modal tesseract, but has the disadvantage
that in absence of a second normal modality the (linear) nested sequent structures
do not seem to have a formula translation.

Finally, a different flavour of non-normal modal logics is given by conditional
logics, or logics of counterfactual implication. The weakest of these logics extend
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classical propositional logic with a binary modality (α > β) for conditional implica-
tion, read as “ifαwere the case, then also βwould be the case”. Thismodality behaves
like normal modal logic K in the second argument, but only contains the congruence
rule for the first argument: if α ↔ β is derivable, then so is (α > γ) → (β > γ).
Nested sequents for the basic conditional logic CK and a number of extensions were
introduced in Alenda et al. (2013), making use of a dyadic nesting operator [. : .],
where the first argument contains a single formula, and the second argument contains
a nested sequent.

Definition 4.5 A conditional nested sequent is a finite structure

M ⇒ N, [α1 : G1], . . . , [αn : Gn]

where M ⇒ N is a sequent, the αi are formulae and the Gi are nested sequents. Its
formula interpretation Gτ is

∧
M →

∨
N ∨ (α1 > (G1)

τ) ∨ · · · ∨ (αn > (Gn)
τ).

Thus, again only the “normal” part of the nesting operator can contain further
nesting operators. The rules for the propositional connectives then are standard
(restricted to the second argument of the nesting operators). The basic modal rules,
reformulated from the original one-sided framework to the two-sided framework of
this paper, are given by:

G{M ⇒ N, [α : P, β⇒ Q]} α⇒ γ γ ⇒ α

G{M, α > β⇒ N, [γ : P⇒ Q]}
>L

G{M ⇒ N, [α :⇒ β]}

G{M ⇒ N, α > β}
>R

For the sake of clarity we omitted copies of the principal formulae in the premisses.
This system along with a number of extensions was used in Alenda et al. (2013) in
a syntactical cut elimination procedure and yielded complexity results via backward
proof search.

A nested sequent system for a much stronger conditional logic, rephrased as a
logic of conditional belief, is given in Girlando et al. (2019). Since in this logic a
knowledge operator is definable, it contains a multi-agent version of modal logic S5.
On the nested sequent level this is mirrored by the fact that the system essentially
contains a multi-agent version of the nested sequent calculus with the rules t, 4 and
5 from Sec. 2.

5 Relation to other formalisms

In order to get a clearer understanding of the benefits and shortcomings of the
nested sequent framework in general, it is helpful to situate it with respect to other
important proof-theoretic frameworks. In the following we consider the relations to
thosewell-known frameworkswhich to the best of our knowledge aremost often used
in the context of modal logics. In particular, these are the frameworks of ordinary
sequents (Sec. 5.1), hypersequents (Sec. 5.2), prefixed tableaux (Sec. 5.4), labelled
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Standard sequents Nested sequents

Linear nested sequents

Hypersequents
Prefixed tableaux

Labelled sequents

Indexed nested sequents

Display calculi

Fig. 9 The proof-theoretic frameworks considered in this section with their relations. Solid arrows
indicate that the structures manipulated in one framework can also be found in the other framework.
Dotted arrows indicate that the structures of one framework can be translated into structures in the
other framework. The dashed arrow indicates that there is an interpretation (see Sec. 5.2 for details).

sequents (Sec. 5.5) and display calculi (Sec. 5.7). In addition we also consider two
modifications of the nested sequent framework in the form of linear nested sequents
and indexed nested sequents (Sec. 5.3 and Sec. 5.6, respectively). These frameworks
are interesting in that they provide a middle-ground in expressivity between standard
and nested sequents (linear nested sequents), and extend the expressivity of nested
sequents toward that of labelled sequents (indexed nested sequents). The relative
size of the different sections of course by no means reflects the relative volume
of work in the corresponding areas or their importance. The relations between the
frameworks are summarized in Figure 9. For space reasons unfortunately we have
to omit the interesting connections to frameworks like multiple sequent calculi (e.g.,
Indrzejczak, 1997), higher-arity sequent calculi (e.g., Blamey and Humberstone,
1991), modal tree-sequents (e.g., Cerrato, 1993) and indexed sequent calculi (e.g.,
Mints, 1997). The reader is referred to Poggiolesi (2010b) for more details. To avoid
unnecessary and potentially confusing notation in this section we omit names for
rules where they are only mentioned or used locally. For space reasons we also do
not give all the details on soundness and completeness results about specific logics
in the different proof-theoretic frameworks in the form of theorems, but refer to the
literature instead.

5.1 Sequents

As mentioned above, the nested sequent framework is a direct extension of the
original sequent framework, introduced in Gentzen (1935). In particular, standard
sequents can be seen as nested sequents without occurrences of the nesting opera-
tor [.]. Because of this, every standard sequent calculus can also be seen as a nested
sequent calculus. However, in such calculi none of the additional structures and fea-
tures of nested sequents are used. Hence doing so means relinquishing the benefits of
the nested sequent framework, in particular modularity, and so does not gain much
over staying in the original sequent framework.
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A deeper connection stems from the the fact that the modal rules in the standard
sequent framework can be seen as transitional rules (see, e.g., Goré, 1999), which
in the context of countermodel construction from a failed proof search correspond
to moving to a successor world. Since a successor world in the Kripke semantics
corresponds directly to a successor node in a nested sequent, this suggests a straight-
forward simulation of the modal or transitional rules for standard sequents in terms
of the modal rules for nested sequents as shown in the following example.

Example 5.1 The application of the modal rule in a standard sequent system for
modal logic K (below on the left) is simulated by the sequence of rule applications
in the nested sequent system NS+k for K (below on the right).

α1, . . . , αn ⇒ β

�α1, . . . ,�αn ⇒ �β
k {

�α1, . . . ,�αn ⇒ �β, [α1, . . . , αn ⇒ β]

�α1, . . . ,�αn ⇒ �β, [ ⇒ β]
�L+

�α1, . . . ,�αn ⇒ �β
�R+

Here the double lines in the derivation on the right stand for multiple applications of
the rule �L. Note that in the premiss of the derivation on the right the root sequent
contains exactly the conclusion of the application of the modal rule on the left,
while the successor node in this nested sequent contains exactly the premiss of the
application of the sequent rule.

The same principle can be applied to all the logics of the modal cube (Figure 2)
which have a cut-free standard sequent system, i.e., the logics K, KD, KT, K4, KD4,
S4, K45, KD45. Given that the latter calculi are complete for the respective logics,
this yields straightforward alternative completeness proofs for these systems:

Proposition 5.2 For any X ⊆ {d, t, 4} the nested sequent system NS+k ∪ X is cut-free
complete for the corresponding modal logic. The same holds for X = {4, 5} and
X = {d, 4, 5}.

Proof By simulating the sequent rules at the appropriate node in the nested sequent.�

Note that this approach can also be used to convert standard sequent calculi
into nested sequent calculi: Identify the part of the standard sequent rule which is
responsible for the noninvertible behaviour (the decision on the boxed formula on
the right in the rule k above) and turn this into a successor-creating rule. Then, build
up the rest of the premiss(es) by unpacking/transferring one formula at a time into
the successor node (the boxed formulae on the left in the rule k above). See also,
e.g., Lellmann (2015); Lellmann and Pimentel (2019).

The idea of simulating sequent derivations using the nested sequent seems to have
been mentioned first in Brünnler (2009) for modal logic KT. It was systematically
explored in Lellmann (2015); Lellmann and Pimentel (2019) and used also in Parisi
(2017) and Parisi (2020). While the latter references are in the intermediate frame-
work of linear nested sequents (see Sec. 5.3), the results apply to the full nested
sequent framework as well. A similar approach is also taken in Marin et al. (2016),
where derivations in a number of different frameworks are simulated in a focused
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labelled sequent system (see also Sec. 5.5. In the form presented here, the idea of
simulating sequent derivations by nested sequent derivations leads to a number of
observations, listed in Lellmann (2015); Lellmann and Pimentel (2019).

First, while, e.g., in the standard sequent system for modal logic K4, the modal
rule is changed to accomodate the boxed formulae in the premiss, in the nested
sequent system it is enough to just add a single rule which can be used to copy the
boxed formulae into the successor node one by one. This is due to the fact that the
standard sequent rules are essentially broken down into smaller parts in the nested
sequent framework. Hence nested sequent systems for these logics can be seen as a
modularization of standard sequent systems.

Second, since the simulation of a standard sequent derivation does not introduce
any branching in the resulting nested sequents, for completeness with respect to these
simpler rules it is enough to consider non-branching nested sequents. This idea is
further explored in the framework of linear nested sequents, see also Sec. 5.3.

Third, since the simulation of standard sequent rules always works on a leaf node
of the corresponding nested sequent, the corresponding nested sequent calculi can
be restricted to their end-active version, where in every rule application one of the
active nodes of the nested sequent in the premiss(es) must be a leaf node.

Fourth, given that a node and its successor node in a nested sequent resulting from
translating a sequent rule can be seen as the conclusion and premiss of that rule, the
branches of such a nested sequent can be viewed essentially as traces or histories
of depth-first backward proof search in the corresponding sequent system. Here, the
conclusion of a noninvertible (i.e., modal or transitional) standard sequent rule is
stored in the nested sequent before moving on to the premiss, i.e., the successor
node in the nested sequent. This in turn suggests that creating branching in a nested
sequent by applying a successor-creating rule such as �R to a non-leaf node of
the nested sequent loosely corresponds to the creation of a backtracking point in
the backward proof search for the standard sequent system: One of the noninvertible
rules is applied (backward), and its premiss can be further expanded. Backtracking to
this backtracking point in the proof search and applying a different noninvertible rule
then roughly corresponds to applying a different successor-creating rule to the node.
In particular, the branching in the nested sequent then corresponds to OR-branching
in the proof search tree. An advantage of the nested sequent formulation is however,
that the current branch is not discarded when applying such a rule, as would be the
case for backtracking in depth-first backward proof search. In fact, the procedure
prove(G,NS+k ) of Sec. 3 for proof search in nested sequents, which first applies all
rules which do not create successor nodes, and then creates an additional layer by
applying (�R)∗ wherever possible once, corresponds to breadth-first proof search in
the corresponding standard sequent system: First, all invertible rules are applied to
the sequent, then every possible noninvertible rule is applied. The latter applications
yield a set of sequents corresponding essentially to the leaves of the nested sequent
obtained by applying the rule (�R)∗ wherever possible. Then the process is repeated
on this set of sequents, i.e., the new leaf nodes of the nested sequent. This suggests
that the nested sequent framework can also be used as a tool to analyse different
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forms of proof search in the standard sequent framework, an area of research which
apart from the basic notions has not yet been fully explored.

The previous observations are based on enhancing or studying existing standard
sequent calculi, using translations and simulations in calculi in the nested sequent
framework. Moreover, the fact that the nested sequent framework can capture logics
for which no cut-free sequent calculus is known, such as modal logics S5 or K5,
suggests that the nested sequent framework is stronger than the standard sequent
framework. In light of this it is also interesting to investigate the fragment of nested
sequent calculi corresponding to standard sequent calculi, and in particular which
kinds of nested sequent calculi can be converted back into standard sequent calculi.

In this spirit, some sufficient criteria for converting a nested sequent calculus back
into a standard sequent calculus were introduced in Pimentel et al. (2019). The main
idea again stems from the connection between the nesting operator in the nested
sequent framework and the transitional rules in the standard sequent framework, and
is based on reordering nested sequent derivations by rule permutations so that the
modal rules are grouped in blocks consisting (when seen bottom-up from conclusion
to premisses) of a single application of a creation rule, i.e., a nested sequent rule
introducing a new nesting operator, followed by a number of upgrade rules, i.e.,
rules which move (possibly modified) formulae into the newly created node. The
properties of a nested sequent system which ensure that this can be done then are:

1. the creation rules introduce exactly one nesting operator;
2. the upgrade rules never move a formulae toward the root of the nested sequent;
3. the upgrade rules move a formula inside exactly one nesting operator.

Nested sequent calculi satisfying these criteria are called basic nested sequent calculi.
These properties together entail that such a block consisting of a creation rule and
a number of upgrade rules can be converted into a standard sequent rule. Moreover,
the resulting rule follows the general format of basic sequent calculi of Lahav and
Avron (2013) (see op. cit. for the definition). Hence, we have:

Theorem 5.3 (Pimentel et al., 2019, Cor. 30)For every basic nested sequent system,
there is an equivalent standard sequent system.

It is instructive to consider how, e.g., nested sequent calculi for modal logics like S5
and KB, which are notoriously difficult in the (cut-free) standard sequent setting, fail
these criteria. E.g., the rules

G{�α, M ⇒ N, [�α, P⇒ Q]}
G{M ⇒ N, [�α, P⇒ Q]}

5 or
G{α, M ⇒ N, [�α, P⇒ Q]}
G{M ⇒ N, [�α, P⇒ Q]}

b

considered above move the formula �α toward the root of the nested sequent and
hence fail property 2 above.

As a more explicit example for the relation between standard and nested sequent
systems, consider modal provability logic GL. As already mentioned in Sec. 4.3
above, this logic is given by adding the axiom �(�α → α) → �α to normal modal
logic K4. The (Kleene’d version of the) nested sequent calculusCSGL for provability
logic GL from Poggiolesi (2009) is given by the modal rules in Figure 10. Since the
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G{�α, M ⇒ N, [P ⇒ Q, �α]} G{�α, M ⇒ N, [α, P ⇒ Q]}

G{�α, M ⇒ N, [P ⇒ Q]}
�Agl

G{M ⇒ N, �α, [�α⇒ α]}

G{M ⇒ N, �α}
�Kgl

G{�α, M ⇒ N, [�α, P ⇒ Q]}

G{�α, M ⇒ N, [P ⇒ Q]}
4

Fig. 10 The modal rules of the nested sequent system for provability logic GL.

rules satisfy all the criteria for sequentialisation from Pimentel et al. (2019), we can
rearrange derivations in the calculus CSGL into blocks consisting of an application
of the creation rule �Kgl at the bottom to create a new component [�α ⇒ α] in
the nested sequent, followed by applications of the rules �Agl and 4 to populate this
component. The sequent rule corresponding to such a block is (using the set notation
to denote the set of premisses given by sets R1, R2 with R1∪R2 = R and R as defined
below): {

R1,�S,�α⇒ �R2, α : R1 ∪ R2 = R
}

�M, P⇒ N,�α

where �R ⊆ �M is the multiset of formulae to which the nested sequent rule �Agl
was applied in the block, and �S ⊆ �M is the multiset of formulae to which the
nested sequent rule 4 was applied. The large number of premisses for this rule (given
by all the possibilities for sets R1, R2 with R1 ∪ R2 = R) stems from the fact that
the nested sequent rule �Agl has two premisses, and hence every application of that
rule doubles the number of premisses of the corresponding sequent rule. Thus a
proof of cut-free completeness for the nested sequent calculus for GL automatically
yields cut-free completeness of the corresponding standard sequent calculus, i.e.,
the sequent calculus with the standard propositional rules and this rule. Note that
considering R2 = ∅ in the rule above, that rule contains in particular the premiss
R,�S,�α ⇒ α. But then we can further replace any application of this rule in a
derivation by an application of the simpler rule

�M, N,�α⇒ α

�M,�N ⇒ �α
GLR

(possibly modulo contraction) just by deleting the derivations of the remaining
premisses. Since this is (a slight variant of) the standard modal sequent rule for GL
(see, e.g., Leivant, 1981; Sambin and Valentini, 1982), cut-free completeness also
transfers to the standard sequent system for that logic.

Conversely, using the conversion from standard sequent calculi to nested sequent
calculi outlined above, we can decompose the standard sequent rule GLR above into
the following nested sequent rules:

G{�α, M ⇒ N, [α, P⇒ Q]}
G[�α, M ⇒ N, [P⇒ Q]]

�L
G{�α, M ⇒ N, [�α, P⇒ Q]}

G{�α, M ⇒ N, [P⇒ Q]}
4
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G{M ⇒ N,�α, [�α⇒ α]}

G{M ⇒ N,�α}
�Kgl

Note that these are just the nested sequent rules of Figure 10 where in the rule �Agl
only the rightmost premiss is kept. Using the simulation of sequent derivations in
this calculus as in Prop. 5.2, in particular the simulation of the sequent rule for
GL by an application of �Kgl followed by multiple applications of �L and 4, cut-
free completeness of the standard sequent system then automatically yields cut-free
completeness of this nested sequent system.

5.2 Hypersequents

As mentioned above, the problems of the standard sequent framework in capturing
prominent modal logics, in particular modal logic S5, early on led to the develop-
ment of the hypersequent framework, introduced independently in Mints (1971),
Pottinger (1983) and Avron (1996), and developed extensively by the latter author.
As mentioned above, in this framework the standard sequent structure is extended to
collections of sequents, i.e., lists, sets or multisets, each intuitively corresponding to
a separate world in a Kripke-model.

Definition 5.4 A hypersequent is a finite multiset of standard sequents, written

M1 ⇒ N1 | . . . | Mn ⇒ Nn .

The standard formula interpretation of such a hypersequent is given by the formula

(M1 ⇒ N1 | . . . | Mn ⇒ Nn)
τ := �

(∧
M1 →

∨
N1

)
∨· · ·∨�

(∧
Mn →

∨
Nn

)
.

While other formula interpretations have also been considered (see, e.g.,Kurokawa,
2014; Lellmann, 2016), for modal logics the one given above is by far the most
common. Moreover, in virtually all hypersequent calculi the hypersequent bar | is
interpreted as some kind of disjunction. In line with this, essentially all such calculi
include some form of the following external structural rules of external weakening,
external contraction and external exchange:

G
G | M ⇒ N

G | M ⇒ N | M ⇒ N
G | M ⇒ N

G | P⇒ Q | M ⇒ N
G | M ⇒ N | P⇒ Q

Note that strictly speaking in our formulation of hypersequents as multisets the
external exchange rule is already absorbed into the definition, and hence superfluous.
As an example of a hypersequent calculus we consider a calculus for modal logic
S5. The most commonly used hypersequent calculus for this logic is the one found
in Avron (1996). However, the alternative calculus introduced in Mints (1971);
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Poggiolesi (2008a) is better suited to illustrating the relation to nested sequents. The
modal rules of the latter calculus are given by:16

G | M ⇒ N,�α | ⇒ α

G | M ⇒ N,�α
G | �α, M ⇒ N | α, P⇒ Q
G | �α, M ⇒ N | P⇒ Q

G | �α, α, M ⇒ N
G | �α, M ⇒ N

Note that in this case the modal rules are essentially the modal rules of the nested
sequent calculus for modal logic KT with the nesting operator replaced with the
hypersequent bar. As explained by Poggiolesi (2010c), this leads to an interpretation
of a hypersequent as a nested sequent, where the internal accessibility structure is
collapsed into a (multi-)set, i.e., where the accessibility relation is universal.

A slightly different connection between hypersequents and nested sequents is
given by the standard formula interpretation τ above. Under this interpretation, a
hypersequent M1 ⇒ N1 | . . . | Mn ⇒ Nn has the same interpretation as the nested
sequent ⇒ [M1 ⇒ N1], . . . , [Mn ⇒ Nn]. Hence, hypersequents can be seen as
a “layer” of a Kripke model, i.e., number of worlds “side by side” all accessible
from a common root. This works reasonably well, e.g., for hypersequent calculi
for confluent or linear extensions of modal logic S4. As an example, consider the
calculus for modal logic S4.2 (obtained by axiom ♦�α→ �♦α to an axiomatisation
of modal logic S4) from Kurokawa (2014) given by the following characteristic
modal rules:

G | α, M ⇒ N
G | �α, M ⇒ N

G | �M ⇒ α

G | �M ⇒ �α
G | �M,�N ⇒

G | �M ⇒ | �N ⇒

Informally, the first rule is the standard (local) rule for reflexivity, and the second
rule is the standard rule for K4, corresponding to moving from the world represented
by the component �M ⇒ �α to a successor world, represented by the component
�M ⇒ α. Taking the interpretation of a hypersequent as a layer of a nested sequent,
applying the first rule stays local in a component of the nested sequent, while applying
the second advances this component of the layer or slice of the nested sequent one
step forward. The third rule, then, informally takes two worlds corresponding to the
components �M ⇒ and �N ⇒ and replaces them with their common successor
world, which corresponds to the component �M,�N ⇒ (recall that the logic is
an extension of K4, hence also in this rule the boxes on the left hand side of the
sequent arrow carry over to the successor, i.e., premiss of the rule). At this point,
however, to present the relations between the components accurately in the nested
sequent setting, we would need to introduce a common successor to two nodes in
the nested sequent, resulting in an accessibility structure which is no longer a tree
(see also Sec. 5.6). In general, it seems that the hypersequent framework is perhaps
better suited for capturing such “global” properties dealing with two arbitrary worlds
in a model and their successors, while the nested sequent framework is based on
a more “local” approach and is more suitable for capturing properties which can

16 A slightly different version of this hypesequent calculus can be found in Restall (2007).
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be expressed by referring to a single world in a Kripke model and its immediate
successors.

An intermediate framework between hypersequents and nested sequents is con-
sidered under the name of grafted hypersequents in Kuznets and Lellmann (2016),
where a root node is “grafted” onto a hypersequent, the rules governing the hyperse-
quent layer are those of a hypersequent system, and those governing the connection
between the root and the hypersequent layer are those of a nested sequent system.

5.3 Linear nested sequents

An intermediate framework between standard sequents and nested sequents is given
by restricting the tree structure of nested sequents to single branches. Originally
introduced in a different notation under the name of 2-sequentsMasini (1992), it was
also investigated under the names of non-commutative hypersequents Indrzejczak
(2016), (relational) hypersequents Burns and Zach (2020); Parisi (2020) or linear
nested sequents Lellmann (2015); Goré and Lellmann (2019). Due to its more
immediate connection to the nested sequent framework, here we chose to use the
latter name. Given that a linear nested sequent is just a branch of a nested sequent, we
can equivalently reformulate the linear nested sequent structure as a list of sequents:

Definition 5.5 A linear nested sequent is a branch of a nested sequent, i.e., a finite
list of sequents, written as follows:

M1 ⇒ N1// . . .//Mn ⇒ Nn

The formula interpretation of such a linear nested sequent is that of the corresponding
nested sequent, i.e.,

∧
M1 →

∨
N1 ∨ �(· · · ∨ �(

∧
Mn →

∨
Nn) . . . ).

Note that the structures of a hypersequent and a linear nested sequent are almost
the same, but the formula interpretation is different. In semantic terms, while a
hypersequent corresponds to a set or multiset of worlds in a Kripke-model, a linear
nested sequent corresponds to a branch of worlds. Since linear nested sequents are
restrictions of nested sequents, every linear nested sequent calculus can also be seen
as a nested sequent calculus. In fact, e.g., the modal rules of the original calculi
from Masini (1992) are exactly the linear versions of the standard nested sequent
modal rules for the corresponding logics. Hence completeness immediately transfers
from linear nested sequents to nested sequents. If moreover, some care is taken in
formulating the nested sequent calculus corresponding to a linear nested sequent
calculus, so that in the application of the rules (seen bottom-up) never more than one
successor node is created in the nested sequent, and the zero-premiss rules including
the initial sequents are restricted to linear nested sequents, then also soundness
transfers immediately, and hence the calculi are equivalent. Thus we have:
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Proposition 5.6 Let L be a logic. If there is a linear nested sequent calculus which
is sound and complete for L, then there is also a nested sequent calculus which is
sound and complete for L.

Thus every logic which can be captured by a linear nested sequent calculus can
also be captured by a nested sequent calculus, including, e.g., the logics in the
above mentioned literature as well as, e.g., the simply dependent multimodal logics
considered in Lellmann and Pimentel (2019). Hence the nested sequent framework
is at least as strong as the linear nested sequent framework.

For the reverse direction, a set of sufficient criteria for obtaining a linear nested se-
quent calculus from a nested sequent calculus is given by the abovementioned criteria
for converting basic nested sequent calculi to standard sequent calculi from Pimentel
et al. (2019), see Sec. 5.1:
Proposition 5.7 Let NSL be a basic nested sequent calculus which is sound and
complete for logic L. Then there is a linear nested sequent calculus which is sound
and complete for L.
Proof It was shown in (Pimentel et al., 2019, Thm. 23), that every basic nested
sequent calculus can be restricted to its end-active variant, i.e., the variant where
every rule is restricted so that one of the active components in the premisses is a
leaf of the nested sequent. Since, moreover, by definition every premiss of a modal
basic nested sequent rule only mentions one nesting operator, we can restrict the
end-active variant of NSL to linear nested sequents, simply by restricting all rules to
linear nested sequents. Call the resulting linear nested sequent calculus LNSL . Since
every derivation in LNSL is also a derivation inNSL , soundness follows immediately.
To show completeness of LNSL we simply follow the completeness proof for the
corresponding standard sequent system in Sec. 4 of op. cit. by rearranging nested
sequent derivations in the end-active variant of NSL into blocks consisting of a
successor creating (creation) rule followed by upgrade rules to populate the newly
created successor, and restricting the nested sequents to linear nested sequents using
a suitable form of the disjunction property (Lem. 28 in op. cit.). �

While the form of a basic nested sequent system is sufficient for restricting to a
linear nested sequent system, it is not necessary: In particular they are not satisfied
by the linear nested sequent calculi for linear tense logics of Indrzejczak (2016) and
those for modal logic KB and modal tense logic Kt from Goré and Lellmann (2019),
and hence by the corresponding nested sequent calculi. It is still an open problem to
formulate more general criteria for restricting nested sequent calculi to linear nested
sequent calculi, which capture systems for logics like the ones above which do not
have a cut-free sequent calculus already.

5.4 Prefixed Tableaux

In classical logic as well as in modal logic, it is a well-known fact that standard
sequent calculi correspond to semantic tableaux calculi (see, e.g., Smullyan (1968)
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and Fitting, 1983). This correspondence can be easily explained. For the technical
details, see op. cit. The idea is to try to construct a countermodel for (the formula
interpretation of) a given sequent by applying the semantic tableaux rules (see
below for details) backward until we reach an initial sequent (a closed branch in
tableaux terminology) or every possible rule has already been applied, possibly
taking into account some loop checking conditions (an open branch). Since the
emphasis is on the countermodel construction, the presentation of sequents is also
more semantic: A sequent α1, . . . , αn ⇒ β1, . . . , βm is replaced with the signed
formulae T : α1, . . . , T : αn, F : β1, . . . , F : βm, corresponding to the fact that in a
countermodel for the interpretation α1 ∧ · · · ∧ αn → β1 ∨ · · · ∨ βm of this sequent,
the formulae α1, . . . , αn on the left hand side of the sequent must be true, whereas
the formulae β1, . . . , βm on the right hand side must be false. Branch extension rules,
which specify how to deconstruct the principal formula of the sequent rule and add its
components to a branch, correspond to sequent rules. E.g., the (classical, Kleene’d)
conjunction left and right rules in the sequent framework and their corresponding
tableaux rules are:

M, α ∧ β, α, β⇒ N
M, α ∧ β⇒ N

∧L

T : α ∧ β
T : α
T : β

M ⇒ N, α ∧ β, α M ⇒ N, α ∧ β, β
M ⇒ N, α ∧ β

∧R
F : α ∧ β

F : α | F : β

The way to read tableaux rules is that the rule corresponding to the conjunction
left rule ∧L can be applied to a branch containing the signed formula T : α ∨ β by
adding both signed formulae T : α and T : β to the bottom of this branch. The rule
corresponding to the conjunction right rule ∧R can be applied to a branch containing
the signed formula F : α∧ β by splitting it into two branches at the bottom, one with
the additional signed formula F : α, the other with F : β. Note that we considered the
Kleene’s version of the sequent rules, i.e., the version where the principal formula is
copied into the premisses, to correspond to the fact that signed formulae are added
to a branch of a tableau without removing the original signed formula. Branches
in the process of constructing a tableau thus correspond directly to sequents at the
corresponding stage of backward proof search in the sequent system. In particular,
a branch is closed if for some formula δ it contains both T : δ and F : δ, and hence
closed branches correspond to initial sequents with the formula δ occurring both on
the left and right hand side of the sequent. A tableau starting from a single node
containing only a formula F : γ in which every branch is closed thus corresponds to
a sequent derivation of the sequent ⇒ γ. Conversely, given the direct connection of
formula signs to truth values, a countermodel can be read off immediately from an
open branch to which every possible rule (modulo loop checking) has been applied
by assigning every variable in the branch the truth value corresponding to its sign.

Where semantic tableaux calculi can be seen as the upside-down version of
standard sequent calculi, the analogous upside-downversion of nested sequent calculi
is given by prefixed tableaux calculi, a framework going back already to Fitting
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(1972). The correspondence was first shown in Fitting (2012) based on the single-
sided formulation of nested sequent calculi. To align better with the two-sided
formulation used here we adapt the two-sided notation from Fitting (2014), used
there for intuitionistic logic. The main idea is to capture the tree-structure of nested
sequents and Kripke-models in an additional prefix to every formula, essentially a
name for the component of the nested sequent which contains this formula and the
corresponding world in a Kripke-model. Formally, a prefix is a non-empty and finite
sequence of positive numbers starting with 1, written using periods as separators.
Examples are given by the prefixes 1.1.2.1 and 1.2.3.2. A set of prefixes which is
closed under taking initial segments thus yields a tree-structure: the successors of a
prefix σ are the prefixes σ.n for positive integers n. A prefixed signed formula then
has the form σ : T : α or σ : F : α for some prefix σ and formula α. Using the
ideas of the classical case but extended with prefixes as names for components of a
nested sequent, we can then convert back and forth between nested sequent calculi
and prefixed tableaux calculi. E.g., the modal rules of the Kleene’d calculus NS+k for
modal logic K from Sec. 3 together with the corresponding prefixed tableaux rules
are as follows:

G{�α, M ⇒ N, [α, P⇒ Q]}
G{�α, M ⇒ N, [P⇒ Q]}

�L+
σ : T : �α
σ.n : T : α
σ.n not new

G{M ⇒ N,�α, [ ⇒ α]}

G{M ⇒ N,�α}
�R+

σ : F : �α
σ.n : F : α
σ.n new

Here the additional restrictions on the prefix state that in the rule corresponding to
�L+ the prefix σ.n is not new on the branch, i.e., there is a formula σ.n : F : δ
or σ.n : T : δ already on the branch, corresponding to the fact that the component
[P ⇒ Q] exists in the nested sequent. In contrast, for the prefixed tableau rule
corresponding to the nested sequent rule �R+ the prefix σ.n must be new in the
branch, corresponding to the fact that the component [ ⇒ α] is freshly created by
the nested sequent rule.

In the same spirit, all the logical variants of the nested sequent calculi from Sec. 2
can be seen essentially as notational variants of prefixed tableaux calculi and vice
versa. The details of the proof for equivalence of the (single-sided) nested sequent
calculi and the corresponding prefixed tableaux calculi are given in Fitting (2012).
As also noted in op. cit., under this connection the extensive body of work on prefixed
tableaux thus gives rise to a wealth of nested sequent calculi. See, e.g., Massacci
(2000); Castilho et al. (1997) or Goré (1999) for an overview.

5.5 Labelled Sequents

Adifferent semanticallymotivated extension of the sequent framework is given by the
framework of labelled sequents, investigated prominently, e.g., in Simpson (1994);
Viganò (2000); Negri (2005) and Miller and Volpe (2015). Here, similarly to the
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framework of prefixed tableaux, formulae are prefixed with a label corresponding to
the world in the Kripke-model in which the formula is supposed to be true/false. The
difference is however, that the relational structure of the model is captured explicitly
in the language. This is achieved by the use of relational atoms, i.e., formulae xRy
for x and y labels, which are interpreted as explicitly stating that the world denoted by
y is a successor of the world denoted by x. Using this explicit representation, a wide
ranging class of semantical properties can be captured and the corresponding logics
automatically are endowed with a cut-free sequent system (see op. cit.). Compared to
the tree structure used in nested sequents, the structure given by an arbitrary relation
on the worlds is of course much more general. The subclass of labelled sequents
corresponding to nested sequents was characterised in Goré and Ramanayake (2012)
by restricting the relational atoms to spell out the structure of a tree:

Definition 5.8 A labelled tree sequent is a sequent R, M ⇒ N where

• R is a treelike relation set, i.e., a set of relational atoms of the form xRy which
is empty or such that the induced relation on the set of variables occurring in R
is a tree

• M and N consist of labelled formulae, i.e., formulae of the form x : α for a
world variable or label x

• if R = ∅, then all formulae in M ⇒ N have the same label
• if R , ∅, then every label occurring in a formula in M ⇒ N also occurs in R.

Similarly to the prefixes in the prefixed tableaux framework, the labels of formulae
can then be taken as names for components of a nested sequent, with the successor
relation in the nested sequent corresponding to the relation induced by the relation
set. The restriction to treelike relation sets ensures that the resulting structure is a
tree and hence a nested sequent. Thus as shown in op. cit., nested sequent calculi
can be translated into labelled tree sequent calculi and vice versa.

As an example, the modal nested sequent rules of the nested sequent calculus
NSK (see Figure 4) below left correspond to the labelled tree sequent rules below
right:

G{�α, M ⇒ N, [α, P⇒ Q]}
G{�α, M ⇒ N, [P⇒ Q]}

�L
R, xRy, X, x : �α, y : α⇒ Y
R, xRy, X, x : �α⇒ Y

G{M ⇒ N, [ ⇒ α]}

G{M ⇒ N,�α}
�R

R, xRy, X ⇒ Y, y : α
R, X ⇒ Y, x : �α

Here the label y in the rule corresponding to �R is a name for the new component
[ ⇒ α], and hence must not occur in the conclusion of that rule. The label x in
that rule is the name for the component [M ⇒ N,�α], and the relational atom
xRy specifies that the component [ ⇒ α] is one of its successors. Note that these
are exactly the rules of the labelled sequent calculus G3K for modal logic K from
Negri (2005). Thus, as in the case of prefixed tableaux, the two calculi can be seen
as notational variants (see also (Poggiolesi, 2010b, §5.4) and Poggiolesi, 2010a).
Similarly, the logical variants of the calculi from Sec. 2 can be seen as labelled tree
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sequent calculi. As it was shown in Goré and Ramanayake (2012) using the example
of provability logic, this correspondence between nested sequent calculi and labelled
tree sequent calculi automatically transfers results such as cut-free completeness. It
should be pointed out, that the labelled sequent rules corresponding directly to the
standard nested sequent rules for extensions of K do not match the standard labelled
sequent rules for these logics. An emulation of these nested sequent calculi in a
focused version of the standard labelled sequent calculi for these logics is given
in Marin et al. (2016).

As with prefixed tableaux, certain structural rules like the rule b̃ are easier for-
mulated in the nested sequent framework, since there it is not necessary to simulta-
neously rename all labels in a sequent. For labelled tree sequents this however works
slightly better than for prefixed tableaux, since the tree structure is local to a sequent
and not distributed along a branch. Hence this structure can be changed bymodifying
only a single sequent instead of potentially all formulae along the branch of a tableau
down to the root. The latter operation in particular might result in conflicts with the
other branches of the tableau.

Conversely, in the labelled setting it is very natural to capture properties of the
models using rules which only work on the relation sets, and to keep the rules
working on formulae of the form x : �α constant. E.g., the rules for transitivity and
reflexivity are naturally formulated as:

R, xRy, yRz, xRz, X ⇒ Y
R, xRy, yRz, X ⇒ Y

trans
R, xRx, X ⇒ Y
R, X ⇒ Y

refl

Since such rules very easily destroy the tree structure of the relation set, converting
labelled sequent calculi with such rules into labelled tree sequent calculi and hence
nested sequent calculi is often impossible. Where it is possible, the conversion is
often rather involved and non-trivial, see, e.g., Simpson (1994); Lyon (2020a,b). For
a more thorough overview and an exploration of a rather general method for such a
conversion, see also the recent Lyon (2021b).

5.6 Indexed nested sequents

As mentioned above, nested sequents are trees of sequents, and hence when seen
semantically essentially correspond to Kripke models based on trees. Due to this
close connection to trees, the nested sequent formalism tends to struggle with modal
logics characterised by frame properties which require a different structure, such as
confluence, stating that for all worlds x, y, z in a Kripke frame with xRy and xRz
there is a common successor w with xRw and yRw. To alleviate this problem, nested
sequents were generalized in Fitting (2015) to indexed nested sequents.17 Intuitively,

17 To prevent confusion about the terminology: Structures called indexed nested sequents were
also independently introduced in Poggiolesi (2013). However in Poggiolesi’s terminology, they
denote nested sequents with indices for agents, and hence do not break the tree structure of nested
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every component in a nested sequent is extended with an index, loosely speaking
a name for the corresponding world in a Kripke model. In particular, different
components with the same index correspond to the same world of a model. This
way it is possible to mirror properties like confluence in the syntactic framework by
adding successors to two components in the tree structure of a nested sequent, and
identifying the successors by giving them the same index. To keep in line with the
two-sided notation in this article, we follow the notation from Ramanayake (2018).

Definition 5.9 An indexed sequent is obtained by adding an index n ∈ N to a sequent
M ⇒ N , written M

n
⇒ N . An indexed nested sequent is of the form

M
n
⇒ N, [G1], . . . , [Gm]

where n is an index, m ≥ 0 and G1, . . . ,Gm are indexed nested sequents.

Other notions like that of a context then are defined analogously to the nested
sequent framework. The modal rules of an indexed nested sequent system for normal
modal logic K then are essentially the nested sequent rules with additional indices:

G{�α, M
a
⇒ N, [α, P

b
⇒ Q]}

G{�α, M
a
⇒ N, [P

b
⇒ Q]}

�L G{M
a
⇒ N,�α, [

b
⇒ α]}

G{M
a
⇒ N,�α}

�R

where the rule �R has the side condition that the index b does not occur in the
conclusion. However, since two components with the same index correspond to the
same world in the Kripke model, the calculus also includes rules to communicate
between such components:

G{α, M
a
⇒ N}{α, P

a
⇒ Q}

G{α, M
a
⇒ N}{P

a
⇒ Q}

fc − l
G{M

a
⇒ N, α}{P

a
⇒ Q, α}

G{M
a
⇒ N, α}{P

a
⇒ Q}

fc − r

G{M
a
⇒ N, [P

b
⇒ Q]}{R

a
⇒ S, [

b
⇒ ]}

G{M
a
⇒ N, [P

b
⇒ Q]}{R

a
⇒ S}

sc

Here the notationG{ }{ } denotes the obvious extension of an indexed nested sequent
with a context to an indexed nested sequent with two (possibly identical) contexts.
We refer to, e.g., Ramanayake (2018) for the full definition. Intuitively, the rules
fc − l and fc − r state that formulae can move freely between components with the
same index. Rule sc intuitively states that a component with index a has the same
successors, irrespective of where in the indexed nested sequent it occurs.

The frame property of confluence mentioned above then is captured by the fol-
lowing additional rule:

sequents. They are used to capture proof-theoretically multi-agent epistemic logic. In Bull (1992),
nested sequents have also been indexed with programs. See Section 4.3.
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G{M
a
⇒ N, [P

b
⇒ Q, [

d
⇒ ]], [R

c
⇒ S, [

d
⇒ ]]}

G{M
a
⇒ N, [P

b
⇒ Q], [R

c
⇒ S]}

This rule rather directly captures the frame condition that if the worlds corresponding
to the indices b and c are successors of the one corresponding to a, then they have a
common successor world corresponding to the index d. More generally, the indexed
nested sequent formalism was used in Fitting (2015) to introduce calculi for modal
logics axiomatised by Geach formulae, also known as Scott-Lemmon axioms, i.e.,
formulae of the form ♦k�`α → �m♦nα for k, `,m, n ≥ 0. Syntactic completeness
for these calculi via direct cut elimination and their extension to the intuitionistic
setting were investigated in Marin and Straßburger (2017).

The precise relation of indexed nested sequents to nested sequents is clarified in
Ramanayake (2018) via a correspondence to a restricted form of labelled sequents
(see Sec. 5.5 above). In particular, in op. cit. it was shown that indexed nested
sequents correspond to labelled tree sequents with equality, an extension of the
labelled tree sequents of Def. 5.8 to labelled sequents of the form R, E, M ⇒ N
where R again is a tree-like relation set, M and N contain labelled formulae, and E
now contains equality terms of the form x = y. Again, labelled tree sequents with
equality are subject to certain restrictions ensuring that every variable occurring in
M, N or E occurs also in R if the latter is non-empty. In case R is empty, every
variable occurring in M, N or E is the same. Thus, the difference in expressive
power between the frameworks of nested sequents and indexed nested sequents is
essentially the difference in expressive power between the frameworks of labelled
tree sequents and labelled tree sequents with equality.

5.7 Display Calculi

Considering only the syntactic shape of nested sequents, it might seem a bit strange
that the nesting operator is allowed to occur only on the right hand side of the sequent
arrow. After all, the comma as a structural connective might appear on both sides.
Moreover, while in the nested sequent framework we have structural connectives
corresponding to implication (the sequent arrow), conjunction (the comma on the
left), disjunction (the comma on the right), and the modal box (the nesting operator),
there are no structural connectives corresponding to negation ¬, falsum ⊥ or verum
>. So it would seem a natural step to consider sequent structures which permit
the nesting operator [.] on both sides of the sequent arrow and include structural
connectives for every logical connective in the language. In fact, this is essentially
what happens in the framework of display calculi, introduced in Belnap (1982).
While adding structural connectives for the propositional connectives works rather
smoothly, though, in order to give a formula interpretation for the nesting operator
on the left hand side of such structures we need to extend the language to that of tense
logics (see also Sec. 4.3), by introducing the modal connective � for the residual of
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the modal box (see Wansing, 2002). Semantically, this is interpreted as a backward
looking diamond: a formula �α is true in a world of a Kripke frame if the formula α
is true in at least one of its predecessors.

Definition 5.10 A (modal) display sequent is a tuple X ⇒ Y , where X and Y are
display structures given by the following grammar:

X ::= α | I | ∗X | •X | (X ◦ X)

where α is a formula of modal tense logic. The interpretation of the left and right
hand sides of a display sequent is given by the two functions ` and r as follows:

`(α) = α r(α) = α
`(I) = > r(I) = ⊥

`(∗X) = ¬r(X) r(∗X) = ¬`(X)
`(•X) = �`(X) r(•X) = �r(X)

`(X ◦ Y ) = `(X) ∧ `(Y ) r(X ◦ Y ) = r(X) ∨ r(Y )

The formula interpretation of a display sequent X ⇒ Y is `(X) → r(Y ).

Note that the comma of standard or nested sequents is replacedwith a binary struc-
tural connective ◦, making properties like associativity of conjunction/disjunction
explicit. This has the benefit that the logical rules are applied only to an isolated or
displayed formula. E.g., the modal rules of a display calculus for tense logic Kt , the
tense analogue of modal logic K are:

α⇒ X
�α⇒ •X

�L
X ⇒ •α
X ⇒ �α

�R
•α⇒ X
�α⇒ X

�L
X ⇒ α

•X ⇒ �α
�R

However, in order to be able to display a formula so that a logical rule can be applied
to it, display calculi require the addition of display rules. E.g., for the structural
connective • these are

X ⇒ •Y
•X ⇒ Y

•X ⇒ Y
X ⇒ •Y

I⇒ Y
•I⇒ Y

X ⇒ I
X ⇒ •I

A detailed introduction to display calculi including the display rules for all the
structural connectives is beyond the scope of this article - we refer the reader to,
e.g., Belnap (1982); Wansing (1998). From the perspective of nested sequents the
two display rules above left are interesting, though: Intuitively, while the operator •
on the right hand side of a display sequent corresponds to the nesting operator [.] in
a nested sequent, and hence to moving to a successor node in the underlying tree,
the operator • on the left hand side of a display sequent corresponds to moving to
a predecessor node. Hence, moving between premiss and conclusion in the display
rules essentially corresponds to moving between different nodes in a Kripke-model.
Viewing a Kripke-model as a nested sequent, then, intuitively, the display rules can
be used to shift the root of a nested sequent to a different node, so that logical
rules can be applied to formulae there. This intuition is in fact already present in
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Kashima (1994), one of the works which introduced the nested sequent framework
(in the single-sided formulation, the display rules above correspond to the turn rules
introduced in op./ cit.). Using this is it possible to simulate nested sequent derivations
using the display rules. E.g. the application of the nested sequent �R rule below left
in a successor of the root node can be simulated by the display derivation below
right, where the applications of the display rules in the first and last step correspond
to shifting the root node so that the logical rule �R can be applied.

α⇒ [ ⇒ [ ⇒ β]]

α⇒ [ ⇒ �β]
�R

α⇒ • • β

•α⇒ •β

•α⇒ �β
�R

α⇒ •�β

Making this connection formally precise is somewhat cumbersome and heavily
relies on the display rules for the remaining connectives. Hence we refer the reader
to Poggiolesi (2010a) for the details.

Given the previous remarks it should be clear that display calculi are at least as
expressive as nested sequent calculi. Since there are very general results about how to
automatically obtain cut free display calculi for logics given by a large class of axioms
(see, e.g., Kracht, 1996), it is then of course interesting to see which kinds of display
calculi can be converted into nested sequent calculi. Some very general results in this
spirit, albeit based on slightly different display-style calculi, are shown in Goré et al.
(2011), where the authors use a transformation from display-like shallow inference
calculi to nested sequent (or deep inference) calculi to uniformly obtain cut-free
modular systems for modal tense logics given by Scott-Lemmon axioms (see also
Sec. 5.6) or by path axioms, i.e., axioms of the form 〈〉1 . . . , 〈〉nα → 〈〉α, where
n ≥ 0 and each of 〈〉1, . . . , 〈〉n, 〈〉 is either ♦ or �. A further extension of these results
is presented in the very recent Ciabattoni et al. (2021).

It is worth noting, however, that the greatly increased expressivity of display
calculi compared to nested sequent calculi comes at a price: First, owing to the fact
that the presence of the display rules essentially necessitates working with equiv-
alence classes of display sequents, proof search in display calculi is a notoriously
difficult problem, rendering such calculi subobtimal for decidability or complexity
results. Moreover, the display rules for the nesting operator • as well as the formula
interpretation for this operator on the left hand side heavily rely on the presence of
the residuum � for the modal operator � in the language. While in the modal case
often it can be shown that the display calculi are conservative for the fragment of
the language not containing the operator �, in general this can be complicated, and
for some logics such as non-normal modal logics it might also not be clear what the
residuum for the modal box is.
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6 Conclusion

Modal logic is the logic that was originally introduced to treat the concepts of
necessity and possibility, whose basic principles were known since Aristotle. It is
to a large extent thanks to the introduction of Kripke semantics, in the early 1960,
that modal logic has become a powerful, fruitful and very much used non-classical
logic. However, given the difficulties encountered in the search for cut-free sequent
calculi for various important modal logics such as S5, until the end of the last
century there was a general skepticism about the possibility of a thriving general
proof theory for modal logic. The tree-hypersequent, deep sequent or nested sequent
method is amongst the methods that helped changing this perspective. The main
aim of this paper has been to offer a reasonably complete, faithful and harmonious
panorama of nested sequents and associated results. After having introduced nested
sequents, we have shown the main theorems that can be obtained with it, e.g. cut-
elimination, decidability and interpolation; moreover, we have illustrated its relation
with other well-known proof-theoretic formalisms and outlined the many logics it
can be applied to. With this we encourage the reader to dive deeper into the provided
references and hope to contribute to the study of nested sequent calculi as a vibrant
and growing area of research.
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