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The size-dependent response of metallic microwires under monotonic and cyclic torsion is modeled taking a reduced-order strain gradient crystal plasticity approach involving a single scalar-valued micromorphic variable. It is compared with the response predicted by the CurlF p model proposed in (Kaiser and Menzel, 2019a), which is based on the complete dislocation density tensor. It is shown that, in cyclic non-uniform plastic deformation processes, the gradient of the scalar-valued internal variable in the reduced-order model predicts isotropic hardening in contrast to kinematictype hardening produced by the CurlF p model due to a dislocation-induced back-stress component.

The arising size effect in the monotonic torsion tests is described by the normalized torque T /R 3 as a function of the ratio of the microwire radius R and the characteristic length scale . In the size-dependent domain, characterized by an inflection point on the corresponding curve, the scaling law T /R 3 ∼ (R/ ) n can be identified, and explicit relations are found for the power n. The relative evolution of Statistically Stored Dislocation (SSD) and Geometrically Necessary Dislocation (GND) densities during torsion is described in detail.

Introduction

In classic continuum crystal plasticity models, the hardening behavior can be described by incorporating the internal variables related to scalar dislocation densities [START_REF] Mcdowell | Viscoplasticity of heterogeneous metallic materials[END_REF]. There are mainly two types of dislocation families to be considered. The dislocations generated during the plastic deformation through random trapping with each other are called Statistically Stored Dislocations (SSDs). On the other hand, Geometrically Necessary Dislocations (GNDs) are required for the compatible deformation of the crystal under inhomogeneous plastic deformation processes [START_REF] Ashby | The deformation of plastically non-homogeneous materials[END_REF]. In classic continuum crystal plasticity models, the contribution of SSD density ρ S to strain hardening is considered to be dominant compared to the GND density ρ G . These classic SSD-based crystal plasticity models do not usually feature a characteristic length scale and hence cannot predict experimentally observed size effects documented in [START_REF] Fleck | A phenomenological theory for strain gradient effects in plasticity[END_REF][START_REF] Fleck | Strain gradient plasticity: Theory and experiment[END_REF][START_REF] Gao | Mechanism-based strain gradient plasticity-I. theory[END_REF][START_REF] Stölken | A microbend test method for measuring the plasticity length scale[END_REF]. The gradient of shear strain is associated with the storage of GNDs. The GNDs control the material strain hardening along with SSDs, and accounting for the former in the model formulation naturally gives rise to a characteristic length scale according to [START_REF] Ashby | The deformation of plastically non-homogeneous materials[END_REF][START_REF] Acharya | Lattice incompatibility and a gradient theory of crystal plasticity[END_REF][START_REF] Gurtin | A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations[END_REF][START_REF] Cordero | Grain size effects on plastic strain and dislocation density tensor fields in metal polycrystals[END_REF].

The GNDs are associated with the incompatible part of plastic deformations and can be quantified in terms of the dislocation density tensor [START_REF] Nye | Some geometrical relations in dislocated crystals[END_REF][START_REF] Bilby | Continuous distributions of dislocations: a new application of the methods of non-riemannian geometry[END_REF]. The introduction of the complete dislocation density tensor into the constitutive framework intrinsically gives rise to latent kinematic hardening [START_REF] Steinmann | Views on multiplicative elastoplasticity and the continuum theory of dislocations[END_REF][START_REF] Bayley | A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity[END_REF]. Moreover, the introduction of the dislocation density tensor in the free energy density function is motivated on physical grounds as opposed to purely phenomenological modeling approaches [START_REF] Wulfinghoff | Strain gradient plasticity modeling of the cyclic behavior of laminate microstructures[END_REF]Kaiser and Menzel, 2019b,a).

The micromorphic theory described in [START_REF] Eringen | Microcontinuum field theories[END_REF] relies on the introduction of a nonsymmetric second-order tensor of microdeformation as the additional degree of freedom accounting for the rotation and distortion of a triad of directors attached to the microstructure. The micromorphic approach has been extended to other types of mechanical variables, including plastic strain and damage variables by [START_REF] Forest | Micromorphic approach for gradient elasticity, viscoplasticity, and damage[END_REF][START_REF] Forest | Nonlinear regularization operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage[END_REF]. It was used to investigate strain localization phenomena by [START_REF] Dillard | Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams[END_REF]; [START_REF] Anand | A large-deformation gradient theory for elastic-plastic materials: Strain softening and regularization of shear bands[END_REF]; [START_REF] Mazière | Strain gradient plasticity modeling and finite element simulation of Lüders band formation and propagation[END_REF]; [START_REF] Brepols | Gradient-extended two-surface damage-plasticity: Micromorphic formulation and numerical aspects[END_REF] and to predict size effects in crystal plasticity by [START_REF] Cordero | Size effects in generalised continuum crystal plasticity for two-phase laminates[END_REF]; [START_REF] Aslan | Micromorphic approach to single crystal plasticity and damage[END_REF]; [START_REF] Wulfinghoff | A gradient plasticity grain boundary yield theory[END_REF]; [START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. application to strain localization and void growth in ductile metals[END_REF]; [START_REF] Scherer | Strain gradient crystal plasticity with evolving length scale: Application to voided irradiated materials[END_REF][START_REF] Scherer | Lagrange multiplier based vs micromorphic gradient-enhanced rate-(in)dependent crystal plasticity modelling and simulation[END_REF]; [START_REF] Ryś | A micromorphic crystal plasticity model with the gradientenhanced incremental hardening law[END_REF]. In contrast to Eringen's original micromorphic theory, the reduced-order micromorphic theory relies on a single scalar-valued additional degree of freedom at each material point, akin to accumulated plastic strain or slip [START_REF] Wulfinghoff | Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics[END_REF][START_REF] Wulfinghoff | A gradient plasticity grain boundary yield theory[END_REF][START_REF] Erdle | A gradient crystal plasticity theory for large deformations with a discontinuous accumulated plastic slip[END_REF][START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. application to strain localization and void growth in ductile metals[END_REF][START_REF] Scherer | Strain gradient crystal plasticity with evolving length scale: Application to voided irradiated materials[END_REF]. The reduced-order micromorphic crystal plasticity theory introduces a scalar microslip variable related to accumulated plastic slip and its gradient as the arguments of the free energy density function. The quasi-equality between the microslip variable and accumulated plastic slip is ensured by the coupling modulus H χ , playing the role of a penalty parameter. Usually, a high value of coupling modulus H χ ensures that the microslip variable and accumulated plastic slip almost coincide. This micromorphic model with high values of the coupling modulus can be interpreted as a numerical method to implement a gradient plasticity model; see for instance [START_REF] Anand | A large-deformation gradient theory for elastic-plastic materials: Strain softening and regularization of shear bands[END_REF]. Numerical difficulties associated with penalty methods can be overcome by using the Lagrange multiplier-based model introduced by [START_REF] Zhang | Ductile damage modelling with locking-free regularised GTN model[END_REF] and [START_REF] Scherer | Lagrange multiplier based vs micromorphic gradient-enhanced rate-(in)dependent crystal plasticity modelling and simulation[END_REF]. The latter makes use of a Lagrange multiplier λ, a nodal degree of freedom in addition to the micromorphic one, in order to enforce the equality between the microslip variable and the accumulated plastic slip [START_REF] Scherer | Lagrange multiplier based vs micromorphic gradient-enhanced rate-(in)dependent crystal plasticity modelling and simulation[END_REF].

Gradient plasticity and micromorphic models involving the gradient or rotational part of the plastic deformation tensor generally require a large number of additional internal variables and nodal degrees of freedom (DOFs) leading to a significant increase in the computational cost. For instance, the full-order microcurl model proposed by [START_REF] Cordero | Size effects in generalised continuum crystal plasticity for two-phase laminates[END_REF] and the gradient plasticity model by [START_REF] Panteghini | On the role of higher-order conditions in distortion gradient plasticity[END_REF] require at least 9 (3D) and 12 (2D) additional nodal DOFs. The complexity in the numerical implementation further increases the computational modeling efforts.

The differences in the formulation of various gradient plasticity theories result in distinct and sometimes non-physical responses, making it necessary to compare different gradient plasticity models [START_REF] Peerlings | A critical comparison of nonlocal and gradient-enhanced softening continua[END_REF]. A comparison between five gradient-enhanced phenomenological approaches in a continuum damage setting can be found in [START_REF] Geers | Phenomenological nonlocal approaches based on implicit gradient-enhanced damage[END_REF], and one between implicit and explicit gradient formulations in [START_REF] Peerlings | A critical comparison of nonlocal and gradient-enhanced softening continua[END_REF]. The computational advantages of a gradient plasticity formulation including the equivalent plastic strain as an additional degree of freedom are investigated in [START_REF] Wulfinghoff | Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics[END_REF]. Moreover, the gradient crystal plasticity theory proposed by [START_REF] Gurtin | A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations[END_REF] is used in [START_REF] Bittencourt | A comparison of nonlocal continuum and discrete dislocation plasticity predictions[END_REF] to explore to which extent the results from the discrete dislocation simulations can be reproduced. It is found that the gradient plasticity Radius to length scale, R/ Normalised torque, T /R 3 i n Scaling law, n Fig. 1: Schematic log-log plot characterizing the effect of the ratio of the microwire radius R to the characteristic length scale on the normalized torque T /R 3 : size effect with bounded (solid line) and unbounded (dashed line) asymptotic regimes, power law in the transition domain (dotted line), n is the slope of the size dependent domain and i is the inflection point of the curve. theory reproduces the behavior observed in the discrete dislocation simulations in remarkable detail. However, only a few studies are dedicated to the comparison between various gradient crystal plasticity approaches and the determination of the advantages and drawbacks of the many existing theories.

For instance, the detailed comparison of the micropolar crystal plasticity model [START_REF] Mayeur | Dislocation-based micropolar single crystal plasticity: Comparison of multi-and single criterion theories[END_REF] and the gradient crystal plasticity model proposed by [START_REF] Gurtin | A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations[END_REF] can be found in [START_REF] Mayeur | A comparison of gurtin type and micropolar theories of generalized single crystal plasticity[END_REF].

It is therefore the objective of this work to compare a computationally efficient Lagrange multiplierbased model that involves a single scalar-valued variable with the CurlF p model proposed in (Kaiser and Menzel, 2019a) for monotonic and cyclic microwire torsion tests. All models and simulations are presented and performed within a finite deformation framework. The scaling law T /R 3 ∝ (R/ ) n for the microwire torsion tests, which characterizes the effect of the ratio of the microwire radius R and the characteristic length scale on the normalized torque T /R 3 using both reduced-order micromorphic and Lagrange multiplier-based models is obtained. Such scaling laws were derived for the periodic shearing of a laminate at small strains and small rotations in [START_REF] Cordero | Size effects in generalised continuum crystal plasticity for two-phase laminates[END_REF][START_REF] Ryś | A micromorphic crystal plasticity model with the gradientenhanced incremental hardening law[END_REF].

Fig. 1 schematically shows the effect of R/ ratio on the normalized torque T /R 3 , which is found in the present work. The main features of the diagram are the inflection point i and the slope n of the size-dependent domain. For small values of R/ ratio, a bounded (for the micromorphic model), or an unbounded (for the Lagrange multiplier-based model), asymptotic behavior can be obtained. At large values of R/ ratio, the observed asymptotic behavior corresponds to the size-independent response of classic crystal plasticity models. More details will also be given regarding the evolution of the fields of plastic strain, SSD and GND densities during torsion.

The outline of the paper is as follows: In section 2, the constitutive framework for rate-dependent crystal plasticity is presented. The main features of the reduced-order micromorphic and the Lagrange multiplier-based models are presented in section 3. In section 4, the constitutive framework of the CurlF p model and the equivalence between the higher-order modulus A from the Lagrange multiplierbased model and the material parameter H D from the CurlF p model are demonstrated in the singleslip problem. Section 5 is dedicated to the simulation of representative boundary-value problems, and size effects predicted by the Lagrange multiplier-based model are compared to the CurlF p model predictions for monotonic and cyclic microwire torsion tests. Concluding remarks follow in section 6.

The following notations are used in this contribution: Underlined A and under-waved bold A ∼ characters are used to denote first-order and second-order tensors, respectively. The transpose, inverse and time derivative are denoted by A ∼ T , A ∼ -1 and Ȧ ∼ . Simple and double contractions are understood in the sense a • b = a i b j and A ∼ : B ∼ = A ij B ij . Moreover, the following tensor products are used:

a ⊗b = a i b j e i ⊗e j , A ∼ ⊗B ∼ = A ij B kl e i ⊗e j ⊗e k ⊗e l , A ∼ ⊗B ∼ = A ik B jl e i ⊗e j ⊗e k ⊗e l and A ∼ ⊗B ∼ = A il B jk e i ⊗e j ⊗e k ⊗e l .
The curl of a second-order tensor A ∼ with respect to the reference configuration is defined as (CurlA ∼ ) ij = ipq A jq,p e i ⊗ e j , with ipq denoting the coefficients of the permutation tensor. Similarly, the spin operator which relates the axial vector to the corresponding skew-symmetric second-order tensor in the reference configuration is defined as (Spin N ) ij =ijq N q e i ⊗ e j .

Constitutive framework

Kinematics

A finite deformation framework is used throughout the work and is based on the multiplicative decomposition of the total deformation gradient F ∼ into an elastic part F ∼ e and a plastic part F ∼ p , i.e. F ∼ = F ∼ e • F ∼ p (see, e.g., [START_REF] Lee | Finite strain elastic plastic theory with application to plane wave analysis[END_REF]; [START_REF] Willis | Some constitutive equations applicable to problems of large dynamic plastic deformation[END_REF]; [START_REF] Rice | Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity[END_REF]; [START_REF] Mandel | Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques[END_REF]; [START_REF] Teodosiu | A theory of finite elastoviscoplasticity of single crystals[END_REF]). The material points are defined by the position vector X in the reference configuration Ω 0 and the position vector x in the current configuration Ω t such that the displacement vector is expressed as u (X , t) = x -X . The volumetric mass densities with respect to the reference and the current configuration are ρ 0 and ρ, respectively, and related via

J = det(F ∼ ) = ρ 0 ρ . (1) 
Moreover, it is assumed that the plastic flow is incompressible such that

J p = det F ∼ p = 1. ( 2 
)
The plastic part of the velocity gradient L ∼ p is defined as follows:

L ∼ p = Ḟ ∼ p • F ∼ p-1 . (3) 
The elastic Green-Lagrange strain tensor E ∼ e GL is introduced as

E ∼ e GL = 1 2 (F ∼ eT • F ∼ e -1 ∼ ), (4) 
with 1 ∼ denoting the second-order identity tensor.

Rate-dependent crystal plasticity model

Most rate-independent crystal plasticity theories lead to an ill-conditioned problem regarding the selection of active slip systems and the increments of shear on the active slip systems as emphasized in [START_REF] Anand | A computational procedure for rate-independent crystal plasticity[END_REF][START_REF] Miehe | Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials[END_REF][START_REF] Busso | On the selection of active slip systems in crystal plasticity[END_REF]. One way to overcome this difficulty is to work within a rate-dependent framework. Here, a rate-dependent overstress-type flow rule is adopted to facilitate the determination of the set of active slip systems. It is based on a Schmid-type yield function defined as

f r = |τ r | -τ r c , (5) 
involving the resolved shear stress τ r on the slip system r, which is the driving force to trigger plastic slip, and the corresponding critical resolved shear stress τ r c . The resolved shear stress τ r on slip system r is defined as

τ r = Π ∼ M : (m r ⊗ n r ), with Π ∼ M = J e F ∼ eT • σ ∼ • F ∼ e-T , (6) 
where Π ∼ M is the Mandel stress tensor defined with respect to the intermediate configuration, m r is the slip direction, n r is the slip normal and σ ∼ is the Cauchy stress tensor. The slip rate γr on each slip system r is then given by the following rate-dependent flow rule

γr = γ0 f r τ 0 m sign (τ r ) , (7) 
with Macauley brackets < • > denoting the positive part of •, γ0 the reference strain rate and m controlling the rate sensitivity of the material response-i.e. high values of γ0 and m result in a low 125 rate-sensitivity. Moreover, τ 0 is the initial critical resolved shear stress.

Furthermore, the plastic deformation rate is the result of slip processes on N distinct slip systems, i.e.

L ∼ p = N r=1 γr (m r ⊗ n r ). ( 8 
)
3. Reduced-order gradient crystal plasticity theory

Micromorphic model

According to the micromorphic approach, the variables carrying the targeted gradient effects are selected from the available state variables. They can be tensors of any rank [START_REF] Forest | Nonlinear regularization operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage[END_REF]. The model 130 is called reduced-order micromorphic when the micromorphic variable is a scalar quantity, as done in the model proposed by [START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. application to strain localization and void growth in ductile metals[END_REF] which is summarized in this section.

The material points possess two types of DOFs: the displacement vector u and the micromorphic scalar microslip variable γ χ (X , t). The associated scalar internal variable is the cumulative plastic strain γ cum introduced as

γ cum = t 0 N r=1 | γr |dt. (9) 
In the present formulation, the set of DOFs is, therefore

DOFs = {u , γ χ }. ( 10 
)
The gradients of the DOFs with respect to the reference configuration are

H ∼ = ∂u ∂X = Grad u , K = ∂γ χ ∂X = Grad γ χ . (11) 
The static balance equations and Neumann boundary conditions expressed with respect to the reference configuration are as follows:

Div P ∼ = 0 and Div M -S = 0, ∀ X ⊂ Ω 0 , (12)

T = P ∼ • N and M = M • N , ∀ X ⊂ ∂Ω 0 , (13) 
where P ∼ is the Boussinesq (first Piola-Kirchhoff) stress tensor related to the Cauchy stress tensor σ ∼ by P ∼ = Jσ ∼ F ∼ -T , S and M are the generalized stresses, T is traction vector, M is the generalized surface traction and N the outward unit normal vector at a boundary of the reference body.
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The cumulative plastic strain γ cum is related to the microslip variable γ χ via the relative plastic strain e(X , t) as e(X , t)

:= γ cum -γ χ . ( 14 
)
The material under consideration is assumed to be characterized by the Helmholtz free energy density function

Ψ = Ψ(E ∼ e GL , e, K , α), (15) 
in terms of the elastic Green-Lagrange strain tensor E ∼ e GL , the relative plastic strain e, the gradient of the microslip variable K and the internal hardening variable α. The Helmholtz free energy density function is taken partly as a quadratic potential of the form:

ρ 0 Ψ(E ∼ e GL , e, K , α) = 1 2 E ∼ e GL : Λ ≈ : E ∼ e GL + 1 2 H χ e 2 + 1 2 K • A ∼ • K + ρ 0 Ψp (α), ( 16 
)
where Λ ≈ is the fourth-order tensor of elastic moduli. In the micromorphic approach, two additional material parameters are introduced, namely the coupling modulus H χ and the higher-order micromorphic stiffness A ∼ .

The Clausius-Duhem inequality takes the form

Π ∼ e -ρ 0 ∂ Ψ ∂E ∼ e GL : Ė ∼ e GL -S + ρ 0 ∂ Ψ ∂e ė + M -ρ 0 ∂ Ψ ∂K • K + Π ∼ M : L ∼ p + S γcum + X α ≥ 0, ( 17 
)
from which the following state laws are adopted:

Π ∼ e = ρ 0 ∂ Ψ ∂E ∼ e GL , S = -ρ 0 ∂ Ψ ∂e , M = ρ 0 ∂ Ψ ∂K , X = -ρ 0 ∂ Ψ ∂α , ( 18 
)
where X is the thermodynamic force associated with internal hardening variable α. The second Piola-Kirchhoff stress tensor with respect to the intermediate configuration is given by Π

∼ e = J e F ∼ e-1 • 140 σ ∼ • F ∼ e-T .
With (18) at hand, the specific quadratic form of the potential (16) leads to the following relations:

Π ∼ e = Λ ≈ : E ∼ e GL , S = -H χ e = -H χ (γ cum -γ χ ), M = A ∼ • K . ( 19 
)
For isotropic and cubic materials, the second-order tensor A ∼ = A1 ∼ involves a single generalized modulus A which is assumed to be constant in space. In addition, the partial differential equation connecting γ χ and γ cum follows from the previous state laws and the balance equation in (12) as

γ χ - A H χ X γ χ = γ cum , (20) 
where X stands for the Laplace operator with respect to the reference configuration.

The residual dissipation inequality takes the form

D res = Π ∼ M : L ∼ p + S γcum + X α = N r=1 τ r γr + S γcum + X α ≥ 0, (21) 
after consideration of (8) and of plastic incompressibility. The dissipation rate form suggests the introduction of the following generalized Schmid yield function:

f r = |τ r | + S -τ r c = |τ r | -(τ r c -S), (22) 
which leads to a yield function of the form

f r = |τ r | -(τ r c -S) = |τ r | -(τ r c -Div M ), (23) 
once the generalized static balance law ( 12) is taken into account. In that way, the generalized stress S in the previous equation results in an enhancement of the hardening law and can be regarded as a source of isotropic hardening (or softening). After inserting ( 11) and ( 19) in ( 23), the yield function can be expressed as

f r = |τ r | -(τ r c -A Div(Grad γ χ )) = |τ r | -(τ r c -A X γ χ ). ( 24 
)
This generalized yield function is then inserted into the flow rule (7), taking the threshold function sign into consideration, in order to compute the plastic slip rate of each slip system.

In this work, the micromorphic model is used to derive the scaling laws for monotonic microwire 145 torsion tests.

Lagrange multiplier-based model

The Lagrange multiplier-based model was proposed by [START_REF] Fortin | Chapter iii on decomposition-coordination methods using an augmented lagrangian[END_REF] and successfully implemented in [START_REF] Zhang | Ductile damage modelling with locking-free regularised GTN model[END_REF][START_REF] Scherer | Lagrange multiplier based vs micromorphic gradient-enhanced rate-(in)dependent crystal plasticity modelling and simulation[END_REF]. In this section, the Lagrange multiplier-based model presented in [START_REF] Scherer | Lagrange multiplier based vs micromorphic gradient-enhanced rate-(in)dependent crystal plasticity modelling and simulation[END_REF] is summarized. The Lagrange multiplier λ is introduced to enforce the strict equality between γ cum and γ χ in order to transform the previous micromorphic model into a strain gradient crystal plasticity model. It replaces the penalty coefficient represented by the coupling modulus H χ of the micromorphic model summarized in section 3.1.

Therefore, the set of DOFs is given by DOFs = {u , γ χ , λ}.

It turns out that the free energy density function in (15) becomes a Lagrangian function L 0 .

More specifically speaking, the material under consideration is assumed to be characterized by the Lagrangian function L 0 (E ∼ e GL , e, K , λ, α), in terms of the Green-Lagrange strain tensor E ∼ e GL , the relative plastic strain e, the gradient of the microslip variable K , the Lagrange multiplier λ, which is treated as an additional degree of freedom, and the internal hardening variable α. The considered form of the Lagrangian function is

ρ 0 L 0 (E ∼ e GL , e, K , λ, α) = 1 2 E ∼ e GL : Λ ≈ : E ∼ e GL + 1 2 µ χ e 2 + 1 2 K • A ∼ • K + λe + ρ 0 Ψp (α), (26) 
where µ χ is a Lagrangian penalty modulus. The Clausius-Duhem inequality then takes the form

Π ∼ e -ρ 0 ∂L 0 ∂E ∼ e GL : Ė ∼ e GL -S + ρ 0 ∂L 0 ∂e ė + M -ρ 0 ∂L 0 ∂K • K + +Π ∼ M : L ∼ p + S γcum + ρ 0 ∂L 0 ∂α α ≥ 0. ( 27 
)
This gives rise to the following state laws:

Π ∼ e = ρ 0 ∂L 0 ∂E ∼ e GL , S = -ρ 0 ∂L 0 ∂e , M = ρ 0 ∂L 0 ∂K , X = -ρ 0 ∂L 0 ∂α . (28) 
Furthermore, evaluating (28) for the specific quadratic form of the Lagrangian (26) leads to the following relations

Π ∼ e = Λ ≈ : E ∼ e GL , S = λ -µ χ (γ cum -γ χ ), M = A ∼ • K . (29) 
The residual dissipation has the same form as ( 21) and leads to the introduction of the following generalized Schmid yield function:

f r = |τ r | + S -τ r c = |τ r | -(τ r c -S) = |τ r | -(τ r c -λ + µ χ (γ cum -γ χ )). ( 30 
)
Again, this generalized yield function can be inserted into the flow rule (7) to evaluate the plastic slip rate of each slip system. The penalty parameter µ χ is similar to the micromorphic penalization term H χ but bears a different meaning. In simulations, the parameter µ χ can take a much lower value than H χ and provides additional coercivity.

In [START_REF] Besson | Large scale object-oriented finite element code design[END_REF] is described in detail in [START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. application to strain localization and void growth in ductile metals[END_REF] and [START_REF] Scherer | Lagrange multiplier based vs micromorphic gradient-enhanced rate-(in)dependent crystal plasticity modelling and simulation[END_REF], respectively.

Dislocation density-based hardening

The strain hardening behavior relies on a dislocation density-based hardening model, which takes dislocation interactions into account. Following the work of [START_REF] Kubin | Modeling dislocation storage rates and mean free paths in face-centered cubic crystals[END_REF], the rate of the critical resolved shear stress τ r c is related to the scalar dislocation densities u according to

τ r c = τ 0 + µ N u=1 h ru u , (31) 
where τ 0 is the initial critical resolved shear stress, µ is the shear modulus and h ru is the interaction matrix describing long-range interaction between dislocations. Moreover, u is the non-dimensional dislocation density such that u /b 2 = ρ u , with ρ u as the usual SSD density, i.e. the length of dislocation lines per unit volume with b denoting the norm of the dislocation Burgers vector b . The following equation gives the evolution of the dislocation density

˙ r = | γr |   N u=1 a ru u κ -G c r   . ( 32 
)
The first term in the previous equation corresponds to dislocation multiplication, whereas the second term accounts for dislocation annihilation. The dislocation interaction is described by the matrix a ru , κ is a constant material parameter and G c is the critical distance controlling the annihilation of dislocations with opposite signs. The structure of the matrices h ru and a ru can be found in Appendix B.

The part of the free energy due to the internal hardening variable α r is assumed to be of the form [START_REF] Abrivard | Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. part I: theory and numerical implementation[END_REF]:

ρ 0 Ψp (α r ) = µξ N r=1 1 2 (α r ) 2 , ( 33 
)
where ξ is a constant that is approximately equal to 0.3. The dissipation due to the internal hardening variable α r in (17) on each slip system r involves the thermodynamic force

X r = -ρ 0 ∂ Ψp ∂α r = -µξα r . (34) 
Moreover, it is assumed that the internal hardening variable α r depends on the SSDs as follows:

α r = N u=1 h ru u . ( 35 
)
4. CurlF p gradient crystal plasticity theory

CurlF p model

In this section, the gradient plasticity theory based on the complete dislocation density tensor elaborated in (Kaiser and Menzel, 2019b) is briefly summarized. The CurlF p framework proposed by Kaiser and Menzel (2019b) relies on the interpretation of incompatible plastic deformation processes in terms of the dislocation density tensor. The model formulation is based on the introduction of the dislocation density tensor as an argument of the free energy density function and assumes an extended non-local form of the dissipation inequality as proposed by [START_REF] Polizzotto | A thermodynamics-based formulation of gradient-dependent plasticity[END_REF].

More specifically speaking, it is proposed to rewrite the dissipation inequality in terms of a generalized stress field and to make use of the insulation condition for non-locality residual P 0 to derive the balance equation for the generalized stress field together with its associated boundary conditions. Another popular strain gradient theroy proposed by [START_REF] Gurtin | A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations[END_REF] is based on an extended form of the principle of virtual power by introducing microforces/microstresses that are work-conjugated to the slip rates and the slip-rate gradients, hence contributing to the internal power. In addition, the microscopic tractions that are work-conjugated to the slip rates contribute to the external power and give rise to the balance equation of microforces and the microscopic traction boundary conditions. However, the comparison of this theory with [START_REF] Polizzotto | A thermodynamics-based formulation of gradient-dependent plasticity[END_REF] lies beyond the scope of the present 180 contribution.

The dislocation density tensor [START_REF] Steinmann | On the numerical treatment and analysis of finite deformation ductile single crystal plasticity[END_REF][START_REF] Acharya | Lattice incompatibility and a gradient theory of crystal plasticity[END_REF][START_REF] Cermelli | On the characterization of geometrically necessary dislocations in finite plasticity[END_REF][START_REF] Liebe | Theory and numerics of geometrically non-linear gradient plasticity[END_REF] is defined by

D ∼ = Curl T (F ∼ p ). ( 36 
)
The material under consideration is assumed to be characterized by the free energy density function

Ψ = Ψ(F ∼ , F ∼ p , D ∼ , α), (37) 
with α denoting a scalar-valued internal variable, which may be interpreted as a measure of the cumulative plastic strain. Moreover, it is assumed that the gradient-enhanced energy density function can additively be decomposed as

ρ 0 Ψ = ρ 0 Ψe (F ∼ , F ∼ p ) + ρ 0 Ψg (D ∼ ) + ρ 0 Ψp (α), ( 38 
)
where Ψe , Ψg and Ψp are the elastic contribution, the energy contribution due to the gradient effect and the energy contribution due to the internal hardening variable, respectively. The energy contribution

Ψg is expressed as a quadratic function

ρ 0 Ψg (D ∼ ) = H D D ∼ : D ∼ , (39) 
where H D is a material parameter proposed in (Kaiser and Menzel, 2019b), which can be interpreted as a characteristic length scale parameter. The part of the free energy due to the hardening variable α is chosen as

ρ 0 Ψp (α) = τ 0 α + (τ ∞ -τ 0 ) 2 H 0 ln cosh H 0 α τ ∞ -τ 0 , ( 40 
)
where the material parameters τ ∞ and H 0 are the saturation strength and the initial hardening rate, respectively. The extended form of the dissipation inequality is

D res = P ∼ : Ḟ ∼ -ρ 0 ∂ Ψ ∂F ∼ : Ḟ ∼ + ρ 0 ∂ Ψ ∂F ∼ p : Ḟ ∼ p + ρ 0 ∂ Ψ ∂D ∼ : Ḋ ∼ + ρ 0 ∂ Ψ ∂α : α + P 0 ≥ 0, (41) 
The first Piola-Kirchhoff stress tensor is given by

P ∼ = ρ 0 ∂ Ψ ∂F ∼ , (42) 
and the reduced form of the dissipation inequality takes the form

D res = Π ∼ M : L ∼ p + Ξ ∼ : Ḋ ∼ + X α + P 0 ≥ 0, (43) 
where Π ∼ M is a Mandel-type stress tensor defined in the intermediate configuration by

Π ∼ M = F ∼ eT • P ∼ • F ∼ pT , (44) 
and related to the Mandel stress tensor Π ∼ M defined in (6) by Π ∼ M = J p Π ∼ M , as the incompressibility condition (J p = 1) is not explicitly assumed in this particular model.

The thermodynamic force associated with the internal hardening variable is defined as

X = -ρ 0 ∂ Ψp ∂α = -τ 0 + (τ ∞ -τ 0 )tanh H 0 α τ ∞ -τ 0 , (45) 
and the energetic dual to the dislocation density tensor reads

Ξ ∼ = -ρ 0 ∂ Ψ ∂D ∼ . ( 46 
)
Moreover, the evaluation of ( 46) for the specific form of the energy contribution (39) yields

Ξ ∼ = -2H D Curl T (F ∼ p ). (47) 
By considering an insulation condition P 0 = 0 as in (Kaiser and Menzel, 2019a), the reduced form of the dissipation inequality may be written in terms of

D res = M ∼ : L ∼ p + X α ≥ 0, (48) 
and give rise to a balance equation for the generalized stress tensor

M ∼ = Π ∼ M + Curl T (Ξ ∼ ) • F ∼ pT , in B 0 dis . ( 49 
)
The generalized stress tensor M ∼ consists of the Mandel-type stress tensor Π ∼ M defined in the intermediate configuration and a back-stress term Curl T (Ξ ∼ ) • F ∼ pT , which is closely related to incompatibilities in the plastic deformation field such that when gradient effects are neglected, M ∼ reduces to Π ∼ M . The generalized stress tensor is identified as the driving force for plastic deformation processes based on (48). The yield function and the evolution equations are accordingly formulated in terms of the generalized stress tensor. Moreover, the non-ambiguous constitutive boundary condition associated with (49) reads

Ξ ∼ • Spin(N ) • F ∼ pT = 0 ∼ , on ∂B 0 dis,ext , (50) 
where N denotes the outward unit normal vector with respect to the considered boundary ∂B 0 . The detailed derivation of ( 49) and ( 50) can be found in (Kaiser and Menzel, 2019b). The generalized stress 185 tensor in (49) and the constitutive boundary condition in ( 50) are originally derived on the domain B 0 dis , where dissipative processes occur, and on the corresponding external boundary ∂B 0 dis,ext . In addition, the relative Mandel stress tensor is introduced as a primary field variable

M ∼ (rel) = M ∼ -Π ∼ M , (51) 
so that (49) can be written as

M ∼ (rel) -Curl T (Ξ ∼ ) • F ∼ pT = 0 ∼ , in B 0 dis . (52) 
Substituting ( 47) in ( 52) yields the specific form of the relative Mandel stress tensor

M ∼ (rel) = -2H D Curl T (Curl T (F ∼ p )) • F ∼ pT , (53) 
which is responsible for the back-stress associated with the kinematic hardening. In addition, field variable θ ∼ p is introduced which is coupled to F ∼ p in terms of an L 2 -projection as follows:

0 = B 0 η ∼ θ p : (F ∼ p -θ ∼ p )dV, (54) 
where η ∼ θ p is the corresponding test function. ) is to calculate the gradient of F ∼ p at the integration points. To this end, the known values of F ∼ p at the integration points are extrapolated to nodes by using the shape functions of the elements. The gradients of F ∼ p at the nodes can next be obtained from the spatial derivatives of the shape functions. Finally, known nodal values of the gradient of F ∼ p are interpolated back to the integration points. The Euclidean norm of Curl T (F ∼ p ) provides an effective measure of GND density as follows:

Post-processing technique to evaluate GND density distribution

||Curl T (F ∼ p )|| = b N r=1 ρ r G , (55) 
where || • || denotes the Euclidean norm of •.

4.3. Equivalence of higher-order modulus A and material parameter H D in single-slip

The higher-order modulus A from the reduced-order model, refer to (24), and material parameter H D from the CurlF p theory, refer to (47), bear similar physical interpretations. This is demonstrated in this section for a simplified two-dimensional single-slip problem.

A single crystal with a single-slip system is considered. The slip direction m and the slip plane

normal n are m = (1, 0, 0), n = (0, 1, 0). ( 56 
)
Consider a situation where only one slip system is active. In the absence of lattice distortion and rotation, the plastic part of the deformation gradient F ∼ p takes the form

F ∼ p = 1 ∼ + γ (m ⊗ n ), ( 57 
) [F ∼ p ] ij =      1 γ 0 0 1 0 0 0 1      . ( 58 
)
The dislocation density tensor

[D ∼ ] ij = [Curl T (F ∼ p )] ij is given by [D ∼ ] ij =      ∂F p 13 ∂X2 - ∂F p 12 ∂X3 ∂F p 11 ∂X3 - ∂F p 13 ∂X1 ∂F p 12 ∂X1 - ∂F p 11 ∂X2 ∂F p 23 ∂X2 - ∂F p 22 ∂X3 ∂F p 21 ∂X3 - ∂F p 23 ∂X1 ∂F p 22 ∂X1 - ∂F p 21 ∂X2 ∂F p 33 ∂X2 - ∂F p 32 ∂X3 ∂F p 31 ∂X3 - ∂F p 33 ∂X1 ∂F p 32 ∂X1 - ∂F p 31 ∂X2      . ( 59 
)
Therefore, for the 2-dimensional case and the specific simple shear problem studied,

[D ∼ ] ij =      0 0 ∂γ ∂X1 0 0 0 0 0 0      . ( 60 
)
The only active component of the dislocation density tensor is

D 13 = ∂γ ∂X 1 . (61) 
The equivalence of higher-order modulus A and the material parameter H D from the CurlF p model can be derived as follows. For a crystal deforming under single-slip conditions, the plastic deformation rate is given by

Ḟ ∼ p = γ(m ⊗ n ). ( 62 
)
Inserting ( 51) in (48) for M ∼ gives

(τ + M ∼ (rel) : m ⊗ n ) γ + X α ≥ 0. ( 63 
)
In absence of hardening variable, α, for simplicity, the generalized Schmid law for the CurlF p model, in the rate-independent case, can be defined as

|τ -x| = τ c , with x = -M ∼ (rel) : m ⊗ n . ( 64 
)
From the specific form of the generalized stress tensor M ∼ (rel) given by ( 53), the back-stress x can be written as

x = 2H D Curl T (Curl T (F ∼ p )) • F ∼ pT : m ⊗ n , (65) 
with (66)

[Curl T (Curl T (F ∼ p ))] ij =      ∂F p 12 ∂X12 + ∂F p
For the particular single-slip problem considered, the back-stress takes the form

2H D Curl T (Curl T (F ∼ p )) • F ∼ pT : m ⊗ n = -2H D γ, 11 (67) 
Substituting ( 67) in ( 64) leads to another form of the generalized Schmid law

|τ + 2H D γ, 11 | = τ c . ( 68 
)
This equation clearly shows the emerging kinematic hardening component proportional to the second gradient of slip in the slip direction.

On the other hand, the generalized Schmid law for a single-slip problem with the Lagrange multiplier-based model can be written from (30) in the rate-independent case as

|τ | + S = τ c . ( 69 
)
Recalling the balance law in ( 12), the generalized Schmid law in (69) can be written as

|τ | + Div M = τ c . (70) 
Making use of ( 19) in the previous equation leads to another form of the generalized Schmid law

|τ | + A(DivK ) = τ c , (71) 
A(DivK ) = A Div ∂γ χ ∂X 1 m + ∂γ χ ∂X 2 n = A ∂ 2 γ χ ∂X 2 2 = Aγ, 11 . (72) 
Finally, the form of the generalized Schmid law in (71) can be written as

|τ | + Aγ, 11 = τ c . (73) 
This equation clearly shows the emerging isotropic hardening component proportional to the second gradient of slip in the slip direction. From ( 68) and ( 73), it is concluded that the higher-order moduli is the subject of the following sections for monotonic and cyclic loading conditions.

In the presence of linear hardening with modulus H, it is possible to derive from (71) the definition of a characteristic length scale

= A/|H|, (74) 
as demonstrated in [START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. application to strain localization and void growth in ductile metals[END_REF][START_REF] Scherer | Strain gradient crystal plasticity with evolving length scale: Application to voided irradiated materials[END_REF]. For more general hardening laws, a similar 205 characteristic length scale can be defined, as discussed in section 5.3.1.

Application to microwire torsion tests

The torsion of a single crystal microwire is characterized by two types of gradients: gradients along the radial direction from the center to outer surface and gradients along the circumferential direction as observed by [START_REF] Nouailhas | Tension-torsion behavior of single-crystal superalloys: Experiment and finite element analysis[END_REF]. More recently, experimental investigations of microwire torsion tests on single crystal copper under monotonic loading have been performed

by [START_REF] Horstemeyer | Torsion/simple shear of single crystal copper[END_REF] with the [110] crystallographic direction being aligned with the axis of rotation. An observation of the kinematics of the deformation field at the outer surface of the specimen was made. A wavy deformation pattern of sinusoidal waves comprising of four periods was observed and believed to be the result of four-fold symmetry of the slip plane around the circumference.

Moreover, experimental assessments of polycrystalline microwire torsion tests with different specimen diameters and same grain size were performed in [START_REF] Liu | Size effects in the torsion of microscale copper wires: Experiment and analysis[END_REF][START_REF] Guo | Individual strain gradient effect on torsional strength of electropolished microscale copper wires[END_REF] to study the size effects under monotonic loading. Furthermore, the experimental studies of size effects, hysteresis loops, Bauschinger effects, and anomalous plastic recovery in polycrystalline cyclic torsion tests can be found in (Liu et al., 2013a;[START_REF] Guo | Size effect in cyclic torsion of micron-scale polycrystalline copper wires[END_REF]. Mechanical annealing is an effective method to decrease the overall dislocation density in single crystals with a size of several hundred nanometers. This method can be used for applications in manufacturing defect-free components of nano size. However, a significant shape change of the samples surprisingly happens under extremely high monotonic loading to drive the pre-existing dislocations out of the free surface. [START_REF] Cui | Mechanical annealing under low-amplitude cyclic loading in micropillars[END_REF] showed that lowamplitude cyclic loading could drive the pre-existing dislocations out of the free surface without a significant shape change in submicron samples undergoing low-amplitude cyclic loading. The sample size is a key factor in mechanical annealing. Dislocation annihilation can only occur in samples with a size smaller than the critical value, as demonstrated in [START_REF] Cui | Mechanical annealing under low-amplitude cyclic loading in micropillars[END_REF]. Mechanical annihilation was not observed in large samples.

From a numerical point of view, Weinberger and Cai (2010) investigated the orientation dependent plasticity in metallic nanowires by using molecular dynamics and dislocation dynamics simulations.

Molecular dynamics simulations showed that the mechanism of plastic deformation is controlled by the orientation of the single crystal wires. The wires oriented along <110> direction shows the coaxial dislocation nucleation, making the deformation homogeneous. Furthermore, these wires maintain most of their strength after yielding. On the other hand, <001> and <111> crystal orientations deform through formation of twist boundaries which localizes the deformation and lose most of their strength after yielding. Besides, dislocation dynamics simulations are used to investigate the stability of the dislocation structures observed in molecular dynamics simulations. The prediction of size effects in monotonic and cyclic loading of polycrystalline microwires were performed in [START_REF] Bardella | Modelling the torsion of thin metal wires by distortion gradient plasticity[END_REF]. To this end, they used a phenomenological strain gradient plasticity approach called distortion gradient theory which relies on the dislocation density tensor with taking less-than-quadratic defect energies into consideration. These less-than-quadratic defect energies allow the prediction of size effects consisting of an increase of the yield point with diminishing size. It was observed that this distortion gradient theory is satisfactory to capture the size effects in monotonic loading. However, it leads to anomalous cyclic behavior in the case of cyclic loading due to the less-than-quadratic defect energies. They related the anomalous cyclic behavior to the changes of concavity of the stress-strain curves, which is absent in the experiments. [START_REF] Panteghini | Modelling the cyclic torsion of polycrystalline micron-sized copper wires by distortion gradient plasticity[END_REF] recently proposed a strain gradient plasticity theory characterized by a higher-order plastic potential to overcome this issue in the cyclic loading of polycrystalline microwires. The predictions made by taking the above-mentioned approach are in good agreement with the experimental data of (Liu et al., 2013b) and predictions on the size-dependent response of microwires under cyclic loading.

In this section, the size effect predicted by the Lagrange multiplier-based model for monotonic and cyclic microwire torsion tests is compared to the predictions by the CurlF p model taken from Kaiser and Menzel (2019a). The relation A = 2H D is used in the simulations, following the identification presented in section 4.3.

Problem setup

The simulations are performed using single crystal cylindrical microwires with a height of 80 mm and three different radii R = 20 mm, 10 mm and 5 mm, that are meshed with reduced integration 20 node brick elements. The simulation results are not affected by the absolute values of the wire dimensions but rather by the ratio of their radii to the characteristic length scale . and are indicated in Fig. 2.

Identification of material parameters

The Face-Centered Cubic (FCC) crystal possesses the usual 12 slip systems with 6 slip directions <110> and 4 slip planes {111}. 1. The viscosity parameters are chosen in such a way that no significant rate-dependence of the results is observed in the range of strain rates considered in this work. The initial adimensional dislocation density is denoted by r 0 and assumed to be the same for all slip systems.

The corresponding tensile and shear stress-strain responses of a <001> FCC single crystal are provided for both models in Fig. 3. No exact match is observed in Fig. 3 because the hardening functions are very different in both models. Only qualitative agreement is reached for the tensile and shear curves for the considered crystal orientation, which is sufficient for the comparisons performed in the sequel for torsion of microwires.

Results and discussion

The characteristic length scale considered in the simulations is defined as = A/|H|, cf. section 4.3, (74). The hardening modulus H varies during straining, and an approximate expression of the characteristic length scale is chosen to normalize the presented results. For that purpose, the initial equivalent linear hardening modulus for the tensile test is selected. Its value is given by the ratio of resolved shear stress τ s and shear strain γ s for one activated slip system at the beginning of its activation, as proposed in [START_REF] Ling | Modeling the intragranular ductile fracture of irradiated steels. Effects of crystal anisotropy and strain gradient[END_REF]. In the present case, the estimated H value for the <001> crystal orientation is 3100 MPa. It is not possible to derive an analytical expression of the relevant characteristic length scale emerging in the torsion problem. That is why the proposed estimate is chosen.

In the following description of the results, the SSD density is defined as the sum of the 12 individual dislocations densities. The GND density is calculated by using the post-processing technique described in section 4.1.

Comparison of predicted size effects

The comparison of the size effects predicted by the Lagrange multiplier-based model and the CurlF p model for three different values of the radius of the microwire under monotonic torsion loading using higher-order modulus A = 20000 MPa mm 2 is shown in Fig. 4a. The considered single crystal microwire is subjected to monotonic torsion loading and oriented such that the wire axis is parallel to the [001] crystal direction. The size-dependent curves are presented in terms of the normalized torque T /R 3 as a function of surface strain γ R defined as

γ R = kR, ( 75 
)
where k is the applied twist per unit length θ/L. This definition of γ R is only an approximation of the actual slip value along the circumference since the plastic activity is not constant along the circumference for a cubic single crystal.

This feature can be observed in Fig. 5 The SSD and GND density distributions at different stages of the relative rotation are shown in Fig. 8 and 9, respectively. At the initial stage of the deformation, the maximum SSD density is observed at four locations corresponding to the [110] crystal direction (see Fig. 8a). However, as the deformation progresses, the maximal dislocation density locations are observed at the corresponding [100] crystal direction, as shown in Fig. 8c for the relative rotation of 22.5 • . With increasing deformation, the difference between the magnitude of the maximal and minimal increment of the cumulative plastic strain, N r=1 | γ r |, along the circumference decreases and the field becomes almost homogeneous.

This may explain the shift in the maximal SSD density locations with the deformation. On the other hand, at the initial stage of the relative rotation, the GND density is maximal at four locations around the directions [100] (see Fig. 9a) and remains at the corresponding [100] crystal direction with further increase in the relative rotation (see Fig. 9c). Moreover, it is observed that there is a slight evolution of the GND density field with more localized distribution compared to the SSD density field.

Fig. 10a and10b show the profiles of the cumulative plastic strain γ cum for three different radii along the circumferential and radial directions, respectively. For the given relative rotation angle, distinct four-fold patterns of the plastic strain field can be observed for R = 20 mm and R = 10 mm.

The plastic strain field is smoother along the circumference for R = 5 mm because the smaller radius gives a stiffer response and limits the strain localization in these zones. The radial distributions in [100]
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[001] higher-order stresses act as a back-stress in the CurlF p model, resulting in kinematic hardening. Fig. 11a shows the saturation of cyclic curves after 5 cycles using the classic crystal plasticity model with dislocation density-based hardening. In contrast, the gradient effect associated with parameter A leads to strong additional isotropic hardening, as depicted in Fig. 11b, with no apparent saturation.

The gradient terms naturally involved in tensor-based strain gradient models predict sizedependent kinematic hardening. The non-monotonic evolution of the components of F ∼ p in the CurlF p model leads to size-dependent kinematic hardening. For such models, size-dependent isotropic hardening can be predicted by introducing higher-order dissipative stresses [START_REF] Hutchinson | Generalizing j2 flow theory: Fundamental issues in strain gradient plasticity[END_REF]. On the other hand, most scalar-based strain gradient models predict size-dependent isotropic hardening. For instance, in the reduced-order micromorphic model, cumulative plastic slip is an always increasing variable irrespective of the loading direction, leading to size-dependent isotropic hardening. [START_REF] Jebahi | Scalar-based strain gradient plasticity theory to model size-dependent kinematic hardening effects[END_REF] recently showed that size-dependent kinematic hardening can be predicted in scalarbased strain gradient models by accounting for the gradient of the equivalent plastic strain which does not increase monotonically.

The cumulative plastic strain and dislocation density fields shown next are plotted for the microwire of radius R = 10 mm and based on a finite element discretization with 3600 elements. Fig. 12 and13 show the SSD and GND density distributions over the cross section at the end of each cycle. As the deformation progresses, the dislocation density significantly increases with the plastic strain, and the SSD density becomes much larger than the GND density. In particular, the SSD and GND densities increase from an initial value of 6.5 × 10 8 m -2 to 9.7 × 10 14 m -2 and from 0 to 4.9 × 10 11 m -2 , respectively, at the end of cycle 3. In addition, the dislocation density distribution maintains the distinct four-fold symmetry pattern even at the end of cycle 3. After cycling, the GND density field no longer displays clear patterns, see Fig. 13. A finer mesh would be necessary for a better resolution of the gradients.

The plastic strain distribution and profiles along the circumferential and radial directions for bounded intermediate regime for the micromorphic model using H χ = 10 4 MPa and H χ = 3×10 4 MPa is found to be n = -0.6 and n = -0.85, respectively. The Lagrange multiplier-based model can be considered as a limiting case of a micromorphic model for large values of H χ , which leads to a powerlaw exponent n = -1.0 of asymptotic regime. In the latter case, no saturation is expected.

The power-law exponent n of the micromorphic model depends on the material parameters H χ and A, whereas it is independent of material parameters in the Lagrange multiplier-based model.

The critical value of the R/ ratio is defined by the inflection point i of the plot in Fig 16b . The value of i depends on the coupling modulus H χ and is found to be 4 and 3 for H χ = 10 4 MPa and H χ = 3 × 10 4 MPa, respectively, which represents the size-dependent domain of the material response.

Conclusions

The objective of the present work is to compare the response in torsion at finite deformations of three size-dependent models recently published in the literature: the gradient crystal plasticity model involving the complete dislocation density tensor by Kaiser and Menzel (2019a), the reduced-order micromorphic crystal plasticity model and the Lagrange multiplier-based gradient crystal plasticity model described in [START_REF] Scherer | Lagrange multiplier based vs micromorphic gradient-enhanced rate-(in)dependent crystal plasticity modelling and simulation[END_REF]. Results previously obtained by Kaiser and Menzel (2019a) were compared to new simulations carried out with the two other models. A detailed analysis of the evolution of plastic strain, SSD and GND density fields was provided. The main findings obtained in this contribution can be summarized as follows:

1. The size effects predicted by the Lagrange multiplier-based model were found to be in good agreement with the predictions made by the CurlF p model in the case of monotonic torsion of a cylindrical bar with axis parallel to [001] crystal direction.

2. Gradient effects tend to reduce the strain heterogeneity which arises in torsion along the circumference. This effect is predicted by all three models.

3. Interesting evolutions of the SSD and GND densities during monotonic torsion were revealed.

The location of maximal SSD density values was shown to change from <011> to <100> positions along the circumference when increasing the twist angle. In contrast the maximal GND density values remain around <100> positions.

4. The Lagrange multiplier-based model induces isotropic hardening in cyclic torsion because it is based on the gradient of a scalar-valued cumulative plastic strain variable. This is in contrast to the kinematic hardening induced by the CurlF p model due to the back-stress resulting from the action of higher-order stresses. This leads to significantly different responses under cyclic loading conditions.

5. The analysis of the cyclic torsion tests shows the evolution of plastic slip gradients along the circumference with a trend towards more homogeneous distributions for larger cycle numbers according to the Lagrange multiplier-based model. A significant increase in SSD and GND densities is observed at the end of each cycle compared to previous cycles.

6. The size effects are characterized by power law relationships between the normalized torque and the R/ ratio, with being a characteristic length of the model. The reduced micromorphic model saturates for small and large values of this ratio. It possesses an intermediate domain with powers n = -0.6 and = -0.85, which were found for H χ = 10 4 MPa and H χ = 3×10 4 MPa, respectively. In contrast, the Lagrange multiplier-based model, which corresponds to a strict strain gradient plasticity model, predicts no saturation at small R/ ratios and a power law with n = -1.

An equivalence between the Lagrange multiplier-based model and the CurlF p model exists in the case of a single-slip. However, this equivalence no longer exists in the case of a multi-slip. The CurlF p model has a clear physical interpretation in terms of the dislocation density tensor in contrast to the reduced-order models, which incorporate the gradient of cumulative slip in a purely phenomenological way. Reduced-order models are advantageous from a computational point of view and lead to significantly lower computation times in the presented examples. The computational efficiency in terms of CPU time of the Lagrange multiplier-based model and of the micromorphic model that was studied in this contribution is investigated in [START_REF] Scherer | Lagrange multiplier based vs micromorphic gradient-enhanced rate-(in)dependent crystal plasticity modelling and simulation[END_REF]. The CurlF p model, which includes 21 DOFs at each node in three-dimensional settings, is computationally expensive compared to the Lagrange multiplier-based model, which requires 5 DOFs per node. It has been demonstrated that the CurlF p and reduced-order models can deliver similar predictions in terms of hardening and size effects, at least for monotonic tests. The reduced-order models can therefore be applied for faster evaluation of size effects in structural computations. More physical understanding can be gained by using the full gradient model. The micromorphic crystal plasticity theory solely influences the hardening rate and does not affect the initial yield strength. This is due to the fact that any gradient plasticity formulation based on a quadratic potential with respect to the gradient of plastic distortion only increases the hardening rate but cannot increase the yield strength. The initial yield strength can be influenced by rank one potentials, according to [START_REF] Wulfinghoff | Strain gradient plasticity modeling of the cyclic behavior of laminate microstructures[END_REF].

The full gradient and reduced-order models could further be compared in the case of localization phenomena in crystalline materials as recently explored by [START_REF] Marano | FFT-based simulations of slip and kink bands formation in 3D polycrystals: influence of strain gradient crystal plasticity[END_REF]. Regularization of strain localization phenomena in single crystals such as slip, kink and shear bands was demonstrated in [START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. application to strain localization and void growth in ductile metals[END_REF].

A limitation of the reduced-order micromorphic and Lagrange multiplier-based formulations presented in this work is that the gradient terms essentially affect the isotropic hardening and do not incorporate a size-dependent back-stress, in contrast to full-order micromorphic and the gradient plasticity models. The simulation of kinematic-type hardening is, in fact, possible with a reduced-order model by using an alternative formulation in which the free energy potential depends on the gradient of the microslip variable as pointed out in [START_REF] Forest | Nonlinear regularization operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage[END_REF][START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. application to strain localization and void growth in ductile metals[END_REF]. Another possibility is to consider the gradient of the equivalent plastic strain instead of the cumulative one. This will cause size-dependent kinematic hardening effects, as recently demonstrated by [START_REF] Jebahi | Scalar-based strain gradient plasticity theory to model size-dependent kinematic hardening effects[END_REF].

Appendix A Summary of constitutive equations

The constitutive equations used in the reduced-order and the CurlF p models are summarized in Table 2.

Appendix B Form of the dislocation interaction matrices

In FCC single crystals, matrix h ru (r, u=1,2,...,12) has 12 × 12 coefficients. Matrix h ru is constructed as follows [START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. application to strain localization and void growth in ductile metals[END_REF]:

[h ru ] =                                 h 0 h 1 h 1 h 3 h 4 h 4 h 2 h 4 h 5 h 2 h 5 h 4 h 0 h 1 h 4 h 2 h 5 h 4 h 3 h 4 h 5 h 2 h 4 h 0 h 4 h 5 h 2 h 5 h 4 h 2 h 4 h 4 h 3 h 0 h 1 h 1 h 2 h 5 h 4 h 2 h 4 h 5 h 0 h 1 h 5 h 2 h 4 h 4 h 3 h 4 h 0 h 4 h 4 h 3 h 5 h 4 h 2 h 0 h 1 h 1 h 3 h 4 h 4 h 0 h 1 h 4 h 2 h 5 h 0 h 4 h 5 h 2 h 0 h 1 h 1 h 0 h 1 h 0                                 symmetric A 2 A 3 A 6 B 2 B 4 B 5 C 1 C 3 C 5 D 1 D 4 D 6 A 2 A 3 A 6 B 2 B 4 B 5 C 1 C 3 C 5 D 1 D 4 D 6 (76)
For symmetry reasons the number of coefficients is reduced to 6, i.e. h 0h 5 . In the matrix, the coefficient h 0 corresponds to self hardening, h 1 to coplanar interaction, h 2 to Hirth locks, h 3 to 

  the present work, the Lagrange multiplier-based model is used to compare the size effects predicted by the CurlF p model, because the CurlF p model is a strain gradient plasticity model and thus should be compared more directly to the Lagrange multiplier-based model. The implementation of the micromorphic and Lagrange multiplier-based single crystal plasticity models in the finite element 155 code Zset 1 (
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  In order to identify the differences between the Lagrange multiplier-based model and the CurlF p model, the constitutive equations of both models are summarized in Appendix A. Moreover, in the present work, the GND density distribution in monotonic and cyclic loading of microwires using the Lagrange multiplier-based model is calculated from the Euclidean norm of Curl T (F ∼ p ). A postprocessing technique is used to evaluate Curl T (F ∼ p ) (see also,[START_REF] Busso | Gradient-dependent deformation of two-phase single crystals[END_REF]; Abrivard et al.(2012)). The GND density is computed as the norm of the dislocation density tensor divided by b. In the CurlF p model this variable is available in the code, whereas a post-processing is needed to compute the curl of the plastic part of the deformation gradient in the case of the Lagrange multiplier-based model. The first step in determining Curl T (F ∼ p
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  and H D can be related to each other for monotonic loading such that τ > 0 and τ +2H D γ, 11 > 0. In 200 this instance, we can identify A = 2H D . The Lagrange multiplier-based model and the CurlF p model are equivalent in this specific situation. It will not be the case anymore, in general, under multi-slip conditions and considering the different hardening laws. Proving the importance of these differences

  The applied boundary conditions and meshed geometry are shown in Fig 2.The geometry is discretized with 3600 elements for monotonic loading and with 450 elements for cyclic loading. The same finite element meshes as in(Kaiser and Menzel, 2019a) are used for the simulations performed with the Lagrange multiplier-based model in order to allow for direct comparison. The latter model was recently used to simulate torsion tests of single crystals with various orientations and finer meshes in[START_REF] Scherer | Lagrange multiplier based vs micromorphic gradient-enhanced rate-(in)dependent crystal plasticity modelling and simulation[END_REF]. Isotropic elasticity is considered. The bottom face of the microwire is clamped, while the top surface undergoes a rigid body rotation around the wire axis. The lateral faces are kept traction-free and free of generalized forces, which means that T = 0 and M = 0 in (13). The relative rotation between the upper and lower face is linearly increased to an angle of 45 • for monotonic loading. For the cyclic loading test, the following conditions are enforced: The relative rotation between the upper and lower faces is first linearly increased to an angle of 45 • . Next, the relative rotation is linearly decreased to -45 • . Finally, the loading is again reversed, and the simulation is stopped when a relative rotation of 45 • is reached.The orientation of the single crystal considered is such that the [001] crystal direction is aligned with the wire axis. The basis vectors of the Cartesian coordinate system are parallel to the cubic lattice unit cell vectors: e 1 = [100] e 2 = [010] e 3 = [001],

Fig. 2 :

 2 Fig. 2: Microwire torsion: (a) Boundary conditions and (b) top view of the finite element mesh with R denoting the radius of the microwire.

Fig. 3 :

 3 Fig. 3: Constitutive response of the classic crystal plasticity formulation (section 2.2) and the material model considered in (Kaiser and Menzel, 2019b) for a <001> FCC single crystal and material parameters according to Table 1: (a) Tensile test and (b) shear test. Cauchy stress components are plotted, the axial and shear strains correspond to components F 33 -1 and F 12 of the deformation gradient.

Fig. 4 :

 4 Fig. 4: Comparison of normalized torque vs. surface strain curves (<001> crystal orientation using the Lagrange multiplier-based model and the CurlF p model for: (a) Monotonic loading (R = 20 mm, 10 mm, and 5 mm), and (b) cyclic loading (R = 10 mm).

Fig. 10b areFig. 5 :

 5 Fig. 10b are almost linear. The comparison of the size effect predicted by the Lagrange multiplier-based model and the CurlF p model in the case of cyclic loading conditions is shown in Fig. 4b. These simulations were performed for two values of the higher-order modulus, namely A = 10000 MPa mm 2 and 20000 MPa mm 2 . The ratio A = 2H D is kept constant in both cases to allow for the comparison of both models. The Lagrange multiplier-based model predicts isotropic hardening as shown in Fig. 4b. In contrast, the

Fig. 6 :

 6 Fig. 6: SSD density distribution in FCC single crystals (<100> crystal orientation) predicted by the Lagrange multiplierbased model with A = 20000 MPa mm 2 and a finite element discretization featuring 10000 elements. The results for an applied relative rotation of 45 • between the upper and lower faces are shown on the undeformed configuration.

Fig. 7 :

 7 Fig. 7: GND density distribution in FCC single crystals (<100> crystal orientation) predicted by the Lagrange multiplier-based model with A = 20000 MPa mm 2 and a finite element discretization featuring 10000 elements. The results are shown on the undeformed configuration for an applied relative rotation of 45 • between the upper and lower faces.

Fig. 8 :

 8 Fig. 8: SSD density distribution in FCC single crystals (<100> crystal orientation, R = 10 mm) predicted by the Lagrange multiplier-based model with A = 20000 MPa mm 2 and a finite element discretization featuring 10000 elements at an applied relative rotation of (a) 4.5 • , (b) 9 • , and (c) 22.5 • shown on the undeformed configuration.

Fig. 9 :

 9 Fig. 9: GND density distribution in FCC single crystal (<100> crystal orientation, R = 10 mm) predicted by the Lagrange multiplier-based model with A = 20000 MPa mm 2 at an applied relative rotation of (a) 4.5 • , (b) 9 • , and (c) 22.5 • shown on the undeformed configuration.

Fig. 10 :Fig. 11 :

 1011 Fig. 10: Cumulative plastic strain γcum profiles predicted by a Lagrange multiplier-based model along the (a) circumferential and (b) radial direction of the microwire for monotonic loading and for three radii of the microwires using A=20000 MPa mm 2 . The radial distance from the center of the specimen is denoted by x and the radius of the microwire by R.

Cycle 3 Fig. 12 :

 312 Fig. 12: SSD density distribution in a FCC single crystal microwire under cyclic torsion (<100> crystal orientation, R = 10 mm, A = 20000 MPa mm 2 ) predicted by the Lagrange multiplier-based model and a finite element discretization featuring 3600 elements.

Fig. 13 :

 13 Fig. 13: GND density distribution in a FCC single crystal (<100> crystal orientation, R = 10 mm, A = 20000 MPa mm 2 )

Fig. 14 :

 14 Fig. 14: Cumulative plastic strain γcum distribution in a FCC single crystal microwire under cyclic torsion (<100> crystal orientation, R = 10 mm) predicted by the Lagrange multiplier-based model with A = 20000 MPa mm 2 and a finite element discretization featuring 3600 elements.

Fig. 15 :

 15 Fig. 15: Cumulative plastic strain γcum variation along the (a) circumferential and (b) radial direction of the microwire for cyclic loading using the Lagrange multiplier-based model (A=20000 MPa mm 2 , R = 10 mm, and a finite element discretization with 3600 elements). The ratio of the radial distance from the center of the specimen x and the microwire radius R is denoted by x(= x R ).

  P ∼ = 0 and Div M -S = 0,∀ X ⊂ Ω 0 Div P ∼ = 0 in B 0 and M ∼ = Π ∼ M + Curl(Ξ ∼ ) • F ∼ pT , in B 0 dis Boundary conditions T = P ∼ • N and M = M • N , ∀ X ⊂ ∂Ω 0 T = P ∼ • N on ∂B 0 t Ξ ∼ • Spin(N ) • F ∼ pT = 0collinear interaction, h 4 to glissile junctions and h 5 to Lomer locks. Matrix a ru has the same structure as matrix h ru .

Table 1 :

 1 Numerical values of material parameters used for the simulation of microwire torsion tests in the reduced-order model and byKaiser and Menzel (2019a) in the CurlF p model.

	E	τ0	m	γ0	µ	b
	60.8 MPa	60 MPa	10	6.0 × 10 7 s -1	23 400 MPa 0.286 nm
	Gc	κ	r 0	h0	h1	h2
	100.5	10.92	5.38 × 10 -11	1.0	0	0
	h3	h4	h5	a ru (r = u)	a uu	µχ
	0	0	0	1	0	10 3 MPa
	A	τ∞	H0	HD		
	10 4 , 2 × 10 4 MPa mm 2 110 MPa	540	5 × 10 3 , 10 4 MPa mm 2		

Table 2 :

 2 Summary of constitutive equations used in reduced-order and the CurlF p models.

http://www.zset-software.com/
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