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Faster algorithms for computing real isolated points
of an algebraic hypersurface

Huu Phuoc Le1

Sorbonne Université, CNRS, LIP6, F-75005, Paris, France

Abstract

Let R be the field of real numbers. We consider the problem of computing the real isolated points
of a real algebraic set in Rn given as the vanishing set of a polynomial system. This problem
plays an important role for studying rigidity properties of mechanism in material designs. In this
paper, we design two algorithms of whose complexities are respectively O˜(

D8n
)

and O˜(
D6n

)
for computing the real isolated points of real algebraic hypersurfaces in Rn of degree D. We also
propose several heuristic optimizations to avoid the most costly computation in our algorithms
in most of the cases, which makes our complexity reduced to O˜(

D3n
)

for those cases. These
algorithms lead to an implementation which is able to solve instances which were out of reach.

Keywords: Real algebraic geometry; Polynomial system solving; Computational geometry

1. Introduction

Given f ∈ Q[x1, . . . , xn], we denote byV ⊂ Cn the algebraic hypersurface defined by f = 0
and byH the real trace ofV, i.e.,H = V ∩ Rn. We aim at computing the isolated points ofH ,
i.e. the set of points x ∈ H such that for some positive r, B(x, r) ∩ H = {x} where B(x, r) ⊂ Rn

the open ball centered at x of radius r. We denote this set of real isolated points by I (H).
This problem is a particular instance of a more general problem of computing the isolated

points of a semi-algebraic set. Such problems arise naturally and frequently in the design of rigid
mechanism in material design (see [18]). Those are modeled canonically with semi-algebraic
constraints, and isolated points to the semi-algebraic set under consideration are related to rigid-
ity properties of the mechanism. A particular example is the study of auxetic materials, i.e.,
materials that shrink in all directions under compression. These materials appear in nature (first
discovered in [16]) e.g., in foams, bones or propylene; see e.g. [28], and have various potential
applications. They are an active field of research, not only on the practical side, e.g., [15, 13],
but also with respect to mathematical foundations; see e.g. [6, 7]. On the constructive side, these
materials are closely related to tensegrity frameworks, e.g., [19, 10], which can possess various
sorts of rigidity properties.

Email address: huu-phuoc.le@lip6.fr (Huu Phuoc Le )
1Huu Phuoc Le is supported by the ANR grants ANR-18-CE33-0011 Sesame, the ANR-19-CE40-0018 De Rerum

Natura, the joint ANR-FWF ANR-19-CE48-0015 ECARP project, the PGMO grant CAMiSAdo, the European Union’s
Horizon 2020 research and innovative training network program under the Marie Skłodowska-Curie grant agreement N°
813211 (POEMA) and the Grant FA8665-20-1-7029 of the EOARD-AFOSR.
Preprint submitted to Elsevier March 24, 2022



Hence, we aim to provide a practical algorithm for computing these real isolated points in
the particular case of real traces of complex hypersurfaces first. This simplification allows us
to improve the state-of-the-art complexity for this problem and to establish a new algorithmic
framework for such computations which is more efficient in practice.

Prior works.. LetH be a hypersurface defined by f = 0 with f ∈ Q[x1, . . . , xn] of degree D.
A first approach would be to compute a cylindrical algebraic decomposition adapted toH [9].

It partitions H into connected cells, i.e. subsets which are homeomorphic to ]0, 1[i for some
1 ≤ i ≤ n. Next, one needs to identify cells which correspond to isolated points using adjacency
information (see e.g. [1]). Such a procedure is at least doubly exponential in n and polynomial
in D.

A better alternative is to encode real isolated points with quantified formula over the reals.
Using e.g. [2, Algorithm 14.21], one can compute isolated points ofH in time DO(n2). Note also
that [27] allows to compute isolated points in time DO(n3).

A third alternative is to use [2, Algorithm 12.16] to compute sample points in each connected
component of H and then decide whether spheres, centered at these points, of infinitesimal ra-
dius, meet H . Note that these points are encoded with parametrizations of degree DO(n) (their
coordinates are evaluations of polynomials at the roots of a univariate polynomial with infinites-
imal coefficients). Applying [2, Alg. 12.16] on this last real root decision problem would lead
to a complexity DO(n2) since the input polynomials would have degree DO(n). Another approach
would be to run [2, Alg. 12.16] modulo the algebraic extension used to define the sample points.
That would lead to a complexity DO(n) but this research direction requires modifications of [2,
Alg. 12.16] since it assumes the input coefficients to lie in an integral domain, which is not satis-
fied in our case. Besides, we report on practical experiments showing that using [2, Alg. 12.16]
to compute only sample points inH does not allow us to solve instances of moderate size.

Since the topological nature of this problem is related to connectivity. Computing isolated
points ofH is equivalent to computing those connected components ofH which are reduced to
a single point (see [17, Lemma 1]). Hence, one can consider computing roadmaps: these are
algebraic curves contained in H which have a non-empty and connected intersection with all
connected components of the real set under study. The authors of [25] designed a probabilistic
algorithm that computes roadmaps for smooth bounded real algebraic sets. This algorithm runs in
time O((nD)12n log2 n), which makes it the state-of-the-art complexity for roadmap computation.
These results makes plausible to obtain in [17] an algorithm running in time (nD)O(n log n) to
compute the isolated points ofH .

Recently, [3] presents a new algorithm for computing local semi-algebraic paths of a com-
plexity DO(n). Their algorithm also allows to solve the algorithmic algorithm we target.

Main results.. We present two probabilistic algorithms which take as input a polynomial f ∈
Q[x1, . . . , xn] and compute the set of isolated points I (H) of H = V( f ) ∩ Rn. Our output
consists of a zero-dimensional parametrization C = (w(t), v1(t), . . . , vn(t)) ∈ Q[t]n+1 such that

{(v1(t), . . . , vn(t)) | w(t) = 0}

is a finite set containing I (H) and a set B = (I1, . . . , Is) of intervals in R that satisfies:

• Each Ii has rational endpoints and contains exactly one real root of w(t), namely ti.

• The set of isolated points ofH is exactly

{(v1(ti), . . . , vn(ti)) | 1 ≤ i ≤ s}.
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These data represent symbolically the set of isolated points ofH in the sense that one can derive
from the pair (C ,B) numerical values of the elements of I (H) with any required precision.

We sketch now the geometric ingredients which allow us to compute the real isolated points
of an algebraic hypersurface defined by f = 0.

Assume that f is non-negative over Rn (if this is not the case, we can replace it by its square)
and let x ∈ I (H). Since x is isolated and f is non-negative over Rn, the intuition is that for a
small enough e > 0, the real solution set to f = e looks like a ball around x, hence a bounded
and closed connected component Cx. Then the restriction of every projection on the xi-axis to
the algebraic set in Cn defined by f = e intersects Cx. When e tends to 0, these critical points in
Cx “tend to x”. This first process allows us to compute a subset ofH containing I (H); we call
the elements of this set the candidates. Of course, one would like that this set of candidates is
finite and this will be the case up to some generic linear change of coordinates, using e.g. [24].

At this stage, we dispose of a zero-dimensional parametrization C = (w(t), v1(t), . . . , vn(t))
encoding the candidates. One would naturally check whether a ball of infinitesimal radius cen-
tered at each candidate intersectsH . More precisely, let η = (η1, . . . , ηn) ∈ C∩Rn be a candidate,
we decide whether the system

f (x1, . . . , xn) =
n∑

i=1

(xi − ηi)2 − ε = 0 (1)

has at least one solution in Rn.
However, this direct approach faces immediately a complexity issue. Writing a quantified

formula to solve this decision problem leads to a complexity of DO(n2) since those points are
encoded by a zero-dimensional parametrization of degree DO(n). To bypass this difficulty, we
carry out the computation over the quotient ring Q[t]/⟨w(t)⟩.

This computation relies on the results of [25, Appendix J], which provide an adaptation of
the geometric resolution [14] to polynomial systems with coefficients in Q[t]/⟨w(t)⟩. Using this
version of geometric resolution, the resolution of polynomial systems over Q[t]/⟨w(t)⟩ induces
only an additional cost of O (̃deg(w)) arithmetic operations of Q comparing to the classic geo-
metric resolution. We will see that the degree of w(t) is actually bounded by 2D(D − 1)n−1. This
allows us to obtain an algorithm that uses DO(n) arithmetic operations in Q.

On the algorithmic side, we go further exploiting the geometry of the problem to avoid using
infinitesimals. We apply the algorithm to compute a rational number e0 > 0 that replaces the
infinitesimals in the system above.

These ingredients allow us to obtain the complexity result below.

Theorem I. Let f ∈ Q[x1, . . . , xn] of degree D and H ⊂ Rn be the real algebraic set defined
by f = 0. There exists a probabilistic algorithm which, on input f , computes a data (C ,B)
encoding I (H) in case of success using O˜(

64nD8n
)

arithmetic operations in Q and one call of
real root isolation on a univariate polynomial of degree bounded by 22n+2D3n.

Furthermore, we propose an alternative variant that leads to a more efficient algorithm in
practice. Once the rational number e0 is computed, this variant replaces the candidates by their
approximations of coordinates in Q and solves a similar decision problem as the one given by
the system (1) for these approximations. Such a strategy allows us to avoid the computation over
Q[t]/ ⟨w(t)⟩. In Subsection 4.4, we will define rigorously this notion of approximations.

Since this variant makes use of univariate real root isolating algorithms, a complete com-
plexity analysis would require a bound on the bit-size of polynomials given to real root isolating
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algorithms. However, we observe that in practice these real root isolating steps are negligible
compared to the computation over Q[t]/ ⟨w(t)⟩, this variant is therefore much more efficient in
practice. A complexity estimate of this variant is given as below.

Theorem II. Let f ∈ Q[x1, . . . , xn] of degree D and H ⊂ Rn be the real algebraic set defined
by f = 0. There exists a probabilistic algorithm which, on input f , computes a data (C ,B)
encoding I (H) in case of success using O˜(

D6n+3
)

arithmetic operations in Q and two real
root isolating calls on a univariate polynomial of degree bounded by 2D(D − 1)n−1.

Our complexity results above both lie in DO(n) as the algorithm in [3] (up to some root iso-
lation calls). However, we provide an explicit constant in the exponent and the algorithms are
designed to enable practical implementation, which constitutes another contribution of this paper.

In Section 6, we present two heuristic subroutines for our implementation. The goal of
these subroutines is to avoid as much as possible the most costly computations in our algorithm
which include the computation over quotient rings. Taking into account these optimizations, we
implement our algorithms in Maple using the libraries FGb [11], RAGlib [23] and msolve [4]. In
Section 7, we report on practical experiments showing that they already allow us to solve non-
trivial problems which are actually out of reach of [2, Alg. 12.16] which computes sample points
in H only. Unfortunately, the real-life applications coming from material designs still remain
intractable.

Organization of the paper.. This paper is structured as follows. Section 2 reviews some fun-
damental notions in real algebraic geometry that we use further for the geometry analysis of
our problem. In Section 3, we prove the auxiliary results which coin the needed theoretical in-
gredient. Section 4 is devoted to describe our algorithms and their complexities. The heuristic
optimizations for implementations are presented in Section 6. Finally, Section 7 reports on the
practical performances of our implementation.

Acknowledgment.. The author would like to thank Mohab Safey El Din for helpful discussions
and Timo de Wolff for introducing this problem to me.

2. Preliminaries

In what follows, we recall respectively the notions of Puiseux series and critical points.

Puiseux series.. Let ε be an infinitesimal, i.e., a transcendental element over R such that 0 < ε <
r for any positive element r ∈ R. The field of Puiseux series over R is defined as all the series
with rational exponents

R⟨ε⟩ =
{∑

i≥i0 aiε
i/q | i ∈ N, i0 ∈ Z, q ∈ N − {0}, ai ∈ R

}
.

By, e.g., [2, Theorem 2.91], R⟨ε⟩ is a real closed field.
One can also define C⟨ε⟩ as for R⟨ε⟩ but taking the coefficients of the series in C. By [2,

Theorem 2.17], the field C⟨ε⟩ is an algebraic closure of R⟨ε⟩.
Consider σ =

∑
i≥i0 aiε

i/q ∈ R⟨ε⟩ with ai0 , 0. Then, ai0 is called the valuation of σ. When
i0 ≥ 0, σ is said to be bounded over R and the set of bounded elements of R⟨ε⟩ is denoted by
R⟨ε⟩b. One defines the function limε : R⟨ε⟩b → R that maps σ to a0 (which is 0 when i0 > 0) and
writes limε σ = a0; note that limε is a ring homomorphism from R⟨ε⟩b to R. All these definitions
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extend to R⟨ε⟩n componentwise. For a semi-algebraic set S ⊂ R⟨ε⟩n, we naturally define the
limit of S as limε S = {limε x | x ∈ S and x is bounded over R}.

We refer to [2, Chap. 2] for more details on infinitesimals and real Puiseux series.

Critical points.. Let S ⊂ Rn be a semi-algebraic set defined by a semi-algebraic formula Φ. We
denote by ext(S,R⟨ε⟩) the semi-algebraic set of points which are solutions of Φ in R⟨ε⟩n.

Let K be an algebraically closed field, let ϕ ∈ K[x1, . . . , xn] which defines the polynomial
mapping (x1, . . . , xn) 7→ ϕ(x1, . . . , xn) and V ⊂ Kn be a smooth equidimensional algebraic set.
We denote by crit(ϕ,V) the set of critical points of the restriction of ϕ to V . If c is the co-
dimension of V and (g1, . . . , gs) generates the vanishing ideal associated to V , then crit(ϕ,V) is
the subset of V at which the Jacobian matrix associated to (g1, . . . , gs, ϕ) has rank less than or
equal to c (see e.g., [25, Subsection 3.1]).

3. Geometric results

3.1. The candidates

As above, let f ∈ Q[x1, . . . , xn],V ⊂ Cn be the algebraic hypersurface defined by f = 0 and
H = V ∩ Rn. We recall that I (H) denotes the set of isolated points ofH .

By, e.g., [17, Lemma 1], the set I (H) is the finite union of the connected components ofH
which are singletons. A natural start for computing those components is to consider the critical
points of the restrictions toH of the projections

πi : (x1, . . . , xn) 7→ xi.

Since we do not assume that V is smooth, to apply the critical point method, we retrieve the
smoothness through deformation techniques by introducing an infinitesimal ε. More precisely,
we consider the hypersurface Vε in C⟨ε⟩n defined by the equation f 2 = ε2. Note that Vε is the
union of two disjoint algebraic sets V( f − ε) and V( f + ε) in C⟨ε⟩n. By e.g., [20, Lemma 3.5],
Vε is a smooth algebraic set in C⟨ε⟩n.

LetHε = Vε ∩ R⟨ε⟩n. Two lemmas below will be used regularly in this paper.

Lemma 1. [20, Lemma 3.6] For every x ∈ H , there exists a point xε ∈ Hε such that xε is
bounded over R and limε xε = x.

Lemma 2. [2, Proposition 12.51] Given a point x lying in a bounded connected component ofH
and xε ∈ Hε such that xε is bounded over R and limε xε = x, let Cε be the connected component
ofHε containing xε. Then, Cε is bounded over R.

[17, Lemma 2] that we cite below gives explicitly a subset ofV that contains I (H).

Proposition 3 ([17, Lemma 2]). Assume that I (H) is not empty and let x ∈ I (H). There
exists a semi-algebraically connected component Cε of Hε such that Cε is bounded over R and
limε Cε = {x}. Consequently, for 1 ≤ i ≤ n, there exists a point xε ∈ crit(πi,Vε) ∩ Cε such that
limε xε = x. Then, we have

I (H) ⊂ ∩n
i=1 lim

ε
crit(πi,Vε) ∩ Rn.
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To obtain a finite set of candidates, we need to introduce a generic linear change of variable
to f . For any A ∈ GL(n,Q), let f A(x) = f (A · x) and VA = V( f A). For a generically chosen A,
the set ∩n

i=1 limε crit(πi,V
A
ε ) is finite by [22, Theorem 1]. Since I (H) is the image of the real

isolated solutions of f A = 0 by the linear map induced by A−1, we have the proposition below.

Proposition 4. There exists a Zariski open dense subset of GL(n,Q) such that for any A ∈
A ∩ GL(n,Q), the image C of

∩n
i=1 lim

ε
crit(πi,V

A
ε )

by the linear map induced by A−1 is finite and contains I (H).

3.2. Identification of the real isolated points
Once the set C of candidates is computed, we need to identify whether a candidate η =

(η1, . . . , ηn) ∈ C ∩ Rn is an isolated point of H . To do so, one can check whether a sphere
centered at η of infinitesimal radius intersectsH , which leads one to solve the system

f (x1, . . . , xn) =
n∑

i=1

(xi − ηi)2 − ε = 0

over R⟨ε⟩. This computation involves an infinitesimal ε, which would prevent a practically
efficient algorithm. The objective of this subsection is to present a workaround to avoid the use
of infinitesimals.

Let a = (a1, . . . , an) be an n-uple of positive rational numbers. We consider the function d,
depending on a, defined by

d : Rn × Rn → R
(x1, . . . , xn, y1, . . . , yn) 7→

√∑n
i=1 ai(xi − yi)2 .

The function d defines a metric in Rn which can be extended to R⟨ε⟩n. Further, the notations
below denote respectively spheres, open balls and closed balls with respect to the metric d:

• S (x, r) = {y ∈ Rn | d(x, y) = r},

• B(x, r) = {y ∈ Rn | d(x, y) < r},

• B(x, r) = {y ∈ Rn | d(x, y) ≤ r}.

For each x = (x1, . . . , xn) ∈ C⟨ε⟩n, we consider the function dx below:

dx : C⟨ε⟩n → C⟨ε⟩
(y1, . . . , yn) 7→

∑n
i=1 ai(yi − xi)2.

Recall that the algebraic set Vε defined by f 2 = ε2 in C⟨ε⟩n, is smooth. By an algebraic
variant of Sard’s theorem (see [25, Prop. B.2], [5, Theorem 9.6.2]), the critical values of the
restriction of dx to Vε form a finite subset of C⟨ε⟩. Therefore, for every candidate x ∈ C ∩ Rn,
the set

D(x) = {dx(lim
ε

yε) | yε ∈ crit(dx,Vε) ∩ R⟨ε⟩nb, lim
ε

yε , x}

is a finite set of positive elements of R. When D(x) is not empty, Lemma 5 below allows us to
identify whether the point x is isolated inH .
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Lemma 5. Let x ∈ H and Cx be the connected component of H containing x. Assume that the
set D(x) defined as above is not empty. Let ex ∈ R such that

0 < ex < minD(x).

Then, the following statements are equivalent:

i) x is an isolated point ofH .

ii) There exists e ∈]0, ex[ such thatH ∩ S (x,
√

e) = ∅.

iii) For every e ∈]0, ex[,H ∩ S (x,
√

e) = ∅.

Moreover, if x is not an isolated point ofH , then Cx intersects S (x,
√

e) for every e ∈]0, ex[.

Proof. By the definition of real isolated points, we immediately have that (i) implies (ii) and (iii)
implies (i). It remains to demonstrate that (iii) is a consequence of (ii), which we separate into
two statements: (ii) leads to (i) and then (i) leads to (iii).

We now show that (ii) implies (i) by contradiction. We assume that the point x is not an
isolated point of H . If Cx is not bounded, Cx intersects S (x,

√
e) for every e > 0 and there is

nothing to be proved. We now assume that Cx is bounded.
By Lemma 1, there exists a point xε such that xε is bounded over R and limε xε = x. Let

Cε ⊂ R⟨ε⟩n be a connected component of the real algebraic setHε containing xε. By Lemma 2,
Cε is bounded over R and, thus, its limit is connected in Rn by [2, Proposition 12.49]. Hence,
limε Cε is a connected subset of Cx.

Moreover, as Cε is closed and bounded over R, the restriction of dx to Cε reaches its max-
imum at some point yε ∈ Cε (see [5, Theorem 2.5.8]). Note that yε ∈ crit(dx,Vε) ∩ R⟨ε⟩nb.
So, we have that dx(limε yε) ≥ ex. Therefore, for any e ∈]0, ex[, the closed ball B(x,

√
e) does

not contain limε yε. Since limε Cε is connected in Rn and contains x and limε yε, there exists a
semi-algebraic continuous function γ : [0, 1] → limε Cε such that γ(0) = x and γ(1) = limε yε.
As dx(x) = 0 and dx(limε yε) ≥ ex, by the intermediate value property [2, Proposition 3.5], there
exists t0 ∈]0, 1[ such that dx(γ(t0)) = e for any e ∈]0, ex[. Therefore, the connected component
Cx intersects S (x,

√
e) at γ(t0).

So, (ii) does not hold either when Cx is bounded. We conclude that (ii) leads to (i).
Finally, it remains to show that (i) implies (iii). Again, we prove this by contradiction. As-

sume that there exists e ∈]0, ex[ such that H ∩ S (x,
√

e) , ∅. Equivalently, there exists a point
z ∈ H such that d(z) = e ∈]0, ex[.

By Lemma 1, there exists a point zε ∈ Hε such that limε zε = z. Let Cz,ε be the connected
component ofHε containing zε.

In the closed and connected semi-algebraic set Cz,ε, there exists a point z′ε at which the
restriction of dx to Cz,ε reaches it minimum. So, z′ε belongs to crit(dx,Vε) ∩ R⟨ε⟩nb. Thus, we
have that

dx(lim
ε

z′ε) ≤ dx(lim
ε

zε) < ex.

Using the definition of ex, we deduce that dx(limε z′ε) = 0, which is equivalent to limε z′ε = x.
So, both zε and z′ε lie in the connected component Cz,ε of Hε and limε z′ε = x. If Cz,ε is not

bounded over R, by Lemma 2, we have that Cx is not bounded, which implies immediately that
x is not an isolated point ofH .

Otherwise, when Cz,ε is bounded over R, by [2, Proposition 12.49], limε Cz,ε is a connected
subset of H that contains x and z. In this case, we also conclude that x is not isolated in H .
Therefore, (i) leads to (iii), which finishes our proof.
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Lemma 6 handles the remaining case when a point x ∈ H such that D(x) is empty exists.

Lemma 6. Assume that there exists x ∈ H such that D(x) is empty. Then, exactly one among
the two statements below holds:

i) H is connected and not bounded, so it does not have any isolated point.

ii) H is a single point x.

Proof. Assume that H has at least two connected components. Then, there exists a connected
component of Hε that does not contain any point whose limit is x. Therefore, the restriction
of dx to this connected component admits a critical point over this connected component. In
consequence, D(x) is not empty, which contradicts the assumption of Lemma 6. Therefore, H
has exactly one connected component.

Assume now if H is bounded and is not a single point x. As a consequence of Lemma 2,
there exists a connected component Cx,ε, that is bounded over R, ofHε such that {x} ⊊ limε Cx,ε.
Thus, the distance function δx attains its maximum, which is non-zero, overH . This contradicts
the assumption that D(x) is empty. Thus, we conclude the proof.

When D(x) is empty, we define by convention minD(x) = +∞. Let e0 ∈ R such that

0 < e0 < min
x∈C∩Rn

minD(x).

We deduce from Lemmas 5 and 6 the following proposition, which is the main criteria for de-
signing our algorithms in Section 4.

Proposition 7. Let a = (a1, . . . , an) ∈ Rn
+ and e0 ∈ R defined as above. Then, for any candidate

x = (x1, . . . , xn) ∈ C ∩ Rn, x is an isolated point ofH if and only if the polynomial system

f (y1, . . . , yn) =
n∑

i=1

ai(yi − xi)2 − e0 = 0

admits at least one solution in Rn.

Proof. We first assume that D(x) is not empty. Using Lemma 5, we have that x is an isolated
point ofH if and only ifH intersects the sphere S (x,

√
e0).

Otherwise, if D(x) is empty, by Lemma 6, H is either a single point x or an unbounded
connected component containing x. The similar conclusion follows immediately.

4. Algorithms

4.1. Overview of the algorithms

Our algorithms take as input f ∈ Q[x1, . . . , xn] and compute:

• A zero-dimensional parametrization C = (w, v1, . . . , vn) encoding the candidates such that

I (H) ⊂ {(v1(t), . . . , vn(t)) | w(t) = 0};

• A finite set B of intervals isolating the real solutions of w(t) which correspond to I (H).
8



Both algorithms share the first step of computing the set of candidates C. This is done by
the subroutine Candidates that takes as input the polynomial f and returns a zero-dimensional
parametrization C encoding C. The design of this subroutine is given in [17, Subsection 3.2],
which mimics the computation in [22]. Note that Candidates is probabilistic. As explained in
Proposition 4, it computes the candidates for f A = f (A · x) where A is randomly chosen from
GL(n,Q) then reverses the change of variables to obtain the candidates for f .

Next, we pick randomly an n-tuple a = (a1, . . . , an) from Qn
+, Proposition 7 requires us to

compute a value e0 ∈ Q such that for every x ∈ C ∩ Rn,

0 < e0 < min{dx(lim
ε

yε) | yε ∈ crit(dx,Vε) ∩ R⟨ε⟩nb, lim
ε

yε , x},

where dx is defined as

(y1, . . . , yn) 7→ a1(x1 − y1)2 + . . . + an(xn − yn)2.

We call ComputeE0 a subroutine that takes as input f ∈ Q[x1, . . . , xn] and a ∈ Qn
+ and returns

such an e0 ∈ Q+. The explicit description of ComputeE0 is given in Subsection 4.2. From this
value e0, Proposition 7 identifies whether a candidate η ∈ C ∩ Rn is isolated in H by deciding
the emptiness ofH ∩S (η,

√
e0). This leads us to solve the following polynomial system over Rn

for each candidate η = (η1, . . . , ηn) ∈ C ∩ Rn:

f (x1, . . . , xn) = a1(x1 − η1)2 + . . . + an(xn − ηn)2 − e0 = 0. (2)

Therefore, Algorithm 1 below gives the outline of our algorithms in which the subroutine
IsIsolated that takes as input f , C , a and e0 and computes the isolating intervals B. It will be
designed differently for each of our algorithms.

Algorithm 1: IsolatedPoints
Input: A polynomial f ∈ Q[x1, . . . , xn]
Output: A zero-dimensional parametrization C and a set B of intervals in R

1 A chosen randomly from GL(n,Q)
2 C ← Candidates( f , A)
3 a chosen randomly in Qn

+

4 e0 ← ComputeE0( f ,C , a)
5 B ← IsIsolated( f ,C , a, e0)
6 return (C ,B)

Since the candidates are given by C , we cannot treat directly the system (2) and need some
workarounds. The first variant of IsIsolated considers the system

f (x1, . . . , xn) = a1(x1 − v1(t))2 + . . . + an(xn − vn(t))2 − e0 = w(t) = 0. (3)

We need to identify for which real roots of w(t), the above system has at least one real solution.
To do so, we basically compute a polynomial Q(t, z) ∈ Q[t, z] such that for any real root t0 of w,
Q(t0, z) admits real solutions if and only if the system (3) does too. The problem is hence reduced
to a bivariate setting, which can be solved easily by classical real root counting algorithms. The
design details of this variant is explained in Subsection 4.3.

The second variant of IsIsolated is explained in Subsection 4.4. The idea is to take advantage
of the knowledge of e0, we replace the candidate η in the system (2) by an “approximation”

9



η̃ ∈ Qn of η and establish a similar result as Proposition 7 for these approximations (see Lemma
10). Briefly, we claim that a candidate η is an isolated point ofH if and only if the system

f (x1, . . . , xn) = a1(x1 − η̃1)2 + . . . + an(xn − η̃n)2 −
e0

4
= 0

has no real solution. Therefore, once those approximations are identified, one can apply classical
real root finding algorithms to the above system.

4.2. Computing an appropriate value for e0

In this subsection, we describe a subroutine that computes a value e0 introduced in Proposi-
tion 7. Recall that, for each η = (η1, . . . , ηn) ∈ Cn, the function dη is defined as

dη : Cn → C,
x = (x1, . . . , xn) 7→

∑n
i=1 ai(xi − ηi)2.

To apply Lemma 5, we need to compute a value e0 ∈ Q such that for every η ∈ C ∩ Rn

0 < e0 < min{dη(lim
ε

xε) | xε ∈ crit(dη,Vε) ∩ R⟨ε⟩nb, lim
ε

xε , η}.

Lemma 8 shows that, for a generic choice of a, every critical locus crit(dη,Vε) is finite.

Lemma 8. Let η ∈ C be a candidate. Then there exists a non-empty Zariski open subsetA of Cn

such that, for a = (a1, . . . , an) ∈ A ∩Qn
+, the critical locus crit

(
dη,Vε

)
is finite.

Proof. Since V( f − ε) ⊂ C⟨ε⟩n is smooth, the critical locus crit
(
dη,V( f − ε)

)
is defined by

f − ε = y ·
∂ f
∂x1
− 2ai(x1 − η1) = · · · = y ·

∂ f
∂xn
− 2an(xn − ηn) = 0. (4)

Now we consider a = (a1, . . . , an) and y as indeterminates. Let φ : Cn × Cn × C be the
polynomial mapping defined as

(x, a, y) 7→
(

f − ε, y ·
∂ f
∂x1
− 2a1(x1 − η1), . . . , y ·

∂ f
∂xn
− 2an(xn − ηn)

)
.

Let X be the non-empty Zariski open subset of C defined as

(x1 − η1) · · · (xn − ηn) , 0.

The Jacobian matrix of φ with respect to (x, a, y)
∂ f
∂x1

· · ·
∂ f
∂xn

0 0 · · · 0
∗ · · · ∗

∂ f
∂x1

−2(x1 − η1) · · · 0
...
. . . ∗

...
...

. . .
...

∗ · · · ∗
∂ f
∂xn

0 · · · −2(xn − ηn)


has full rank when x ∈ X and

f − ε = y ·
∂ f
∂x1
− 2ai(x1 − η1) = · · · = y ·

∂ f
∂xn
− 2an(xn − ηn) = 0.
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By Thom’s weak transversality theorem [8, Theorem 3.7.4], there exists a non-empty Zariski
open subset A∅ of Cn such that, for a ∈ A∅, 0 is a regular value of the restriction of φa to X.
Thus, for a ∈ A∅, by Jacobian criterion, the restriction of the solutions of

f − ε = y ·
∂ f
∂x1
− 2ai(x1 − η1) = · · · = y ·

∂ f
∂xn
− 2an(xn − ηn) = 0

to X is a finite set, i.e., crit(dη,V( f − ε)) ∩ X is finite.
Now we study the restriction of crit(dη,V( f − ε)) to Cn \ X. We choose a ∈ Qn

+. Let I be a
non-empty proper subset of {1, . . . , n} and XI be the subset of Cn defined by

xi = ηi for i ∈ I and xi , ηi for i < {1, . . . , n} \ I.

Let x ∈ crit(dη,V( f − ε)) ∩ XI . As f (η) = 0, η < V( f − ε) and x , η. Hence, y , 0 in the
system (4). Hence, y · ∂ f

∂xi
− 2a1(xi − ηi) = 0 implies that ∂ f

∂xi
= 0. Since V( f − ε) is smooth, ∂ f

∂xi

for i ∈ {1, . . . , n} \ I cannot vanish simultaneously at x. This means

{x | x ∈ crit(dη,V( f − ε)), xi = ηi for i ∈ I}

coincides with the critical locus crit(dη,I ,V( fI − ε)) where

dη,I : (x j) j∈{1,...,n}\I 7→
∑

j∈{1,...,n}\I

a j(x j − η j)2

and fI is the polynomial obtained from f by substituting xi = ηi for i ∈ I. Therefore, we can use
the same arguments as above to prove the following.

There exists a non-empty Zariski open subset AI of Cn such that for a ∈ AI ∩ Qn
+, the

restriction of crit(dη,V( f − ε)) to XI is finite.
Let A+ = ∩I⊊{1,...,n}AI which is a non-empty Zariski open subset of Cn. Given any a ∈

A+ ∩Qn
+, crit(dη,V( f − ε) is a finite set. Similarly for V( f + ε), we obtain a non-empty Zariski

open subsetA−. Taking the intersectionA = A+ ∩A− ends the proof.

Since the set of candidates C is encoded by a zero-dimensional parametrization C , we do the
whole computation at once through the function δ defined as

δ : Cn × C → C,
(x1, . . . , xn, t) 7→

∑n
i=1 ai(xi − vi(t))2.

The following lemma is immediate.

Lemma 9. LetVε,t ⊂ C⟨ε⟩n+1 be the algebraic set defined by f 2 − ε2 = w(t) = 0. Then, the set
of critical values δ(crit(δ,Vε,t)) is the union of dη(crit(dη,Vε)) for η ∈ C.

Proof. The set crit(δ,Vε,t) are defined by the points ofVε,t at which the matrix
∂ f 2

∂x1
. . . ∂ f 2

∂xn
0

∂δ
∂x1

. . . ∂δ
∂xn

∂δ
∂t

0 . . . 0 w′(t)


has rank at most 2.
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As w(t) is square-free, for every t0 such that w(t0) = 0, w′(t0) is not zero. Therefore, the
condition above restricted toVε,t is equivalent to

rank

 ∂ f 2

∂x1
. . . ∂ f 2

∂xn
∂δ
∂x1

. . . ∂δ
∂xn

 ≤ 1.

For every complex root t0 of w(t), let η0 = (v1(t0), . . . , vn(t0)). By fixing t = t0, the rank condition
above is reduced to

rank

 ∂ f 2

∂x1
. . . ∂ f 2

∂xn
∂δη0
∂x1

. . .
∂δη0
∂xn

 ≤ 1,

which defines the set crit(δη0
,Hε).

Thus, crit(δ,Hε,t) = ∪w(t0)=0{(x, t0) | η0 = (v1(t0), . . . , vn(t0)), x ∈ crit(δη0
,Hε)}. This con-

cludes the proof.

Now we aim to compute the limit of the critical points and their corresponding values of the
restriction of δ to the algebraic set Hε,t defined by f 2 − ε2 = w(t) = 0. Note that Lemmas 8 and
9 imply that, for a generic a ∈ Qn

+, the set of critical points crit(δ,Hε,t) is finite.
By [22, Theorems 1, 2], for generic values of a ∈ Qn, we have that

lim
ε

crit(δ,Hε,t) ⊂ ⟨ f ⟩ +
〈
w(t), y ·

∂ f
∂xi
−
∂δ

∂xi
for every 1 ≤ i ≤ n

〉
∩Q[x, t]

and the ideal on the right-hand side is zero-dimensional.
From the above inclusion, one can follow a similar computation as in [22] using the geometric

resolution algorithm [14]. However, as the degree of w(t) is bounded by 2D(D − 1)n−1 (see
Section 5), such a computation would lead to an arithmetic complexity DO(n2).

A workaround to obtain a better complexity is to use a variant of geometric resolution over the
quotient ring A = Q[t]/⟨w(t)⟩ as explained in [25, Appendix J]. Note that w(t) is not necessarily
irreducible, the extension A is only a product of fields and doing the computation over the ring
A is not trivial. We will see in Subsection 5 that this approach allows us to obtain an algorithm
with arithmetic complexity lying in DO(n).

Our subroutine ComputeE0 is designed as follows.

a) First, we call a subroutine ParametricCurve that takes as input f , C , a ∈ Qn
+ and i ∈

{1, . . . , n} and computes a one-dimensional parametrization Ji over Q[t]/⟨w(t)⟩ of the
system (

∂δ

∂x j
·
∂ f
∂xi
−
∂δ

∂xi
·
∂ f
∂x j
= 0

)
j∈{1,...,n}\{i}

and
∂ f
∂xi
, 0.

An explicit description of this subroutine can be found in [25, Appendix J.5].

b) Next, we compute a zero-dimensional parametrization Ei of the intersection of H = V( f )
with the sets of solutions defined by the parametrizations Ji above.

This is done by calling a subroutine IntersectCurve on the input Ji and f , which is
described also in [25, Appendix J.5].

c) We then call a subroutine Union that computes a zero-dimensional parametrization E that
defines ∪n

i=1Z(Ei).
12



d) Finally, taking as input the zero-dimensional parametrization E , we call a subroutine
GetE0 that computes the required value e0. This can be done by calling FGLM algorithm
[12] to compute a polynomial P(e) whose solutions encode the values e =

∑
i=1 ai(xi −

vi(t))2 for x ∈ Z(E ) and w(t) = 0. Next, we evaluate a lower bound of the minimal distance
between the roots of P(e) using [2, Proposition 10.23].

Algorithm 2: ComputeE0
Input: f ∈ Q[x1, . . . , xn], C = (w(t), v1(t), . . . , vn(t)) and a ∈ Qn

+

Output: e0 ∈ Q
1 δ← a1(x1 − v1(t))2 + . . . + an(xn − vn(t))2

2 for 1 ≤ i ≤ n do
3 Ji ← ParametricCurve( f , a,C , i)
4 Ei ← IntersectCurve(Ji, f )

5 E ← Union(E1, . . . ,En)
6 e0 ← GetE0(E )
7 return e0

4.3. The first variant of IsIsolated

In this subsection, we explain the details of the first variant of IsIsolated.
Using the value e0 output by Algorithm 2, Proposition 7 allows one to identify the isolated

points ofH among the candidates by checking whether the polynomial system

f (x1, . . . , xn) =
n∑

i=1

ai(xi − ηi)2 − e0 = 0

admits real solutions for each candidate η = (η1, . . . , ηn) ∈ C ∩ Rn. Again, one can consider the
system

f (x1, . . . , xn) =
n∑

i=1

ai(xi − vi(t))2 − e0 = w(t) = 0 (5)

to handle all the candidates at once.
Let Wt ⊂ Cn+1 be the algebraic set defined the equation (5). Our strategy is to compute a

finite subset ofWt ∩ Rn+1 that intersects every connected component ofWt ∩ Rn+1. Then, all
the real t-coordinates of those sample points correspond to the isolated points ofH ∩ Rn.

We consider the polynomial

F = f (x1, . . . , xn)2 +

 n∑
i=1

ai(xi − vi(t))2 − e0

2

.

Note that F + w(t)2 defines also the real algebraic setWt ∩ Rn+1. Therefore, the sample points
above can be computed using the algorithm of [22] on the input F+w(t)2 ⊂ Q[t, x1, . . . , xn]. Such
an algorithm returns a zero-dimensional parametrization over Q that defines a finite set intersects
every connected component ofWt. Since the total degree of F + w(t)2 can go up to O(Dn), this
computation faces the same complexity issue as in Subsection 4.2. Again, we can bypass this
problem by solving over A[x1, . . . , xn] where A = Q[t]/⟨w(t)⟩.
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Let B be a matrix randomly chosen from GL(n,Q) and FB(x) = F(B · x). We apply the
geometric resolution algorithm over A on the system of equations:

FB = 0,
∂FB

∂x j
= 0,

∂FB

∂x1
, 0.

This algorithm returns a zero-dimensional parametrization (U(z),V1(z), . . . ,Vn(z)) over the ring
A, which means that V1, . . . ,Vn and U are elements of A[z], such that, for any real solution t0 of
w(t), the finite set defined by

{(V1(t0, z), . . . ,Vn(t0, z)) | z ∈ R,U(t0, z) = 0}

intersects every connected component of

f (x1, . . . , xn) =
n∑

i=1

ai(xi − vi(t0))2 − e0 = 0.

Hence, the isolated points ofH ∩ Rn are indeed

{(v1(t), . . . , vn(t)) | (t, z) ∈ R2 : w(t) = U(t, z) = 0}.

Our problem boils down to solving the bivariate system w(t) = U(t, z) = 0 over R2.
In Algorithm 3 below, we introduce two subroutines:

• BivariatePolynomial takes as input the polynomials F and w(t) and returns the eliminating
polynomial U(t, z). It uses the geometric resolution algorithm over A described in [25,
Appendix J].

• BivariateSolve takes as input w(t) and U(t, z) and returns the set B of intervals that isolate
the real roots of w(t) corresponding to I (H). Such a subroutine can be designed efficiently
with resultants.

Algorithm 3: The first variant of IsIsolated
Input: f , C = (w(t), v1(t), . . . , vn(t)), a and e0
Output: A set B of isolating intervals

1 F ← f (x1, . . . , xn)2 +
(∑n

i=1 ai(xi − vi(t))2 − e0

)2

2 U(t, z)← BivariatePolynomial(F,w(t))
3 B ← BivariateSolve(w(t),U(t, z))
4 return B

4.4. Approximations of the candidates
This subsection describes the design of the second variant of IsIsolated. This variant does

not require solving polynomial systems in the quotient ring Q[t]/⟨w(t)⟩ but is based mostly on
isolating the candidates from the parametrization C . The main idea is to replace the candidate
η in the criteria provided by Proposition 7 by a rational approximation η̃ ∈ Qn. This allows the
subroutine presented in Algorithm 4 to involve only the real points defining by C and not its
whole complex solution set.

To compute the approximations, we first identify how close the points η and η̃ need to be.
The lemma below shows that requiring da(η, η̃) <

√
e0/2 is enough.
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Lemma 10. Let η ∈ C ∩ Rn and η̃ be a point in Rn satisfying da(η, η̃) <
√

e0/2. Then, η is an
isolated point ofH if and only ifH does not intersect the sphere S (η̃,

√
e0/2).

Proof. If the set {xε ∈ crit(δη,Vε) ∩ R⟨ε⟩nb, limε xε , η} is empty, then, by Lemma 6, H is
either a single point η or an unbounded connected set containing η. In either case, the conclusion
of Lemma 10 is immediate. Thus, in what follows, {xε ∈ crit(δη,Vε) ∩ R⟨ε⟩nb, limε xε , η} is
assumed to be non-empty.

We prove now the necessary implication. Assume that η is an isolated point ofH . By Lemma
5, the intersection of H and S (η,

√
e) is empty for every e ∈]0, e0[. So, η is the only point of

H lying in the open ball B(η,
√

e0). Since da(η, η̃) <
√

e0/2, the candidate η does not lie on
the sphere S (η̃,

√
e0/2). Moreover, S (η̃,

√
e0/2) is contained in the open ball B(η,

√
e0). Then,

S (η̃,
√

e0/2) ∩H = ∅.
Now we turn to the sufficient implication. Assume by contradiction that η is not isolated in

H . By Lemma 5, the connected componentCη ofH containing η intersects the sphere S (η,
√

e0).
So, there exists a semi-algebraic continuous function γ : [0, 1]→ Cη such that γ(0) = η and γ(1)
lying on the sphere S (η,

√
e0). We have that

da(γ(1), η̃) ≥ da(γ(1), η) − da(η, η̃) >
√

e0 −
√

e0/2 =
√

e0/2.

As da(γ(0), η̃) <
√

e0/2 and da(γ(1), η̃) >
√

e0/2, by the intermediate value property [2, Proposi-
tion 3.5], there exists t0 ∈]0, 1[ such that da(γ(t0), η̃) =

√
e0/2. This implies that the intersection

ofH and S (η̃,
√

e0/2) is not empty, which concludes our proof.

Let tη be the real root of w(t) corresponding to η, i.e., η =
(
v1(tη), . . . , vn(tη)

)
. To apply

Lemma 10, we need to choose tη̃ ∈ Q such that the rational point η̃ = (v1(tη̃), . . . , vn(tη̃)) satisfies
that da(η, η̃) <

√
e0/2. This leads us to identify ρ > 0 such that |tη − tη̃| < ρ implies

a1(v1(tη) − v1(tη̃))2 + . . . + an(vn(tη) − vn(tη̃))2 < e0/4.

Lemma 11 below allows us to compute explicitly an appropriate value for ρ.

Lemma 11. Let {t1, . . . , tℓ} be the distinct real roots of w(t) = 0 and {η1, . . . , ηℓ} be the corre-
sponding candidates. We consider a set of intervals (I j)1≤ j≤ℓ such that

• The intervals I j are pairwise disjoint.

• The interval I j contains only t j as a real root of w(t).

For each 1 ≤ i ≤ n, let Ki = maxℓj=1 maxt∈I j |v
′
i(t)|. Then, for any 1 ≤ j ≤ ℓ and tθ such that tθ ∈ I j

and |tθ − t j| <
1
Ki
·

√
e0

4nai
, we have the following inequality:

|vi(tθ) − vi(t j)| <
√

e0

4nai
.

Let ρ ≤ minn
i=1

1
Ki
·

√
e0

4nai
. For any real root tη of w(t) and tθ ∈ I j, |tθ − tη| < ρ implies

da(θ, η) <
√

e0/2.
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Proof. For 1 ≤ j ≤ ℓ and any tθ ∈ Q, we have that

vi(tθ) − vi(t j) = v′i(t̃ j)(tθ − t j),

where t̃ ∈ R lies between tθ and t j.
For t ∈ I j =]r j, s j[, by the definition of Ki, we have |v′i(t)| ≤ Ki. Then, for tθ ∈ I j such that

|tθ − t j| <
1
Ki
·

√
e0

4nai
, we have

|vi(tθ) − vi(t j)| = |v′i(t̃ j) · (tθ − t j)| ≤ Ki · |tθ − t j| <

√
e0

4nai
.

Now we take ρ ≤ minn
i=1

1
Ki
·

√
e0

4nai
. If tθ ∈ I j and |tθ − t j| < ρ, then we have

da(θ, η j) =

√√ n∑
i=1

ai(vi(tθ) − vi(t j))2 <

√√ n∑
i=1

e0

4n
=

√
e0

2
.

Lemmas 10 and 11 provides us the ingredients to design Algorithm 4. It requires us to
introduce two subroutines Isolate and MaxOverInterval below.

• We need two versions of Isolate. The first one takes as input a polynomial p ∈ Q[t] and
returns a set of disjoint intervals of rational extremities isolating the real roots of p.

Besides the polynomial p ∈ Q[t], the second version of Isolate requires a positive ρ ∈ Q
as input and returns the intervals of length at most ρ that isolate the real roots of p.

The explicit descriptions of both of these real root isolating algorithms are given in [21].

• MaxOverInterval takes as input a polynomial p ∈ Q[t] and an interval [r, s] where r, s ∈ Q
and returns an upper bound of maxt∈[r,s] |p(t)|. Such a subroutine can be implemented using
the following naive bound:

max
t∈[r,s]

|p(t)| ≤
deg(p)∑

i=0

|ci|

where p
(

t−r
s−r

)
= c0 · tdeg(p) + · · · + cdeg(p).

Algorithm 4 proceeds through these following steps:

a) We call Isolate on the input w(t) to obtain a set of intervals I j that isolate the real roots of
w(t) and compute Ki = maxℓj=1 maxt∈I j |v

′
i(t)| using the subroutine MaxOverInterval on the

input v′i(t) and each interval I j.

b) We then compute ρ ∈ Q such that 0 < ρ ≤ minn
i=1

1
Ki
·

√
e0

4nai
and use Isolate on the

polynomial w(t) and the precision ρ to obtain a set of intervals Ĩ j such that each Ĩ j contains
exactly one real root of w(t) and |Ĩ j| < ρ.

c) For 1 ≤ j ≤ ℓ, we choose a point t̃ j in I j ∩ Ĩ j ∩Q and evaluate η̃ j = (v1(t̃ j), . . . , vn(t̃ j)).

The set C̃ of the approximations is taken as {(η̃ j, I j | 1 ≤ j ≤ ℓ}.
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d) Finally, we decide whether the system

f (x1, . . . , xn) =
n∑

i=1

ai(xi − η̃i)2 − e0/4 = 0

has a real solution for each approximation η̃ and return those which do not.

We summarize Section 4 in Algorithm 4 below, which is our second variant of IsIsolated.

Algorithm 4: Algorithm IsIsolated-Approx
Input: f , C = (w(t), v1(t), . . . , vn(t)), a ∈ Qn

+ and e0 ∈ Q
Output: A set of isolating interval B

1 {I1, . . . , Iℓ} ← Isolate(w(t))
2 for i ∈ {1, . . . , n} do
3 Ki ← maxℓj=1 MaxOverInterval(v′i(t), I j)

4 {Ĩ1, . . . , Ĩℓ} ← Isolate
(
w(t), ρ = minn

i=1
1
Ki
·

√
e0

4nai

)
5 for j ∈ {1, . . . , ℓ} do
6 t̃ j ∈ I j ∩ Ĩ j

7 η̃ j ← (v1(t̃ j), . . . , vn(t̃ j))

8 C̃← {(η̃ j, I j) | 1 ≤ j ≤ ℓ}, B ← ∅

9 for (η̃, Iη) ∈ C̃ do
10 if HasRealSolutions(η̃, f , a, e0) = false then
11 B ← B ∪ Iη

12 return B

Remark 12. Note that the sphere in Lemma 10 can be replaced by any hypercube that contains
the candidate η in its interior and is contained in the ball B(η, e0). This leads one to decide
the emptiness of semi-algebraic sets defined by f = 0 and some linear polynomial inequalities
instead of the quadric defining the sphere. We observe in practice that this helps reduce the
bit-size growth and accelerates the computation.

5. Complexity analysis

We establish now the complexity results for two variants of Algorithm 1, starting with the
one using Algorithm 3 for IsIsolated.

Theorem I. Let f ∈ Q[x1, . . . , xn]. Then, the variant of Algorithm 1 which uses Algorithm 3
computes the real isolated points of the algebraic hypersurface defined by f within O˜(

64nD8n
)

arithmetic operations in Q and one call of real root isolation on a univariate polynomial of
degree bounded by 2n+2D2n.

Proof. We start with the subroutine Candidates. Since crit(πi,H
A
ε ) is finite and defined by

( f A − ε) · ( f A + ε) = 0,
∂ f A

∂x j
= 0 for all j , i,
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its degree is bounded by 2D(D − 1)n−1 using Bézout bound. Consequently, the degree of the
output zero-dimensional parametrization is bounded by 2D(D − 1)n−1.

Using [22, Theorem 4] (which is based on the geometric resolution algorithm in [14]), each
zero-dimensional parametrization of crit(πi,H

A
ε ) is computed within O˜(

D3n
)

arithmetic oper-
ations in Q. The last step which takes intersections of those parametrizations is done using the
algorithm in [25, Appendix J.1] ; it does not change the asymptotic complexity.

Hence, computing the parametrization C encoding the candidates can be done within O˜(
D3n

)
arithmetic operations in Q and the degrees of the polynomials w(t), v1(t), . . . , vn(t) are bounded
by 2D(D−1)n−1. It remains to estimate the arithmetic complexity of the subroutines ComputeE0
and IsIsolated.

Let κ be the degree of w(t). Algorithm 2 (ComputeE0) relies on computing the limit of
crit(δ,Hε,t) ∩ C⟨ε⟩nb, whereHε,t is the algebraic set defined by

( f − ε) · ( f + ε) = 0, w(t) = 0 (6)

and δ is the distance function

(x1, . . . , xn) 7→
n∑

i=1

ai(xi − vi(t))2

We use the algorithm of [22] on the function δ for the resolution of polynomial systems in
the quotient ring Q[t]/⟨w(t)⟩. Using Bézout’s bound on the system

f 2 − ε2 = y ·
∂ f
∂x1
−
∂δ

∂x1
= · · · = y ·

∂ f
∂xn
−
∂δ

∂xn
= 0

defining crit(δ,Hε,t) over A, the degree of crit(δ,Hε,t) in C⟨ε⟩n is bounded by 2Dn+1κ ≤ 4Dn+2(D−
1)n−1 ≈ 4D2n+1.

By [25, Appendix J.5], the arithmetic operations over A can be done using O (̃κ) operations in
Q. Thus, applying [22, Theorem 5], we obtain the complexity bound O˜(

κ · D3n+2
)
≈ O˜(

D4n+2
)

for obtaining the zero-dimensional parametrization E in Algorithm 2.
The call to GetE0 computes from the zero-dimensional parametrization E a univariate poly-

nomial P(e) ∈ Q[e] whose solutions are the critical values of δ restricted toVε. Since the degree
of P(e) is bounded by 4D2n+1, this can be done using FGLM algorithm [12] within O˜(

D6n+3
)

arithmetic operations over Q. Next, it computes the minimal distance between the real roots of
P(e) using [2, Proposition 10.23]. The complexity of this computation is linear in the degree of
P(E). Thus, it does not change the asymptotic complexity of Algorithm 2.

Therefore, Algorithm 2 can be done within O (̃D6n+3) arithmetic operations in Q.

Algorithm 3 is basically computing sample points of the hypersurface

F = f (x1, . . . , xn)2 +

 n∑
i=1

ai(xi − vi(t))2 − e0

2

over the quotient ring Q[t]/⟨w(t)⟩. Again, we follow the algorithm of [22] on the input F with
the extended version of geometric resolution to the quotient ring A. By [22, Theorem 6] with the
overcost O (̃κ) of arithmetic operations over A, we obtain the complexity bound

O˜(
κ · (2D)3n+2

)
≈ O˜(

8nD4n+2
)
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for MinimalPolynomial.
The output polynomial U(t, z) has degree at most (2D)n in z and κ in t so its total degree is

bounded by (2D)n + κ. Therefore, solving the bivariate system

w(t) = U(t, z) = 0

can be done within

O˜(
((2D)n + κ)4 κ2 ((2D)n + κ)2

)
≈ O˜(

64nD8n
)

arithmetic operations in Q using geometric resolution. In the end, one needs to isolate the real
roots of the eliminating polynomial output by the geometric resolution. That polynomial has
degree bounded by κ((2D)n + κ) ≤ 2n+2D2n.

Adding up all the steps, we obtain the arithmetic complexity of Algorithm 1, which lies in
O˜(

64nD8n
)

with a call to real root isolation on a polynomial of degree bounded by 2n+2D2n.

Note that for implementing our algorithm, we would mainly rely on Algorithm 4 (IsIsolated-
Approx). Hence, we dedicate the rest of this subsection to discuss its complexity. The complexity
result of our algorithm using Algorithm 4 is stated as follows.

Theorem II. Let f ∈ Q[x1, . . . , xn]. Then, the variant of Algorithm 1 which uses Algorithm 4
requires O˜(

D6n+3
)

arithmetic operations in Q and two real root isolating calls on a univariate
polynomial of degree bounded by 2D(D − 1)n−1.

Proof. Recall that Algorithm 4 computes an approximation η̃ = (η̃1, . . . , η̃n) for each candidate
η ∈ C ∩ Rn and decides whether the system

f (x1, . . . , xn) =
n∑

i=1

ai(xi − η̃i)2 −
e0

4
= 0

has a real solution. The arithmetic complexity for solving each of those decision problems lies
in O˜(

8nD3n+2
)

using [22]. Since the cardinality of C is bounded by 2D(D − 1)n−1, Algorithm 4
runs within

O˜(
8nD4n+2

)
arithmetic operations in Q.

Note that all the complexities above are dominated by the complexity

O˜(
D6n+3

)
of ComputeE0 (Algorithm 2).

It remains to estimate the complexity of computing the approximations, whose main steps
consist of calling MaxOverInterval and isolating the real roots of the eliminating polynomial
w(t) in the zero-dimensional parametrization encoding C.

The subroutine MaxOverInterval is called n times for the polynomials v′i(t); this would re-
quire O (̃deg(w)) ≈ O (̃Dn) arithmetic operations over Q.

Since each of ℓ evaluations η̃ j ←
(
v1(t̃ j), . . . , vn(t̃ j)

)
takes O (nDn) arithmetic operations, the

cost of getting the approximations is bounded by

O
(
nD2n

)
.
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The real root isolation is called twice in Algorithm 4 on the polynomial w(t).
Summing up the above discussion, we conclude that Algorithm 4 requires

O˜(
8nD4n+2

)
arithmetic operations in Q and two calls of real root isolation on a univariate polynomial of
degree bounded by 2D(D − 1)n−1.

Furthermore, the complexity of real root isolation algorithms depends on the degree of the
input polynomial, which is w(t) in our case, and its bit-size of coefficients. For instance, using
the algorithm of [26] leads to a bit complexity

O˜(
deg(w)3τ2

)
where τ is the largest bit-size of coefficients of w(t). While the degree of w(t) is already bounded
by 2D(D − 1)n−1, τ is not estimated yet in this thesis. To identify a bound of τ, one needs to
estimate the bit complexity of the subroutine Candidates [17, Subsection 3.2], especially the
algorithm for computing at least one point per connected component of a real algebraic set given
in [22]. This topic will be studied in future research.

6. Heuristic optimizations

Even though computing the constant e0 requires at most DO(n) arithmetic operations in Q, its
performance depends heavily on an efficient implementation of the geometric resolution algo-
rithm over Q[t]/⟨w(t)⟩, which remains challenging to obtain. Thus, we aim to avoid such com-
putations as much as possible. In what follows, we present two subroutines which are launched
to test whether it is necessary for computing e0. In most of the case, with theses subroutines, our
algorithm will return the set of isolated points without doing any further computation.

6.1. Heuristic identification of real isolated points

The optimization described in what follows identifies efficiently a subset of isolated points of
H from the candidates without computing e0. The idea is to compute for each candidate x a ball
B ∈ Rn such that if the boundary of B intersectsH , x is isolated inH .

We consider the polynomial f A obtained from f by a linear change of variable A and denote
VA = V( f A) andHA = VA ∩ Rn. Similarly,VA

ε andHA
ε correspond to ( f A)2 = ε2.

Lemma 13. Let C be a bounded connected component of HA and 1 ≤ j ≤ n such that π j(C) is
not a single point. Then, there exist at least two points in limε crit(π j,V

A
ε ) ∩ Rn contained in C.

Proof. Let C1, . . . ,Ck be the connected components of Hε ⊂ R⟨ε⟩n such that limε Ci ⊂ C. By
Lemma 2, since C is bounded, the Ci’s are bounded over R. Then, by [2, Proposition 12.49],
limε Ci is connected. As π j(C) is not a single point, it must be an interval [a, b] where a , b.

On the other hand, ∪k
i=1 limε Ci = C. Hence,

π j(C) = ∪k
i=1π j(lim

ε
Ci)

and the projections π j(limε Ci) are connected. Thus, there exists 1 ≤ i ≤ k such that π j(limε Ci)
is not a singleton. Hence, the projection of Ci by π j is a closed interval [α, β] ⊂ R⟨ε⟩ where

20



limε α , limε β. Then, there exist two points xα and xβ in crit(π j,Vε) ∩ Ci such that π j(xα) = α
and π j(xβ) = β. Since π j(limε xα) , π j(limε xβ), limε xα , limε xβ. Then limε xα and limε xβ
are two distinct points of C ∩ limε crit(π j,V

A
ε ). Consequently, there exists two distinct points in

C ∩ limε crit(π j,V
A
ε ).

Lemma 14. For every bounded connected component C ofHA that is not a singleton, there exist
at least two points in

⋃n
i=1 limε crit(πi,V

A
ε ) that belong to C.

Proof. Since C is not a singleton, there exists a coordinate x j such that the projection π j(C) is
not a point. Using Lemma 13, we conclude the proof.

Let C2 be the image of
n⋃

i=1

lim
ε

crit(πi,V
A
ε )

by the linear map induced by A−1. Note that the set of candidates C is a subset of C2.

Proposition 15. Let C2 be defined as above. Let x ∈ C ∩ Rn and B ⊂ Rn be a ball such that
C2 ∩ B = {x} and x is contained in the interior of B. Then, if the intersection of the boundary of
B andH is empty, x is an isolated point ofH .

Proof. Let C be the connected component of H containing x. If C is unbounded, then x is not
an isolated point and the intersection of the boundary B withH is not empty.

We now assume that C is bounded and is not a singleton. By Lemma 14, there exists y ∈
C2 ∩ Rn such that y , x and y ∈ C. As x and y lie on different sides of B, by intermediate value
theorem,H intersects the boundary of B, which ends the proof.

Since the subroutine Candidates in [17, Subsection 3.2] computes all the zero-dimensional
parametrizations encoding limε crit(πi,V

A
ε ), the union C2 can be obtained easily by taking the

union of those zero-dimensional parametrizations. Next, we isolate the candidates in C ∩ Rn

such that each isolating ball contains exactly on point of C2 ∩ Rn.
Note also that for a generic matrix A ∈ GL(n,Q), the projection of any non-singleton bounded

component of HA by π1 is not a singleton. In this case, by Lemma 13, it is enough to take
C2 = limε crit(π1,V

A
ε ). This can accelerate implementations with a small cost of randomness

(which is already a part of the subroutine Candidates).
Algorithm 5 contains the description of the subroutine SimpleIdentification. We call to a

subroutine BoxIsolate that takes as input a zero-dimensional parametrization encoding a subset
of Cn and computes isolating boxes for its real zeros.

Algorithm 5: SimpleIdentification
Input: A zero-dimensional parametrization C2
Output: A set B1 of intervals of R

1 B1 ← ∅

2 Boxes← BoxIsolate(C2)
3 for box ∈ Boxes do
4 if box ∩H = ∅ then
5 B1 ← B1 ∪ {t-coordinate of box}

6 return B1
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By Proposition 15, for each x ∈ C such that the intersection of the ball isolating x with H is
empty, we conclude that x is an isolated point ofH . For the non-empty intersections, we cannot
decide whether x is isolated yet. The problem arises when the isolating boxes are not small
enough so that they intersect not only the connected component ofH containing x but also some
other connected component. When this happens, one could try a smaller size of isolating boxes.

Remark 16. When every candidate is an isolated point, running SimpleIdentification is enough
to return a correct and certified output, which is the whole set of candidates. No further compu-
tation is required in this case.

As each candidate is contained in limε crit(πi,Vε) for every projection πi, we conjecture that
every candidate is actually isolated. We are not aware of any counter-example.

6.2. Limits of critical curves
To compute a set of candidates, we consider the critical loci crit(πi,Vε) for 1 ≤ i ≤ n. Our

second optimization considers the critical loci of the projections on the plane; especially, the
limits of those critical loci are curves in Rn whose real isolated points contain the isolated points
ofH . Thus, one can compute a superset of I (H) through computing the real isolated points of
limits of critical curves.

More precisely, for 1 ≤ i < j ≤ n, we denote by πi, j the projection

πi, j : (x1, . . . , xn) 7→ (xi, x j).

Recall thatHε is a smooth algebraic set defined by

( f − ε) · ( f + ε) = 0.

Lemma 17. Let A ∈ GL(n,Q). For every 1 ≤ i < j ≤ n, the set of isolated points of HA is
contained in set of real isolated points of limε crit(πi, j,H

A
ε ).

Proof. Let x be an isolated point of HA. By Proposition 3, x ∈ limε crit(πi,V
A
ε ). Since

crit(πi,V
A
ε ) ⊂ crit(πi, j,V

A
ε ), x ∈ limε crit(πi, j,V

A
ε ). Note that limε crit(πi, j,V

A
ε ) is a subset of

VA. Thus, if x is isolated inHA, it is also an isolated point in limε crit(πi, j,V
A
ε ) ∩ Rn.

Remark 18. Note that a real isolated point of limε crit(πi, j,Vε) is not necessarily isolated inH .
Take for example the degenerate torus, given by the equation

(x2
1 + x2

2 + x3)2 − 4(x2
1 + x2

2) = 0.

The real trace of limε crit(π1,2,Vε) is the union of the point (0, 0) and the circle given by

x2
1 + x2

2 − 4 = x3 = 0.

Hence, Lemma 17 allows us to obtain a superset of I (H) only.

By [24, Theorem 2], for a generic change of variables A, the critical locus crit(πi, j,H
A
ε ) is an

equidimensional algebraic set of dimension one defined by

( f − ε) · ( f + ε) = 0,
∂ f
∂xk
= 0 for 1 ≤ k ≤ n and k , i, j.

The computation of limε crit(πi, j,H
A
ε ) can be done using a similar subroutine of [22]. For each

1 ≤ i, j ≤ n, we denote by Ji, j the ideal〈
∂ f
∂xk
= 0 for 1 ≤ k ≤ n, k , i, j

〉
.
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Lemma 19. Let πi, j be defined as above. There exists a non-empty Zariski open subset A of
GL(n,C) such that, for any A ∈ A ∩ GL(n,Q), the algebraic set C defined by

V
(〈

f A
〉
+ Jk :

(
∂ f A

∂xi

)∞
∩ Jk :

(
∂ f A

∂x j

)∞)
is equi-dimensional of dimension 1 and contains limε crit(πi, j,H

A
ε ).

As a consequence, any isolated point ofHA is also isolated in C ∩ Rn.

Proof. The proof of the first statement follows a similar outline of the proof of [22, Theorem 1
and Theorem 2]. From the inclusion

I (HA) ⊂ lim
ε

crit
(
πi, j,V

A
ε

)
⊂ C ∩ Rn ⊂ HA,

we deduce that every real isolated point ofHA is also an isolated point of C ∩ Rn.

We define the subroutine CurveLimitCheck that takes as input f ∈ Q[x1, . . . , xn] and A ∈
GL(n,Q) and returns a set of isolating boxes B2. It calls to two subroutines:

• CurveLimit that takes as input f , A and a pair of index (i, j) and returns the eliminating
polynomial of a rational parametrization encoding limε crit(πi, j,H

A
ε ). The design of this

subroutine follows Lemma 19.

• BivariateIsolated that takes as input a bivariate polynomial Ui, j and computes the boxes
isolating the real isolated points of V(Ui, j). This can be done by computing a cylindrical
algebraic decomposition adapted to Ui, j = 0.

Algorithm 6: CurveLimitCheck
Input: f ∈ Q[x1, . . . , xn], A ∈ GL(n,Q)
Output: A set B2 of intervals of R

1 for 1 ≤ i < j ≤ n do
2 Ui, j ← CurveLimit( f , A, (i, j))
3 boxesi, j ← BivariateIsolated(Ui, j)

4 B2 ← ∩1≤i, j≤nboxesi, j

5 return B2

Summary.. To conclude this section, we show below the pseudo-code of our implementation.
The subroutine Candidates is modified so that it returns, besides C encoding the candidates, a
zero-dimensional parametrization C2 encoding the finite set C2.
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Algorithm 7: Implementation of IsolatedPoints
Input: A polynomial f ∈ Q[x1, . . . , xn]
Output: A zero-dimensional parametrization C and a set B of intervals of R

1 A chosen randomly in GL(n,Q)
2 C ,C2 ← Candidates( f , A)
3 B1 ← SimpleIdentification(C2)
4 if |B1| = |C ∩ Rn| then
5 return B1

6 B2 ← CurveLimitCheck( f , A)
7 if |B1| = |B2| then
8 return B1

9 a chosen randomly in Qn
+

10 e0 ← ComputeE0( f ,C , a)
11 B ← IsIsolated-Approx( f ,C , a, e0)
12 return (C ,B)

7. Experimental results

In this section, we report on practical performances of our algorithms. Computations were
done on an Intel(R) Xeon(R) CPU E7-4820 2GHz and 1.5 TB of RAM. Timings are given in
seconds (s.), minutes (m.), hours (h.) and days (d.).

We take sums of squares of n random dense quadrics in n variables (with a non-empty inter-
section over R); we obtain dense quartics defining a finite set of points. None of the considered
examples can be solved using CAD implementations in Maple within 10 days.

Table 1 below reports on the timings of our implementation (Algorithm 7). Timings for the
subroutine Candidates are given in the column cand below. We use FGb library for computing
Gröbner bases in order to perform algebraic elimination in our algorithms. The subroutine Has-
RealSolutions in Algorithm 4 is done by raglib. Solving of zero-dimensional systems in the
whole algorithm is done by msolve and real root isolation is done by the command RootFind-
ing[Isolate] in maple.

The column cand2 shows the timings for computing the zero-dimensional parametrization C2
and isolates its zeros (see Subsection 6.1). The column |real sols.|/ deg(w) shows the number of
real candidates among the total number of candidates. This motivates the use of approximations,
which runs only on candidates in Rn, instead of computing over Q[t]/ ⟨w(t)⟩ which takes into
account all candidates.

The column test1 reports on the timings of the first optimization (Algorithm 5). Exploiting
the fact that isolating boxes are given by linear inequalities, we tweak raglib for solving the
associated decision problems. As explained in the end of Subsection 6.1, by isolating C2 with a
small enough boxes in the subroutine SimpleIdentification, one can also obtain a certified output
without computing e0. In our examples, it is the case and we do not need to carry out further
computations. Timings of other steps are given as an indication for further researches.

Timings for ComputeE0 are given in the column e0. The columns approx and raglib respec-
tively give the timings for computing the approximations and solving the decision problem by
raglib. Note that the implementation used for two columns approx and raglib checks the empti-
ness of intersections of H with hypercubes (as explained in the end of Subsection 4.4). This
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computation is similar to the one of test1 with the main difference coming from the fact that the
isolating boxes computed in approx requires more precision. This results in linear polynomials,
that define hypercubes, of larger bit-sizes, which makes the column raglib slower than test1.

At the moment, we do not dispose of a geometric resolution algorithm for Q[t]/ ⟨w(t)⟩. The
implementation of ComputeE0 relies on available tools such as FGb, msolve that run over Q.
The complexity of this subroutine is actually bounded by DO(n2) and the timings show that it is
not practical. The value e0 in these examples is obtained since we know in advance that the given
real algebraic sets are finite.

n cand cand2 |real sols.|/ deg(w) test1 total e0 approx raglib

2 .1 s .1 s 1/4 .1 s .3 s 3 s .1 s .1 s
3 .2 s .3 s 4/8 6 s 7 s 1 m .1 s 10 s
4 1 s 4 s 2/16 1 m 1 m 20 h .1 s 2 m
5 20 s 90 s 2/32 10 m 12 m > 10 d .2 s 15 m
6 30 m 2.5 h 2/64 4 h 7 h > 10 d 20 s 6 h

Table 1: Experimental timings of Algorithm 7
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