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Abstract

The size-dependent response of metallic microwires under monotonic and cyclic torsion is modeled

taking a reduced-order strain gradient crystal plasticity approach involving a single scalar-valued

micromorphic variable. It is compared with the response predicted by the CurlF p model proposed

in (Kaiser and Menzel, 2019a), which is based on the complete dislocation density tensor. It is

shown that, in cyclic non-uniform plastic deformation processes, the gradient of the scalar-valued

internal variable in the reduced-order model predicts isotropic hardening in contrast to kinematic-

type hardening produced by the CurlF p model due to a dislocation-induced back-stress component.

The arising size effect in the monotonic torsion tests is described by the normalized torque T/R3

as a function of the ratio of the microwire radius R and the characteristic length scale `. In the

size-dependent domain, characterized by an inflection point on the corresponding curve, the scaling

law T/R3 ∼ (R/`)n can be identified, and explicit relations are found for the power n. The relative

evolution of Statistically Stored Dislocation (SSD) and Geometrically Necessary Dislocation (GND)

densities during torsion is described in detail.

Keywords: Gradient crystal plasticity; Reduced-order model; CurlF p model; Microwire torsion

tests; Size effect; Scaling law; Micromorphic crystal plasticity
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1. Introduction

In classic continuum crystal plasticity models, the hardening behavior can be described by incor-

porating the internal variables related to scalar dislocation densities (McDowell, 2008). There are25

mainly two types of dislocation families to be considered. The dislocations generated during the

plastic deformation through random trapping with each other are called Statistically Stored Disloca-

tions (SSDs). On the other hand, Geometrically Necessary Dislocations (GNDs) are required for the

compatible deformation of the crystal under inhomogeneous plastic deformation processes (Ashby,

1970). In classic continuum crystal plasticity models, the contribution of SSD density ρS to strain30

hardening is considered to be dominant compared to the GND density ρG. These classic SSD-based

crystal plasticity models do not usually feature a characteristic length scale and hence cannot predict

experimentally observed size effects documented in (Fleck and Hutchinson, 1993; Fleck et al., 1994;

Gao et al., 1999; Stölken and Evans, 1998). The gradient of shear strain is associated with the storage

of GNDs. The GNDs control the material strain hardening along with SSDs, and accounting for35

the former in the model formulation naturally gives rise to a characteristic length scale according to

(Ashby, 1970; Acharya and Bassani, 2000; Gurtin, 2002; Cordero et al., 2012).

The GNDs are associated with the incompatible part of plastic deformations and can be quan-

tified in terms of the dislocation density tensor (Nye, 1953; Bilby et al., 1955). The introduction

of the complete dislocation density tensor into the constitutive framework intrinsically gives rise to40

latent kinematic hardening (Steinmann, 1996; Bayley et al., 2006). Moreover, the introduction of the

dislocation density tensor in the free energy density function is motivated on physical grounds as op-

posed to purely phenomenological modeling approaches (Wulfinghoff et al., 2015; Kaiser and Menzel,
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2019b,a).

The micromorphic theory described in (Eringen, 1999) relies on the introduction of a non-45

symmetric second-order tensor of microdeformation as the additional degree of freedom accounting

for the rotation and distortion of a triad of directors attached to the microstructure. The micromor-

phic approach has been extended to other types of mechanical variables, including plastic strain and

damage variables by Forest (2009, 2016). It was used to investigate strain localization phenomena

by Dillard et al. (2006); Anand et al. (2012); Mazière and Forest (2015); Brepols et al. (2017) and50

to predict size effects in crystal plasticity by Cordero et al. (2010); Aslan et al. (2011); Wulfinghoff

et al. (2013); Ling et al. (2018); Scherer et al. (2019, 2020); Ryś et al. (2020). In contrast to Eringen’s

original micromorphic theory, the reduced-order micromorphic theory relies on a single scalar-valued

additional degree of freedom at each material point, akin to accumulated plastic strain or slip (Wulf-

inghoff and Böhlke, 2012; Wulfinghoff et al., 2013; Erdle and Böhlke, 2017; Ling et al., 2018; Scherer55

et al., 2019). The reduced-order micromorphic crystal plasticity theory introduces a scalar microslip

variable related to accumulated plastic slip and its gradient as the arguments of the free energy density

function. The quasi-equality between the microslip variable and accumulated plastic slip is ensured

by the coupling modulus Hχ, playing the role of a penalty parameter. Usually, a high value of cou-

pling modulus Hχ ensures that the microslip variable and accumulated plastic slip almost coincide.60

This micromorphic model with high values of the coupling modulus can be interpreted as a numerical

method to implement a gradient plasticity model; see for instance (Anand et al., 2012). Numerical

difficulties associated with penalty methods can be overcome by using the Lagrange multiplier-based

model introduced by Zhang et al. (2018) and Scherer et al. (2020). The latter makes use of a Lagrange

multiplier λ, a nodal degree of freedom in addition to the micromorphic one, in order to enforce the65

equality between the microslip variable and the accumulated plastic slip (Scherer et al., 2020).

Gradient plasticity and micromorphic models involving the gradient or rotational part of the plas-

tic deformation tensor generally require a large number of additional internal variables and nodal

degrees of freedom (DOFs) leading to a significant increase in the computational cost. For instance,

the full-order microcurl model proposed by Cordero et al. (2010) and the gradient plasticity model70

by Panteghini and Bardella (2018) require at least 9 (3D) and 12 (2D) additional nodal DOFs. The

complexity in the numerical implementation further increases the computational modeling efforts.

The differences in the formulation of various gradient plasticity theories result in distinct and some-

times non-physical responses, making it necessary to compare different gradient plasticity models

(Peerlings et al., 2001). A comparison between five gradient-enhanced phenomenological approaches75

in a continuum damage setting can be found in (Geers et al., 2000), and one between implicit and

explicit gradient formulations in (Peerlings et al., 2001). The computational advantages of a gradi-

ent plasticity formulation including the equivalent plastic strain as an additional degree of freedom

are investigated in (Wulfinghoff and Böhlke, 2012). Moreover, the gradient crystal plasticity theory

proposed by Gurtin (2002) is used in (Bittencourt et al., 2003) to explore to which extent the results80

from the discrete dislocation simulations can be reproduced. It is found that the gradient plasticity
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Fig. 1: Schematic log-log plot characterizing the effect of the ratio of the microwire radius R to the characteristic length

scale ` on the normalized torque T/R3: size effect with bounded (solid line) and unbounded (dashed line) asymptotic

regimes, power law in the transition domain (dotted line), n is the slope of the size dependent domain and i is the

inflection point of the curve.

theory reproduces the behavior observed in the discrete dislocation simulations in remarkable detail.

However, only a few studies are dedicated to the comparison between various gradient crystal plastic-

ity approaches and the determination of the advantages and drawbacks of the many existing theories.

For instance, the detailed comparison of the micropolar crystal plasticity model (Mayeur et al., 2011)85

and the gradient crystal plasticity model proposed by Gurtin (2002) can be found in (Mayeur and

McDowell, 2014).

It is therefore the objective of this work to compare a computationally efficient Lagrange multiplier-

based model that involves a single scalar-valued variable with the CurlF p model proposed in (Kaiser

and Menzel, 2019a) for monotonic and cyclic microwire torsion tests. All models and simulations are90

presented and performed within a finite deformation framework. The scaling law T/R3 ∝ (R/`)n for

the microwire torsion tests, which characterizes the effect of the ratio of the microwire radius R and the

characteristic length scale ` on the normalized torque T/R3 using both reduced-order micromorphic

and Lagrange multiplier-based models is obtained. Such scaling laws were derived for the periodic

shearing of a laminate at small strains and small rotations in (Cordero et al., 2010; Ryś et al., 2020).95

Fig. 1 schematically shows the effect of R/` ratio on the normalized torque T/R3, which is found in

the present work. The main features of the diagram are the inflection point i and the slope n of the

size-dependent domain. For small values of R/` ratio, a bounded (for the micromorphic model), or an

unbounded (for the Lagrange multiplier-based model), asymptotic behavior can be obtained. At large

values of R/` ratio, the observed asymptotic behavior corresponds to the size-independent response100

of classic crystal plasticity models. More details will also be given regarding the evolution of the fields

of plastic strain, SSD and GND densities during torsion.

The outline of the paper is as follows: In section 2, the constitutive framework for rate-dependent

crystal plasticity is presented. The main features of the reduced-order micromorphic and the Lagrange

multiplier-based models are presented in section 3. In section 4, the constitutive framework of the105
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CurlF p model and the equivalence between the higher-order modulus A from the Lagrange multiplier-

based model and the material parameter HD from the CurlF p model are demonstrated in the single-

slip problem. Section 5 is dedicated to the simulation of representative boundary-value problems,

and size effects predicted by the Lagrange multiplier-based model are compared to the CurlF p model

predictions for monotonic and cyclic microwire torsion tests. Concluding remarks follow in section 6.110

The following notations are used in this contribution: Underlined A and under-waved bold A∼

characters are used to denote first-order and second-order tensors, respectively. The transpose, inverse

and time derivative are denoted by A∼
T , A∼

−1 and Ȧ∼ . Simple and double contractions are understood

in the sense a · b = aibj and A∼ : B∼ = AijBij . Moreover, the following tensor products are used:

a ⊗b = aibje i⊗e j , A∼ ⊗B∼ = AijBkle i⊗e j⊗e k⊗e l, A∼⊗B∼ = AikBjle i⊗e j⊗e k⊗e l and A∼⊗B∼ =115

AilBjke i⊗e j⊗e k⊗e l. The curl of a second-order tensorA∼ with respect to the reference configuration

is defined as (CurlA∼ )ij = εipqAjq,p e i ⊗ e j , with εipq denoting the coefficients of the permutation

tensor. Similarly, the spin operator which relates the axial vector to the corresponding skew-symmetric

second-order tensor in the reference configuration is defined as (SpinN )ij = −εijqNq e i ⊗ e j .

2. Constitutive framework120

2.1. Kinematics

A finite deformation framework is used throughout the work and is based on the multiplicative

decomposition of the total deformation gradient F∼ into an elastic part F∼
e and a plastic part F∼

p,

i.e. F∼ = F∼
e · F∼ p (see, e.g., Lee and Liu (1967); Willis (1969); Rice (1971); Mandel (1973); Teodosiu

and Sidoroff (1976)). The material points are defined by the position vector X in the reference

configuration Ω0 and the position vector x in the current configuration Ωt such that the displacement

vector is expressed as u (X , t) = x −X . The volumetric mass densities with respect to the reference

and the current configuration are ρ0 and ρ, respectively, and related via

J = det(F∼ ) =
ρ0
ρ
. (1)

Moreover, it is assumed that the plastic flow is incompressible such that

Jp = detF∼
p = 1. (2)

The plastic part of the velocity gradient L∼
p is defined as follows:

L∼
p = Ḟ∼

p · F∼ p−1. (3)

The elastic Green–Lagrange strain tensor E∼
e
GL

is introduced as

E∼
e
GL

=
1

2
(F∼

eT · F∼ e − 1∼), (4)

with 1∼ denoting the second-order identity tensor.
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2.2. Rate-dependent crystal plasticity model

Most rate-independent crystal plasticity theories lead to an ill-conditioned problem regarding the

selection of active slip systems and the increments of shear on the active slip systems as emphasized

in (Anand and Kothari, 1996; Miehe et al., 1999; Busso and Cailletaud, 2005). One way to overcome

this difficulty is to work within a rate-dependent framework. Here, a rate-dependent overstress-type

flow rule is adopted to facilitate the determination of the set of active slip systems. It is based on a

Schmid-type yield function defined as

fr = |τ r| − τ rc , (5)

involving the resolved shear stress τ r on the slip system r, which is the driving force to trigger plastic

slip, and the corresponding critical resolved shear stress τ rc . The resolved shear stress τ r on slip system

r is defined as

τ r = Π∼
M : (m r ⊗ n r), with Π∼

M = JeF∼
eT · σ∼ · F∼ e−T , (6)

where Π∼
M is the Mandel stress tensor defined with respect to the intermediate configuration, m r is

the slip direction, n r is the slip normal and σ∼ is the Cauchy stress tensor. The slip rate γ̇r on each

slip system r is then given by the following rate-dependent flow rule

γ̇r = γ̇0

〈
fr

τ0

〉m
sign (τ r) , (7)

with Macauley brackets < • > denoting the positive part of •, γ̇0 the reference strain rate and m

controlling the rate sensitivity of the material response–i.e. high values of γ̇0 and m result in a low125

rate-sensitivity. Moreover, τ0 is the initial critical resolved shear stress.

Furthermore, the plastic deformation rate is the result of slip processes on N distinct slip systems,

i.e.

L∼
p =

N∑
r=1

γ̇r(m r ⊗ n r). (8)

3. Reduced-order gradient crystal plasticity theory

3.1. Micromorphic model

According to the micromorphic approach, the variables carrying the targeted gradient effects are

selected from the available state variables. They can be tensors of any rank (Forest, 2016). The model130

is called reduced-order micromorphic when the micromorphic variable is a scalar quantity, as done in

the model proposed by Ling et al. (2018) which is summarized in this section.

The material points possess two types of DOFs: the displacement vector u and the micromorphic

scalar microslip variable γχ(X , t). The associated scalar internal variable is the cumulative plastic

strain γcum introduced as

γcum =

∫ t

0

N∑
r=1

|γ̇r|dt. (9)

In the present formulation, the set of DOFs is, therefore

DOFs = {u , γχ}. (10)
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The gradients of the DOFs with respect to the reference configuration are

H∼ =
∂u

∂X
= Gradu , K =

∂γχ
∂X

= Grad γχ. (11)

The static balance equations and Neumann boundary conditions expressed with respect to the refer-

ence configuration are as follows:

DivP∼ = 0 and DivM − S = 0, ∀X ⊂ Ω0, (12)

T = P∼ ·N and M = M ·N , ∀X ⊂ ∂Ω0, (13)

where P∼ is the Boussinesq (first Piola–Kirchhoff) stress tensor related to the Cauchy stress tensor σ∼

by P∼ = Jσ∼F∼
−T , S and M are the generalized stresses, T is traction vector, M is the generalized

surface traction and N the outward unit normal vector at a boundary of the reference body.135

The cumulative plastic strain γcum is related to the microslip variable γχ via the relative plastic

strain e(X , t) as

e(X , t) := γcum − γχ. (14)

The material under consideration is assumed to be characterized by the Helmholtz free energy density

function

Ψ = Ψ̃(E∼
e
GL
, e,K , α), (15)

in terms of the elastic Green-Lagrange strain tensor E∼
e
GL

, the relative plastic strain e, the gradient of

the microslip variable K and the internal hardening variable α. The Helmholtz free energy density

function is taken partly as a quadratic potential of the form:

ρ0Ψ̃(E∼
e
GL
, e,K , α) =

1

2
E∼
e
GL

: Λ
≈

: E∼
e
GL

+
1

2
Hχe

2 +
1

2
K ·A∼ ·K + ρ0Ψ̃p(α), (16)

where Λ
≈

is the fourth-order tensor of elastic moduli. In the micromorphic approach, two additional

material parameters are introduced, namely the coupling modulus Hχ and the higher-order micro-

morphic stiffness A∼ .

The Clausius-Duhem inequality takes the form(
Π∼
e−ρ0

∂Ψ̃

∂E∼
e
GL

)
: Ė∼

e
GL−

(
S+ρ0

∂Ψ̃

∂e

)
ė+

(
M −ρ0

∂Ψ̃

∂K

)
·K̇ +Π∼

M : L∼
p+Sγ̇cum+Xα̇ ≥ 0, (17)

from which the following state laws are adopted:

Π∼
e = ρ0

∂Ψ̃

∂E∼
e
GL

, S = −ρ0
∂Ψ̃

∂e
, M = ρ0

∂Ψ̃

∂K
, X = −ρ0

∂Ψ̃

∂α
, (18)

where X is the thermodynamic force associated with internal hardening variable α. The second

Piola–Kirchhoff stress tensor with respect to the intermediate configuration is given by Π∼
e = JeF∼

e−1 ·140

σ∼ · F∼ e−T .

With (18) at hand, the specific quadratic form of the potential (16) leads to the following relations:

Π∼
e = Λ

≈
: E∼

e
GL
, S = −Hχe = −Hχ(γcum − γχ), M = A∼ ·K . (19)
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For isotropic and cubic materials, the second-order tensor A∼ = A1∼ involves a single generalized

modulus A which is assumed to be constant in space. In addition, the partial differential equation

connecting γχ and γcum follows from the previous state laws and the balance equation in (12) as

γχ −
A

Hχ
4X γχ = γcum, (20)

where 4X stands for the Laplace operator with respect to the reference configuration.

The residual dissipation inequality takes the form

Dres = Π∼
M : L∼

p + Sγ̇cum +Xα̇ =

N∑
r=1

τ rγ̇r + Sγ̇cum +Xα̇ ≥ 0, (21)

after consideration of (8) and of plastic incompressibility. The dissipation rate form suggests the

introduction of the following generalized Schmid yield function:

fr = |τ r|+ S − τ rc = |τ r| − (τ rc − S), (22)

which leads to a yield function of the form

fr = |τ r| − (τ rc − S) = |τ r| − (τ rc −DivM ), (23)

once the generalized static balance law (12) is taken into account. In that way, the generalized stress

S in the previous equation results in an enhancement of the hardening law and can be regarded as a

source of isotropic hardening (or softening). After inserting (11) and (19) in (23), the yield function

can be expressed as

fr = |τ r| − (τ rc −ADiv(Grad γχ)) = |τ r| − (τ rc −A4X γχ). (24)

This generalized yield function is then inserted into the flow rule (7), taking the threshold function

sign into consideration, in order to compute the plastic slip rate of each slip system.

In this work, the micromorphic model is used to derive the scaling laws for monotonic microwire145

torsion tests.

3.2. Lagrange multiplier-based model

The Lagrange multiplier-based model was proposed by Fortin and Glowinski (1983) and suc-

cessfully implemented in (Zhang et al., 2018; Scherer et al., 2020). In this section, the Lagrange

multiplier-based model presented in (Scherer et al., 2020) is summarized. The Lagrange multiplier λ

is introduced to enforce the strict equality between γcum and γχ in order to transform the previous

micromorphic model into a strain gradient crystal plasticity model. It replaces the penalty coeffi-

cient represented by the coupling modulus Hχ of the micromorphic model summarized in section 3.1.

Therefore, the set of DOFs is given by

DOFs = {u , γχ, λ}. (25)

It turns out that the free energy density function in (15) becomes a Lagrangian function L0.

More specifically speaking, the material under consideration is assumed to be characterized by the

8



Lagrangian function L0(E∼
e
GL
, e,K , λ, α), in terms of the Green-Lagrange strain tensor E∼

e
GL

, the

relative plastic strain e, the gradient of the microslip variable K , the Lagrange multiplier λ, which

is treated as an additional degree of freedom, and the internal hardening variable α. The considered

form of the Lagrangian function is

ρ0L0(E∼
e
GL
, e,K , λ, α) =

1

2
E∼
e
GL

: Λ
≈

: E∼
e
GL

+
1

2
µχe

2 +
1

2
K ·A∼ ·K + λe+ ρ0Ψ̃p(α), (26)

where µχ is a Lagrangian penalty modulus. The Clausius-Duhem inequality then takes the form(
Π∼
e − ρ0

∂L0

∂E∼
e
GL

)
: Ė∼

e
GL −

(
S + ρ0

∂L0

∂e

)
ė+

(
M − ρ0

∂L0

∂K

)
·K̇ +

+Π∼
M : L∼

p + Sγ̇cum + ρ0
∂L0

∂α
α̇ ≥ 0. (27)

This gives rise to the following state laws:

Π∼
e = ρ0

∂L0

∂E∼
e
GL

, S = −ρ0
∂L0

∂e
, M = ρ0

∂L0

∂K
, X = −ρ0

∂L0

∂α
. (28)

Furthermore, evaluating (28) for the specific quadratic form of the Lagrangian (26) leads to the

following relations

Π∼
e = Λ

≈
: E∼

e
GL
, S = λ− µχ(γcum − γχ), M = A∼ ·K . (29)

The residual dissipation has the same form as (21) and leads to the introduction of the following

generalized Schmid yield function:

fr = |τ r|+ S − τ rc = |τ r| − (τ rc − S) = |τ r| − (τ rc − λ+ µχ(γcum − γχ)). (30)

Again, this generalized yield function can be inserted into the flow rule (7) to evaluate the plastic slip

rate of each slip system. The penalty parameter µχ is similar to the micromorphic penalization term

Hχ but bears a different meaning. In simulations, the parameter µχ can take a much lower value than150

Hχ and provides additional coercivity.

In the present work, the Lagrange multiplier-based model is used to compare the size effects

predicted by the CurlF p model, because the CurlF p model is a strain gradient plasticity model and

thus should be compared more directly to the Lagrange multiplier-based model. The implementation

of the micromorphic and Lagrange multiplier-based single crystal plasticity models in the finite element155

code Zset1 (Besson and Foerch, 1997) is described in detail in (Ling et al., 2018) and (Scherer et al.,

2020), respectively.

3.3. Dislocation density-based hardening

The strain hardening behavior relies on a dislocation density-based hardening model, which takes

dislocation interactions into account. Following the work of Kubin et al. (2008), the rate of the critical

1http://www.zset-software.com/
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resolved shear stress τ rc is related to the scalar dislocation densities %u according to

τ rc = τ0 + µ

√√√√ N∑
u=1

hru%u, (31)

where τ0 is the initial critical resolved shear stress, µ is the shear modulus and hru is the interaction

matrix describing long-range interaction between dislocations. Moreover, %u is the non-dimensional

dislocation density such that %u/b2 = ρu, with ρu as the usual SSD density, i.e. the length of dislocation

lines per unit volume with b denoting the norm of the dislocation Burgers vector b . The following

equation gives the evolution of the dislocation density

%̇r = |γ̇r|


√∑N

u=1a
ru%u

κ
−Gc%r

 . (32)

The first term in the previous equation corresponds to dislocation multiplication, whereas the second

term accounts for dislocation annihilation. The dislocation interaction is described by the matrix160

aru, κ is a constant material parameter and Gc is the critical distance controlling the annihilation of

dislocations with opposite signs. The structure of the matrices hru and aru can be found in Appendix

B.

The part of the free energy due to the internal hardening variable αr is assumed to be of the form

(Abrivard et al., 2012):

ρ0Ψ̃p(αr) = µξ

N∑
r=1

1

2
(αr)2, (33)

where ξ is a constant that is approximately equal to 0.3. The dissipation due to the internal hardening

variable αr in (17) on each slip system r involves the thermodynamic force

Xr = −ρ0
∂Ψ̃p

∂αr
= −µξαr. (34)

Moreover, it is assumed that the internal hardening variable αr depends on the SSDs as follows:

αr =

√√√√ N∑
u=1

hru%u. (35)

4. CurlF p gradient crystal plasticity theory

4.1. CurlF p model165

In this section, the gradient plasticity theory based on the complete dislocation density tensor

elaborated in (Kaiser and Menzel, 2019b) is briefly summarized. The CurlF p framework proposed by

Kaiser and Menzel (2019b) relies on the interpretation of incompatible plastic deformation processes

in terms of the dislocation density tensor. The model formulation is based on the introduction of

the dislocation density tensor as an argument of the free energy density function and assumes an170

extended non-local form of the dissipation inequality as proposed by Polizzotto and Borino (1998).

More specifically speaking, it is proposed to rewrite the dissipation inequality in terms of a generalized
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stress field and to make use of the insulation condition for non-locality residual P0 to derive the balance

equation for the generalized stress field together with its associated boundary conditions. Another

popular strain gradient theroy proposed by Gurtin (2002) is based on an extended form of the principle175

of virtual power by introducing microforces/microstresses that are work-conjugated to the slip rates

and the slip-rate gradients, hence contributing to the internal power. In addition, the microscopic

tractions that are work-conjugated to the slip rates contribute to the external power and give rise

to the balance equation of microforces and the microscopic traction boundary conditions. However,

the comparison of this theory with (Polizzotto and Borino, 1998) lies beyond the scope of the present180

contribution.

The dislocation density tensor (Steinmann and Stein, 1996; Acharya and Bassani, 2000; Cermelli

and Gurtin, 2001; Liebe et al., 2003) is defined by

D∼ = CurlT (F∼
p). (36)

The material under consideration is assumed to be characterized by the free energy density function

Ψ = Ψ̃(F∼ ,F∼
p,D∼ , α), (37)

with α denoting a scalar-valued internal variable, which may be interpreted as a measure of the

cumulative plastic strain. Moreover, it is assumed that the gradient-enhanced energy density function

can additively be decomposed as

ρ0Ψ̃ = ρ0Ψ̃e(F∼ ,F∼
p) + ρ0Ψ̃g(D∼ ) + ρ0Ψ̃p(α), (38)

where Ψ̃e, Ψ̃g and Ψ̃p are the elastic contribution, the energy contribution due to the gradient effect and

the energy contribution due to the internal hardening variable, respectively. The energy contribution

Ψ̃g is expressed as a quadratic function

ρ0Ψ̃g(D∼ ) = HDD∼ : D∼ , (39)

where HD is a material parameter proposed in (Kaiser and Menzel, 2019b), which can be interpreted

as a characteristic length scale parameter. The part of the free energy due to the hardening variable

α is chosen as

ρ0Ψ̃p(α) = τ0α+
(τ∞ − τ0)2

H0
ln

(
cosh

(
H0α

τ∞ − τ0

))
, (40)

where the material parameters τ∞ and H0 are the saturation strength and the initial hardening rate,

respectively. The extended form of the dissipation inequality is

Dres = P∼ : Ḟ∼ −
(
ρ0
∂Ψ̃

∂F∼
: Ḟ∼ + ρ0

∂Ψ̃

∂F∼
p : Ḟ∼

p + ρ0
∂Ψ̃

∂D∼
: Ḋ∼ + ρ0

∂Ψ̃

∂α
: α̇

)
+ P0 ≥ 0, (41)

The first Piola–Kirchhoff stress tensor is given by

P∼ = ρ0
∂Ψ̃

∂F∼
, (42)
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and the reduced form of the dissipation inequality takes the form

Dres = Π∼
M

: L∼
p + Ξ∼ : Ḋ∼ +Xα̇+ P0 ≥ 0, (43)

where Π∼
M

is a Mandel-type stress tensor defined in the intermediate configuration by

Π∼
M

= F∼
eT · P∼ · F∼ pT , (44)

and related to the Mandel stress tensor Π∼
M defined in (6) by Π∼

M
= JpΠ∼

M , as the incompressibility

condition (Jp = 1) is not explicitly assumed in this particular model.

The thermodynamic force associated with the internal hardening variable is defined as

X = −ρ0
∂Ψ̃p

∂α
= −

(
τ0 + (τ∞ − τ0)tanh

(
H0α

τ∞ − τ0

))
, (45)

and the energetic dual to the dislocation density tensor reads

Ξ∼ = −ρ0
∂Ψ̃

∂D∼
. (46)

Moreover, the evaluation of (46) for the specific form of the energy contribution (39) yields

Ξ∼ = −2HDCurlT (F∼
p). (47)

By considering an insulation condition P0 = 0 as in (Kaiser and Menzel, 2019a), the reduced form of

the dissipation inequality may be written in terms of

Dres = M∼ : L∼
p +Xα̇ ≥ 0, (48)

and give rise to a balance equation for the generalized stress tensor

M∼ = Π∼
M

+ CurlT (Ξ∼) · F∼ pT , in B0
dis. (49)

The generalized stress tensor M∼ consists of the Mandel-type stress tensor Π∼
M

defined in the interme-

diate configuration and a back-stress term CurlT (Ξ∼) ·F∼ pT , which is closely related to incompatibilities

in the plastic deformation field such that when gradient effects are neglected, M∼ reduces to Π∼
M

. The

generalized stress tensor is identified as the driving force for plastic deformation processes based on

(48). The yield function and the evolution equations are accordingly formulated in terms of the gen-

eralized stress tensor. Moreover, the non-ambiguous constitutive boundary condition associated with

(49) reads

Ξ∼ · Spin(N ) · F∼ pT = 0∼, on ∂B0
dis,ext, (50)

where N denotes the outward unit normal vector with respect to the considered boundary ∂B0. The

detailed derivation of (49) and (50) can be found in (Kaiser and Menzel, 2019b). The generalized stress185

tensor in (49) and the constitutive boundary condition in (50) are originally derived on the domain

B0
dis, where dissipative processes occur, and on the corresponding external boundary ∂B0

dis,ext.

In addition, the relative Mandel stress tensor is introduced as a primary field variable

M∼
(rel)

= M∼ −Π∼
M
, (51)
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so that (49) can be written as

M∼
(rel) − CurlT (Ξ∼) · F∼ pT = 0∼, in B0

dis. (52)

Substituting (47) in (52) yields the specific form of the relative Mandel stress tensor

M∼
(rel)

= −2HDCurlT (CurlT (F∼
p)) · F∼ p

T , (53)

which is responsible for the back-stress associated with the kinematic hardening. In addition, field

variable θ∼
p is introduced which is coupled to F∼

p in terms of an L2-projection as follows:

0 =

∫
B0

η
∼

θp : (F∼
p − θ∼p)dV, (54)

where η
∼

θp is the corresponding test function.

4.2. Post-processing technique to evaluate GND density distribution190

In order to identify the differences between the Lagrange multiplier-based model and the CurlF p

model, the constitutive equations of both models are summarized in Appendix A. Moreover, in the

present work, the GND density distribution in monotonic and cyclic loading of microwires using

the Lagrange multiplier-based model is calculated from the Euclidean norm of CurlT (F∼
p). A post-

processing technique is used to evaluate CurlT (F∼
p) (see also, Busso et al. (2000); Abrivard et al.

(2012)). The GND density is computed as the norm of the dislocation density tensor divided by b. In

the CurlF p model this variable is available in the code, whereas a post-processing is needed to compute

the curl of the plastic part of the deformation gradient in the case of the Lagrange multiplier-based

model. The first step in determining CurlT (F∼
p) is to calculate the gradient of F∼

p at the integration

points. To this end, the known values of F∼
p at the integration points are extrapolated to nodes by

using the shape functions of the elements. The gradients of F∼
p at the nodes can next be obtained

from the spatial derivatives of the shape functions. Finally, known nodal values of the gradient of

F∼
p are interpolated back to the integration points. The Euclidean norm of CurlT (F∼

p) provides an

effective measure of GND density as follows:

||CurlT (F∼
p)|| = b

N∑
r=1

ρrG, (55)

where || • || denotes the Euclidean norm of •.
4.3. Equivalence of higher-order modulus A and material parameter HD in single-slip

The higher-order modulus A from the reduced-order model, refer to (24), and material parameter

HD from the CurlF p theory, refer to (47), bear similar physical interpretations. This is demonstrated

in this section for a simplified two-dimensional single-slip problem.195

A single crystal with a single-slip system is considered. The slip direction m and the slip plane

normal n are

m = (1, 0, 0), n = (0, 1, 0). (56)
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Consider a situation where only one slip system is active. In the absence of lattice distortion and

rotation, the plastic part of the deformation gradient F∼
p takes the form

F∼
p = 1∼ + γ (m ⊗ n ), (57)

[F∼
p]ij =


1 γ 0

0 1 0

0 0 1

 . (58)

The dislocation density tensor [D∼ ]ij = [CurlT (F∼
p)]ij is given by

[D∼ ]ij =


∂Fp

13

∂X2
− ∂Fp

12

∂X3

∂Fp
11

∂X3
− ∂Fp

13

∂X1

∂Fp
12

∂X1
− ∂Fp

11

∂X2

∂Fp
23

∂X2
− ∂Fp

22

∂X3

∂Fp
21

∂X3
− ∂Fp

23

∂X1

∂Fp
22

∂X1
− ∂Fp

21

∂X2

∂Fp
33

∂X2
− ∂Fp

32

∂X3

∂Fp
31

∂X3
− ∂Fp

33

∂X1

∂Fp
32

∂X1
− ∂Fp

31

∂X2

 . (59)

Therefore, for the 2-dimensional case and the specific simple shear problem studied,

[D∼ ]ij =


0 0 ∂γ

∂X1

0 0 0

0 0 0

 . (60)

The only active component of the dislocation density tensor is

D13 =
∂γ

∂X1
. (61)

The equivalence of higher-order modulus A and the material parameter HD from the CurlF p model

can be derived as follows. For a crystal deforming under single-slip conditions, the plastic deformation

rate is given by

Ḟ∼
p = γ̇(m ⊗ n ). (62)

Inserting (51) in (48) for M∼ gives

(τ +M∼
(rel)

: m ⊗ n )γ̇ +Xα̇ ≥ 0. (63)

In absence of hardening variable, α, for simplicity, the generalized Schmid law for the CurlF p model,

in the rate-independent case, can be defined as

|τ − x| = τc, with x = −M∼
(rel)

: m ⊗ n . (64)

From the specific form of the generalized stress tensor M∼
(rel)

given by (53), the back-stress x can be

written as

x = 2HDCurlT (CurlT (F∼
p)) · F∼ p

T : m ⊗ n , (65)

with

[CurlT (CurlT (F∼
p))]ij =


∂Fp

12

∂X12
+

∂Fp
13

∂X13

∂Fp
11

∂X21
+

∂Fp
13

∂X23

∂Fp
11

∂X31
+

∂Fp
12

∂X32

∂Fp
22

∂X12
+

∂Fp
23

∂X13

∂Fp
21

∂X21
+

∂Fp
23

∂X23

∂Fp
21

∂X31
+

∂Fp
22

∂X32

∂Fp
32

∂X12
+

∂Fp
33

∂X13

∂Fp
31

∂X21
+

∂Fp
33

∂X23

∂Fp
31

∂X31
+

∂Fp
32

∂X32
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−


∂Fp

11

∂X22
+

∂Fp
11

∂X33

∂Fp
12

∂X11
+

∂Fp
12

∂X33

∂Fp
13

∂X11
+

∂Fp
13

∂X22

∂Fp
21

∂X22
+

∂Fp
21

∂X33

∂Fp
22

∂X11
+

∂Fp
22

∂X33

∂Fp
23

∂X11
+

∂Fp
23

∂X22

∂Fp
31

∂X22
+

∂Fp
31

∂X33

∂Fp
32

∂X11
+

∂Fp
32

∂X33

∂Fp
33

∂X11
+

∂Fp
33

∂X22

 . (66)

For the particular single-slip problem considered, the back-stress takes the form

2HDCurlT (CurlT (F∼
p)) · F∼ p

T : m ⊗ n = −2HDγ,11 (67)

Substituting (67) in (64) leads to another form of the generalized Schmid law

|τ + 2HDγ,11 | = τc. (68)

This equation clearly shows the emerging kinematic hardening component proportional to the second

gradient of slip in the slip direction.

On the other hand, the generalized Schmid law for a single-slip problem with the Lagrange

multiplier-based model can be written from (30) in the rate-independent case as

|τ |+ S = τc. (69)

Recalling the balance law in (12), the generalized Schmid law in (69) can be written as

|τ |+ DivM = τc. (70)

Making use of (19) in the previous equation leads to another form of the generalized Schmid law

|τ |+A(DivK ) = τc, (71)

A(DivK ) = ADiv

(
∂γχ
∂X1

m +
∂γχ
∂X2

n

)
= A

∂2γχ
∂X2

2

= Aγ,11 . (72)

Finally, the form of the generalized Schmid law in (71) can be written as

|τ |+Aγ,11 = τc. (73)

This equation clearly shows the emerging isotropic hardening component proportional to the second

gradient of slip in the slip direction. From (68) and (73), it is concluded that the higher-order moduli

A and HD can be related to each other for monotonic loading such that τ > 0 and τ+2HDγ,11> 0. In200

this instance, we can identify A = 2HD. The Lagrange multiplier-based model and the CurlF p model

are equivalent in this specific situation. It will not be the case anymore, in general, under multi-slip

conditions and considering the different hardening laws. Proving the importance of these differences

is the subject of the following sections for monotonic and cyclic loading conditions.

In the presence of linear hardening with modulus H, it is possible to derive from (71) the definition

of a characteristic length scale

` =
√
A/|H|, (74)

as demonstrated in (Ling et al., 2018; Scherer et al., 2019). For more general hardening laws, a similar205

characteristic length scale can be defined, as discussed in section 5.3.1.
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5. Application to microwire torsion tests

The torsion of a single crystal microwire is characterized by two types of gradients: gradients

along the radial direction from the center to outer surface and gradients along the circumferential

direction as observed by Nouailhas and Cailletaud (1995). More recently, experimental investigations210

of microwire torsion tests on single crystal copper under monotonic loading have been performed

by Horstemeyer et al. (2002) with the [110] crystallographic direction being aligned with the axis

of rotation. An observation of the kinematics of the deformation field at the outer surface of the

specimen was made. A wavy deformation pattern of sinusoidal waves comprising of four periods was

observed and believed to be the result of four-fold symmetry of the slip plane around the circumference.215

Moreover, experimental assessments of polycrystalline microwire torsion tests with different specimen

diameters and same grain size were performed in (Liu et al., 2012; Guo et al., 2017) to study the

size effects under monotonic loading. Furthermore, the experimental studies of size effects, hysteresis

loops, Bauschinger effects, and anomalous plastic recovery in polycrystalline cyclic torsion tests can be

found in (Liu et al., 2013a; Guo et al., 2020). Mechanical annealing is an effective method to decrease220

the overall dislocation density in single crystals with a size of several hundred nanometers. This

method can be used for applications in manufacturing defect-free components of nano size. However, a

significant shape change of the samples surprisingly happens under extremely high monotonic loading

to drive the pre-existing dislocations out of the free surface. Cui et al. (2016) showed that low-

amplitude cyclic loading could drive the pre-existing dislocations out of the free surface without a225

significant shape change in submicron samples undergoing low-amplitude cyclic loading. The sample

size is a key factor in mechanical annealing. Dislocation annihilation can only occur in samples with

a size smaller than the critical value, as demonstrated in (Cui et al., 2016). Mechanical annihilation

was not observed in large samples.

From a numerical point of view, Weinberger and Cai (2010) investigated the orientation dependent230

plasticity in metallic nanowires by using molecular dynamics and dislocation dynamics simulations.

Molecular dynamics simulations showed that the mechanism of plastic deformation is controlled by the

orientation of the single crystal wires. The wires oriented along <110> direction shows the coaxial

dislocation nucleation, making the deformation homogeneous. Furthermore, these wires maintain

most of their strength after yielding. On the other hand, <001> and <111> crystal orientations235

deform through formation of twist boundaries which localizes the deformation and lose most of their

strength after yielding. Besides, dislocation dynamics simulations are used to investigate the stability

of the dislocation structures observed in molecular dynamics simulations. The prediction of size

effects in monotonic and cyclic loading of polycrystalline microwires were performed in (Bardella and

Panteghini, 2015). To this end, they used a phenomenological strain gradient plasticity approach called240

distortion gradient theory which relies on the dislocation density tensor with taking less-than-quadratic

defect energies into consideration. These less-than-quadratic defect energies allow the prediction of

size effects consisting of an increase of the yield point with diminishing size. It was observed that this

distortion gradient theory is satisfactory to capture the size effects in monotonic loading. However, it
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leads to anomalous cyclic behavior in the case of cyclic loading due to the less-than-quadratic defect245

energies. They related the anomalous cyclic behavior to the changes of concavity of the stress-strain

curves, which is absent in the experiments. Panteghini and Bardella (2020) recently proposed a strain

gradient plasticity theory characterized by a higher-order plastic potential to overcome this issue in

the cyclic loading of polycrystalline microwires. The predictions made by taking the above-mentioned

approach are in good agreement with the experimental data of (Liu et al., 2013b) and predictions on250

the size-dependent response of microwires under cyclic loading.

In this section, the size effect predicted by the Lagrange multiplier-based model for monotonic and

cyclic microwire torsion tests is compared to the predictions by the CurlF p model taken from Kaiser

and Menzel (2019a). The relation A = 2HD is used in the simulations, following the identification

presented in section 4.3.255

5.1. Problem setup

The simulations are performed using single crystal cylindrical microwires with a height of 80 mm

and three different radii R = 20 mm, 10 mm and 5 mm, that are meshed with reduced integration

20 node brick elements. The simulation results are not affected by the absolute values of the wire

dimensions but rather by the ratio of their radii to the characteristic length scale `.260

The applied boundary conditions and meshed geometry are shown in Fig 2. The geometry is

discretized with 3600 elements for monotonic loading and with 450 elements for cyclic loading. The

same finite element meshes as in (Kaiser and Menzel, 2019a) are used for the simulations performed

with the Lagrange multiplier-based model in order to allow for direct comparison. The latter model

was recently used to simulate torsion tests of single crystals with various orientations and finer meshes265

in (Scherer et al., 2020). Isotropic elasticity is considered. The bottom face of the microwire is

clamped, while the top surface undergoes a rigid body rotation around the wire axis. The lateral

faces are kept traction-free and free of generalized forces, which means that T = 0 and M = 0 in

(13). The relative rotation between the upper and lower face is linearly increased to an angle of

45◦ for monotonic loading. For the cyclic loading test, the following conditions are enforced: The270

relative rotation between the upper and lower faces is first linearly increased to an angle of 45◦. Next,

the relative rotation is linearly decreased to −45◦. Finally, the loading is again reversed, and the

simulation is stopped when a relative rotation of 45◦ is reached.

The orientation of the single crystal considered is such that the [001] crystal direction is aligned

with the wire axis. The basis vectors of the Cartesian coordinate system are parallel to the cubic

lattice unit cell vectors:

e 1 = [100] e 2 = [010] e 3 = [001],

and are indicated in Fig. 2.

5.2. Identification of material parameters275

The Face-Centered Cubic (FCC) crystal possesses the usual 12 slip systems with 6 slip directions

<110> and 4 slip planes {111}.
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(a) (b)

Fig. 2: Microwire torsion: (a) Boundary conditions and (b) top view of the finite element mesh with R denoting the

radius of the microwire.

The material parameters of the FCC single crystal for the dislocation density-based model pre-

sented in section 3.3 are now calibrated based on simple tension and simple shear predictions obtained

on a single volume element with the constitutive law considered in (Kaiser and Menzel, 2019b) and280

recalled in section 4.1. Such a calibration is necessary because the two models compared in the present

work rely on different hardening rules. The CurlF p model includes a phenomenological hardening

law with internal variable α, whereas the reduced-order model incorporates evolution equations for

dislocation densities. The calibrated material parameters used in the numerical simulations and the

material parameters used in the CurlF p model are summarized in Table 1. The viscosity parameters285

are chosen in such a way that no significant rate–dependence of the results is observed in the range

of strain rates considered in this work. The initial adimensional dislocation density is denoted by %r0

and assumed to be the same for all slip systems.

The corresponding tensile and shear stress-strain responses of a <001> FCC single crystal are

provided for both models in Fig. 3. No exact match is observed in Fig. 3 because the hardening290

functions are very different in both models. Only qualitative agreement is reached for the tensile and

shear curves for the considered crystal orientation, which is sufficient for the comparisons performed

in the sequel for torsion of microwires.

5.3. Results and discussion

The characteristic length scale ` considered in the simulations is defined as ` =
√
A/|H|, cf. section295

4.3, (74). The hardening modulus H varies during straining, and an approximate expression of the

characteristic length scale is chosen to normalize the presented results. For that purpose, the initial

equivalent linear hardening modulus for the tensile test is selected. Its value is given by the ratio

of resolved shear stress τs and shear strain γs for one activated slip system at the beginning of its
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Table 1: Numerical values of material parameters used for the simulation of microwire torsion tests in the reduced-order

model and by Kaiser and Menzel (2019a) in the CurlF p model.

E τ0 m γ̇0 µ b

60.8 MPa 60 MPa 10 6.0 × 107 s−1 23 400 MPa 0.286 nm

Gc κ %r0 h0 h1 h2

100.5 10.92 5.38× 10−11 1.0 0 0

h3 h4 h5 aru(r 6= u) auu µχ

0 0 0 1 0 103 MPa

A τ∞ H0 HD

104, 2× 104 MPa mm2 110 MPa 540 5× 103, 104 MPa mm2
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Fig. 3: Constitutive response of the classic crystal plasticity formulation (section 2.2) and the material model considered

in (Kaiser and Menzel, 2019b) for a <001> FCC single crystal and material parameters according to Table 1: (a) Tensile

test and (b) shear test. Cauchy stress components are plotted, the axial and shear strains correspond to components

F33 − 1 and F12 of the deformation gradient.
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activation, as proposed in (Ling, 2017). In the present case, the estimated H value for the <001>300

crystal orientation is 3100 MPa. It is not possible to derive an analytical expression of the relevant

characteristic length scale emerging in the torsion problem. That is why the proposed estimate is

chosen.

In the following description of the results, the SSD density is defined as the sum of the 12 individual

dislocations densities. The GND density is calculated by using the post-processing technique described305

in section 4.1.

5.3.1. Comparison of predicted size effects

The comparison of the size effects predicted by the Lagrange multiplier-based model and the

CurlF p model for three different values of the radius of the microwire under monotonic torsion loading

using higher-order modulus A = 20000 MPa mm2 is shown in Fig. 4a. The considered single crystal

microwire is subjected to monotonic torsion loading and oriented such that the wire axis is parallel to

the [001] crystal direction. The size-dependent curves are presented in terms of the normalized torque

T/R3 as a function of surface strain γR defined as

γR = kR, (75)

where k is the applied twist per unit length θ/L. This definition of γR is only an approximation

of the actual slip value along the circumference since the plastic activity is not constant along the

circumference for a cubic single crystal.310

This feature can be observed in Fig. 5 which shows the cumulative plastic strain γcum fields

plotted in the reference configuration. The slip activity is maximal at four locations corresponding

to the direction [110] and [11̄0]. Fig. 4a shows that for the radii R = 20 mm and R = 10 mm, the

torque vs. surface strain responses predicted by both models are almost the same, while for the radius

R = 5 mm, the Lagrange multiplier-based model leads to a slightly harder response.315

The cumulative plastic strain and dislocation density fields shown next are based on a finite element

discretization with 10000 elements for a better resolution. Such fine mesh simulations could only be

performed with the Lagrange multiplier-based model. The computational efficiency of the Lagrange

multiplier-based model in terms of CPU time allows faster computation of size effect even with finer

mesh discretization. Fig. 6 and 7 respectively show the spatial distributions of the SSD and GND320

density for the three considered radii. It is observed that the dislocation density multiplication starts

at the free surface of the microwire and is driven towards the center. During the deformation process,

the evolution of the SSD density is due to the dislocation generation and annihilation mechanisms.

The initial dislocation density ρr(= %u/b2) is assumed to be 6.5× 108 m−2 and chosen to be the same

for all slip systems. Distinct four-fold patterns of the SSD density distribution are observed for all325

three radii of the microwire. On the other hand, the GND density distribution shows distinct four-

fold patterns for the radii R = 5 mm and R = 10 mm, while it shows a more localized distribution for

R = 20 mm making the four-fold symmetry of FCC single-crystal almost disappear.
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Fig. 4: Comparison of normalized torque vs. surface strain curves (<001> crystal orientation using the Lagrange

multiplier-based model and the CurlF p model for: (a) Monotonic loading (R = 20 mm, 10 mm, and 5 mm), and (b)

cyclic loading (R = 10 mm).

The SSD and GND density distributions at different stages of the relative rotation are shown in Fig.

8 and 9, respectively. At the initial stage of the deformation, the maximum SSD density is observed at330

four locations corresponding to the [110] crystal direction (see Fig. 8a). However, as the deformation

progresses, the maximal dislocation density locations are observed at the corresponding [100] crystal

direction, as shown in Fig. 8c for the relative rotation of 22.5◦. With increasing deformation, the

difference between the magnitude of the maximal and minimal increment of the cumulative plastic

strain,
∑N
r=1 |4γr|, along the circumference decreases and the field becomes almost homogeneous.335

This may explain the shift in the maximal SSD density locations with the deformation. On the other

hand, at the initial stage of the relative rotation, the GND density is maximal at four locations around

the directions [100] (see Fig. 9a) and remains at the corresponding [100] crystal direction with further

increase in the relative rotation (see Fig. 9c). Moreover, it is observed that there is a slight evolution

of the GND density field with more localized distribution compared to the SSD density field.340

Fig. 10a and 10b show the profiles of the cumulative plastic strain γcum for three different radii

along the circumferential and radial directions, respectively. For the given relative rotation angle,

distinct four-fold patterns of the plastic strain field can be observed for R = 20 mm and R = 10 mm.

The plastic strain field is smoother along the circumference for R = 5 mm because the smaller radius

gives a stiffer response and limits the strain localization in these zones. The radial distributions in345

Fig. 10b are almost linear.

The comparison of the size effect predicted by the Lagrange multiplier-based model and the CurlF p

model in the case of cyclic loading conditions is shown in Fig. 4b. These simulations were performed

for two values of the higher-order modulus, namely A = 10000 MPa mm2 and 20000 MPa mm2. The

ratio A = 2HD is kept constant in both cases to allow for the comparison of both models. The350

Lagrange multiplier-based model predicts isotropic hardening as shown in Fig. 4b. In contrast, the
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Fig. 5: Cumulative plastic strain field in <001> FCC single crystals predicted by the Lagrange multiplier-based model

with A = 20000 MPa mm2 and a finite element discretization featuring 10000 elements. The results for an applied

relative rotation of 45◦ between the upper and lower faces are shown on the undeformed configuration.
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Lagrange multiplier-based model with A = 20000 MPa mm2 and a finite element discretization featuring 10000 elements

at an applied relative rotation of (a) 4.5◦, (b) 9◦, and (c) 22.5◦ shown on the undeformed configuration.
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Fig. 9: GND density distribution in FCC single crystal (<100> crystal orientation, R = 10 mm) predicted by the

Lagrange multiplier-based model with A = 20000 MPa mm2 at an applied relative rotation of (a) 4.5◦, (b) 9◦, and (c)

22.5◦ shown on the undeformed configuration.
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Fig. 10: Cumulative plastic strain γcum profiles predicted by a Lagrange multiplier-based model along the (a) cir-

cumferential and (b) radial direction of the microwire for monotonic loading and for three radii of the microwires using

A=20000 MPa mm2. The radial distance from the center of the specimen is denoted by x and the radius of the microwire
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Fig. 11: Comparison of normalized torque vs. surface strain curves for <001> crystal orientation and for cyclic loading

using (a) a classic crystal plasticity formulation according to section 2.2, and (b) the Lagrange multiplier-based model

with A = 20000 MPa mm2. Results are shown for the microwire of radius R = 10 mm discretized using 3600 finite

elements.
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Fig. 12: SSD density distribution in a FCC single crystal microwire under cyclic torsion (<100> crystal orientation,

R = 10 mm, A = 20000 MPa mm2) predicted by the Lagrange multiplier-based model and a finite element discretization

featuring 3600 elements.
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Fig. 13: GND density distribution in a FCC single crystal (<100> crystal orientation, R = 10 mm, A = 20000 MPa mm2)

predicted by the Lagrange multiplier-based model and a finite element discretization featuring 3600 elements.
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Fig. 14: Cumulative plastic strain γcum distribution in a FCC single crystal microwire under cyclic torsion (<100>

crystal orientation, R = 10 mm) predicted by the Lagrange multiplier-based model with A = 20000 MPa mm2 and a

finite element discretization featuring 3600 elements.

higher-order stresses act as a back-stress in the CurlF p model, resulting in kinematic hardening. Fig.

11a shows the saturation of cyclic curves after 5 cycles using the classic crystal plasticity model with

dislocation density-based hardening. In contrast, the gradient effect associated with parameter A

leads to strong additional isotropic hardening, as depicted in Fig. 11b, with no apparent saturation.355

The gradient terms naturally involved in tensor-based strain gradient models predict size-

dependent kinematic hardening. The non-monotonic evolution of the components of F∼
p in the CurlF p

model leads to size-dependent kinematic hardening. For such models, size-dependent isotropic hard-

ening can be predicted by introducing higher-order dissipative stresses (Hutchinson, 2012). On the

other hand, most scalar-based strain gradient models predict size-dependent isotropic hardening. For360

instance, in the reduced-order micromorphic model, cumulative plastic slip is an always increasing

variable irrespective of the loading direction, leading to size-dependent isotropic hardening. Jebahi

and Forest (2021) recently showed that size-dependent kinematic hardening can be predicted in scalar-

based strain gradient models by accounting for the gradient of the equivalent plastic strain which does

not increase monotonically.365

The cumulative plastic strain and dislocation density fields shown next are plotted for the microwire

of radius R = 10 mm and based on a finite element discretization with 3600 elements. Fig. 12 and 13

show the SSD and GND density distributions over the cross section at the end of each cycle. As the

deformation progresses, the dislocation density significantly increases with the plastic strain, and the

SSD density becomes much larger than the GND density. In particular, the SSD and GND densities370

increase from an initial value of 6.5 × 108 m−2 to 9.7 × 1014 m−2 and from 0 to 4.9 × 1011 m−2,

respectively, at the end of cycle 3. In addition, the dislocation density distribution maintains the

distinct four-fold symmetry pattern even at the end of cycle 3. After cycling, the GND density field

no longer displays clear patterns, see Fig. 13. A finer mesh would be necessary for a better resolution

of the gradients.375

The plastic strain distribution and profiles along the circumferential and radial directions for
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Fig. 15: Cumulative plastic strain γcum variation along the (a) circumferential and (b) radial direction of the microwire

for cyclic loading using the Lagrange multiplier-based model (A=20000 MPa mm2, R = 10 mm, and a finite element

discretization with 3600 elements). The ratio of the radial distance from the center of the specimen x and the microwire

radius R is denoted by x̂(= x
R

).

cyclic loading are shown in Fig. 14 and 15. Accumulation of plastic deformation during cycling in

the four zones of favored plastic slip leads to increased gradient values and subsequent additional

hardening, thus explaining the cyclic hardening observed in Fig. 11b. With a further increase in the

number of cycles, the cumulative plastic strain increases and becomes almost homogeneous along the380

circumference, so that the four-fold symmetry of FCC single crystal almost disappears, as shown in

Fig. 14 and 15a. This may explain the trend to a certain extent of saturation of cyclic hardening in

Fig. 11b. It is observed that the magnitude of the plastic strain field increases in the radial direction

with an increasing number of cycles, as shown in Fig. 15b.

5.3.2. Scaling law385

In this section, the scaling behavior is studied for the micromorphic model presented in section 3.1

and the Lagrange multiplier-based model presented in section 3.2. The dependence of the normalized

torque on the R/` ratio is analyzed for the monotonic microwire torsion tests. The simulations are

performed for several radii of the microwire ranging from R = 2 mm to R = 30 mm and by using

A = 20000 MPa mm2. The scaling laws in the form of the power law T/R3 ∝ (R/`)n for microwire390

torsion tests characterizing the effect of the R/` ratio on the normalized torque T/R3 are shown in

Fig 16a. The characteristic length scale ` defined as
√
A/|H| is 2.55 mm. The log-log plot of the

normalized torque values as a function of the R/` ratio at a surface strain of 0.01 are plotted in Fig.

16b for the reduced-order micromorphic model by using Hχ = 104 MPa and Hχ = 3× 104 MPa, and

for the Lagrange multiplier-based model by using µχ = 103 MPa, respectively. For lower values of the395

coupling modulus Hχ the micromorphic model predicts a typical tanh shape (Cordero et al., 2010)

with saturation for small (R/` < 0.8) and large (R/` > 6) values of the R/` ratio. The slope of the
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Fig. 16: Microwire under monotonic loading: (a) Normalized torque vs. surface strain curves for <001> crystal orien-

tation showing influence of the microwire radius R when using a Lagrange multiplier-based model, and (b) normalized

torque as a function of R
`

at a surface strain γR of 0.01 for the micromorphic and Lagrange multiplier-based models.

bounded intermediate regime for the micromorphic model using Hχ = 104 MPa and Hχ = 3×104 MPa

is found to be n = −0.6 and n = −0.85, respectively. The Lagrange multiplier-based model can be

considered as a limiting case of a micromorphic model for large values of Hχ, which leads to a power-400

law exponent n = −1.0 of asymptotic regime. In the latter case, no saturation is expected.

The power-law exponent n of the micromorphic model depends on the material parameters Hχ

and A, whereas it is independent of material parameters in the Lagrange multiplier-based model.

The critical value of the R/` ratio is defined by the inflection point i of the plot in Fig 16b. The

value of i depends on the coupling modulus Hχ and is found to be 4 and 3 for Hχ = 104 MPa and405

Hχ = 3×104 MPa, respectively, which represents the size-dependent domain of the material response.

6. Conclusions

The objective of the present work is to compare the response in torsion at finite deformations of

three size-dependent models recently published in the literature: the gradient crystal plasticity model

involving the complete dislocation density tensor by Kaiser and Menzel (2019a), the reduced-order410

micromorphic crystal plasticity model and the Lagrange multiplier-based gradient crystal plasticity

model described in (Scherer et al., 2020). Results previously obtained by Kaiser and Menzel (2019a)

were compared to new simulations carried out with the two other models. A detailed analysis of the

evolution of plastic strain, SSD and GND density fields was provided. The main findings obtained in

this contribution can be summarized as follows:415

1. The size effects predicted by the Lagrange multiplier-based model were found to be in good

agreement with the predictions made by the CurlF p model in the case of monotonic torsion of

a cylindrical bar with axis parallel to [001] crystal direction.
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2. Gradient effects tend to reduce the strain heterogeneity which arises in torsion along the cir-

cumference. This effect is predicted by all three models.420

3. Interesting evolutions of the SSD and GND densities during monotonic torsion were revealed.

The location of maximal SSD density values was shown to change from <011> to <100> po-

sitions along the circumference when increasing the twist angle. In contrast the maximal GND

density values remain around <100> positions.

4. The Lagrange multiplier-based model induces isotropic hardening in cyclic torsion because it is425

based on the gradient of a scalar-valued cumulative plastic strain variable. This is in contrast

to the kinematic hardening induced by the CurlF p model due to the back-stress resulting from

the action of higher-order stresses. This leads to significantly different responses under cyclic

loading conditions.

5. The analysis of the cyclic torsion tests shows the evolution of plastic slip gradients along the430

circumference with a trend towards more homogeneous distributions for larger cycle numbers

according to the Lagrange multiplier-based model. A significant increase in SSD and GND

densities is observed at the end of each cycle compared to previous cycles.

6. The size effects are characterized by power law relationships between the normalized torque and

the R/` ratio, with ` being a characteristic length of the model. The reduced micromorphic435

model saturates for small and large values of this ratio. It possesses an intermediate domain

with powers n = −0.6 and = −0.85, which were found for Hχ = 104 MPa and Hχ = 3×104 MPa,

respectively. In contrast, the Lagrange multiplier-based model, which corresponds to a strict

strain gradient plasticity model, predicts no saturation at small R/` ratios and a power law with

n = −1.440

An equivalence between the Lagrange multiplier-based model and the CurlF p model exists in the

case of a single-slip. However, this equivalence no longer exists in the case of a multi-slip. The CurlF p

model has a clear physical interpretation in terms of the dislocation density tensor in contrast to the

reduced-order models, which incorporate the gradient of cumulative slip in a purely phenomenological

way. Reduced-order models are advantageous from a computational point of view and lead to signifi-445

cantly lower computation times in the presented examples. The computational efficiency in terms of

CPU time of the Lagrange multiplier-based model and of the micromorphic model that was studied in

this contribution is investigated in (Scherer et al., 2020). The CurlF p model, which includes 21 DOFs

at each node in three-dimensional settings, is computationally expensive compared to the Lagrange

multiplier-based model, which requires 5 DOFs per node. It has been demonstrated that the CurlF p450

and reduced-order models can deliver similar predictions in terms of hardening and size effects, at

least for monotonic tests. The reduced-order models can therefore be applied for faster evaluation of

size effects in structural computations. More physical understanding can be gained by using the full

gradient model. The micromorphic crystal plasticity theory solely influences the hardening rate and

does not affect the initial yield strength. This is due to the fact that any gradient plasticity formu-455

lation based on a quadratic potential with respect to the gradient of plastic distortion only increases
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the hardening rate but cannot increase the yield strength. The initial yield strength can be influenced

by rank one potentials, according to (Wulfinghoff et al., 2015).

The full gradient and reduced-order models could further be compared in the case of localization

phenomena in crystalline materials as recently explored by Marano et al. (2021). Regularization of460

strain localization phenomena in single crystals such as slip, kink and shear bands was demonstrated

in (Ling et al., 2018).

A limitation of the reduced-order micromorphic and Lagrange multiplier-based formulations pre-

sented in this work is that the gradient terms essentially affect the isotropic hardening and do not

incorporate a size-dependent back-stress, in contrast to full-order micromorphic and the gradient plas-465

ticity models. The simulation of kinematic-type hardening is, in fact, possible with a reduced-order

model by using an alternative formulation in which the free energy potential depends on the gradient

of the microslip variable as pointed out in (Forest, 2016; Ling et al., 2018). Another possibility is to

consider the gradient of the equivalent plastic strain instead of the cumulative one. This will cause

size-dependent kinematic hardening effects, as recently demonstrated by Jebahi and Forest (2021).470

Appendix A Summary of constitutive equations

The constitutive equations used in the reduced-order and the CurlF p models are summarized in

Table 2.

Appendix B Form of the dislocation interaction matrices475

In FCC single crystals, matrix hru (r, u=1,2,...,12) has 12 × 12 coefficients. Matrix hru is con-

structed as follows (Ling et al., 2018):

[hru] =



h0 h1 h1 h3 h4 h4 h2 h4 h5 h2 h5 h4

h0 h1 h4 h2 h5 h4 h3 h4 h5 h2 h4

h0 h4 h5 h2 h5 h4 h2 h4 h4 h3

h0 h1 h1 h2 h5 h4 h2 h4 h5

h0 h1 h5 h2 h4 h4 h3 h4

h0 h4 h4 h3 h5 h4 h2

h0 h1 h1 h3 h4 h4

h0 h1 h4 h2 h5

h0 h4 h5 h2

h0 h1 h1

h0 h1

h0



symmetric

A2 A3 A6 B2 B4 B5 C1 C3 C5 D1 D4 D6

A2

A3

A6

B2

B4

B5

C1

C3

C5

D1

D4

D6

(76)

For symmetry reasons the number of coefficients is reduced to 6, i.e. h0 − h5. In the matrix, the

coefficient h0 corresponds to self hardening, h1 to coplanar interaction, h2 to Hirth locks, h3 to
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Table 2: Summary of constitutive equations used in reduced-order and the CurlF p models.

Constitutive equations
Reduced-order model

(Lagrange multiplier-based)
CurlF p model

DOFs

(three-dimensional setting)

{u , γχ, λ}

Total DOFs per node = 5

{u ,M∼
(rel)

,θ∼
p}

Total DOFs per node = 21

Free energy

density function
L0(E∼

e
GL
, e,K , λ, α) Ψ = Ψ̃(F∼ ,F∼

p,D∼ , α)

State laws
Π∼
e = ρ0

∂L0

∂E∼
e

GL

S = −ρ0
∂L0
∂e

M = ρ0
∂L0

∂K X = −ρ0
∂L0
∂α

P∼ = ρ0
∂Ψ̃

∂F∼
Ξ∼ = −ρ0

∂Ψ̃

∂D∼

X = −ρ0
∂Ψ̃
∂α

Balance laws
DivP∼ = 0 and DivM − S = 0,

∀X ⊂ Ω0

DivP∼ = 0 in B0 and

M∼ = Π∼
M

+ Curl(Ξ∼) · F∼
pT ,

in B0
dis

Boundary conditions
T = P∼ ·N and M = M ·N ,

∀X ⊂ ∂Ω0

T = P∼ ·N on ∂B0
t

Ξ∼ · Spin(N ) · F∼
pT = 0∼,

on ∂B0
dis,ext

Residual dissipation

inequality
Π∼
M : L∼

p + Sγ̇cum +Xα̇ ≥ 0 Π∼
M

: L∼
p + Ξ∼ : Ḋ∼ +Xα̇ ≥ 0

Thermodynamic force

associate with the internal

hardening variable X = −µξ
√∑N

u=1h
ru%u X = −

(
τ0 + (τ∞ − τ0)tanh

(
h0α

τ∞−τ0

))
Material parameters

related to

characteristic length scale A,H HD

collinear interaction, h4 to glissile junctions and h5 to Lomer locks. Matrix aru has the same structure

as matrix hru.
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Wulfinghoff, S., Bayerschen, E., Böhlke, T., 2013. A gradient plasticity grain boundary yield theory.

International Journal of Plasticity 51, 33–46. doi:10.1016/j.ijplas.2013.07.001.
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