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Abstract

Let R be the field of real numbers. We consider the problem of computing the real isolated points

of a real algebraic set in R𝑛
given as the vanishing set of a polynomial system. This problem plays an

important role for studying rigidity properties of mechanism in material designs. In this paper, we design

two algorithms of whose complexities are respectively 𝑂̃︀(︀𝐷8𝑛
)︀

and 𝑂̃︀(︀𝐷6𝑛
)︀

for computing the real

isolated points of real algebraic hypersurfaces in R𝑛
of degree 𝐷. We also propose several heuristic

optimizations to avoid the most costly computation in our algorithms in most of the cases, which makes

our complexity reduced to 𝑂̃︀(︀𝐷3𝑛
)︀

for those cases. These algorithms lead to an implementation which

is able to solve instances which were out of reach.

1 Introduction

Given 𝑓 ∈ Q[𝑥1, . . . , 𝑥𝑛], we denote by 𝒱 ⊂ C𝑛
the algebraic hypersurface defined by 𝑓 = 0 and by ℋ

the real trace of 𝒱 , i.e., ℋ = 𝒱 ∩ R𝑛
. We aim at computing the isolated points of ℋ, i.e. the set of points

𝑥 ∈ ℋ such that for some positive 𝑟, 𝐵(𝑥, 𝑟) ∩ℋ = {𝑥} where 𝐵(𝑥, 𝑟) ⊂ R𝑛
the open ball centered at 𝑥

of radius 𝑟. We denote this set of real isolated points by I (ℋ).
This problem is a particular instance of a more general problem of computing the isolated points of

a semi-algebraic set. Such problems arise naturally and frequently in the design of rigid mechanism in

material design (see [18]). Those are modeled canonically with semi-algebraic constraints, and isolated

points to the semi-algebraic set under consideration are related to rigidity properties of the mechanism.

A particular example is the study of auxetic materials, i.e., materials that shrink in all directions under

compression. These materials appear in nature (first discovered in [16]) e.g., in foams, bones or propylene;

see e.g. [28], and have various potential applications. They are an active field of research, not only on

the practical side, e.g., [13, 15], but also with respect to mathematical foundations; see e.g. [6, 7]. On the

constructive side, these materials are closely related to tensegrity frameworks, e.g., [10, 19], which can

possess various sorts of rigidity properties.
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Hence, we aim to provide a practical algorithm for computing these real isolated points in the particular

case of real traces of complex hypersurfaces first. This simplification allows us to improve the state-of-the-

art complexity for this problem and to establish a new algorithmic framework for such computations which

is more efficient in practice.

Prior works. Let ℋ be a hypersurface defined by 𝑓 = 0 with 𝑓 ∈ Q[𝑥1, . . . , 𝑥𝑛] of degree 𝐷. The

effective real algebraic geometry provides subroutines from which such a computation could be done.

A first approach would be to compute a cylindrical algebraic decomposition adapted to ℋ [9]. It

partitionsℋ into connected cells, i.e. subsets which are homeomorphic to ]0, 1[𝑖 for some 1 ≤ 𝑖 ≤ 𝑛. Next,

one needs to identify cells which correspond to isolated points using adjacency information (see e.g. [1]).

Such a procedure is at least doubly exponential in 𝑛 and polynomial in 𝑑.

A better alternative is to encode real isolated points with quantified formula over the reals. Using

e.g. [2, Algorithm 14.21], one can compute isolated points ofℋ in time 𝐷𝑂(𝑛2)
. Note also that [27] allows

to compute isolated points in time 𝐷𝑂(𝑛3)
.

A third alternative is to use [2, Algorithm 12.16] to compute sample points in each connected component

of ℋ and then decide whether spheres, centered at these points, of infinitesimal radius, meet ℋ. Note

that these points are encoded with parametrizations of degree 𝐷𝑂(𝑛)
(their coordinates are evaluations of

polynomials at the roots of a univariate polynomial with infinitesimal coefficients). Applying [2, Alg. 12.16]

on this last real root decision problem would lead to a complexity 𝐷𝑂(𝑛2)
since the input polynomials

would have degree 𝐷𝑂(𝑛)
. Another approach would be to run [2, Alg. 12.16] modulo the algebraic extension

used to define the sample points. That would lead to a complexity 𝑑𝑂(𝑛)
but this research direction requires

modifications of [2, Alg. 12.16] since it assumes the input coefficients to lie in an integral domain, which is

not satisfied in our case. Besides, we report on practical experiments showing that using [2, Alg. 12.16] to

compute only sample points inℋ does not allow us to solve instances of moderate size.

Since the topological nature of this problem is related to connectedness. Computing isolated points

of ℋ is equivalent to computing those connected components of ℋ which are reduced to a single point

(see [17, Lemma 1]).

Hence, one can consider computing roadmaps: these are algebraic curves contained inℋ which have

a non-empty and connected intersection with all connected components of the real set under study. The

authors of [25] designed a probabilistic algorithm that computes roadmaps for smooth bounded real algebraic

sets. This algorithm runs in time 𝑂((𝑛𝐷)12𝑛 log2 𝑛), which makes it the state-of-the-art complexity for

roadmap computation. These results makes plausible to obtain in [17] an algorithm running in time

(𝑛𝐷)𝑂(𝑛 log𝑛)
to compute the isolated points ofℋ.

Recently, [3] presents a new algorithm for computing local semi-algebraic paths of a complexity 𝐷𝑂(𝑛)
.

Their algorithm also allows to solve the algorithmic algorithm we target.

Main results. In this paper, we provide two probabilistic algorithms which take as input a polynomial

𝑓 ∈ Q[𝑥1, . . . , 𝑥𝑛] and compute the set of isolated points I (ℋ) ofℋ = 𝑉 (𝑓) ∩ R𝑛
. Our output consists

of a zero-dimensional parametrization C = (𝑤(𝑡), 𝑣1(𝑡), . . . , 𝑣𝑛(𝑡)) ∈ Q[𝑡]𝑛+1
such that

{(𝑣1(𝑡), . . . , 𝑣𝑛(𝑡)) | 𝑤(𝑡) = 0}

is a finite set containing I (ℋ) and a set B = (𝐼1, . . . , 𝐼𝑠) of intervals in R that satisfies:

• The endpoints of each interval 𝐼𝑖 lie in Q.

• Each interval 𝐼𝑖 contains exactly one real root of 𝑤(𝑡), namely 𝑡𝑖.
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• The set of isolated points ofℋ is exactly

{(𝑣1(𝑡𝑖), . . . , 𝑣𝑛(𝑡𝑖)) | 1 ≤ 𝑖 ≤ 𝑠}.

These data represent symbolically the set of isolated points ofℋ in the sense that one can derive from the

pair (C ,B) numerical values of the elements of I (ℋ) with any required precision.

We sketch now the geometric ingredients which allow us to compute the real isolated points of an

algebraic hypersurface defined by 𝑓 = 0.

Assume that 𝑓 is non-negative over R𝑛
(if this is not the case, we can replace it by its square) and let

𝑥 ∈ I (ℋ). Since 𝑥 is isolated and 𝑓 is non-negative over R𝑛
, the intuition is that for a small enough

𝑒 > 0, the real solution set to 𝑓 = 𝑒 looks like a ball around 𝑥, hence a bounded and closed connected

component 𝒞𝑥. Then the restriction of every projection on the 𝑥𝑖-axis to the algebraic set in C𝑛
defined by

𝑓 = 𝑒 intersects 𝒞𝑥. When 𝑒 tends to 0, these critical points in 𝒞𝑥 “tend to 𝑥”. This first process allows us

to compute a subset ofℋ containing I (ℋ); we call the elements of this set the candidates. Of course, one

would like that this set of candidates is finite and this will be the case up to some generic linear change of

coordinates, using e.g. [24].

At this stage, we dispose of a zero-dimensional parametrization C = (𝑤(𝑡), 𝑣1(𝑡), . . . , 𝑣𝑛(𝑡)) encoding

the candidates. One would naturally check whether a ball of infinitesimal radius centered at each candidate

intersectsℋ. More precisely, let 𝜂 = (𝜂1, . . . , 𝜂𝑛) ∈ C ∩ R𝑛
be a candidate, we decide whether the system

𝑓(𝑥1, . . . , 𝑥𝑛) =
𝑛∑︁

𝑖=1

(𝑥𝑖 − 𝜂𝑖)
2 − 𝜀 = 0 (1)

has at least one solution in R𝑛
.

However, this direct approach faces immediately a complexity issue. Writing a quantified formula

to solve this decision problem leads to a complexity of 𝐷𝑂(𝑛2)
since those points are encoded by a zero-

dimensional parametrization of degree 𝐷𝑂(𝑛)
. To bypass this difficulty, we carry out the computation over

the quotient ring Q[𝑡]/⟨𝑤(𝑡)⟩.
This computation relies on the results of [25, Appendix J], which provide an adaptation of the geometric

resolution [14] to polynomial systems with coefficients in Q[𝑡]/⟨𝑤(𝑡)⟩. Using this version of geometric

resolution, the resolution of polynomial systems over Q[𝑡]/⟨𝑤(𝑡)⟩ induces only an additional cost of

𝑂̃︀(deg(𝑤)) arithmetic operations of Q comparing to the classic geometric resolution. We will see that

the degree of 𝑤(𝑡) is actually bounded by 2𝐷(𝐷 − 1)𝑛−1
. This allows us to obtain an algorithm that uses

𝐷𝑂(𝑛)
arithmetic operations in Q.

On the algorithmic side, we go further exploiting the geometry of the problem to avoid using infinitesi-

mals. We apply the algorithm to compute a rational number 𝑒0 > 0 that replaces the infinitesimals in the

system above.

These ingredients allow us to obtain the complexity result below.

Theorem 1. Let 𝑓 ∈ Q[𝑥1, . . . , 𝑥𝑛] of degree 𝐷 andℋ ⊂ R𝑛 be the real algebraic set defined by 𝑓 = 0. There
exists a probabilistic algorithm which, on input 𝑓 , computes a data (C ,B) encoding I (ℋ) in case of success
using 𝑂̃︀(︀64𝑛𝐷8𝑛

)︀
arithmetic operations in Q and one call of real root isolation on a univariate polynomial

of degree bounded by 22𝑛+2𝐷3𝑛.

Furthermore, we propose an alternative variant that leads to a more efficient algorithm in practice.

Once the rational number 𝑒0 is computed, this variant replaces the candidates by their approximations

of coordinates in Q and solves a similar decision problem as the one given by the system (1) for these
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approximations. Such a strategy allows us to avoid the computation over Q[𝑡]/ ⟨𝑤(𝑡)⟩. In Subsection 4.4,

we will define rigorously this notion of approximations.

Since this variant makes use of univariate real root isolating algorithms, a complete complexity analysis

would require a bound on the bit-size of polynomials given to real root isolating algorithms. However, we

observe that in practice these real root isolating steps are negligible compared to the computation over

Q[𝑡]/ ⟨𝑤(𝑡)⟩, this variant is therefore much more efficient in practice. A complexity estimate of this variant

is given as below.

Theorem 2. Let 𝑓 ∈ Q[𝑥1, . . . , 𝑥𝑛] of degree 𝐷 andℋ ⊂ R𝑛 be the real algebraic set defined by 𝑓 = 0. There
exists a probabilistic algorithm which, on input 𝑓 , computes a data (C ,B) encoding I (ℋ) in case of success
using 𝑂̃︀(︀𝐷6𝑛+3

)︀
arithmetic operations in Q and two real root isolating calls on a univariate polynomial of

degree bounded by 2𝐷(𝐷 − 1)𝑛−1.

Our complexity results above both lie in 𝐷𝑂(𝑛)
as the algorithm in [3] (up to some root isolation

calls). However, we provide an explicit constant in the exponent and the algorithms are designed to enable

practical implementation, which constitutes another contribution of this paper.

In Section 6, we present two heuristic subroutines for our implementation. The goal of these subroutines

is to avoid as much as possible the most costly computations in our algorithm which include the computation

over quotient rings. Taking into account these optimizations, we implement our algorithms in Maple

using the libraries FGb [11], RAGlib [23] and msolve [4]. In Section 7, we report on practical experiments

showing that they already allow us to solve non-trivial problems which are actually out of reach of [2, Alg.

12.16] which computes sample points in ℋ only. Unfortunately, the real-life applications coming from

material designs still remain intractable.

Organization of the paper. This paper is structured as follows. Section 2 reviews some fundamental

notions in real algebraic geometry that we use further for the geometry analysis of our problem. In Section 3,

we prove the auxiliary results which coin the needed theoretical ingredient. Section 4 is devoted to describe

our algorithms and their complexities. The heuristic optimizations for implementations are presented in

Section 6. Finally, Section 7 reports on the practical performances of our implementation.

Acknowledgment. The author would like to thank Mohab Safey El Din for helpful discussions and Timo

de Wolff for introducing this problem to me.

2 Preliminaries

In what follows, we recall respectively the notions of Puiseux series and critical points.

Puiseux series. Let 𝜀 be an infinitesimal, i.e., a transcendental element over R such that 0 < 𝜀 < 𝑟 for

any positive element 𝑟 ∈ R. The field of Puiseux series over R is defined as all the series with rational

exponents

R⟨𝜀⟩ =
{︁∑︀

𝑖≥𝑖0
𝑎𝑖𝜀

𝑖/𝑞 | 𝑖 ∈ N, 𝑖0 ∈ Z, 𝑞 ∈ N− {0}, 𝑎𝑖 ∈ R
}︁
.

By, e.g., [2, Theorem 2.91], R⟨𝜀⟩ is a real closed field.

One can also define C⟨𝜀⟩ as for R⟨𝜀⟩ but taking the coefficients of the series in C. By [2, Theorem 2.17],

the field C⟨𝜀⟩ is an algebraic closure of R⟨𝜀⟩.
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Consider 𝜎 =
∑︀

𝑖≥𝑖0
𝑎𝑖𝜀

𝑖/𝑞 ∈ R⟨𝜀⟩ with 𝑎𝑖0 ̸= 0. Then, 𝑎𝑖0 is called the valuation of 𝜎. When

𝑖0 ≥ 0, 𝜎 is said to be bounded over R and the set of bounded elements of R⟨𝜀⟩ is denoted by R⟨𝜀⟩𝑏.
One defines the function lim𝜀 : R⟨𝜀⟩𝑏 → R that maps 𝜎 to 𝑎0 (which is 0 when 𝑖0 > 0) and writes

lim𝜀 𝜎 = 𝑎0; note that lim𝜀 is a ring homomorphism from R⟨𝜀⟩𝑏 to R. All these definitions extend

to R⟨𝜀⟩𝑛 componentwise. For a semi-algebraic set 𝒮 ⊂ R⟨𝜀⟩𝑛, we naturally define the limit of 𝒮 as

lim𝜀 𝒮 = {lim𝜀 𝑥 | 𝑥 ∈ 𝒮 and 𝑥 is bounded over R}.
We refer to [2, Chap. 2] for more details on infinitesimals and real Puiseux series.

Critical points. Let 𝒮 ⊂ R𝑛
be a semi-algebraic set defined by a semi-algebraic formula Φ. We denote

by ext(𝒮,R⟨𝜀⟩) the semi-algebraic set of points which are solutions of Φ in R⟨𝜀⟩𝑛.

Let K be an algebraically closed field, let 𝜑 ∈ K[𝑥1, . . . , 𝑥𝑛] which defines the polynomial mapping

(𝑥1, . . . , 𝑥𝑛) ↦→ 𝜑(𝑥1, . . . , 𝑥𝑛) and 𝑉 ⊂ K𝑛
be a smooth equidimensional algebraic set. We denote by

crit(𝜑, 𝑉 ) the set of critical points of the restriction of 𝜑 to 𝑉 . If 𝑐 is the co-dimension of 𝑉 and (𝑔1, . . . , 𝑔𝑠)
generates the vanishing ideal associated to 𝑉 , then crit(𝜑, 𝑉 ) is the subset of 𝑉 at which the Jacobian

matrix associated to (𝑔1, . . . , 𝑔𝑠, 𝜑) has rank less than or equal to 𝑐 (see e.g., [25, Subsection 3.1]).

In particular, the case where 𝜑 is replaced by the canonical projection on the 𝑖-th coordinate

𝜋𝑖 : (𝑥1, . . . , 𝑥𝑛) ↦→ 𝑥𝑖,

is excessively used throughout our paper.

3 Geometric results

3.1 The candidates

As above, let 𝑓 ∈ Q[𝑥1, . . . , 𝑥𝑛], 𝒱 ⊂ C𝑛
be the algebraic hypersurface defined by 𝑓 = 0 andℋ = 𝒱 ∩R𝑛

.

We recall that I (ℋ) denotes the set of isolated points ofℋ.

By, e.g., [17, Lemma 1], the set I (ℋ) is the finite union of the connected components of ℋ which

are singletons. A natural start for computing those components is to consider the critical points of the

restrictions toℋ of the projections

𝜋𝑖 : (𝑥1, . . . , 𝑥𝑛) ↦→ 𝑥𝑖.

Since we do not assume that 𝒱 is smooth, to apply the critical point method, we retrieve the smoothness

through deformation techniques by introducing an infinitesimal 𝜀. More precisely, we consider the hyper-

surface 𝒱𝜀 in C⟨𝜀⟩𝑛 defined by the equation 𝑓2 = 𝜀2. Note that 𝒱𝜀 is the union of two disjoint algebraic

sets 𝑉 (𝑓 − 𝜀) and 𝑉 (𝑓 + 𝜀) in C⟨𝜀⟩𝑛. By e.g., [20, Lemma 3.5], 𝒱𝜀 is a smooth algebraic set in C⟨𝜀⟩𝑛.

Letℋ𝜀 = 𝒱𝜀 ∩ R⟨𝜀⟩𝑛. Two lemmas below will be used regularly in this paper.

Lemma 1. [20, Lemma 3.6] For every 𝑥 ∈ ℋ, there exists a point 𝑥𝜀 ∈ ℋ𝜀 such that 𝑥𝜀 is bounded over R
and lim𝜀 𝑥𝜀 = 𝑥.

Lemma 2. [2, Proposition 12.51] Given a point 𝑥 lying in a bounded connected component ofℋ and 𝑥𝜀 ∈ ℋ𝜀

such that 𝑥𝜀 is bounded over R and lim𝜀 𝑥𝜀 = 𝑥, let 𝒞𝜀 be the connected component of ℋ𝜀 containing 𝑥𝜀.
Then, 𝒞𝜀 is bounded over R.

[17, Lemma 2] that we cite below gives explicitly a finite subset C of 𝒱 that contains I (ℋ).
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Proposition 1 ( [17, Lemma 2]). Assume that I (ℋ) is not empty and let 𝑥 ∈ I (ℋ). There exists a
semi-algebraically connected component 𝒞𝜀 ofℋ𝜀 such that 𝒞𝜀 is bounded over R and lim𝜀 𝒞𝜀 = {𝑥}.

Consequently, for 1 ≤ 𝑖 ≤ 𝑛, there exists a point 𝑥𝜀 ∈ crit(𝜋𝑖,𝒱𝜀) ∩ 𝒞𝜀 such that lim𝜀 𝑥𝜀 = 𝑥. Let
C := ∩𝑛𝑖=1 lim𝜀 crit(𝜋𝑖,𝒱𝜀). Then, we have

I (ℋ) ⊂ C ∩ R𝑛.

3.2 Identification of the real isolated points

Once the setC of candidates is computed, we need to identify whether a candidate𝜂 = (𝜂1, . . . , 𝜂𝑛) ∈ C∩R𝑛

is an isolated point ofℋ. To do so, one can check whether a sphere centered at 𝜂 of infinitesimal radius

intersectsℋ, which leads one to solve the system

𝑓(𝑥1, . . . , 𝑥𝑛) =
𝑛∑︁

𝑖=1

(𝑥𝑖 − 𝜂𝑖)
2 − 𝜀 = 0

over R⟨𝜀⟩. This computation involves an infinitesimal 𝜀, which would prevent a practically efficient

algorithm. The objective of this subsection is to present a workaround to avoid the use of infinitesimals.

Let 𝑎 = (𝑎1, . . . , 𝑎𝑛) be an 𝑛-uple of positive rational numbers. We consider the function 𝑑, depending

on 𝑎, defined by

𝑑 : R𝑛 × R𝑛 → R
(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛) ↦→

√︀∑︀𝑛
𝑖=1 𝑎𝑖(𝑥𝑖 − 𝑦𝑖)2

.

The function 𝑑 defines a metric in R𝑛
which can be extended to R⟨𝜀⟩𝑛. Further, the notations below denote

respectively spheres, open balls and closed balls with respect to the metric 𝑑:

• 𝑆(𝑥, 𝑟) = {𝑦 ∈ R𝑛 | 𝑑(𝑥,𝑦) = 𝑟},

• 𝐵(𝑥, 𝑟) = {𝑦 ∈ R𝑛 | 𝑑(𝑥,𝑦) < 𝑟},

• 𝐵(𝑥, 𝑟) = {𝑦 ∈ R𝑛 | 𝑑(𝑥,𝑦) ≤ 𝑟}.

For each 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ C⟨𝜀⟩𝑛, we consider the function 𝑑𝑥 below:

𝑑𝑥 : C⟨𝜀⟩𝑛 → C⟨𝜀⟩
(𝑦1, . . . , 𝑦𝑛) ↦→

∑︀𝑛
𝑖=1 𝑎𝑖(𝑦𝑖 − 𝑥𝑖)

2.

Recall that the algebraic set 𝒱𝜀 defined by 𝑓2 = 𝜀2 in C⟨𝜀⟩𝑛, is smooth. By an algebraic variant of

Sard’s theorem (see [25, Prop. B.2], [5, Theorem 9.6.2]), the critical values of the restriction of 𝑑𝑥 to 𝒱𝜀 form

a finite subset of C⟨𝜀⟩. Therefore, for every candidate 𝑥 ∈ C ∩ R𝑛
, the set

D(𝑥) = {𝑑𝑥(lim
𝜀

𝑦𝜀) | 𝑦𝜀 ∈ crit(𝑑𝑥,𝒱𝜀) ∩ R⟨𝜀⟩𝑛𝑏 , lim𝜀 𝑦𝜀 ̸= 𝑥}

is a finite set of positive elements of R. When D(𝑥) is not empty, Lemma 3 below allows us to identify

whether the point 𝑥 is isolated inℋ.

Lemma 3. Let 𝑥 ∈ ℋ and 𝒞𝑥 be the connected component of ℋ containing 𝑥. Assume that the set D(𝑥)
defined as above is not empty. Let 𝑒𝑥 ∈ R such that

0 < 𝑒𝑥 < minD(𝑥).

Then, the following statements are equivalent:
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i) 𝑥 is an isolated point ofℋ.

ii) There exists 𝑒 ∈]0, 𝑒𝑥[ such thatℋ ∩ 𝑆(𝑥,
√
𝑒) = ∅.

iii) For every 𝑒 ∈]0, 𝑒𝑥[,ℋ ∩ 𝑆(𝑥,
√
𝑒) = ∅.

Moreover, if 𝑥 is not an isolated point ofℋ, then 𝒞𝑥 intersects 𝑆(𝑥,
√
𝑒) for every 𝑒 ∈]0, 𝑒𝑥[.

Proof. By the definition of real isolated points, we immediately have that (i) implies (ii) and (iii) implies

(i). It remains to demonstrate that (iii) is a consequence of (ii), which we separate into two statements: (ii)

leads to (i) and then (i) leads to (iii).

We now show that (ii) implies (i) by contradiction. We assume that the point 𝑥 is not an isolated point

ofℋ. If 𝒞𝑥 is not bounded, 𝒞𝑥 intersects 𝑆(𝑥,
√
𝑒) for every 𝑒 > 0 and there is nothing to be proved. We

now assume that 𝒞𝑥 is bounded.

By Lemma 1, there exists a point 𝑥𝜀 such that 𝑥𝜀 is bounded over R and lim𝜀 𝑥𝜀 = 𝑥. Let 𝒞𝜀 ⊂ R⟨𝜀⟩𝑛
be a connected component of the real algebraic setℋ𝜀 containing 𝑥𝜀. By Lemma 2, 𝒞𝜀 is bounded over R
and, thus, its limit is connected in R𝑛

by [2, Proposition 12.49]. Hence, lim𝜀 𝒞𝜀 is a connected subset of 𝒞𝑥.

Moreover, as 𝒞𝜀 is closed and bounded over R, the restriction of 𝑑𝑥 to 𝒞𝜀 reaches its maximum at

some point 𝑦𝜀 ∈ 𝒞𝜀 (see [5, Theorem 2.5.8]). Note that 𝑦𝜀 ∈ crit(𝑑𝑥,𝒱𝜀) ∩ R⟨𝜀⟩𝑛𝑏 . So, we have that

𝑑𝑥(lim𝜀 𝑦𝜀) ≥ 𝑒𝑥. Therefore, for any 𝑒 ∈]0, 𝑒𝑥[, the closed ball 𝐵(𝑥,
√
𝑒) does not contain lim𝜀 𝑦𝜀. Since

lim𝜀 𝒞𝜀 is connected in R𝑛
and contains 𝑥 and lim𝜀 𝑦𝜀, there exists a semi-algebraic continuous function

𝛾 : [0, 1]→ lim𝜀 𝒞𝜀 such that 𝛾(0) = 𝑥 and 𝛾(1) = lim𝜀 𝑦𝜀. As 𝑑𝑥(𝑥) = 0 and 𝑑𝑥(lim𝜀 𝑦𝜀) ≥ 𝑒𝑥, by the

intermediate value property [2, Proposition 3.5], there exists 𝑡0 ∈]0, 1[ such that 𝑑𝑥(𝛾(𝑡0)) = 𝑒 for any

𝑒 ∈]0, 𝑒𝑥[. Therefore, the connected component 𝒞𝑥 intersects 𝑆(𝑥,
√
𝑒) at 𝛾(𝑡0).

So, (ii) does not hold either when 𝒞𝑥 is bounded. We conclude that (ii) leads to (i).

Finally, it remains to show that (i) implies (iii). Again, we prove this by contradiction. Assume that

there exists 𝑒 ∈]0, 𝑒𝑥[ such that ℋ ∩ 𝑆(𝑥,
√
𝑒) ̸= ∅. Equivalently, there exists a point 𝑧 ∈ ℋ such that

𝑑(𝑧) = 𝑒 ∈]0, 𝑒𝑥[.
By Lemma 1, there exists a point 𝑧𝜀 ∈ ℋ𝜀 such that lim𝜀 𝑧𝜀 = 𝑧. Let 𝒞𝑧,𝜀 be the connected component

ofℋ𝜀 containing 𝑧𝜀.

In the closed and connected semi-algebraic set 𝒞𝑧,𝜀, there exists a point 𝑧′
𝜀 at which the restriction of

𝑑𝑥 to 𝒞𝑧,𝜀 reaches it minimum. So, 𝑧′
𝜀 belongs to crit(𝑑𝑥,𝒱𝜀) ∩ R⟨𝜀⟩𝑛𝑏 . Thus, we have that

𝑑𝑥(lim
𝜀

𝑧′
𝜀) ≤ 𝑑𝑥(lim

𝜀
𝑧𝜀) < 𝑒𝑥.

Using the definition of 𝑒𝑥, we deduce that 𝑑𝑥(lim𝜀 𝑧
′
𝜀) = 0, which is equivalent to lim𝜀 𝑧

′
𝜀 = 𝑥.

So, both 𝑧𝜀 and 𝑧′
𝜀 lie in the connected component 𝒞𝑧,𝜀 ofℋ𝜀 and lim𝜀 𝑧

′
𝜀 = 𝑥. If 𝒞𝑧,𝜀 is not bounded

over R, by Lemma 2, we have that 𝒞𝑥 is not bounded, which implies immediately that 𝑥 is not an isolated

point ofℋ.

Otherwise, when 𝒞𝑧,𝜀 is bounded over R, by [2, Proposition 12.49], lim𝜀 𝒞𝑧,𝜀 is a connected subset ofℋ
that contains 𝑥 and 𝑧. In this case, we also conclude that 𝑥 is not isolated inℋ. Therefore, (i) leads to (iii),

which finishes our proof.

Lemma 4 handles the remaining case when a point 𝑥 ∈ ℋ such that D(𝑥) is empty exists.

Lemma 4. Assume that there exists 𝑥 ∈ ℋ such that D(𝑥) is empty. Then, exactly one among the two
statements below holds:

i) ℋ is connected and not bounded, so it does not have any isolated point.
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ii) ℋ is a single point 𝑥.

Proof. Assume thatℋ has at least two connected components. Then, there exists a connected component

ofℋ𝜀 that does not contain any point whose limit is 𝑥. Therefore, the restriction of 𝑑𝑥 to this connected

component admits a critical point over this connected component. In consequence, D(𝑥) is not empty,

which contradicts the assumption of Lemma 4. Therefore,ℋ has exactly one connected component.

Assume now ifℋ is bounded and is not a single point 𝑥. As a consequence of Lemma 2, there exists a

connected component 𝒞𝑥,𝜀, that is bounded over R, ofℋ𝜀 such that {𝑥} ⊊ lim𝜀 𝒞𝑥,𝜀. Thus, the distance

function 𝛿𝑥 attains its maximum, which is non-zero, overℋ. This contradicts the assumption that D(𝑥) is

empty. Thus, the proof of Lemma 4 is finished.

When D(𝑥) is empty, we define by convention minD(𝑥) = +∞. Let 𝑒0 ∈ R such that

0 < 𝑒0 < min
𝑥∈C∩R𝑛

minD(𝑥).

We deduce from Lemmas 3 and 4 the following proposition, which is the main criteria for designing our

algorithms in Section 4.

Proposition 2. Let 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ R𝑛
+ and 𝑒0 ∈ R defined as above. Then, for any candidate

𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ C ∩ R𝑛, 𝑥 is an isolated point ofℋ if and only if the polynomial system

𝑓(𝑦1, . . . , 𝑦𝑛) =

𝑛∑︁
𝑖=1

𝑎𝑖(𝑦𝑖 − 𝑥𝑖)
2 − 𝑒0 = 0

admits at least one solution in R𝑛.

Proof. We first assume that D(𝑥) is not empty. Using Lemma 3, we have that 𝑥 is an isolated point ofℋ if

and only ifℋ intersects the sphere 𝑆(𝑥,
√
𝑒0).

Otherwise, if D(𝑥) is empty, by Lemma 4, ℋ is either a single point 𝑥 or an unbounded connected

component containing 𝑥. The similar conclusion follows immediately.

4 Algorithms

4.1 Overview of the algorithms

We start by giving the outline of our algorithms which take as input 𝑓 ∈ Q[𝑥1, . . . , 𝑥𝑛] and compute:

• A zero-dimensional parametrization C = (𝑤, 𝑣1, . . . , 𝑣𝑛) encoding the candidates such that

I (ℋ) ⊂ {(𝑣1(𝑡), . . . , 𝑣𝑛(𝑡)) | 𝑤(𝑡) = 0};

• A finite set B of intervals isolating the real solutions of 𝑤(𝑡) which correspond to I (ℋ).

Our algorithms share the first step of computing the set of candidates C. This is done by the subroutine

Candidates that takes as input the polynomial 𝑓 and returns a zero-dimensional parametrization C encoding

C. The design of this subroutine is given in [17, Subsection 3.2], which mimics the computation in [22].

Next, our algorithms pick randomly an 𝑛-tuple 𝑎 = (𝑎1, . . . , 𝑎𝑛) from Q𝑛
+, Proposition 2 requires us to

compute a value 𝑒0 ∈ Q such that for every 𝑥 ∈ C ∩ R𝑛
,

0 < 𝑒0 < min{𝑑𝑥(lim
𝜀

𝑦𝜀) | 𝑦𝜀 ∈ crit(𝑑𝑥,𝒱𝜀) ∩ R⟨𝜀⟩𝑛𝑏 , lim𝜀 𝑦𝜀 ̸= 𝑥},
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where 𝑑𝑥 is defined as

(𝑦1, . . . , 𝑦𝑛) ↦→ 𝑎1(𝑥1 − 𝑦1)
2 + . . .+ 𝑎𝑛(𝑥𝑛 − 𝑦𝑛)

2.

We call ComputeE0 a subroutine that takes as input 𝑓 ∈ Q[𝑥1, . . . , 𝑥𝑛] and 𝑎 ∈ Q𝑛
+ and returns such an

𝑒0 ∈ Q+. The explicit description of ComputeE0 is given in Subsection 4.2. From this value 𝑒0, Proposition 2

identifies whether a candidate 𝜂 ∈ C∩R𝑛
is isolated inℋ by deciding the emptiness ofℋ∩𝑆(𝜂,√𝑒0). This

leads us to solve the following polynomial system over R𝑛
for each candidate 𝜂 = (𝜂1, . . . , 𝜂𝑛) ∈ C ∩ R𝑛

:

𝑓(𝑥1, . . . , 𝑥𝑛) = 𝑎1(𝑥1 − 𝜂1)
2 + . . .+ 𝑎𝑛(𝑥𝑛 − 𝜂𝑛)

2 − 𝑒0 = 0. (2)

Therefore, we have the outline (Algorithm 1) below for our algorithms in which IsIsolated is a subroutine

that takes as input 𝑓 , C , 𝑎 and 𝑒0 and computes the isolating intervals B. It will be designed differently for

each of our algorithms.

Algorithm 1: IsolatedPoints
Input: A polynomial 𝑓 ∈ Q[𝑥1, . . . , 𝑥𝑛]
Output: A zero-dimensional parametrization C and a set B of intervals in R

1 C ← Candidates(𝑓)
2 𝑎 chosen randomly in Q𝑛

+

3 𝑒0 ← ComputeE0(𝑓,C ,𝑎)
4 B ← IsIsolated(𝑓,C ,𝑎, 𝑒0)
5 return (C ,B)

Since the candidates are given by C , we cannot treat directly the system (2) and need some workarounds.

The first variant of IsIsolated considers the system

𝑓(𝑥1, . . . , 𝑥𝑛) = 𝑎1(𝑥1 − 𝑣1(𝑡))
2 + . . .+ 𝑎𝑛(𝑥𝑛 − 𝑣𝑛(𝑡))

2 − 𝑒0 = 𝑤(𝑡) = 0. (3)

We need to identify for which real roots of 𝑤(𝑡), the above system has at least one real solution. To do so,

we basically compute a polynomial 𝑄(𝑡, 𝑧) ∈ Q[𝑡, 𝑧] such that for any real root 𝑡0 of 𝑤, 𝑄(𝑡0, 𝑧) admits

real solutions if and only if the system (3) does too. The problem is hence reduced to a bivariate setting,

which can be solved easily by classical real root counting algorithms. The design details of this variant is

explained in Subsection 4.3.

For the second variant of IsIsolated, taking advantage of the knowledge of 𝑒0, we replace the candidate

𝜂 in the system (2) by an “approximation” 𝜂 ∈ Q𝑛
of 𝜂 and establish a similar result as Proposition 2 for

these approximations (see Lemma 7). Briefly, we claim that a candidate 𝜂 is an isolated point ofℋ if and

only if the system

𝑓(𝑥1, . . . , 𝑥𝑛) = 𝑎1(𝑥1 − 𝜂1)
2 + . . .+ 𝑎𝑛(𝑥𝑛 − 𝜂𝑛)

2 − 𝑒0
4

= 0

has no real solution. Therefore, once those approximations are identified, one can apply classical real root

finding algorithms to the above system. The design of this variant is explained in Subsection 4.4.

4.2 Computing a value for 𝑒0
In this subsection, we describe a subroutine that computes a value 𝑒0 introduced in Proposition 2. Recall

that, for each 𝜂 = (𝜂1, . . . , 𝜂𝑛) ∈ C𝑛
, the function 𝑑𝜂 is defined as

𝑑𝜂 : C𝑛 → C,
𝑥 = (𝑥1, . . . , 𝑥𝑛) ↦→

∑︀𝑛
𝑖=1 𝑎𝑖(𝑥𝑖 − 𝜂𝑖)

2.
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To apply Lemma 3, we need to compute a value 𝑒0 ∈ Q such that for every 𝜂 ∈ C ∩ R𝑛

0 < 𝑒0 < min{𝑑𝜂(lim
𝜀

𝑥𝜀) | 𝑥𝜀 ∈ crit(𝑑𝜂,𝒱𝜀) ∩ R⟨𝜀⟩𝑛𝑏 , lim𝜀 𝑥𝜀 ̸= 𝜂}.

Lemma 5 shows that, for a generic choice of 𝑎, every critical locus crit(𝑑𝜂,𝒱𝜀) is finite.

Lemma 5. Let 𝜂 ∈ C be a candidate. Then there exists a non-empty Zariski open subset 𝒜 of C𝑛 such that,
for 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝒜 ∩Q𝑛

+, the critical locus crit (𝑑𝜂,𝒱𝜀) is finite.

Proof. Since 𝑉 (𝑓 − 𝜀) ⊂ C⟨𝜀⟩𝑛 is smooth, the critical locus crit (𝑑𝜂, 𝑉 (𝑓 − 𝜀)) is defined by

𝑓 − 𝜀 = 𝑦 · 𝜕𝑓
𝜕𝑥1
− 2𝑎𝑖(𝑥1 − 𝜂1) = · · · = 𝑦 · 𝜕𝑓

𝜕𝑥𝑛
− 2𝑎𝑛(𝑥𝑛 − 𝜂𝑛) = 0. (4)

Now we consider 𝑎 = (𝑎1, . . . , 𝑎𝑛) and 𝑦 as indeterminates. Let 𝜙 : C𝑛 × C𝑛 × C be the polynomial

mapping defined as

(𝑥,𝑎, 𝑦) ↦→
(︂
𝑓 − 𝜀, 𝑦 · 𝜕𝑓

𝜕𝑥1
− 2𝑎1(𝑥1 − 𝜂1), . . . , 𝑦 ·

𝜕𝑓

𝜕𝑥𝑛
− 2𝑎𝑛(𝑥𝑛 − 𝜂𝑛)

)︂
.

Let 𝒳 be the non-empty Zariski open subset of C defined as

(𝑥1 − 𝜂1) · · · (𝑥𝑛 − 𝜂𝑛) ̸= 0.

The Jacobian matrix of 𝜙 with respect to (𝑥,𝑎, 𝑦)⎡⎢⎢⎢⎢⎣
𝜕𝑓
𝜕𝑥1

· · · 𝜕𝑓
𝜕𝑥𝑛

0 0 · · · 0

* · · · * 𝜕𝑓
𝜕𝑥1

−2(𝑥1 − 𝜂1) · · · 0
.
.
.

.
.
. *

.

.

.

.

.

.

.
.
.

.

.

.

* · · · * 𝜕𝑓
𝜕𝑥𝑛

0 · · · −2(𝑥𝑛 − 𝜂𝑛)

⎤⎥⎥⎥⎥⎦
has full rank when 𝑥 ∈ 𝒳 and

𝑓 − 𝜀 = 𝑦 · 𝜕𝑓
𝜕𝑥1
− 2𝑎𝑖(𝑥1 − 𝜂1) = · · · = 𝑦 · 𝜕𝑓

𝜕𝑥𝑛
− 2𝑎𝑛(𝑥𝑛 − 𝜂𝑛) = 0.

By Thom’s weak transversality theorem [8, Theorem 3.7.4], there exists a non-empty Zariski open subset

𝒜∅ of C𝑛
such that, for 𝑎 ∈ 𝒜∅, 0 is a regular value of the restriction of 𝜙𝑎 to 𝒳 . Thus, for 𝑎 ∈ 𝒜∅, by

Jacobian criterion, the restriction of the solutions of

𝑓 − 𝜀 = 𝑦 · 𝜕𝑓
𝜕𝑥1
− 2𝑎𝑖(𝑥1 − 𝜂1) = · · · = 𝑦 · 𝜕𝑓

𝜕𝑥𝑛
− 2𝑎𝑛(𝑥𝑛 − 𝜂𝑛) = 0

to 𝒳 is a finite set, i.e., crit(𝑑𝜂, 𝑉 (𝑓 − 𝜀)) ∩ 𝒳 is finite.

Now we study the restriction of crit(𝑑𝜂, 𝑉 (𝑓−𝜀)) to C𝑛 ∖𝒳 . We choose 𝑎 ∈ Q𝑛
+. Let 𝐼 be a non-empty

proper subset of {1, . . . , 𝑛} and 𝒳𝐼 be the subset of C𝑛
defined by

𝑥𝑖 = 𝜂𝑖 for 𝑖 ∈ 𝐼 and 𝑥𝑖 ̸= 𝜂𝑖 for 𝑖 ̸∈ {1, . . . , 𝑛} ∖ 𝐼.
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Let 𝑥 ∈ crit(𝑑𝜂, 𝑉 (𝑓 − 𝜀)) ∩ 𝒳𝐼 . As 𝑓(𝜂) = 0, 𝜂 ̸∈ 𝑉 (𝑓 − 𝜀) and 𝑥 ̸= 𝜂. Hence, 𝑦 ̸= 0 in the

system (4). Hence, 𝑦 · 𝜕𝑓
𝜕𝑥𝑖
− 2𝑎1(𝑥𝑖 − 𝜂𝑖) = 0 implies that

𝜕𝑓
𝜕𝑥𝑖

= 0. Since 𝑉 (𝑓 − 𝜀) is smooth,
𝜕𝑓
𝜕𝑥𝑖

for

𝑖 ∈ {1, . . . , 𝑛} ∖ 𝐼 cannot vanish simultaneously at 𝑥. This means

{𝑥 | 𝑥 ∈ crit(𝑑𝜂, 𝑉 (𝑓 − 𝜀)), 𝑥𝑖 = 𝜂𝑖 for 𝑖 ∈ 𝐼}

coincides with the critical locus crit(𝑑𝜂,𝐼 , 𝑉 (𝑓𝐼 − 𝜀)) where

𝑑𝜂,𝐼 : (𝑥𝑗)𝑗∈{1,...,𝑛}∖𝐼 ↦→
∑︁

𝑗∈{1,...,𝑛}∖𝐼

𝑎𝑗(𝑥𝑗 − 𝜂𝑗)
2

and 𝑓𝐼 is the polynomial obtained from 𝑓 by substituting 𝑥𝑖 = 𝜂𝑖 for 𝑖 ∈ 𝐼 . Therefore, we can use the same

arguments as above to prove the following.

There exists a non-empty Zariski open subset 𝒜𝐼 of C𝑛
such that for 𝑎 ∈ 𝒜𝐼 ∩Q𝑛

+, the restriction of

crit(𝑑𝜂, 𝑉 (𝑓 − 𝜀)) to 𝒳𝐼 is finite.

Let 𝒜+ = ∩𝐼⊊{1,...,𝑛}𝒜𝐼 which is a non-empty Zariski open subset of C𝑛
. Given any 𝑎 ∈ 𝒜+ ∩Q𝑛

+,

crit(𝑑𝜂, 𝑉 (𝑓 − 𝜀) is a finite set. Similarly for 𝑉 (𝑓 + 𝜀), we obtain a non-empty Zariski open subset 𝒜−.

Taking the intersection 𝒜 = 𝒜+ ∩ 𝒜− ends the proof.

Since the set of candidates C is encoded by a zero-dimensional parametrization C , we do the whole

computation at once through the function 𝛿 defined as

𝛿 : C𝑛 × C → C,
(𝑥1, . . . , 𝑥𝑛, 𝑡) ↦→

∑︀𝑛
𝑖=1 𝑎𝑖(𝑥𝑖 − 𝑣𝑖(𝑡))

2.

The following lemma is immediate.

Lemma 6. Let 𝒱𝜀,𝑡 ⊂ C⟨𝜀⟩𝑛+1 be the algebraic set defined by 𝑓2 − 𝜀2 = 𝑤(𝑡) = 0. Then, the set of critical
values 𝛿(crit(𝛿,𝒱𝜀,𝑡)) is the union of 𝑑𝜂(crit(𝑑𝜂,𝒱𝜀)) for 𝜂 ∈ C.

Proof. The set crit(𝛿,𝒱𝜀,𝑡) are defined by the points of 𝒱𝜀,𝑡 at which the matrix⎡⎢⎣𝜕𝑓2

𝜕𝑥1
. . . 𝜕𝑓2

𝜕𝑥𝑛
0

𝜕𝛿
𝜕𝑥1

. . . 𝜕𝛿
𝜕𝑥𝑛

𝜕𝛿
𝜕𝑡

0 . . . 0 𝑤′(𝑡)

⎤⎥⎦
has rank at most 2.

As 𝑤(𝑡) is square-free, for every 𝑡0 such that 𝑤(𝑡0) = 0, 𝑤′(𝑡0) is not zero. Therefore, the condition

above restricted to 𝒱𝜀,𝑡 is equivalent to

rank

[︃
𝜕𝑓2

𝜕𝑥1
. . . 𝜕𝑓2

𝜕𝑥𝑛
𝜕𝛿
𝜕𝑥1

. . . 𝜕𝛿
𝜕𝑥𝑛

]︃
≤ 1.

For every complex root 𝑡0 of 𝑤(𝑡), let 𝜂0 = (𝑣1(𝑡0), . . . , 𝑣𝑛(𝑡0)). By fixing 𝑡 = 𝑡0, the rank condition above

is reduced to

rank

[︃
𝜕𝑓2

𝜕𝑥1
. . . 𝜕𝑓2

𝜕𝑥𝑛
𝜕𝛿𝜂0
𝜕𝑥1

. . .
𝜕𝛿𝜂0
𝜕𝑥𝑛

]︃
≤ 1,

which defines the set crit(𝛿𝜂0 ,ℋ𝜀).
Thus, crit(𝛿,ℋ𝜀,𝑡) = ∪𝑤(𝑡0)=0{(𝑥, 𝑡0) | 𝜂0 = (𝑣1(𝑡0), . . . , 𝑣𝑛(𝑡0)), 𝑥 ∈ crit(𝛿𝜂0 ,ℋ𝜀)}. This concludes

the proof.
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Now we aim to compute the limit of the critical points and their corresponding values of the restriction

of 𝛿 to the algebraic setℋ𝜀,𝑡 defined by 𝑓2 − 𝜀2 = 𝑤(𝑡) = 0. Note that Lemmas 5 and 6 imply that, for a

generic 𝑎 ∈ Q𝑛
+, the set of critical points crit(𝛿,ℋ𝜀,𝑡) is finite.

By [22, Theorems 1, 2], for generic values of 𝑎 ∈ Q𝑛
, we have that

lim
𝜀

crit(𝛿,ℋ𝜀,𝑡) ⊂ ⟨𝑓⟩+
⟨
𝑤(𝑡), 𝑦 · 𝜕𝑓

𝜕𝑥𝑖
− 𝜕𝛿

𝜕𝑥𝑖
for every 1 ≤ 𝑖 ≤ 𝑛

⟩
∩Q[𝑥, 𝑡]

and the ideal on the right-hand side is zero-dimensional.

From the above inclusion, one can follow a similar computation as in [22] using the geometric resolution

algorithm [14]. However, as the degree of 𝑤(𝑡) is bounded by 2𝐷(𝐷 − 1)𝑛−1
(see Section 5), such a

computation would lead to an arithmetic complexity 𝐷𝑂(𝑛2)
.

A workaround to obtain a better complexity is to use a variant of geometric resolution over the quotient

ring A = Q[𝑡]/⟨𝑤(𝑡)⟩ as explained in [25, Appendix J]. Note that 𝑤(𝑡) is not necessarily irreducible, the

extension A is only a product of fields and doing the computation over the ring A is not trivial. We will see

in Subsection 5 that this approach allows us to obtain an algorithm with arithmetic complexity lying in

𝐷𝑂(𝑛)
.

Our subroutine ComputeE0 is designed as follows.

a) First, we call a subroutine ParametricCurve that takes as input 𝑓 , C , 𝑎 ∈ Q𝑛
+ and 𝑖 ∈ {1, . . . , 𝑛} and

computes a one-dimensional parametrization J𝑖 over Q[𝑡]/⟨𝑤(𝑡)⟩ of the system(︂
𝜕𝛿

𝜕𝑥𝑗
· 𝜕𝑓
𝜕𝑥𝑖
− 𝜕𝛿

𝜕𝑥𝑖
· 𝜕𝑓
𝜕𝑥𝑗

= 0

)︂
𝑗∈{1,...,𝑛}∖{𝑖}

and

𝜕𝑓

𝜕𝑥𝑖
̸= 0.

An explicit description of this subroutine can be found in [25, Appendix J.5].

b) Next, we compute a zero-dimensional parametrization E𝑖 of the intersection ofℋ = 𝑉 (𝑓) with the

sets of solutions defined by the parametrizations J𝑖 above.

This is done by calling a subroutine IntersectCurve on the input J𝑖 and 𝑓 , which is described also

in [25, Appendix J.5].

c) We then call a subroutine Union that computes a zero-dimensional parametrization E that defines

∪𝑛𝑖=1𝑍(E𝑖).

d) Finally, taking as input the zero-dimensional parametrization E , we call a subroutine GetE0 that

computes the required value 𝑒0. This can be done by calling FGLM algorithm [12] to compute a

polynomial 𝑃 (𝑒) whose solutions encode the values 𝑒 =
∑︀

𝑖=1 𝑎𝑖(𝑥𝑖 − 𝑣𝑖(𝑡))
2

for 𝑥 ∈ 𝑍(E ) and

𝑤(𝑡) = 0. Next, we evaluate a lower bound of the minimal distance between the roots of 𝑃 (𝑒)
using [2, Proposition 10.23].
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Algorithm 2: ComputeE0
Input: 𝑓 ∈ Q[𝑥1, . . . , 𝑥𝑛], C = (𝑤(𝑡), 𝑣1(𝑡), . . . , 𝑣𝑛(𝑡)) and 𝑎 ∈ Q𝑛

+

Output: 𝑒0 ∈ Q
1 𝛿 ← 𝑎1(𝑥1 − 𝑣1(𝑡))

2 + . . .+ 𝑎𝑛(𝑥𝑛 − 𝑣𝑛(𝑡))
2

2 for 1 ≤ 𝑖 ≤ 𝑛 do
3 J𝑖 ← ParametricCurve(𝑓,𝑎,C , 𝑖)
4 E𝑖 ← IntersectCurve(J𝑖, 𝑓)

5 E ← Union(E1, . . . ,E𝑛)
6 𝑒0 ← GetE0(E )
7 return 𝑒0

4.3 The first variant of IsIsolated

In this subsection, we explain the details of the first variant of IsIsolated.

Using the value 𝑒0 output by Algorithm 2, Proposition 2 allows one to identify the isolated points ofℋ
among the candidates by checking whether the polynomial system

𝑓(𝑥1, . . . , 𝑥𝑛) =
𝑛∑︁

𝑖=1

𝑎𝑖(𝑥𝑖 − 𝜂𝑖)
2 − 𝑒0 = 0

admits real solutions for each candidate 𝜂 = (𝜂1, . . . , 𝜂𝑛) ∈ C ∩ R𝑛
. Again, one can consider the system

𝑓(𝑥1, . . . , 𝑥𝑛) =
𝑛∑︁

𝑖=1

𝑎𝑖(𝑥𝑖 − 𝑣𝑖(𝑡))
2 − 𝑒0 = 𝑤(𝑡) = 0 (5)

to handle all the candidates at once.

Let𝒲𝑡 ⊂ C𝑛+1
be the algebraic set defined the equation (5). Our strategy is to compute a finite subset

of𝒲𝑡 ∩R𝑛+1
that intersects every connected component of𝒲𝑡 ∩R𝑛+1

. Then, all the real 𝑡-coordinates of

those sample points correspond to the isolated points ofℋ ∩ R𝑛
.

We consider the polynomial

𝐹 = 𝑓(𝑥1, . . . , 𝑥𝑛)
2 +

(︃
𝑛∑︁

𝑖=1

𝑎𝑖(𝑥𝑖 − 𝑣𝑖(𝑡))
2 − 𝑒0

)︃2

.

Note that 𝐹 + 𝑤(𝑡)2 defines also the real algebraic set𝒲𝑡 ∩ R𝑛+1
. Therefore, the sample points above can

be computed using the algorithm of [22] on the input 𝐹 + 𝑤(𝑡)2 ⊂ Q[𝑡, 𝑥1, . . . , 𝑥𝑛]. Such an algorithm

returns a zero-dimensional parametrization over Q that defines a finite set intersects every connected

component of𝒲𝑡. Since the total degree of 𝐹 +𝑤(𝑡)2 can go up to 𝑂(𝐷𝑛), this computation faces the same

complexity issue as in Subsection 4.2. Again, we can bypass this problem by solving over A[𝑥1, . . . , 𝑥𝑛]
where A = Q[𝑡]/⟨𝑤(𝑡)⟩.

Let 𝐵 be a matrix randomly chosen from GL(𝑛,Q) and 𝐹𝐵(𝑥) = 𝐹 (𝐵 · 𝑥). We apply the geometric

resolution algorithm over A on the system of equations:

𝐹𝐵 = 0,
𝜕𝐹𝐵

𝜕𝑥𝑗
= 0,

𝜕𝐹𝐵

𝜕𝑥1
̸= 0.
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This algorithm returns a zero-dimensional parametrization (𝑈(𝑧), 𝑉1(𝑧), . . . , 𝑉𝑛(𝑧)) over the ring A, which

means that 𝑉1, . . . , 𝑉𝑛 and 𝑈 are elements of A[𝑧], such that, for any real solution 𝑡0 of 𝑤(𝑡), the finite set

defined by

{(𝑉1(𝑡0, 𝑧), . . . , 𝑉𝑛(𝑡0, 𝑧)) | 𝑧 ∈ R, 𝑈(𝑡0, 𝑧) = 0}

intersects every connected component of

𝑓(𝑥1, . . . , 𝑥𝑛) =
𝑛∑︁

𝑖=1

𝑎𝑖(𝑥𝑖 − 𝑣𝑖(𝑡0))
2 − 𝑒0 = 0.

Hence, the isolated points ofℋ ∩ R𝑛
are indeed

{(𝑣1(𝑡), . . . , 𝑣𝑛(𝑡)) | (𝑡, 𝑧) ∈ R2 : 𝑤(𝑡) = 𝑈(𝑡, 𝑧) = 0}.

Our problem boils down to solving the bivariate system 𝑤(𝑡) = 𝑈(𝑡, 𝑧) = 0 over R2
.

In Algorithm 3 below, we introduce two subroutines:

• BivariatePolynomial takes as input the polynomials 𝐹 and 𝑤(𝑡) and returns the eliminating polyno-

mial 𝑈(𝑡, 𝑧). It uses the geometric resolution algorithm over A described in [25, Appendix J].

• BivariateSolve takes as input 𝑤(𝑡) and 𝑈(𝑡, 𝑧) and returns the set B of intervals that isolate the real

roots of 𝑤(𝑡) corresponding to I (ℋ). Such a subroutine can be designed efficiently with resultants.

Algorithm 3: The first variant of IsIsolated
Input: 𝑓 , C = (𝑤(𝑡), 𝑣1(𝑡), . . . , 𝑣𝑛(𝑡)), 𝑎 and 𝑒0
Output: A set B of isolating intervals

1 𝐹 ← 𝑓(𝑥1, . . . , 𝑥𝑛)
2 +

(︀∑︀𝑛
𝑖=1 𝑎𝑖(𝑥𝑖 − 𝑣𝑖(𝑡))

2 − 𝑒0
)︀2

2 𝑈(𝑡, 𝑧)← BivariatePolynomial(𝐹,𝑤(𝑡))
3 B ← BivariateSolve(𝑤(𝑡), 𝑈(𝑡, 𝑧))
4 return B

4.4 Approximations of the candidates

This subsection describes the design of the second variant of IsIsolated. This variant does not require solving

polynomial systems in the quotient ring Q[𝑡]/⟨𝑤(𝑡)⟩ but is based mostly on isolating the candidates from

the parametrization C . The main idea is to replace the candidate 𝜂 in the criteria provided by Proposition 2

by a rational approximation 𝜂 ∈ Q𝑛
. This allows the subroutine presented in Algorithm 4 to involve only

the real points defining by C and not its whole complex solution set.

To compute the approximations, we first identify how close the points 𝜂 and 𝜂 need to be. The lemma

below shows that requiring 𝑑𝑎(𝜂,𝜂) <
√
𝑒0/2 is enough.

Lemma 7. Let 𝜂 ∈ C∩R𝑛 and 𝜂 be a point in R𝑛 satisfying 𝑑𝑎(𝜂,𝜂) <
√
𝑒0/2. Then, 𝜂 is an isolated point

ofℋ if and only ifℋ does not intersect the sphere 𝑆(𝜂,
√
𝑒0/2).

Proof. If the set {𝑥𝜀 ∈ crit(𝛿𝜂,𝒱𝜀) ∩ R⟨𝜀⟩𝑛𝑏 , lim𝜀 𝑥𝜀 ̸= 𝜂} is empty, then, by Lemma 4, ℋ is either a

single point 𝜂 or an unbounded connected set containing 𝜂. In either case, the conclusion of Lemma 7 is

immediate. Thus, in what follows, {𝑥𝜀 ∈ crit(𝛿𝜂,𝒱𝜀) ∩ R⟨𝜀⟩𝑛𝑏 , lim𝜀 𝑥𝜀 ̸= 𝜂} is assumed to be non-empty.

14



We prove now the necessary implication. Assume that 𝜂 is an isolated point of ℋ. By Lemma 3, the

intersection of ℋ and 𝑆(𝜂,
√
𝑒) is empty for every 𝑒 ∈]0, 𝑒0[. So, 𝜂 is the only point of ℋ lying in the

open ball 𝐵(𝜂,
√
𝑒0). Since 𝑑𝑎(𝜂,𝜂) <

√
𝑒0/2, the candidate 𝜂 does not lie on the sphere 𝑆(𝜂,

√
𝑒0/2).

Moreover, 𝑆(𝜂,
√
𝑒0/2) is contained in the open ball 𝐵(𝜂,

√
𝑒0). Then, 𝑆(𝜂,

√
𝑒0/2) ∩ℋ = ∅.

Now we turn to the sufficient implication. Assume by contradiction that 𝜂 is not isolated in ℋ. By

Lemma 3, the connected component 𝒞𝜂 ofℋ containing 𝜂 intersects the sphere 𝑆(𝜂,
√
𝑒0). So, there exists

a semi-algebraic continuous function 𝛾 : [0, 1] → 𝒞𝜂 such that 𝛾(0) = 𝜂 and 𝛾(1) lying on the sphere

𝑆(𝜂,
√
𝑒0). We have that

𝑑𝑎(𝛾(1),𝜂) ≥ 𝑑𝑎(𝛾(1),𝜂)− 𝑑𝑎(𝜂,𝜂) >
√
𝑒0 −

√
𝑒0/2 =

√
𝑒0/2.

As 𝑑𝑎(𝛾(0),𝜂) <
√
𝑒0/2 and 𝑑𝑎(𝛾(1),𝜂) >

√
𝑒0/2, by the intermediate value property [2, Proposition

3.5], there exists 𝑡0 ∈]0, 1[ such that 𝑑𝑎(𝛾(𝑡0),𝜂) =
√
𝑒0/2. This implies that the intersection of ℋ and

𝑆(𝜂,
√
𝑒0/2) is not empty, which concludes our proof.

Let 𝑡𝜂 be the real root of 𝑤(𝑡) corresponding to 𝜂, i.e., 𝜂 = (𝑣1(𝑡𝜂), . . . , 𝑣𝑛(𝑡𝜂)). To apply Lemma 7,

we need to choose 𝑡𝜂 ∈ Q such that the rational point 𝜂 = (𝑣1(𝑡𝜂), . . . , 𝑣𝑛(𝑡𝜂)) satisfies that 𝑑𝑎(𝜂,𝜂) <√
𝑒0/2. This leads us to identify 𝜌 > 0 such that |𝑡𝜂 − 𝑡𝜂| < 𝜌 implies

𝑎1(𝑣1(𝑡𝜂)− 𝑣1(𝑡𝜂))
2 + . . .+ 𝑎𝑛(𝑣𝑛(𝑡𝜂)− 𝑣𝑛(𝑡𝜂))

2 <
𝑒0
4
.

Lemma 8 below allows us to compute explicitly an appropriate value for 𝜌.

Lemma 8. Let {𝑡1, . . . , 𝑡ℓ} be the distinct real roots of 𝑤(𝑡) = 0 and {𝜂1, . . . ,𝜂ℓ} be the corresponding
candidates.

We consider a set of intervals (𝐼𝑗)1≤𝑗≤ℓ such that

• The intervals 𝐼𝑗 are pairwise disjoint.

• The interval 𝐼𝑗 contains only 𝑡𝑗 as a real root of 𝑤(𝑡).

For each 1 ≤ 𝑖 ≤ 𝑛, let 𝐾𝑖 = maxℓ𝑗=1max𝑡∈𝐼𝑗 |𝑣′𝑖(𝑡)|. Then, for any 1 ≤ 𝑗 ≤ ℓ and 𝑡𝜃 such that 𝑡𝜃 ∈ 𝐼𝑗 and

|𝑡𝜃 − 𝑡𝑗 | < 1
𝐾𝑖
·
√︁

𝑒0
4𝑛𝑎𝑖

, we have the following inequality:

|𝑣𝑖(𝑡𝜃)− 𝑣𝑖(𝑡𝑗)| <
√︂

𝑒0
4𝑛𝑎𝑖

.

Let 𝜌 ≤ min𝑛𝑖=1
1
𝐾𝑖
·
√︁

𝑒0
4𝑛𝑎𝑖

. For any real root 𝑡𝜂 of 𝑤(𝑡) and 𝑡𝜃 ∈ 𝐼𝑗 such that |𝑡𝜃 − 𝑡𝜂| < 𝜌, we have that

𝑑𝑎(𝜃,𝜂) <

√
𝑒0
2

.

Proof. For 1 ≤ 𝑗 ≤ ℓ and any 𝑡𝜃 ∈ Q, we have that

𝑣𝑖(𝑡𝜃)− 𝑣𝑖(𝑡𝑗) = 𝑣′𝑖(𝑡𝑗)(𝑡𝜃 − 𝑡𝑗),

where 𝑡 ∈ R lies between 𝑡𝜃 and 𝑡𝑗 .
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For 𝑡 ∈ 𝐼𝑗 =]𝑟𝑗 , 𝑠𝑗 [, by the definition of 𝐾𝑖, we have |𝑣′𝑖(𝑡)| ≤ 𝐾𝑖. Then, for 𝑡𝜃 ∈ 𝐼𝑗 such that

|𝑡𝜃 − 𝑡𝑗 | < 1
𝐾𝑖
·
√︁

𝑒0
4𝑛𝑎𝑖

, we have

|𝑣𝑖(𝑡𝜃)− 𝑣𝑖(𝑡𝑗)| = |𝑣′𝑖(𝑡𝑗) · (𝑡𝜃 − 𝑡𝑗)| ≤ 𝐾𝑖 · |𝑡𝜃 − 𝑡𝑗 | <
√︂

𝑒0
4𝑛𝑎𝑖

.

Now we take 𝜌 ≤ min𝑛𝑖=1
1
𝐾𝑖
·
√︁

𝑒0
4𝑛𝑎𝑖

. If 𝑡𝜃 ∈ 𝐼𝑗 and |𝑡𝜃 − 𝑡𝑗 | < 𝜌, then we have

𝑑𝑎(𝜃,𝜂𝑗) =

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

𝑎𝑖(𝑣𝑖(𝑡𝜃)− 𝑣𝑖(𝑡𝑗))2 <

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

𝑒0
4𝑛

=

√
𝑒0
2

.

Lemmas 7 and 8 provides us the ingredients to design Algorithm 4. It requires us to introduce two

subroutines Isolate and MaxOverInterval below.

• We need two versions of Isolate. The first one takes as input a polynomial 𝑝 ∈ Q[𝑡] and returns a set

of disjoint intervals of rational extremities isolating the real roots of 𝑝.

Besides the polynomial 𝑝 ∈ Q[𝑡], the second version of Isolate requires a positive 𝜌 ∈ Q as input and

returns the intervals of length at most 𝜌 that isolate the real roots of 𝑝.

The explicit descriptions of both of these real root isolating algorithms are given in [21].

• MaxOverInterval takes as input a polynomial 𝑝 ∈ Q[𝑡] and an interval [𝑟, 𝑠] where 𝑟, 𝑠 ∈ Q and

returns an upper bound ofmax𝑡∈[𝑟,𝑠] |𝑝(𝑡)|. Such a subroutine can be implemented using the following

naive bound:

max
𝑡∈[𝑟,𝑠]

|𝑝(𝑡)| ≤
deg(𝑝)∑︁
𝑖=0

|𝑐𝑖|

where 𝑝
(︁

𝑡−𝑟
𝑠−𝑟

)︁
= 𝑐0 · 𝑡deg(𝑝) + · · ·+ 𝑐deg(𝑝).

Algorithm 4 proceeds through these following steps:

a) We call Isolate on the input 𝑤(𝑡) to obtain a set of intervals 𝐼𝑗 that isolate the real roots of 𝑤(𝑡) and

compute 𝐾𝑖 = maxℓ𝑗=1max𝑡∈𝐼𝑗 |𝑣′𝑖(𝑡)| using the subroutine MaxOverInterval on the input 𝑣′𝑖(𝑡) and

each interval 𝐼𝑗 .

b) We then compute 𝜌 ∈ Q such that 0 < 𝜌 ≤ min𝑛𝑖=1
1
𝐾𝑖
·
√︁

𝑒0
4𝑛𝑎𝑖

and use Isolate on the polynomial

𝑤(𝑡) and the precision 𝜌 to obtain a set of intervals 𝐼𝑗 such that each 𝐼𝑗 contains exactly one real

root of 𝑤(𝑡) and |𝐼𝑗 | < 𝜌.

c) For 1 ≤ 𝑗 ≤ ℓ, we choose a point 𝑡𝑗 in 𝐼𝑗 ∩ 𝐼𝑗 ∩Q and evaluate 𝜂𝑗 = (𝑣1(𝑡𝑗), . . . , 𝑣𝑛(𝑡𝑗)).

The set C̃ of the approximations is taken as {(𝜂𝑗 , 𝐼𝑗 | 1 ≤ 𝑗 ≤ ℓ}.
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d) Finally, we decide whether the system

𝑓(𝑥1, . . . , 𝑥𝑛) =
𝑛∑︁

𝑖=1

𝑎𝑖(𝑥𝑖 − 𝜂𝑖)
2 − 𝑒0

4
= 0

has a real solution for each approximation 𝜂 and return those which do not.

We summarize Section 4 in Algorithm 4 below, which is our second variant of IsIsolated.

Algorithm 4: Algorithm IsIsolated-Approx
Input: 𝑓 , C = (𝑤(𝑡), 𝑣1(𝑡), . . . , 𝑣𝑛(𝑡)), 𝑎 ∈ Q𝑛

+ and 𝑒0 ∈ Q
Output: A set of isolating interval B

1 {𝐼1, . . . , 𝐼ℓ} ← Isolate(𝑤(𝑡))
2 for 𝑖 ∈ {1, . . . , 𝑛} do
3 𝐾𝑖 ← maxℓ𝑗=1MaxOverInterval(𝑣′𝑖(𝑡), 𝐼𝑗)

4 {𝐼1, . . . , 𝐼ℓ} ← Isolate
(︁
𝑤(𝑡), 𝜌 = min𝑛𝑖=1

1
𝐾𝑖
·
√︁

𝑒0
4𝑛𝑎𝑖

)︁
5 for 𝑗 ∈ {1, . . . , ℓ} do
6 𝑡𝑗 ∈ 𝐼𝑗 ∩ 𝐼𝑗
7 𝜂𝑗 ← (𝑣1(𝑡𝑗), . . . , 𝑣𝑛(𝑡𝑗))

8 C̃← {(𝜂𝑗 , 𝐼𝑗) | 1 ≤ 𝑗 ≤ ℓ}, B ← ∅
9 for (𝜂, 𝐼𝜂) ∈ C̃ do
10 if HasRealSolutions(𝜂, 𝑓,𝑎, 𝑒0) = false then
11 B ← B ∪ 𝐼𝜂

12 return B

Remark 1. From a computational point of view, checking the intersection ofℋ with a sphere defined by a
quadric would increase the bit-size coefficients. Actually, we can take any hypercube such that it contains
the candidate 𝜂 in its interior and is contained in the ball 𝐵(𝜂, 𝑒0) and check whether the boundary of this
hypercube intersects ℋ. This leads us to check the emptiness of semi-algebraic sets defined by 𝑓 = 0 and
some linear polynomial inequalities; the polynomials involve in such a computation have smaller degrees and
bit-sizes than the ones in the computation with spheres.

5 Complexity analysis

The main objective of this subsection is to establish the complexity results for two variants of Algorithm 1.

We start with the complexity estimation for the variant using Algorithm 3 for IsIsolated.

Theorem 1. Let 𝑓 ∈ Q[𝑥1, . . . , 𝑥𝑛]. Then, the variant of Algorithm 1 which uses Algorithm 3 computes the
real isolated points of the algebraic hypersurface defined by 𝑓 within 𝑂̃︀(︀64𝑛𝐷8𝑛

)︀
arithmetic operations in

Q and one call of real root isolation on a univariate polynomial of degree bounded by 2𝑛+2𝐷2𝑛.

Proof. We start with the subroutine Candidates. Since crit(𝜋𝑖,ℋ𝐴
𝜀 ) is finite and defined by

(𝑓𝐴 − 𝜀) · (𝑓𝐴 + 𝜀) = 0,
𝜕𝑓𝐴

𝜕𝑥𝑗
= 0 for all 𝑗 ̸= 𝑖,
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its degree is bounded by 2𝐷(𝐷 − 1)𝑛−1
using Bézout bound. Consequently, the degree of the output

zero-dimensional parametrization is bounded by 2𝐷(𝐷 − 1)𝑛−1
.

Using [22, Theorem 4] (which is based on the geometric resolution algorithm in [14]), each zero-

dimensional parametrization of crit(𝜋𝑖,ℋ𝐴
𝜀 ) is computed within 𝑂̃︀(︀𝐷3𝑛

)︀
arithmetic operations in Q. The

last step which takes intersections of those parametrizations is done using the algorithm in [25, Appendix

J.1] ; it does not change the asymptotic complexity.

Hence, computing the parametrization C encoding the candidates can be done within 𝑂 ̃︀(︀𝐷3𝑛
)︀

arithmetic operations in Q and the degrees of the polynomials 𝑤(𝑡), 𝑣1(𝑡), . . . , 𝑣𝑛(𝑡) are bounded by

2𝐷(𝐷 − 1)𝑛−1
. It remains to estimate the arithmetic complexity of the subroutines ComputeE0 and

IsIsolated.

Let 𝜅 be the degree of 𝑤(𝑡). Algorithm 2 (ComputeE0) relies on computing the limit of crit(𝛿,ℋ𝜀,𝑡) ∩
C⟨𝜀⟩𝑛𝑏 , whereℋ𝜀,𝑡 is the algebraic set defined by

(𝑓 − 𝜀) · (𝑓 + 𝜀) = 0, 𝑤(𝑡) = 0 (6)

and 𝛿 is the distance function

(𝑥1, . . . , 𝑥𝑛) ↦→
𝑛∑︁

𝑖=1

𝑎𝑖(𝑥𝑖 − 𝑣𝑖(𝑡))
2

We use the algorithm of [22] on the function 𝛿 for the resolution of polynomial systems in the quotient

ring Q[𝑡]/⟨𝑤(𝑡)⟩. Using Bézout’s bound on the system

𝑓2 − 𝜀2 = 𝑦 · 𝜕𝑓
𝜕𝑥1
− 𝜕𝛿

𝜕𝑥1
= · · · = 𝑦 · 𝜕𝑓

𝜕𝑥𝑛
− 𝜕𝛿

𝜕𝑥𝑛
= 0

defining crit(𝛿,ℋ𝜀,𝑡) over A, the degree of crit(𝛿,ℋ𝜀,𝑡) in C⟨𝜀⟩𝑛 is bounded by 2𝐷𝑛+1𝜅 ≤ 4𝐷𝑛+2(𝐷 −
1)𝑛−1 ≈ 4𝐷2𝑛+1

.

By [25, Appendix J.5], the arithmetic operations over A can be done using 𝑂̃︀(𝜅) operations in Q. Thus,

applying [22, Theorem 5], we obtain the complexity bound 𝑂̃︀(︀𝜅 ·𝐷3𝑛+2
)︀
≈ 𝑂̃︀(︀𝐷4𝑛+2

)︀
for obtaining

the zero-dimensional parametrization E in Algorithm 2.

The call to GetE0 computes from the zero-dimensional parametrization E a univariate polynomial

𝑃 (𝑒) ∈ Q[𝑒] whose solutions are the critical values of 𝛿 restricted to 𝒱𝜀. Since the degree of 𝑃 (𝑒) is bounded

by 4𝐷2𝑛+1
, this can be done using FGLM algorithm [12] within 𝑂̃︀(︀𝐷6𝑛+3

)︀
arithmetic operations over Q.

Next, it computes the minimal distance between the real roots of 𝑃 (𝑒) using [2, Proposition 10.23]. The

complexity of this computation is linear in the degree of 𝑃 (𝐸). Thus, it does not change the asymptotic

complexity of Algorithm 2.

Therefore, Algorithm 2 can be done within 𝑂̃︀(𝐷6𝑛+3) arithmetic operations in Q.

Algorithm 3 is basically computing sample points of the hypersurface

𝐹 = 𝑓(𝑥1, . . . , 𝑥𝑛)
2 +

(︃
𝑛∑︁

𝑖=1

𝑎𝑖(𝑥𝑖 − 𝑣𝑖(𝑡))
2 − 𝑒0

)︃2

over the quotient ring Q[𝑡]/⟨𝑤(𝑡)⟩. Again, we follow the algorithm of [22] on the input 𝐹 with the extended

version of geometric resolution to the quotient ring A. By [22, Theorem 6] with the overcost 𝑂̃︀(𝜅) of

arithmetic operations over A, we obtain the complexity bound

𝑂̃︀(︀𝜅 · (2𝐷)3𝑛+2
)︀
≈ 𝑂̃︀(︀8𝑛𝐷4𝑛+2

)︀
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for MinimalPolynomial.
The output polynomial 𝑈(𝑡, 𝑧) has degree at most (2𝐷)𝑛 in 𝑧 and 𝜅 in 𝑡 so its total degree is bounded

by (2𝐷)𝑛 + 𝜅. Therefore, solving the bivariate system

𝑤(𝑡) = 𝑈(𝑡, 𝑧) = 0

can be done within

𝑂̃︀(︁((2𝐷)𝑛 + 𝜅)4 𝜅2 ((2𝐷)𝑛 + 𝜅)2
)︁
≈ 𝑂̃︀(︀64𝑛𝐷8𝑛

)︀
arithmetic operations in Q using geometric resolution. In the end, one needs to isolate the real roots of

the eliminating polynomial output by the geometric resolution. That polynomial has degree bounded by

𝜅((2𝐷)𝑛 + 𝜅) ≤ 2𝑛+2𝐷2𝑛
.

Adding up all the steps, we obtain the arithmetic complexity of Algorithm 1, which lies in 𝑂̃︀(︀64𝑛𝐷8𝑛
)︀

with a call to real root isolation on a polynomial of degree bounded by 2𝑛+2𝐷2𝑛
.

Note that for implementing our algorithm, we would mainly rely on Algorithm 4 (IsIsolated-Approx).

Hence, we dedicate the rest of this subsection to discuss its complexity. The complexity result of our

algorithm using Algorithm 4 is stated as follows.

Theorem 2. Let 𝑓 ∈ Q[𝑥1, . . . , 𝑥𝑛]. Then, the variant of Algorithm 1 which uses Algorithm 4 requires
𝑂̃︀(︀𝐷6𝑛+3

)︀
arithmetic operations in Q and two real root isolating calls on a univariate polynomial of degree

bounded by 2𝐷(𝐷 − 1)𝑛−1.

Proof. Recall that Algorithm 4 computes an approximation 𝜂 = (𝜂1, . . . , 𝜂𝑛) for each candidate 𝜂 ∈ C∩R𝑛

and decides whether the system

𝑓(𝑥1, . . . , 𝑥𝑛) =
𝑛∑︁

𝑖=1

𝑎𝑖(𝑥𝑖 − 𝜂𝑖)
2 − 𝑒0

4
= 0

has a real solution. The arithmetic complexity for solving each of those decision problems lies in𝑂̃︀(︀8𝑛𝐷3𝑛+2
)︀

using [22]. Since the cardinality of C is bounded by 2𝐷(𝐷 − 1)𝑛−1
, Algorithm 4 runs within

𝑂̃︀(︀8𝑛𝐷4𝑛+2
)︀

arithmetic operations in Q.

Note that all the complexities above are dominated by the complexity

𝑂̃︀(︀𝐷6𝑛+3
)︀

of ComputeE0 (Algorithm 2).

It remains to estimate the complexity of computing the approximations, whose main steps consist

of calling MaxOverInterval and isolating the real roots of the eliminating polynomial 𝑤(𝑡) in the zero-

dimensional parametrization encoding C.

The subroutine MaxOverInterval is called 𝑛 times for the polynomials 𝑣′𝑖(𝑡); this would require

𝑂̃︀(deg(𝑤)) ≈ 𝑂̃︀(𝐷𝑛) arithmetic operations over Q.

Since each of ℓ evaluations 𝜂𝑗 ←
(︀
𝑣1(𝑡𝑗), . . . , 𝑣𝑛(𝑡𝑗)

)︀
takes 𝑂 (𝑛𝐷𝑛) arithmetic operations, the cost of

getting the approximations is bounded by

𝑂
(︀
𝑛𝐷2𝑛

)︀
.

19



The real root isolation is called twice in Algorithm 4 on the polynomial 𝑤(𝑡).
Summing up the above discussion, we conclude that Algorithm 4 requires

𝑂̃︀(︀8𝑛𝐷4𝑛+2
)︀

arithmetic operations in Q and two calls of real root isolation on a univariate polynomial of degree bounded

by 2𝐷(𝐷 − 1)𝑛−1
.

Furthermore, the complexity of real root isolation algorithms depends on the degree of the input

polynomial, which is 𝑤(𝑡) in our case, and its bit-size of coefficients. For instance, using the algorithm

of [26], we obtain a bit complexity

𝑂̃︀(︀deg(𝑤)3𝜏2)︀
where 𝜏 is the largest bit-size of coefficients of 𝑤(𝑡). While the degree of 𝑤(𝑡) is already bounded by

2𝐷(𝐷 − 1)𝑛−1
, 𝜏 is not estimated yet in this thesis. To identify a bound of 𝜏 , one needs to estimate the bit

complexity of the subroutine Candidates [17, Subsection 3.2], especially the algorithm for computing at

least one point per connected component of a real algebraic set given in [22]. This topic will be studied in

future research.

6 Optimizations

Even though computing the constant 𝑒0 requires at most 𝐷𝑂(𝑛)
arithmetic operations in Q, its performance

depends heavily on an efficient implementation of the geometric resolution algorithm over Q[𝑡]/⟨𝑤(𝑡)⟩,
which remains challenging to obtain. Thus, we aim to avoid such computations as much as possible. In

what follows, we present two subroutines which are launched to test whether it is necessary for computing

𝑒0. In most of the case, with theses subroutines, our algorithm will return the set of isolated points without

doing any further computation.

6.1 Heuristic identification of real isolated points

The optimization subroutine described in what follows computes efficiently a subset of the candidates

whose elements are isolated points of ℋ. To do so, we identify for each candidate 𝑥 a ball 𝐵 ∈ R𝑛
such

that when the intersection of the boundary of 𝐵 andℋ is empty, 𝑥 is isolated inℋ (but not the inverse).

This allows us to avoid the computation of 𝑒0.

We start with defining the set

C2 =

𝑛⋃︁
𝑖=1

lim
𝜀

crit(𝜋𝑖,𝒱𝜀) ∩ C⟨𝜀⟩𝑛𝑏 .

Note that the set of candidates C is a subset of C2. We have the following lemmas.

Lemma 9. For every bounded connected component 𝒞 of ℋ that is not a singleton, there exist at least two
points in C2 that belong to 𝒞.

Proof. Let 𝒞1, . . . , 𝒞𝑘 be the connected components of ℋ𝜀 ⊂ R⟨𝜀⟩𝑛 such that lim𝜀 𝒞𝑖 ⊂ 𝒞. By Lemma 2,

since 𝒞 is bounded, the 𝒞𝑖’s are bounded over R. Then, by [2, Proposition 12.49], lim𝜀 𝒞𝑖 is connected. On

the other hand, ∪𝑘𝑖=1 lim𝜀 𝒞𝑖 = 𝒞. As 𝒞 is not a singleton, there exists 1 ≤ 𝑖 ≤ 𝑘 such that lim𝜀 𝒞𝑖 is not a

singleton either.
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Now, since 𝒞𝑖 is a connected component of ℋ𝜀 that is bounded over R and not a singleton. Then,

there exists a coordinate 𝑥𝑗 such that the projection of lim𝜀 𝒞𝑖 on 𝑥𝑗 is an interval which is not a point.

Consequently, the projection of 𝒞𝑖 on the 𝑥𝑗-coordinate is a closed interval [𝛼, 𝛽] ⊂ R⟨𝜀⟩. Then, there

exist two points 𝑥𝛼 and 𝑥𝛽 such that 𝑥𝛼 and 𝑥𝛽 are in crit(𝜋𝑗 ,𝒱𝜀) ∩ 𝒞𝑖 and 𝜋(𝑥𝛼) = 𝛼 and 𝜋(𝑥𝛽) = 𝛽.

Since 𝜋𝑗(lim𝜀 𝑥𝛼) ̸= 𝜋𝑗(lim𝜀 𝑥𝛽), lim𝜀 𝑥𝛼 ̸= lim𝜀 𝑥𝛽 . Then lim𝜀 𝑥𝛼 and lim𝜀 𝑥𝛽 are two distinct points of

𝒞 ∩ lim𝜀 crit(𝜋𝑗 ,𝒱𝜀). As a consequence, there exists two distinct points in C2 that lie on 𝒞.

Proposition 3. Let C2 be defined as above. Let 𝑥 ∈ C ∩ R𝑛 and 𝐵 ⊂ R𝑛 be a ball such that C2 ∩𝐵 = {𝑥}
and 𝑥 is contained in the interior of 𝐵. Then, if the intersection of the boundary of 𝐵 andℋ is empty, 𝑥 is an
isolated point ofℋ.

Proof. Let 𝒞 be the connected component ofℋ containing 𝑥. If 𝒞 is unbounded, then 𝑥 is not an isolated

point and the intersection of the boundary 𝐵 withℋ is not empty. We now assume that 𝒞 is bounded.

We assume by contradiction that 𝒞 is not a singleton. By Lemma 9, there exists a point 𝑦 ∈ C2 ∩ R𝑛

such that 𝑦 ̸= 𝑥 and 𝑦 ∈ 𝒞. Since 𝑥 and 𝑦 lie on different sides of 𝐵. Hence, by intermediate value theorem,

the intersection of the boundary of 𝐵 andℋ is not empty, which ends the proof.

Recall that, in the subroutine Candidates in [17, Subsection 3.2], the zero-dimensional parametrization

encoding lim𝜀 crit(𝜋𝑖,𝒱𝜀) ∩ R⟨𝜀⟩𝑛𝑏 are already computed. Therefore, the union C2 can be obtained easily

by taking the union of those zero-dimensional parametrizations. Next, we isolate the candidates in C ∩ R𝑛

by balls such that each of them contains exactly on point of C2 ∩ R𝑛
.

Algorithm 5 contains the description of the subroutine SimpleIdentification. We call to a subroutine

BoxIsolate that takes as input a zero-dimensional parametrization encoding a subset of C𝑛
and computes

isolating boxes for its real zeros.

Algorithm 5: SimpleIdentification
Input: A zero-dimensional parametrization C2

Output: A set B1 of intervals of R
1 B1 ← ∅
2 Boxes← BoxIsolate(C2)
3 for box ∈ Boxes do
4 if box ∩ℋ = ∅ then
5 B1 ← B1 ∪ {𝑡-coordinate of box}

6 return B1

By Proposition 3, for each 𝑥 ∈ C such that the intersection of the ball isolating 𝑥 with ℋ is empty, we

conclude that 𝑥 is an isolated point ofℋ. For the non-empty intersections, we cannot decide whether 𝑥 is

isolated yet. The problem arises when the isolating boxes are not small enough so that they intersect not

only the connected component ofℋ containing 𝑥 but also some other connected component. When this

happens, one could try a smaller size of isolating boxes.

Remark 2. Actually, when all the candidates are truly isolated, the output of SimpleIdentification returns
always the correct and certified result. Therefore, no further computation is required. Note that each candidate
is the limit of some critical points of 𝒱𝜀 ∩C⟨𝜀⟩𝑛𝑏 for every projection 𝜋𝑖. We are not aware of any example that
such a candidate is not an isolated point. Thus, we believe that the computation by SimpleIdentification will be
enough for finding real isolated points in practice.
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6.2 Limits of critical curves

To compute a set of candidates, we consider the critical loci crit(𝜋𝑖,𝒱𝜀) for 1 ≤ 𝑖 ≤ 𝑛. Our second

optimization considers the critical loci of the projections on the plane; especially, the limits of those critical

loci are curves in R𝑛
whose real isolated points contain the isolated points ofℋ. Thus, one can compute a

superset of I (ℋ) through computing the real isolated points of limits of critical curves.

More precisely, for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, we denote by 𝜋𝑖,𝑗 the projection

𝜋𝑖,𝑗 : (𝑥1, . . . , 𝑥𝑛) ↦→ (𝑥𝑖, 𝑥𝑗).

Recall thatℋ𝜀 is a smooth algebraic set defined by

(𝑓 − 𝜀) · (𝑓 + 𝜀) = 0.

Lemma 10. Let 𝐴 ∈ GL(𝑛,Q). For every 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, the set of isolated points ofℋ𝐴 is contained in set
of real isolated points of lim𝜀 crit(𝜋𝑖,𝑗 ,ℋ𝐴

𝜀 ).

Proof. Let 𝑥 be an isolated point of ℋ𝐴
. By Proposition 1, 𝑥 ∈ lim𝜀 crit(𝜋𝑖,𝒱𝐴𝜀 ). Since crit(𝜋𝑖,𝒱𝐴𝜀 ) ⊂

crit(𝜋𝑖,𝑗 ,𝒱𝐴𝜀 ), we obtain 𝑥 ∈ lim𝜀 crit(𝜋𝑖,𝑗 ,𝒱𝐴𝜀 ). Note that lim𝜀 crit(𝜋𝑖,𝑗 ,𝒱𝐴𝜀 ) is a subset of 𝒱𝐴. Thus, if 𝑥
is isolated inℋ𝐴

, it is also an isolated point in lim𝜀 crit(𝜋𝑖,𝑗 ,𝒱𝐴𝜀 ) ∩ R𝑛
.

Remark 3. Note that a real isolated point of lim𝜀 crit(𝜋𝑖,𝑗 ,𝒱𝜀) is not necessarily isolated in ℋ. Take for
example the degenerate torus, given by the equation

(𝑥21 + 𝑥22 + 𝑥3)
2 − 4(𝑥21 + 𝑥22) = 0.

The real trace of lim𝜀 crit(𝜋1,2,𝒱𝜀) is the union of the point (0, 0) and the circle given by

𝑥21 + 𝑥22 − 4 = 𝑥3 = 0.

Hence, Lemma 10 allows us to obtain a superset of I (ℋ) only.

By [24, Theorem 2], for a generic change of variables 𝐴, the critical locus crit(𝜋𝑖,𝑗 ,ℋ𝐴
𝜀 ) is an equidi-

mensional algebraic set of dimension one defined by

(𝑓 − 𝜀) · (𝑓 + 𝜀) = 0,
𝜕𝑓

𝜕𝑥𝑘
= 0 for 1 ≤ 𝑘 ≤ 𝑛 and 𝑘 ̸= 𝑖, 𝑗.

The computation of lim𝜀 crit(𝜋𝑖,𝑗 ,ℋ𝐴
𝜀 ) can be done using a similar subroutine of [22]. For each 1 ≤ 𝑖, 𝑗 ≤ 𝑛,

we denote by 𝐽𝑖,𝑗 the ideal ⟨
𝜕𝑓

𝜕𝑥𝑘
= 0 for 1 ≤ 𝑘 ≤ 𝑛, 𝑘 ̸= 𝑖, 𝑗

⟩
.

Lemma 11. Let 𝜋𝑖,𝑗 be defined as above. There exists a non-empty Zariski open subset 𝒜 of GL(𝑛,C) such
that, for any 𝐴 ∈ 𝒜 ∩GL(𝑛,Q), the algebraic set 𝒞 defined by

𝑉

(︂⟨︀
𝑓𝐴
⟩︀
+ 𝐽𝑘 :

(︂
𝜕𝑓𝐴

𝜕𝑥𝑖

)︂∞

∩ 𝐽𝑘 :

(︂
𝜕𝑓𝐴

𝜕𝑥𝑗

)︂∞)︂
is equi-dimensional of dimension 1 and contains lim𝜀 crit(𝜋𝑖,𝑗 ,ℋ𝐴

𝜀 ).
As a consequence, any isolated point ofℋ𝐴 is also isolated in 𝒞 ∩ R𝑛.
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Proof. The proof of the first statement follows a similar outline of the proof of [22, Theorem 1 and Theorem

2]. From the inclusion

I (ℋ𝐴) ⊂ lim
𝜀

crit
(︀
𝜋𝑖,𝑗 ,𝒱𝐴𝜀

)︀
⊂ 𝒞 ∩ R𝑛 ⊂ ℋ𝐴,

we deduce that every real isolated point ofℋ𝐴
is also an isolated point of 𝒞 ∩ R𝑛

.

We define the subroutine CurveLimitCheck that takes as input 𝑓 ∈ Q[𝑥1, . . . , 𝑥𝑛] and 𝐴 ∈ GL(𝑛,Q)
and returns a set of isolating boxes B2. It calls to two subroutines:

• CurveLimit that takes as input 𝑓 , 𝐴 and a pair of index (𝑖, 𝑗) and returns the eliminating polynomial

of a rational parametrization encoding lim𝜀 crit(𝜋𝑖,𝑗 ,ℋ𝐴
𝜀 ). The design of this subroutine follows

Lemma 11.

• BivariateIsolated that takes as input a bivariate polynomial 𝑈𝑖,𝑗 and computes the boxes isolating the

real isolated points of 𝑉 (𝑈𝑖,𝑗). This can be done by computing a cylindrical algebraic decomposition

adapted to 𝑈𝑖,𝑗 = 0.

Algorithm 6: CurveLimitCheck
Input: 𝑓 ∈ Q[𝑥1, . . . , 𝑥𝑛], 𝐴 ∈ GL(𝑛,Q)
Output: A set B2 of intervals of R

1 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 do
2 𝑈𝑖,𝑗 ← CurveLimit(𝑓,𝐴, (𝑖, 𝑗))
3 boxes𝑖,𝑗 ← BivariateIsolated(𝑈𝑖,𝑗)

4 B2 ← ∩1≤𝑖,𝑗≤𝑛boxes𝑖,𝑗

5 return B2

Summary. To conclude this section, we show below the pseudo-code of our implementation. The

subroutine Candidates is modified so that it returns, besides C encoding the candidates, a zero-dimensional

parametrization C2 encoding the finite set C2.

Algorithm 7: Implementation of IsolatedPoints
Input: A polynomial 𝑓 ∈ Q[𝑥1, . . . , 𝑥𝑛]
Output: A zero-dimensional parametrization C and a set B of intervals of R

1 𝐴 chosen randomly in GL(𝑛,Q)
2 C ,C2 ← Candidates(𝑓,𝐴)
3 B1 ← SimpleIdentification(C2)
4 if |B1| = |C ∩ R𝑛| then
5 return B1

6 B2 ← CurveLimitCheck(𝑓,𝐴)
7 if |B1| = |B2| then
8 return B1

9 𝑎 chosen randomly in Q𝑛
+

10 𝑒0 ← ComputeE0(𝑓,C ,𝑎)
11 B ← IsIsolated-Approx(𝑓,C ,𝑎, 𝑒0)
12 return (C ,B)
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7 Experimental results

In this section, we report on practical performances of our algorithms. Computations were done on an

Intel(R) Xeon(R) CPU E7-4820 2GHz and 1.5 TB of RAM. Timings are given in seconds (s.), minutes (m.),

hours (h.) and days (d.).

We take sums of squares of 𝑛 random dense quadrics in 𝑛 variables (with a non-empty intersection

over R); we obtain dense quartics defining a finite set of points. None of the examples we considered could

be tackled using the implementation of CAD algorithm in Maple within 10 days.

Table 1 below reports on the timings of our implementation (Algorithm 7). Timings for the subroutine

Candidates are given in the column cand below. We use FGb library for computing Gröbner bases in order

to perform algebraic elimination in our algorithms. The subroutine HasRealSolutions in Algorithm 4 is

done by RAGlib. Solving of zero-dimensional systems in the whole algorithm is done by msolve and real

root isolation is done by the command RootFinding[Isolate] in maple.

The column cand2 shows the timings for computing the zero-dimensional parametrization C2 and

isolates its zeros (see Subsection 6.1). The column |real sols.|/ deg(𝑤) shows the number of real candidates

among the total number of candidates. This motivates the use of approximations, which runs only on

candidates in R𝑛
, instead of computing over Q[𝑡]/ ⟨𝑤(𝑡)⟩ which takes into account all candidates.

The column test1 reports on the timings of the first optimization (Algorithm 5). Exploiting the fact

that isolating boxes are given by linear inequalities, we tweak RAGlib for solving the associated decision

problems. As explained in the end of Subsection 6.1, by isolating C2 with a small enough boxes in the

subroutine SimpleIdentification, one can also obtain a certified output without computing 𝑒0. In our

examples, it is the case and we do not need to carry out further computations. Timings of other steps are

given as an indication for further researches.

Timings for ComputeE0 are given in the column e0. The columns approx and RAGlib respectively

give the timings for computing the approximations and solving the decision problem by RAGlib. Note that

the implementation used for two columns approx and RAGlib checks the emptiness of intersections ofℋ
with hypercubes (as explained in the end of Subsection 4.4). This computation is similar to the one of test1

with the main difference coming from the fact that the isolating boxes computed in approx requires more

precision. This results in linear polynomials, that define hypercubes, of larger bit-sizes, which makes the

column RAGlib slower than test1.

At the moment, we do not dispose of a geometric resolution algorithm for Q[𝑡]/ ⟨𝑤(𝑡)⟩. The implemen-

tation of ComputeE0 relies on available tools such as FGb, msolve that run over Q. The complexity of this

subroutine is actually bounded by 𝐷𝑂(𝑛2)
and the timings show that it is not practical. The value 𝑒0 in

these examples is obtained since we know in advance that the given real algebraic sets are finite.

𝑛 cand cand2 |real sols.|/ deg(𝑤) test1 total e0 apprx RAGlib

2 .1 s .1 s 1/4 .1 s .3 s 3 s .1 s .1 s

3 .2 s .3 s 4/8 6 s 7 s 1 m .1 s 10 s

4 1 s 4 s 2/16 1 m 1 m 20 h .1 s 2 m

5 20 s 90 s 2/32 10 m 12 m > 10 d .2 s 15 m

6 30 m 2.5 h 2/64 4 h 7 h > 10 d 20 s 6 h

Figure 1: Timings of Algorithm 7.
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