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Abstract

A finite group with an integer representation has a multiplicative action on the ring of Laurent
polynomials, which is induced by a nonlinear action on the complex torus. We study the structure of
the associated orbit space as the image of the fundamental invariants. For the Weyl groups of types A,
B, C and D, this image is a compact basic semi–algebraic set and we present the defining polynomial
inequalities explicitly. We show how orbits correspond to solutions in the complex torus of symmetric
polynomial systems and give a characterization of the orbit space as the positivity–locus of a symmetric
real matrix polynomial. The resulting domain is the region of orthogonality for a family of generalized
Chebyshev polynomials, which have connections to topics such as Fourier analysis and representations
of Lie algebras.

∗INRIA Méditerranée, Université Côte d’Azur, France
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Polynomial description for the T–Orbit Spaces of Multiplicative Actions

1 Introduction

The set of all orbits of a compact Lie group with an action on an affine variety is called orbit space. The
coordinate ring of this affine variety contains the ring of invariants as a finitely generated subalgebra and the
orbit space can be embedded into the variety defined by the syzygy ideal of the fundamental invariants. For
a group with a real representation and a linear action, the orbit space has the structure of a semi–algebraic
set and the defining polynomial equations and inequalities are given by a result due to Procesi and Schwarz
[PS85, Main Theorem]. We consider finite groups with an integer representation and a nonlinear action
on the complex torus with the aim to find such a polynomial description of the orbit space. The purpose
of this article is to show that for a Weyl group, the orbit space as the image of the complex torus under
fundamental invariants is a compact basic semi–algebraic set, and to characterize it as the positivity–locus
of an explicit symmetric matrix polynomial. Being able to effectively describe the structure of an orbit space
allows for applications in equivariant dynamical systems theory [Gat00, Theorem 4.2.1], symmetry reduction
for polynomial optimization [RTAL13, Theorem 5.2], complex analysis [Sja93, Proposition 1.15], differential
geometry [Dub98, Lemma 2.1] and quantum systems [GKP13, Section 2].

A finite group with an integer representation G has a nonlinear action on the algebraic torus, which leaves the
complex n–torus Tn invariant and induces an action on the ring of Laurent polynomials. Given a minimal
set of generators of the ring of invariants, so called fundamental invariants, the image of Tn under these
generators corresponds to the set of orbits Tn/G and is therefore an orbit space, which we call T–orbit
space of G. Such an action is called multiplicative [Lor05] and the invariant theory for this setting is related
to representations of Lie algebras [Bou68b, Hum72, Ser01, FH04]. Applications appear in Fourier analysis
[Bee91, MKNR12], cubature [Xu00, LX10, LSX12, Xu15, CH18] and interpolation [HS21].

For the Weyl groups of typesA, B, C and D, the ring of invariant Laurent polynomials is a polynomial algebra.
In these four cases, we find relations between the elementary symmetric polynomials and the fundamental
invariants. This gives rise to a symmetric polynomial system with complex variables. We show that a point
in the T–orbit space corresponds to such a system, having its solutions in Tn. This can be characterized by
positivity of a Hermite quadratic form.

In Section 2, we formally introduce T–orbit spaces of multiplicative actions by first defining the action of
a group with an integer representation on the ring of Laurent polynomials and then identifying it with the
multiplicative action on a group algebra of an invariant lattice. Here, we fix the notation for fundamental
invariants and explain the relevance of the cases where G is of type A, B, C or D. Following with Section 3,
we establish the necessary tools to study symmetric polynomial systems. For the needed characterizations,
we extract Corollaries 3.7 and 3.8.

We then proceed to the main results and give a polynomial description for the T–orbit space of G in terms of
an explicit symmetric matrix polynomial. The Sections 4 to 7 make the correspondence between points in the
T–orbit space and solutions of symmetric polynomial systems in Tn evident. We give explicit formulae for
invariants in Propositions 4.1, 5.1, 6.1 and 7.1 and apply the results from Section 3 to obtain Theorems 4.3,
5.3, 6.4 and 7.4. Examples accompany our results.

Motivated by the characterization due to Procesi and Schwarz [PS85], we formulate an alternative charac-
terization in Section 8 with a proof of the necessary condition. We introduce derivations on R[x±] and state
Conjecture 8.5 for groups which are not necessarily Weyl groups of crystallographic root systems.

The T–orbit spaces that we describe here as basic semi–algebraic sets also appear in other contexts of interest
to analysis. We show in Theorem 9.6, how the T–orbit spaces we characterize in this article are domains of
orthogonality for a family of generalized Chebyshev polynomials of the first kind [HW88, Theorem 5.1].
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Example 1.1.

1. Consider the group S2 n {±1}2, where S2 denotes the symmetric group. This is the Weyl group C2
with a multiplicative action on R[x1, x

−1
1 , x2, x

−1
2 ]. By Proposition 5.1, fundamental invariants of this

action are given by

Θ1(x1, x2) = 1/4 (x1 + x−11 + x2 x
−1
1 + x−12 x1) and

Θ2(x1, x2) = 1/4 (x1 + x−11 ) (x2 x
−1
1 + x−12 x1).

We can show with Theorem 5.3 that the T–orbit space as the image of ζ 7→ (Θ1(ζ),Θ2(ζ)) for ζ ∈ T2

is the compact basic semi–algebraic set {z ∈ R2 |H(z) � 0}, where

H(z) =

[
−2z21 + z2 + 1 −8z31 + 6z1z2 + 2z1

−8z31 + 6z1z2 + 2z1 −32z41 + 8z21 + 32z21z2 − 4z22 − 4z2

]
2. Further interesting examples, are the Weyl groups A3, B3 and C3. We have B3 ∼= C3, but we distinguish

them for their different actions. Visualizations of the associated T–orbit spaces are depicted below.
From this example, we can already suspect that the T–orbit space of a multiplicative action is in general
a compact, nonconvex domain with cusps.

(a) A3 (b) B3 (c) C3

Figure 1: The T–orbit spaces of the Weyl groups associated to the 3–dimensional root–systems.

2 Preliminaries

Let Q ⊆ K ⊆ C be a field of characteristic 0 and let n ∈ N.

In this section, we discuss the action of a finite group with a representation in GLn(Z) on the ring of Laurent
polynomials K[x±] = K[x1, x

−1
1 , . . . , xn, x

−1
n ], which is identified with the group algebra of an invariant

lattice. We motivate the problem of computing the T–orbit space as the image of the complex n–torus under
the fundamental invariants and then specify the problem for Weyl groups of crystallographic root systems.

2.1 Linear group actions on K[x±]

Let G be a finite group with an integer representation

% : G→ GLn(Z). (2.1)

Denote by (C∗)n := (C \ {0})n the algebraic n–torus. For x = (x1, . . . , xn) ∈ (C∗)n and a column vector

β = [β1, . . . , βn]t ∈ Zn, define xβ := xβ1

1 . . . xβnn . The matrix group G := %(G) has a nonlinear action on

4 Saturday 26th February, 2022
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(C∗)n, given by monomial maps

? : G × (C∗)n → (C∗)n,
(B, x) 7→ B ? x := (x1, . . . , xn)B

−1

= (xB
−1
·1 , . . . , xB

−1
·n ),

(2.2)

where B−1·i ∈ Zn denotes the i–th column vector of B−1 ∈ G for 1 ≤ i ≤ n. The coordinate ring of (C∗)n is
the ring of multivariate Laurent polynomials K[x±] := K[x1, x

−1
1 , . . . , xn, x

−1
n ]. The monomials of K[x±] are

all xα = xα1
1 . . . xαnn , where α ∈ Zn, and ? induces the linear action

· : G ×K[x±] → K[x±],
(B, xα) 7→ B · xα := xB α

(2.3)

on K[x±]. Hence, for f =
∑
α fα x

α ∈ K[x±] and B ∈ G, we write

(B · f)(x) = f(xB) =
∑
α

fα x
B α. (2.4)

If (B·f)(x) = f(x) for allB ∈ G, then f is called G–invariant. The set of all G–invariant Laurent polynomials
is a finitely generated, but not necessarily polynomial, K–algebra [Lor05, Corollary 3.3.2] denoted K[x±]G .

Define T := {x ∈ C | |x| = 1} ⊆ C∗ and denote by Tn the complex n–torus.

Lemma 2.1.

1. Tn is left invariant by the action ?, that is G ? Tn = Tn.

2. T is the maximal subset of C∗, which is closed with respect to inversion x 7→ 1/x and all elements
contained satisfy 1/x = x.

Proof. The first statement follows straightforward from the definition of the action.

T is closed under inversion. Assume that there exists T ( X ⊆ C∗ and x ∈ X \ T with modulus 0 < r 6= 1
and argument ϕ ∈ [0, 2π). Then 1/x = 1/r exp(−ϕ) 6= r exp(−ϕ) = x. �

Definition 2.2. Assume that K[x±]G = K[θ1, . . . , θm] for some m ∈ N. Let I ⊆ K[z] be the syzygy ideal of
the θ1, . . . , θm.

1. The generators θ1, . . . , θm ∈ K[x±]G are called fundamental invariants of G.

2. For α ∈ Zn, we call

Θα(x) :=
1

|G|
∑
B∈G

xB α ∈ K[x±]G

the orbit polynomial associated to α.

3. Define the map ϑ as

ϑ : Tn → V(I),
x 7→ (θ1(x), . . . , θm(x)),

where V(I) ⊆ Cm is the variety of I.

A basis for K[x±]G as a K–vector space is given by {Θα |α ∈ Zn/G} [Lor05, Equation (3.4)]. Our goal is to
describe the structure of the orbit space for the nonlinear action ? with fundamental invariants of K[x±]G .
To achieve this, we require the following statement.
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Theorem 2.3. The map

Tn/G → im(ϑ),
G ? x 7→ ϑ(x)

is well defined and bijective.

Proof. We follow the proof of [CLO15, §10, Theorem 10]. For x, y ∈ T with G?x = G?y, we have θi(x) = θi(y)
for all 1 ≤ i ≤ n by definition. Therefore, the map is well defined and surjective.

For injectiveness, assume that x, y ∈ T with G ? x ∩ G ? y = ∅. Define the set X := G ? x ∪ G ? y \ {y} ⊆ T.
Since G is finite, X is finite and there exists a f̃ ∈ C[x1, . . . , xn] with f̃(X) = {0}, f̃(y) 6= 0. For example

f̃ =
∏
x′∈X

n∏
i=1

(xi − x′i)

has the desired property. Consider C[x±] as a ring extension of C[x1, . . . , xn] and define

f :=
1

|G|
∑
B∈G

B · f̃ ∈ C[x±]G .

Then f(x) = 0 and f(y) = |StabG(y)|/|G| f̃(y) 6= 0 by definition, where StabG(y) denotes the stabilizer
subgroup of y in G. Since K[x±]G = K[θ1, . . . , θm] and K ⊆ C is a field extension, we have C[x±]G =
C[θ1, . . . , θm]. With f(x) 6= f(y), we obtain θi(x) 6= θi(y) for some 1 ≤ i ≤ m and thus ϑ(x) 6= ϑ(y). �

Lemma 2.4.

1. im(ϑ) is compact in (C∗)m.

2. ϑ separates the orbits Tn/G, that is for x, y ∈ T, ϑ(x) = ϑ(y) if and only if x ∈ G ? y.

Proof. im(ϑ) ⊆ V(I) is compact in (C∗)m as the image of the compact set Tn under a continuous map.

The second statement follows from Theorem 2.3. �

We conclude that there is a 1 : 1–correspondence between the orbits Tn/G and the image of ϑ.

Definition 2.5. We call T := im(ϑ) the T–orbit space of G.

The following statement gives a recurrence formula to iteratively compute orbit polynomials and will be used
in the proofs of Lemmas 6.2 and 7.2

Proposition 2.6. Let α, β ∈ Nn. We have Θ0 = 1 and

|G β|Θα Θβ =
∑
β′∈G β

Θα+β′ .

2.2 Weyl groups

Let Ω ⊆ Rn be an n–dimensional G–lattice and

π : G→ GLn(R),

6 Saturday 26th February, 2022
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a real representation of G, such that Ω is left invariant by the linear action of π(G) on Rn. For a fixed basis
{ω1, . . . , ωn} of Ω, the isomorphism of Z–modules Ω ∼= Zn is denoted by

q : Zn → Ω = Zω1 ⊕ . . .⊕ Zωn,
[α1, . . . , αn]t 7→ W α = α1 ω1 + . . .+ αn ωn,

(2.5)

whereW ∈ Rn×n is the matrix with columns ω1, . . . , ωn. Since Ω is left invariant, there exists a representation
% : G → GLn(Z), such that q ◦ %(s) = π(s) ◦ q for all s ∈ G. We obtain a K–algebra isomorphism between
the group algebra K[Ω] with basis {eµ |µ ∈ Ω} [Bou75] and the ring of Laurent polynomials K[x±] with basis
{xα |α ∈ Zn}, given by

K[x±] → K[Ω],
xα 7→ eq(α) = eα1 ω1+...+αn ωn .

(2.6)

Then K[Ω]G ∼= K[x±]G is finitely generated as a ring. The action of G on K[Ω] is called multiplicative, as
the basis {eµ |µ ∈ Ω} of K[Ω] is a multiplicative subgroup of the units in K[Ω].

The orbit polynomial in K[x±], which corresponds to ω = α1 ω1 + . . .+αn ωn, is Θα. We denote by θi := Θei

the orbit polynomial associated to ei ∈ Zn, which corresponds to ωi for 1 ≤ i ≤ n. When Ω is the weight
lattice of a crystallographic root system, we have the following specific result about the ring of invariants.

Theorem 2.7. [Bou68b, §3, Théorème 1] Let G be the Weyl group of an n–dimensional crystallographic root
system R and Ω be the weight lattice of R. Consider the corresponding integer representation % : G→ GLn(Z)
and let G = %(G). Then the orbit polynomials θ1, . . . , θn are algebraically independent and K[x±]G is the
polynomial algebra

K[x±]G = K[θ1, . . . , θn].

For the definition of a root system and its Weyl group, we refer to [Bou68b, §1, Définition 1]. The converse
“K[x±]G polynomial algebra ⇒ G Weyl group” of Theorem 2.7 also holds [Far86], and the equivalence
is analogous to the characterization of pseudoreflection groups by the Chevalley-Shephard-Todd theorem
[ST54].

Remark 2.8. For similar results over Z or over fields with positive characteristic, one can define the orbit
polynomial associated to ei ∈ Zn to be θ̃i :=

∑
β∈G ei x

β ∈ K[x±]G. Then consider the free group ring

Z[Ω]G ∼= Z[x±]G, which is the polynomial ring

Z[x±]G = Z[θ̃1, . . . , θ̃n].

2.3 Main results

For a finite group with an integer representation, the natural problem we pursue is to effectively describe the
image of the complex n–torus Tn under the fundamental invariants in terms of polynomial inequalities. The
aim of this article is to do this for Weyl groups by showing that there exists an n–dimensional R–subspace
W ⊆ Cn containing T and a matrix polynomial H ∈ K[z]n×n, such that for all z ∈ W , H(z) is symmetric
with real entries and z is contained in the T–orbit space T of G with respect to ϑ if and only if H(z) is
positive semi–definite. The reason that we specifically consider the Weyl groups of type A, B, C or D is the
following.

A crystallographic root system can be decomposed into irreducible components [Bou68b, §1.2, Proposition
6] and may be assumed to be reduced [Bou68b, §1.4, Proposition 13]. This leaves us with nine families,
which are denoted by An−1, Bn, Cn (n ≥ 2), Dn (n ≥ 3) for fixed n ∈ N, as well as E6, E7, E8, F4 and G2

[Bou68b, §4, Théorème 3]. In this article, we study the four infinite families An−1, Cn, Bn, Dn in Sections 4
to 7 for arbitrary n in this order. The associated Weyl groups are An−1, Cn, Bn, Dn. For these cases, we
present explicit matrix polynomials H ∈ K[z] in Theorems 4.3, 5.3, 6.4 and 7.4.

For arbitrary groups with an integer representation, we present a conjecture in Section 8.

7
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Convention: We assume K = Q. A root system is crystallographic, irreducible, reduced and represented
over (an R–subspace of) Rn. Its Weyl group G is a subgroup of On(R). Stabilizer subgroups of G, respectively
its integer representation G, are denoted by StabG(·), respectively StabG(·), where the action by either matrix
multiplication, Equation (2.2) or Equation (2.3) is evident from the argument.

The first observation we make for T–orbit spaces is the following fact.

Lemma 2.9. For z ∈ T , we have |zi| ≤ 1 for 1 ≤ i ≤ n. If −In ∈ G, then T ⊆ [−1, 1]n ⊆ Rn.

Proof. Let z = ϑ(x) for some x ∈ Tn. Then |zi| = |θi(x)| ≤ 1.

Furthermore, if −In ∈ G we have θi(x) = θi(x
−In) = θi(x) ∈ R for all x ∈ T. Hence, T ⊆ Rn is contained in

the cube [−1, 1]n. �

Remark 2.10. For all 1 ≤ i ≤ n, there exists a unique 1 ≤ j ≤ n, such that x−ei = x−1i ∈ G · xj = G · xej
for all x ∈ Tn. In other words, there exists a unique permutation σ ∈ Sn, such that θi(x

−In) = θσ(i)(x). To
enforce T ⊆ Rn in the case −In /∈ G, we can replace the i–th and j–th coordinate of ϑ by (θi + i θj)(x)/2 and
(θi − i θj)(x)/2. The situation occurs for An−1 and, when n is odd, also for Dn.

3 Symmetric polynomial systems

The four Weyl groups An−1, Bn, Cn and Dn each contain a subgroup isomorphic to the symmetric group Sn

and formulae for some specific invariants involve the elementary symmetric polynomials. This gives rise to
a symmetric polynomial system. In this section, we give a characterization for all solutions of such a system
being contained in Tn.

3.1 Solutions in Tn

Definition 3.1. The polynomials

σi(y1, . . . , yn) =
∑

J⊆{1,...,n}
|J|=i

∏
j∈J

yj ∈ Q[y1, . . . , yn]

for 1 ≤ i ≤ n are called the elementary symmetric polynomials in n indeterminates.

We shall be confronted with the following two types of polynomial systems in unknown y1, . . . , yn.

(I) σi(y1, . . . , yn) = (−1)i ci for 1 ≤ i ≤ n with c1, . . . , cn ∈ C
(II) σi(y1 + y−11 , . . . , yn + y−1n ) = (−1)i ci for 1 ≤ i ≤ n with c1, . . . , cn ∈ R

The goal of this section is to determine, whether all solutions y = (y1, . . . , yn) of system (I), respectively
system (II), are contained in the complex n–torus Tn. Recall Vieta’s formula

n∏
k=1

(x− rk) = xn +

n∑
i=1

(−1)i σi(r1, . . . , rn)xn−i ∈ C[x] (3.1)

for r1, . . . , rn ∈ C.

Lemma 3.2.

1. System (I) always has a solution in Cn. It is is unique up to permutation of coordinates.

8 Saturday 26th February, 2022
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2. The map
C∗ → C,
x 7→ (x+ x−1)

is surjective and the preimage of [−2, 2] is T.

3. System (II) always has a solution in (C∗)n. It is is unique up to permutation and inversion of coordi-
nates.

Proof. 1. By Equation (3.1), a solution of system (I) is the vector of roots of a polynomial with coefficients
given by the right hand side of system (I). Such a polynomial always has n unique roots in C.

2. For r ∈ C, consider the polynomial p := x2 − r x + 1 ∈ R[x]. Then 0 is not a root of p and r = x + 1/x
is in the image of the map. If r ∈ [−2, 2], then p has discriminant (r/2)2 − 1 ≤ 0 and its two roots are
x, x = x, x−1 = r/2± i

√
1− (r/2)2 ∈ T. On the other hand for x ∈ T, x+ x−1 = x+ x = 2<(x) ∈ [−2, 2].

3. By the second statement, we can now always write the roots of the polynomial with coefficients given by
the right hand side of system (II) as ri = yi + y−1i , which uniquely defines a solution up to permutation and
inversion. �

As a convention, we speak of “the” solution of system (I), respectively (II), from now on.

Proposition 3.3. For c1, . . . , cn ∈ R, the solution of system (II) is contained in Tn if and only if all the
roots of the univariate polynomial

xn + c1 x
n−1 + . . .+ cn ∈ R[x]

are contained in [−2, 2].

Proof. Let p := xn + c1 x
n−1 + . . . + cn ∈ R[x] with roots r1, . . . , rn ∈ C. If y ∈ (C∗)n is the solution of

system (II), then for all 1 ≤ i ≤ n, yi + y−1i is a root of p by Equation (3.1). Applying Lemma 3.2 yields
y ∈ Tn if and only if r1, . . . , rn ∈ [−2, 2]. �

The Chebyshev polynomial of the first kind associated to ` ∈ N is the unique univariate polynomial T` with
T`((x+x−1)/2) = (x`+x−`)/2. The set {T` | ` ∈ N} is a basis of R[x] as an R–vector space. For 0 6= p ∈ R[x]
or C[x], denote by Coeff(x`, p) the coefficient of the monomial x` in p for 0 ≤ ` ≤ deg(p).

Proposition 3.4. For c1, . . . , cn−1 ∈ C with ci = (−1)n cn−i and c0 := (−1)n cn := 1, the solution of system
(I) is contained in Tn if and only if all the roots of the univariate polynomial

Tn(x) + d1 Tn−1(x) + . . .+ dn−1 T1(x) +
dn
2
T0(x) ∈ R[x] with d` =

∑̀
i=0

ci c`−i ∈ R

are contained in [−1, 1].

Proof. By Equation (3.1), the solution of system (I) is contained in Tn if and only if all the roots of the
polynomial p := xn + c1 x

n−1 + . . .+ cn ∈ C[x] are contained in T.

Set p̃ := xn + c1 x
n−1 + . . .+ cn ∈ C[x]. The roots of p are nonzero, because p(0) = cn = (−1)n 6= 0. Since

p̃(x) = (−x)n p(x−1), the roots of pp̃ ∈ C[x] are the union of the roots of p and their inverses. Especially, all
the roots of pp̃ are contained in T. The coefficients of pp̃ satisfy

Coeff(x`, pp̃) =
∑̀
i=0

cn−i cn−`+i =
∑̀
i=0

ci c`−i =


∑̀
i=0

Coeff(xn−i, p̃) Coeff(xn−`+i, p) = Coeff(x2n−`, pp̃)

b(`−1)/2c∑
i=0

(ci c`−i + c`−i ci)︸ ︷︷ ︸
∈R

+

{
c`/2 c`/2, ` even

0, ` odd
∈ R

9
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for 0 ≤ ` ≤ n. Thus, Coeff(x`, pp̃) = d` and pp̃ is palindromic with real coefficients. Now, we can write

pp̃ =

n∑
`=1

dn−`(x
n+`+xn−`)+dn = 2xn

(
n∑
`=1

dn−`T`

(
x+ x−1

2

)
+
dn
2
T0

(
x+ x−1

2

))
=: 2xn g

(
x+ x−1

2

)
.

By Lemma 3.2, we have x ∈ T is a root of pp̃ if and only if (x+ x−1)/2 ∈ [−1, 1] is a root of g. �

3.2 Hermite characterization for real roots

Let p, q ∈ R[x] be monic univariate polynomials. The multiplication by q in the R–algebra R[x]/〈p〉 is the
homomorphism

mq : R[x]/〈p〉 → R[x]/〈p〉, [f ] 7→ [q f ], (3.2)

where [f ] denotes the coset of f modulo 〈p〉. By [CLO98, Chapter 2, Proposition 4.2], we have

mq1+q2 = mq1 +mq2 and mq1 q2 = mq1 ◦mq2 (3.3)

for any q1, q2 ∈ R[x].

When p has degree n, the dimension of R[x]/〈p〉 as an R–vector space is also n. A basis is given by
{1, x, . . . , xn−1} and if p = xn + c1 x

n−1 + . . . + cn−1 x + cn, then the matrix of mx in this basis is the
companion matrix 

0 0 −cn

1
. . .

...
. . . 0 −c2

0 1 −c1

 (3.4)

of p, since xxi = xi+1 for 0 ≤ i ≤ n − 2 and xxn−1 = xn ≡ −c1 xn−1 − . . . − cn−1 x − cn modulo 〈p〉. On
the other hand, the univariate Chebyshev polynomials of the first kind up to degree n− 1 also form a basis
{T0, T1, . . . , Tn−1} of R[x]/〈p〉. If p = Tn + d1 Tn−1 + . . .+ dn−1 T1 + dn/2T0 ∈ R[x], then the matrix of mx

in this basis is 

0 1/2 0 −dn/4

1 0
. . .

...

1/2
. . . 1/2 −d3/2
. . . 0 (1− d2)/2

0 1/2 −d1/2


, (3.5)

where the rows and columns are indexed by T0, T1, . . . , Tn−1. The entries in the columns originate from the
recurrence formula xT0 = T1 and 2xTj = Tj+1 + Tj−1 for 1 ≤ j ≤ n− 1. Especially,

2xTn−1 = Tn + Tn−2 ≡ −d1 Tn−1 + (1− d2)Tn−2 − d3 Tn−3 − . . .− dn−1 T1 − dn/2T0 (3.6)

modulo 〈p〉 yields the last column.

Example 3.5. Let p = x3− c x2 + c x− 1 ∈ C[x] with c ∈ C and roots r1, r2, r3 ∈ T, such that r1 · r2 · r3 = 1.
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Following the proof of Proposition 3.4, we consider the palindromic polynomial pp̃ ∈ R[x] with

1

2x3
pp̃

=
1

2x3

(
(x6 + 1)− (c+ c)(x5 + x) + (c c+ c+ c)(x4 + x2)− c2 + c2 + 2

2
x3
)

=
x3 + x−3

2
− (c+ c)

x2 + x−2

2
+ (c c+ c+ c)

x+ x−1

2
− c2 + c2 + 2

2

=T3

(
x+ x−1

2

)
− (c+ c)T2

(
x+ x−1

2

)
+ (c c+ c+ c)T1

(
x+ x−1

2

)
− c2 + c2 + 2

2
T0

(
x+ x−1

2

)
= g

(
x+ x−1

2

)
.

The matrix of the multiplication by x in R[x]/〈g〉 in the basis of univariate Chebyshev polynomials of the
first kind is 0 1/2 (c2 + c2 + 2)/4

1 0 (1− c c− c− c)/2
0 1/2 (c+ c)/2

 ∈ R3×3.

To characterize roots of univariate polynomials in [−2, 2], respectively [−1, 1], we use the next statement,
which is an application for Sturm’s version of Sylvester’s theorem.

Theorem 3.6. Let p ∈ R[x] be a monic univariate polynomial of degree n and let mx be the associated
multiplication by x in R[x]/〈p〉. For a ∈ {1, 2}, all the roots of p are contained in [−a, a] if and only if the
Hermite quadratic form

Hq(p) : R[x]/〈p〉 → R, [f ] 7→ Trace(mq f2), with q = (a− x) (a+ x) ∈ R[x],

is positive semi–definite.

Proof. Let H ∈ Rn×n be the symmetric matrix associated to Hq(p) for a fixed basis of R[x]/〈p〉. Denote
by N+, respectively N−, the number of strictly positive, respectively negative, eigenvalues of H, counting
multiplicities. By [BPR06, Corollary 4.44 and Theorem 4.57], rank and signature of Hq(p) are

N+ +N− = Rank(Hq(p)) = |{x ∈ C |p(x) = 0 q(x) 6= 0}| and
N+ −N− = Sign(Hq(p)) = |{x ∈ R | p(x) = 0 q(x) > 0}|︸ ︷︷ ︸

=:n+

− |{x ∈ R | p(x) = 0 q(x) < 0}|︸ ︷︷ ︸
=:n−

.

If all roots of p are contained in [−a, a], then n− = 0 and thus N+ + N− = Rank(Hq(p)) = Sign(Hq(p)) =
n+ = N+ − N−. Therefore, N− = 0 and all eigenvalues of H are nonnegative, that is Hq(p) is positive
semi–definite.

For the converse, assume that Hq(p) is positive semi–definite. Then N− = 0 and N+ = Sign(Hq(p)) =
n+−n− ≤ Rank(Hq(p)) = N+, that is n+−n− = Rank(Hq(p)). On the other hand, Rank(Hq(p)) ≥ n++n−.
Hence, n− = 0 and Rank(Hq(p)) = n+ implies that all the roots of p are real and contained in [−a, a]. �

Note that the matrix H in the proof of Theorem 3.6 does not depend on the choice of a basis for R[x]/〈p〉,
as the trace is basis–invariant. As corollaries, we obtain explicit characterizations for solutions of symmetric
polynomial systems in T.

11
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Corollary 3.7. For c1, . . . , cn ∈ R, the solution of system (II) is contained in Tn if and only if the matrix
H ∈ Rn×n with entries

Hij = Trace(4Ci+j−2 − Ci+j) for 1 ≤ i, j ≤ n, where

C =


0 · · · 0 −cn
1 0 −cn−1

. . .
...

0 1 −c1

 ∈ Rn×n,

is positive semi–definite.

Proof. The matrix H is the matrix associated to the Hermite quadratic form Hq(p) from Theorem 3.6 with
a = 2 in the basis {1, x, . . . , xn−1}. Indeed, by Equation (3.3), the entries of the associated matrix are

Trace(mq xi−1 xj−1) = Trace(m4 xi+j−2−xi+j ) = Trace(4mi+j−2
x −mi+j

x ) = Hij

for 1 ≤ i, j ≤ n. �

Analogously, we obtain the following statement for systems of type (I) with a = 1.

Corollary 3.8. For c1, . . . , cn ∈ C with ci = (−1)n cn−i for 1 ≤ i ≤ n − 1 and c0 := (−1)n cn = 1, the
solution of system (I) is contained in Tn if and only if the matrix H ∈ Rn×n with entries

Hij = Trace(Ci+j−2 − Ci+j), where

C =



0 1/2 0 −dn/4

1 0
. . .

...

1/2
. . . 1 −d3/2
. . . 0 (1− d2)/2

0 1 −d1/2


∈ Rn×n and d` =

∑̀
i=0

ci c`−i,

is positive semi–definite.

In our examples, we will characterize H � 0 via the coefficients of the characteristic polynomial to give a
proper visualization.

Proposition 3.9. [BPR06, Theorem 4.58] Let A ∈ Rn×n be a symmetric matrix with characteristic poly-
nomial

Det(x In −A) = xn +

n∑
i=1

(−1)i ai x
n−i ∈ R[x].

Then A is positive semi–definite if and only if ai ≥ 0 for all 1 ≤ i ≤ n.

4 Type A

In Sections 4 to 7 we study the four cases where G is of type A, B, C or D. First, we give an explicit formula
for the orbit polynomials in terms of the elementary symmetric polynomials. This induces a symmetric
system of type (I), respectively (II). Afterwards, we present an explicit symmetric matrix polynomial H to
characterize the solution of this symmetric system in T, that then corresponds to an orbit as the imagepoint
of ϑ. An example to visualize the 2–dimensional case accompanies the main result of each section, except for
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Dn. In the proofs, we avoid arguments such as “similar/analogous to a previous case”, so that all sections
are self contained.

Convention: We abuse notation for the sake of simplicity and speak of “the orbit polynomial Θµ associated
to µ = α1 ω1 + . . . + αn ωn ∈ Ω” with α ∈ Zn, to refer to the orbit polynomial Θα associated to α.
Furthermore for f ∈ Q[x±] and G ∈ {An−1,Bn, Cn,Dn}, we write G · f for the orbit %(G) · f of f under the
integer representation.

For An−1, we will encounter a system of type (I) in n indeterminates. To be consistent with the notation
of Section 3, we consider An−1 as a root system of rank n − 1. In particular, we denote the Laurent
polynomial ring and the polynomial ring in n− 1 indeterminates by Q[x±] = Q[x1, x

−1
1 , . . . , xn−1, x

−1
n−1] and

Q[z] = Q[z1, . . . , zn−1].

4.1 Orbit polynomials for An−1

The Weyl group of the root system An−1 is An−1 ∼= Sn. A representation can be given over the (n − 1)–
dimensional R–vector space V := {u ∈ Rn |u1 + . . .+un = 0}. Sn acts on V by permutation of coordinates.
By [Bou68b, Planche I], the simple roots and fundamental weights in this representation are

ρi = ei − ei+1 and ωi =

i∑
j=1

ej −
i

n

n∑
k=1

ek =
1

n
[n− i, . . . , n− i︸ ︷︷ ︸

i times

,−i, . . . ,−i︸ ︷︷ ︸
n−i times

]t. (4.1)

The graph
s1 s2 . . . sn−2 sn−1 (4.2)

is the Coxeter diagram of the Weyl group An−1, where si ∈ On(R) is the permutation matrix of the i–th and
(i+ 1)–th coordinate for 1 ≤ i ≤ n, leaving V invariant and generating WeylA. We have −ωi ∈ An−1 ωn−i
for 1 ≤ i ≤ n− 1.

The orbit polynomials associated to the fundamental weights of An−1 and the elementary symmetric poly-
nomials from Definition 3.1 satisfy the following relations.

Proposition 4.1. In Q[x±], define the monomials

y1 = x1, yk = xk x
−1
k−1 for 2 ≤ k ≤ n− 1 and yn = x−1n−1.

Then

σi(y1(x), . . . , yn(x)) =

(
n

i

)
θi(x)

for 1 ≤ i ≤ n− 1.

Proof. We first show that the orbit of the monomial xe1 = x1 corresponding to ω1 is An−1· = x1{y1, . . . , yn},
and then infer the orbit of xi.

The eigenvectors of the reflection si are ρi with eigenvalue −1 and ωj for i 6= j with eigenvalue 1. Therefore,
the stabilizer of ω1 is the subgroup generated by s2, . . . , sn−1. Removing s1 from the Coxeter diagram in
Section 4.1 yields StabAn−1

(ω1) ∼= An−2 and the index of StabAn−1
(ω1) in An−1 is n. Thus, An−1 ω1 consists

of exactly n elements. Assume that An−1/StabAn−1
(ω1) = {[h1], . . . , [hn]} are the cosets. Then the orbit of

ω1 under An−1 is given by An−1 ω1 = {h1 · ω1, . . . , hn · ω1}. Choose hi ∈ An−1 such that hi permutes the
1–st and i–th coordinate. Then h1 = idV , hi = s1 · · · si−1 for 2 ≤ i ≤ n and we have

h1 ω1 = ω1, h2 ω1 = ω2 − ω1, . . . , hn−1 ω1 = ωn−1 − ωn−2 and hn ω1 = −ωn−1.

Those are elements of the orbit An−1 ω1 and, beyond that, contained in the lattice of weights Ω. Hence,
they correspond to n monomials in Q[x±], which are precisely the yi.

13
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For 1 ≤ i ≤ n−1, write xi = y1 . . . yi. Since the action of An−1 on Q[x±] by “·” permutes the yi and is linear,
the monomials in θi are all choices of products of i monomials among y1, . . . , yn. This is the elementary
symmetric polynomials from Definition 3.1 on the left hand side. The coefficient of this monomial in θi is

by Definition 2.2 given by 1/|An−1 ωi| =
(
n
i

)−1
. �

4.2 Hermite matrix for An−1

Introduce the subset of the complex n–torus Tn1 := {y = (y1, . . . , yn) ∈ Tn | y1 . . . yn = 1}. The proof of the
following fact is straightforward.

Proposition 4.2. The map

ψ : (C∗)n−1 → (C∗)n,
x 7→ (x1, x2 x

−1
1 , . . . , xn−1 x

−1
n−2, x

−1
n−1)

is injective and the preimage of Tn1 is Tn−1.

We state the main result for Weyl groups of type A.

Theorem 4.3. Consider the R–vector space W := {z ∈ Cn−1 | ∀ 1 ≤ j ≤ n− 1 : zj = zn−j} with dimension
n− 1 and define the matrix H ∈ R[z]n×n by

H(z)ij = Trace((C(z))i+j−2 − (C(z))i+j) with

C(z) =



0 1/2 0 − fn(z)/4

1 0
. . . − fn−1(z)/2

1/2
. . .

. . .
...

. . .
. . . 1/2 − f3(z)/2
. . . 0 (1− f2(z))/2

0 1/2 − f1(z)/2


, where ci =

(
n

i

)
and

f`(z) = (−1)`

(
c` z` + c` zn−` +

`−1∑
i=1

ci c`−i zi zn−`+i

)
for 1 ≤ ` ≤ n− 1,

fn(z) = (−1)n

(
1 +

1

2

n−1∑
i=1

c2i z
2
i

)
.

For all z ∈W , H(z) ∈ Rn×n and T = {z ∈W |H(z) � 0}.

Proof. Let z ∈ Cn−1 and set c̃i := (−1)i ci zi ∈ C for 1 ≤ i ≤ n. Then

f`(z) = (−1)`
∑̀
i=0

ci c`−i zi zn−`+i =
∑̀
i=0

c̃i c̃`−i =: d`

yield the last column of C(z).

To show “⊆”, assume that z ∈ T and fix x ∈ Tn−1, such that θi(x) = zi. Note that θj(x) and θn−j(x)
are complex conjugates, because −ωj ∈ An−1 ωn−j . Therefore, zj = zn−j and thus z ∈ W . Now let
zn := z0 := 1. By Proposition 4.1, the solution of

(I) σi(y1, . . . , yn) = (−1)i c̃i for 1 ≤ i ≤ n
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is given by y = ψ(x) ∈ Tn, where ψ is the map from Proposition 4.2. Applying Corollary 3.8 with coefficients
d` ∈ R yields H(z) � 0.

For “⊇” on the other hand, assume z ∈W with H(z) � 0. By Corollary 3.8, the solution y of system (I) is
contained in Tn and satisfies y1 . . . yn = (−1)n c̃n = 1. Let x ∈ Tn−1 be the unique preimage of y under ψ.
Then

zi = (−1)i
c̃i
ci

=
1

ci
σi(ψ(x)1, . . . , ψ(x)n) = θi(x)

by Proposition 4.1 and thus z ∈ T . �

We finish this subsection with a remark on the embedding of the image in Rn−1 and on the degree of the
entries of the Hermite matrix polynomial.

Remark 4.4.

1. In the case of An−1, we have T 6⊆ Rn−1. Instead, we consider the embedding in Rn−1 as the corre-
sponding image TR of the map

ϑR : Tn−1 → Rn−1, x 7→ (θ1,R(x), . . . , θn−1,R(x)) with

θi,R(x) =
θi(x) + θn−i(x)

2
, θn−i,R(x) =

θi(x)− θn−i(x)

2i
for 1 ≤ i ≤ b(n− 1)/2c and

θn/2,R(x) = θn/2(x), when n is even.

2. The entries of the last column of the matrix polynomial C(z) have degree 2, except C(z)nn = −f1(z),
which has degree 1. All other entries are constant. Hence, the degree of H(z)ij is i+j. The determinant
of H(z) has degree 4n− 2 for n ≥ 3.

4.3 Example A2

In this subsection, we further investigate the case n = 3 and give a visualization for the embedding of the
image of ϑ in R2. The proof of the next statement is straightforward.

ρ2

ρ1

ω1

ω2 A2
∼= S3

ω1 = [2,−1,−1]t/3
ω2 = [1, 1,−2]t/3

ρ1 = [1,−1, 0]t

ρ2 = [0, 1,−1]t

Figure 2: The root system A2 in R3 with fundamental weights ω1, ω2 and simple roots ρ1, ρ2.

In Figure 2, the hexagon is the image of the blue shaded triangle with vertices 0, ω1, ω2 under reflection by
A2
∼= S3.

Let z1, z2 ∈ R and z = (z1 + iz2, z1 − iz2) ∈W . Then the matrix C(z) ∈ R[z]3×3 from Theorem 4.3 is

C(z) =

0 1/2 (1 + 9 z21 − 9 z22)/2
1 0 (1− 9 z21 − 9 z22 − 6 z1)/2
0 1/2 3 z1

 . (4.3)
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We already computed this matrix (up to a substitution) in Example 3.5. Following Theorem 4.3, define the
matrix H(z) ∈ R[z]3×3 with entries (H(z))ij = 4 Trace(C(z)i+j−2)−Trace(C(z)i+j). Then z is contained in
T if and only ifH(z) is positive semi–definite. Assume that Det(x I3−H(z)) = x3−h2(z)x2+h1(z)x−h0(z) ∈
R[x] is the characteristic polynomial of H(z) for some hi(z) ∈ R[z]. By Proposition 3.9, H(z) is positive
semi–definite if and only if hi(z) ≥ 0 for 0 ≤ i ≤ 2.

(a) h0(z) ≥ 0 (b) h1(z) ≥ 0

(c) h2(z) ≥ 0 (d) h0(z), h1(z), h2(z) ≥ 0

Figure 3: Vanishing points and positivity regions for the coefficients of the characteristic polynomial of H(z).

Of particular interest are the vertices, which correspond to the fundamental weights and the origin. They
are given by

Vertex1 := ϑR(exp(−2πi 〈ω1, ω1〉), exp(−2πi 〈ω2, ω1〉)) = ϑR

(
exp

(
−4

3
πi

)
, exp

(
−2

3
πi

))
=

(
−1

2
,

√
3

2

)
,

Vertex2 := ϑR(exp(−2πi 〈ω1, ω2〉), exp(−2πi 〈ω2, ω2〉)) = ϑR

(
exp

(
−2

3
πi

)
, exp

(
−4

3
πi

))
=

(
−1

2
,−
√

3

2

)
,

Vertex3 := ϑR(exp(−2πi 〈ω1, 0〉), exp(−2πi 〈ω2, 0〉)) = ϑR(1, 1) = (1, 0) .
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We visualize the problem “z ∈ T ?” by evaluating h0, h1, h2 at z. In the above images, a solid red line, blue
dots and green dashes indicate the varieties of these three polynomials. The plots indicate an invariance
under the dihedral groups D3. Let g1(z) := z21 + z22 , g2(z) := z1 (z21 − 3 z22). Then R[z]D3 = R[g1(z), g2(z)]
and we have

h0(z) = −Coeff(t0,Det(t I3 −H(z))) (solid)
= 2187/64 z42 (3 z1 + 1)2 (−3 z41 − 6 z21 z

2
2 − 3 z42 + 8 z31 − 24 z1 z

2
2 − 6 z21 − 6 z22 + 1)

= 2187/64 z42 (3 z1 + 1)2 (−6 g1(z)− 3 g1(z)2 + 8 g2(z) + 1)︸ ︷︷ ︸
D3–invariant

,

h1(z) = Coeff(t1,Det(t I3 −H(z))) (dots)
= 243/256 z22 (−243 z81 − 972 z61 z

2
2 − 1458 z41 z

4
2 − 972 z21 z

6
2 − 243 z82 + 324 z71 − 1620 z51 z

2
2

−4212 z31 z
4
2 − 2268 z1 z

6
2 − 432 z61 − 2052 z41 z

2
2 − 5400 z21 z

4
2 − 324 z62 + 180 z51 − 3384 z31 z

2
2

−684 z1 z
4
2 + 18 z41 − 804 z21 z

2
2 + 42 z42 + 76 z31 + 404 z1 z

2
2 − 8 z21 − 108 z22 + 60 z1 + 25),

h2(z) = −Coeff(t2,Det(t I3 −H(z))) (dash)
= 1/32 (−729 z61 + 1458 z51 + (10935 z22 − 1215) z41 + (−2916 z22 + 540) z31 + 351 z22 + 63

+(−10935 z42 + 1458 z22 − 135) z21 + (−4374 z42 + 972 z22 + 18) z1 + 729 z62 − 1215 z42).

For a generic point z ∈ W , H(z) has rank 3. We observe an intersection of all three varieties in Vertex3, in
which case the rank of H(Vertex3) vanishes. This also occurs at

ϑR

(
exp

(
−2πi〈ω1,

ω1 + ω2

2
〉
)
, exp

(
−2πi〈ω2,

ω1 + ω2

2
〉
))

= ϑR(exp(−πi), exp(πi)) =

(
−1

3
, 0

)
Furthermore, the rank of both H(Vertex1), H(Vertex2) is 1, we only have an intersection of “h0(z) = 0” and
“h1(z) = 0”. Two more intersection of “h0(z) = 0” and “h1(z) = 0” lie at (−1/3, 2/3) and (−1/3,−2/3).
Every other point in the union of the boundary of T and the varieties “z1 = −1/3”, “z2 = 0” admits rank
2. The interior points admit full rank 3.

5 Type C

In Sections 5 to 7, we will encounter symmetric systems similarly to Section 4, however they will be of type
(II) and therefore, we dealt with the type A first. The dimension of the root system and the number of
indeterminates of the symmetric system are from now on both n.

5.1 Orbit polynomials for Cn
The Weyl group of the root system Cn is Cn ∼= Snn{±1}n. A representation can be given over Rn. Sn acts
on Rn by permutation of coordinates and {±1}n acts by multiplication of coordinates with ±1. By [Bou68b,
Planche III], the simple roots and fundamental weights in this representation are

ρi = ei − ei+1, ρn = 2 en and ωi = e1 + . . .+ ei. (5.1)

The graph
s1 s2 . . . sn−1 sn (5.2)

is the Coxeter diagram of the Weyl group Cn, where si ∈ On(R) is the permutation matrix of the i–th and
(i+ 1)–th coordinate for 1 ≤ i ≤ n− 1 and sn = diag(1, . . . , 1,−1), generating Cn. We have −In ∈ Cn.

The orbit polynomials associated to the fundamental weights of Cn and the elementary symmetric polyno-
mials from Definition 3.1 satisfy the following relations.

Proposition 5.1. In Q[x±], define the monomials

y1 = x1 and yk = xk x
−1
k−1 for 2 ≤ k ≤ n.
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Then

σi(y1(x) + y1(x)−1, . . . , yn(x) + yn(x)−1) = 2i
(
n

i

)
θi(x)

for 1 ≤ i ≤ n.

Proof. We follow the idea of the proof for Proposition 4.1.

It follows from the Coxeter diagram in Equation (5.2) that StabCn(ω1) ∼= Cn−1 and the index of StabCn(ω1)
in Cn is 2n. Assume that Cn/StabCn(ω1) = {[h1], . . . , [h2n]} are the cosets. Then the orbit of ω1 under Cn is
given by Cn ω1 = {h1 · ω1, . . . , h2n · ω1}. Choose h1 = idRn and hi = s1 · · · si−1 for 2 ≤ i ≤ n. Then

h1 ω1 = ω1 = e1, h2 ω1 = ω2 − ω1 = e2, . . . , hn ω1 = ωn − ωn−1 = en.

Those are elements of the orbit Sn ω1 ⊆ Cn ω1. The missing elements are hn+i ω1 := −In hi ω1 for 1 ≤ i ≤ n,
given by the subgroup {±1}n. The yi, y

−1
i are the corresponding monomials in Q[x±].

Cn is isomorphic to the semi–direct product of Sn with {±1}n and {±1}n is normal in Cn. Therefore,
we have Q[x±]Cn = (Q[x±]Sn){±1}

n

. Since Sn
∼= An−1 and xi = y1 . . . yi, the generators of Q[x±]Sn are

given by Proposition 4.1. The action of the diagonal group {±1}n on Q[x±] has fundamental invariants
y1 + y−11 , . . . , yn + y−1n . With |{±1}n ωi| = 2i we obtain the statement. �

5.2 Hermite matrix for Cn
The proof of the next statement is straightforward.

Proposition 5.2. The map

ψ : (C∗)n → (C∗)n,
x 7→ (x1, x2 x

−1
1 , . . . , xn x

−1
n−1)

is bijective and the preimage of Tn is Tn.

We state the main result of this section, which we applied in Example 1.1.

Theorem 5.3. Define the matrix H ∈ Q[z]n×n by

H(z)ij = Trace(4 (C(z))i+j−2 − (C(z))i+j) with

C(z) =


0 · · · 0 (−1)n+1 cn zn
1 0 (−1)n cn−1 zn−1

. . .
...

0 1 c1 z1

 , where ci = 2i
(
n

i

)
.

Then T = {z ∈ Rn |H(z) � 0}.

Proof. Let z ∈ Rn and set c̃i := (−1)i ci zi ∈ R for 1 ≤ i ≤ n. Then (−1)i+1 ci zi = −c̃i are the entries of the
last column of C(z).

To show “⊆”, assume that z ∈ T . Then there exists x ∈ Tn, such that θi(x) = zi for 1 ≤ i ≤ n. By
Proposition 5.1, the solution of the symmetric polynomial system

(II) σi(y1 + y−11 , . . . , yn + y−1n ) = (−1)i c̃i for 1 ≤ i ≤ n
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is y = ψ(x) ∈ Tn, where ψ is the map from Proposition 5.2. Applying Corollary 3.7 yields H(z) � 0.

For “⊇” on the other hand, assume H(z) � 0. By Corollary 3.7, the solution y of the above system (II) is
contained in Tn. Let x ∈ Tn be the unique preimage of y under ψ. Then zi = θi(x) and so z is contained in
T . �

We finish this subsection with a remark on the degree of the entries of the Hermite matrix polynomial.

Remark 5.4. The entries of the last column of the matrix polynomial C(z) from Theorem 5.3 have degree
1, all other entries are constant. The degree of H(z)ij is i+ j and the determinant of H(z) has degree 2n.

5.3 Example C2

In this subsection, we further investigate the case n = 2.

ρ2

ρ1

ω2

ω1

C2 ∼= S2 n {±1}2

ω1 = [1, 1]t

ω2 = [1, 0]t

ρ1 = [1,−1]t

ρ2 = [0, 2]t

Figure 4: The root system C2 in R2 with fundamental weights ω1, ω2 and simple roots ρ1, ρ2.

In Figure 4, the square is the image of the blue shaded triangle with vertices 0, ω1/2, ω2/2 under reflection
by C2 = S2 n {±1}2.

Let z = (z1, z2) ∈ R2. The matrix C(z) ∈ Q[z]2×2 from Theorem 5.3 evaluated in z is

C(z) =

[
0 −4 z2
1 4 z1

]
. (5.3)

Then z is contained in T if and only if the resulting Hermite matrix

H(z) = 8

[
−2z21 + z2 + 1 −8z31 + 6z1z2 + 2z1

−8z31 + 6z1z2 + 2z1 −32z41 + 8z21 + 32z21z2 − 4z22 − 4z2

]
(5.4)

is positive semi–definite. By Proposition 3.9, H(z) � 0 is equivalent to its determinant and trace being
nonnegative. The varieties of these two polynomials in z1, z2 are depicted below.

19



E. Hubert, T. Metzlaff, C. Riener

(a) Det(H(z) ≥ 0 (b) Trace(H(z) ≥ 0 (c) Det(H(z),Trace(H(z) ≥ 0

Figure 5: Vanishing points and positivity regions for determinant and trace of H(z).

Det(H(z)) = 256 (−4z41 + z21z
2
2 + 6z21z2 − z32 + z21 − 2z22 − z2) (solid)

Trace(H(z)) = 8 (−32z41 + 32z21z2 + 6z21 − 4z22 − 3z2 + 1) (dots)

We observe three intersections of “Det(H(z)) = 0” (red solid line) and “Trace(H(z)) = 0” (blue dots) in the
the vertices

Vertex1 := ϑ(exp(−2πi 〈ω1,
ω1

2
〉), exp(−2πi 〈ω2,

ω1

2
〉)) = ϑ(−1,−1) = (0,−1)

Vertex2 := ϑ(exp(−2πi 〈ω1,
ω2

2
〉), exp(−2πi 〈ω2,

ω2

2
〉)) = ϑ(−1, 1) = (−1, 1)

Vertex3 := ϑ(exp(−2πi 〈ω1, 0〉), exp(−2πi 〈ω2, 0〉)) = ϑ(1, 1) = (1, 1)

The shape of this domain is dictated by the determinant, but from the positivity condition one can observe
that the trace is also required. Alternatively the inequation given by the trace could be replaced by the
constraint that the orbit space is contained in the square [−1, 1]n.

6 Type B

The Weyl group of Bn is isomorphic to that of Cn and we find a similar formula for the orbit polynomials
in Proposition 6.1 with a deviation at σn that leads to a different Hermite matrix Theorem 6.4.

6.1 Orbit polynomials for Bn
The Weyl group of the root system Bn is Bn ∼= Sn n {±1}n ∼= Cn. A representation can be given over Rn.
By [Bou68b, Planche II], the simple roots and fundamental weights in this representation are

ρi = ei − ei+1, ρn = en and ωi = e1 + . . .+ ei, ωn = (e1 + . . .+ en)/2. (6.1)

The graph
s1 s2 . . . sn−1 sn (6.2)

is the Coxeter diagram of Bn, where si ∈ On(R) is the permutation matrix of the i–th and (i + 1)–th
coordinate for 1 ≤ i ≤ n− 1 and sn = diag(1, . . . , 1,−1), generating Bn. We have −In ∈ Bn.

The orbit polynomials associated to the fundamental weights of Bn and the elementary symmetric polyno-
mials from Definition 3.1 satisfy the following relations.
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Proposition 6.1. In Q[x±], define the monomials

y1 = x1, yk = xk x
−1
k−1 for 2 ≤ k ≤ n− 1 and yn = x2n x

−1
n−1.

Then

σi(y1(x) + y1(x)−1, . . . , yn(x) + yn(x)−1) = 2i
(
n

i

)
θi(x) for 1 ≤ i ≤ n− 1 and

σn(y1(x) + y1(x)−1, . . . , yn(x) + yn(x)−1) = 2n Θ2ωn(x).

Proof. Since Bn ∼= Cn, the proof is analogous to the one of Proposition 5.1, when we replace ωn with 2ωn.
Then the corresponding monomial in Q[x±] is x2 en = x2n. �

The orbit polynomial Θ2ωn is Bn–invariant. Hence, it can be expressed as a polynomial in the fundamental
invariants of Q[x±]Bn . We give the explicit equation in the next lemma.

Lemma 6.2. In Q[x±], the orbit polynomial associated to 2ωn ∈ Ω satisfies

Θ2ωn = 2n θ2n −
n−1∑
j=1

(
n

j

)
θj − 1.

Proof. The cardinality of the orbit Bn ωn is 2n. Let µ ∈ Bn ωn and distinguish between the following three
cases.

1. If µ = ωn, then Θωn+µ = Θ2ωn is the term on the left–hand side of the statement, for which we search
an explicit formula.

2. If µ = −ωn, then Θωn+µ = Θ0 = 1.

3. For any other µ ∈ Bn ωn, there exists a 1 ≤ j ≤ n − 1, such that µ contains exactly j positive
coordinates. Therefore, µ+ ωn has exactly j nonzero entries and is contained in the orbit of ωj under
Bn, i.e. Θµ+ωn = Θωj . The number of µ, for which this is the case, is

(
n
j

)
.

From this and Proposition 2.6, we conclude that

2n θ2n =
∑

µ∈Bn ωn

Θωn+µ = Θ2ωn + 1 +

n−1∑
j=1

(
n

j

)
θj

to obtain the equation for Θωn+µ. �

6.2 Hermite matrix for Bn
Proposition 6.3. Define the map

ψ : (C∗)n → (C∗)n,
x 7→ (x1, x2 x

−1
1 , . . . , xn−1 x

−1
n−2, x

2
n x
−1
n−1).

1. ψ is surjective. The preimage of Tn under ψ is Tn.

2. Every point in Tn has exactly two distinct preimages x, x′ ∈ Tn with x1 = x′1, . . . , xn−1 = x′n−1 and
xn = −x′n.

21



E. Hubert, T. Metzlaff, C. Riener

3. If x, x′ ∈ Tn with ψ(x) = ψ(x′) and xn = −x′n, then θn(x) = −θn(x′).

Proof. 1. and 2. For all y ∈ (C∗)n, there exists x ∈ (C∗)n with x1 = y1, x2 = y1 x1, . . . , xn−1 = yn−1 xn−2
and x2n = yn xn−1. Thus, x is a preimage of y under ψ and uniquely determined by y up to a sign in the last
coordinate. We have y ∈ Tn if and only if x ∈ Tn.

3. We deduce from the Coxeter diagram in Equation (6.2) that StabBn(ωn) ∼= An−1 ∼= Sn. Hence, Bn ωn =
{±1}n ωn and by Proposition 6.1 this orbit consists of elements

µ =
δ1
2
e1 + . . .+

δn
2
en =

δ1
2
ω1 +

n−1∑
i=2

δi
2

(ωi − ωi−1) +
δn
2

(2ωn − ωn−1) = δn ωn + ν ∈ Ω

with δi ∈ {±1} for 1 ≤ i ≤ n and ν ∈ Zω1 ⊕ . . . ⊕ Zωn−1. Let α, β ∈ Zn be the coordinates of µ, ν in Ω.

Then βn = 0 and the monomial in θn corresponding to µ is xα = xβ1

1 . . . x
βn−1

n−1 xδnn . Thus, xα is linear in xn.
Since every monomial in θn can be written in terms of such β, δ, θn is linear in xn and with x, x′ from the
hypothesis we have θn(x) = −θn(x′). �

We state the main result for Weyl groups of type B.

Theorem 6.4. Define the matrix H ∈ Q[z]n×n by

H(z)ij = Trace(4 (C(z))i+j−2 − (C(z))i+j) with

C(z) =


0 · · · 0 (−1)n+1 cn fn(z)
1 0 (−1)n cn−1 zn−1

. . .
...

0 1 c1 z1

 , where ci = 2i
(
n

i

)
and

fn(z) = cn z
2
n −

n−1∑
i=1

(
n

i

)
zi − 1.

Then T = {z ∈ Rn |H(z) � 0}.

Proof. Let z ∈ Rn and set c̃i := (−1)i ci zi ∈ R for 1 ≤ i ≤ n− 1, c̃n := (−1)n cn fn(z). Then (−1)i+1 ci zi =
−c̃i for 1 ≤ i ≤ n− 1 and (−1)n+1 cn fn(z) = −c̃n are the entries of the last column of C(z).

To show “⊆”, assume that z ∈ T . Then there exists a x ∈ Tn, such that θi(x) = zi for 1 ≤ i ≤ n. By
Proposition 6.1 and Lemma 6.2, the solution of

(II) σi(y1 + y−11 , . . . , yn + y−1n ) = (−1)i c̃i for 1 ≤ i ≤ n

is y = ψ(x) ∈ Tn, where ψ is the map from Proposition 6.3. Applying Corollary 3.7 yields H(z) � 0.

For “⊇” on the other hand, assume H(z) � 0. Then by Corollary 3.7, the solution y of system (II) with
coefficients c̃i is contained in Tn. By Proposition 6.3, y has exactly two distinct preimages x, x′ ∈ Tn
under ψ with x1 = x′1, . . . , xn−1 = x′n−1 and xn = −x′n. Then zi = θi(x) = θi(x

′) for 1 ≤ i ≤ n − 1 and
z2n = θn(x)2 = θn(x′)2 with θn(x) = −θn(x′). Therefore, zn = θn(x) or zn = θn(x′) = −θn(x) and thus z is
contained in T . �

Remark 6.5. The entries of the last column of the matrix polynomial C(z) from Theorem 6.4 have degree
1, except C(z)1n, which has degree 2. All other entries are constant. The degree of H(z)ij is i + j and the
degree of the determinant of H(z) is 3n.
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6.3 Example B2

In this subsection, we further investigate the case n = 2.
ρ2

ρ1

ω2

ω1

B2 ∼= S2 n {±1}2

ω1 = [1, 1]t/2
ω2 = [1, 0]t

ρ1 = [1,−1]t

ρ2 = [0, 1]t

Figure 6: The root system B2 in R2 with fundamental weights ω1, ω2 and simple roots ρ1, ρ2.

In Figure 6, the square is the image of the blue shaded triangle with vertices 0, ω1, ω2 under reflection by
B2 = S2 n {±1}2.

Let z = (z1, z2) ∈ R2. The matrix C(z) ∈ Q[z]2×2 from Theorem 6.4 evaluated in z is

C(z) =

[
0 −16 z22 + 8 z1 + 4
1 4 z1

]
. (6.3)

Then z is contained in T if and only if the resulting Hermite matrix

H(z) = 16

[
−z21 + 2z22 − z1 −4z31 + 12z1 z

2
2 − 6z21 − 2z1

−4z31 + 12z1 z
2
2 − 6z21 − 2z1 −16z41 + 64z21 z

2
2 − 32z42 − 32z31 + 32z1 z

2
2 − 20z21 + 8z22 − 4z1

]
is positive semi–definite. By Proposition 3.9, H(z) � 0 is equivalent to its determinant and trace being
nonnegative. The varieties of these two polynomials in z1, z2 are depicted below.

(a) Det(H(z) ≥ 0 (b) Trace(H(z) ≥ 0 (c) Det(H(z),Trace(H(z) ≥ 0

Figure 7: Vanishing points and positivity regions for determinant and trace of H(z).

Det(H(z)) = 4096 (z21 z
4
2 − 4z62 − z31 z22 + 6z1 z

4
2 − 2z21 z

2
2 + z42 − z1 z22) (solid)

Trace(H(z)) = 16 (−16z41 + 64z21 z
2
2 − 32z42 − 32z31 + 32z1 z

2
2 − 21z21 + 10z22 − 5z1) (dots)

The B2 case is similar, but not identical to C2 from Section 5.3. Apart from a rotation, we also observe that
the rank of H(z) reduces from 2 to 1 on the line “z2 = 0”. Furthermore, there is a fourth intersection of the
varieties of the determinant and the trace at z = (0, 0).
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7 Type D

The Weyl group Dn is isomorphic to a subgroup of Cn ∼= Bn of index 2, which leads us to a symmetric system
of type (II). The explicit formula between the orbit polynomials and the elementary symmetric polynomials
is similar to Proposition 5.1, but with deviations for σn−1 and σn that additionally depend on the parity of
n. If n is odd, then the orbit space of Dn contains complex points, but a real description is possible with a
change of variables similar to the case of An−1 in Remark 4.4.

7.1 Orbit polynomials for Dn

The Weyl group of the root system Dn is Dn ∼= Sn n {±1}n+. A representation can be given over Rn. Sn

acts on Rn by permutation of coordinates and {±1}n+ acts by multiplication of coordinates with ±1, where
only an even amount of sign changes by −1 is admissible. By [Bou68b, Planche IV], the simple roots and
fundamental weights in this representation are

ρi = ei − ei+1, ρn = en−1 + en and
ωi = e1 + . . .+ ei, ωn−1 = (e1 + . . .+ en−1 − en)/2, ωn = (e1 + . . .+ en)/2.

(7.1)

The graph

s1 s2 . . . sn−2

sn−1

sn

(7.2)

is the Coxeter diagram of the Weyl group Dn, where si is the permutation matrix of the i–th and (i+ 1)–th
coordinate for 1 ≤ i ≤ n− 1 and sn is diag(1, . . . , 1,−1,−1) times the permutation matrix of the (n− 1)–th
and n-th coordinate, generating Dn. For all 1 ≤ i ≤ n, we have −ωi ∈ Gωi, except when n is odd, where
−ωn−1 ∈ Gωn.

The orbit polynomials associated to the fundamental weights of Dn and the elementary symmetric polyno-
mials from Definition 3.1 satisfy the following relations.

Proposition 7.1. In Q[x±], define the monomials

y1 = x1, yk = xk x
−1
k−1 for 2 ≤ k ≤ n− 2, yn−1 = xn xn−1 x

−1
n−2 and yn = xn x

−1
n−1.

Then

σi(y1(x) + y1(x)−1, . . . , yn(x) + yn(x)−1) = 2i
(
n

i

)
θi(x) for 1 ≤ i ≤ n− 2,

σn−1(y1(x) + y1(x)−1, . . . , yn(x) + yn(x)−1) = 2n−1 nΘωn−1+ωn(x) and

σn(y1(x) + y1(x)−1, . . . , yn(x) + yn(x)−1) = 2n−1 (Θ2ωn−1
(x) + Θ2ωn(x)).

Proof. We follow the idea of the proof for Proposition 4.1.

It follows from the Coxeter diagram in Equation (7.2) that StabDn(ω1) ∼= Dn−1 and the index of StabDn(ω1)
in Dn is 2n. Assume that Dn/StabDn(ω1) = {[h1], . . . , [h2n]} are the cosets. Then the orbit of ω1 under Cn
is given by Dn ω1 = {h1 · ω1, . . . , h2n · ω1}. Choose h1 = idRn and hi = s1 · · · si−1 for 2 ≤ i ≤ n. Then

h1 ω1 = ω1 = e1, h2 ω1 = ω2 − ω1 = e2, . . . , hn−2 ω1 = ωn−2 − ωn−3 = en−2

and hn−1 ω1 = ωn + ωn−1 − ωn−2 = en−1, hn ω1 = ωn − ωn−1 = en.

Those are elements of the orbit Sn ω1 ⊆ Dn ω1. The missing elements are hn+i ω1 := −hi ω1 for 1 ≤ i ≤ n,
given by the subgroup {±1}n+. This can be achieved by an even amount of sign changes, because hi ω1 has

exactly one nonzero coordinate. The yi, y
−1
i are the corresponding monomials in Q[x±].
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For 1 ≤ i ≤ n−2, write xi = y1 . . . yi. Then the statement for θi can be proven analogous to Proposition 5.1.
When we replace ωn−1 with ωn−1 + ωn, the corresponding monomial is xn−1 xn and we obtain the equation
for Θωn−1+ωn as well.

Finally, apply x2n−1 = y1 . . . yn−1 y
−1
n and x2n = y1 . . . yn−1 yn to get

2n−1 (Θ2ωn−1
(x) + Θ2ωn(x)) =

∑
δ∈{±1}n
δ1...δn=−1

y(x)δ +
∑

δ∈{±1}n
δ1...δn=1

y(x)δ =
∑

δ∈{±1}n
y(x)δ =

n∏
i=1

yi(x) + yi(x)−1,

which is the last equation. �

The orbit polynomials associated to ωn + ωn−1, 2ωn−1 and 2ωn ∈ Ω are invariant. Hence, they can be
expressed in terms of the generators θi of Q[x±]Dn . The formula depends on the parity of n as follows.

Lemma 7.2. In Q[x±], the following equations hold.

1. If n is even, then

Θωn−1+ωn =
2n−1

n
θn−1 θn −

1

n

(n−2)/2∑
j=1

(
n

2j − 1

)
θ2j−1,

Θ2ωn−1
= 2n−1θ2n−1 −

(n−2)/2∑
j=1

(
n

2j

)
θ2j − 1 and

Θ2ωn = 2n−1θ2n −
(n−2)/2∑
j=1

(
n

2j

)
θ2j − 1.

2. If n is odd, then

Θωn−1+ωn =
2n−1

n
θn−1 θn −

1

n

(n−3)/2∑
j=1

(
n

2j

)
θ2j −

1

n
,

Θ2ωn−1 = 2n−1θ2n−1 −
(n−3)/2∑
j=0

(
n

2j + 1

)
θ2j+1 and

Θ2ωn = 2n−1θ2n −
(n−3)/2∑
j=0

(
n

2j + 1

)
θ2j+1.

Proof. We have |Dn ωn−1| = |Dn ωn| = 2n−1. The equations can be obtained from the recurrence formula
Proposition 2.6, the representation over Rn and the following combinatorial steps.

1. Assume that n is even. We first prove the equation for Θ2ωn in detail. For 0 ≤ j ≤ n/2, consider
µ ∈ Dn ωn with 2j positive coordinates. There are precisely

(
n
2j

)
such elements in Dn ωn and an odd amount

of positive coordinates is not possible. We distinguish three cases. If j = 0, then ωn−1 + µ = 0, and if
j = n/2, then ωn+µ = 2ωn. Otherwise, ωn+µ has 2j nonzero coordinates and must therefore be contained
in Dn ω2j . All in all, we obtain

2n−1 θ2n =
∑

µ∈Dn ωn

Θωn+µ = Θ2ωn +

(n−2)/2∑
j=1

(
n

2j

)
θ2j + 1.
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Next for 1 ≤ j ≤ n/2, consider µ ∈ Dn ωn−1 with 2j − 1 positive coordinates. Then

ωn−1 + µ


= 0, if j = 1, µn =

1

2

= 2ωn−1, if j =
n

2
, µn = −1

2

∈ Dn ω2j , else

and ωn + µ

{
∈ Dn (ωn + ωn−1), if j =

n

2
∈ Dn ω2j−1, else

.

After counting the number of possibilities in each case, we obtain the two equations

2n−1 θ2n−1 = 1 + Θ2ωn−1 +

(n−2)/2∑
j=1

(
n

2j

)
θ2j and 2n−1 θn−1 θn = nΘωn+ωn−1 +

(n−2)/2∑
j=1

(
n

2j − 1

)
θ2j−1.

2. Now assume that n is odd. For 1 ≤ j ≤ (n+ 1)/2, consider µ ∈ Dn · ωn with 2j − 1 positive coordinates.
If j = (n + 1)/2 then ωn + µ = 2ωn. Otherwise, ωn + µ has 2j − 1 nonzero coordinates. The equation for
Θ2ωn is

2n−1 θ2n = Θ2ωn +

(n−1)/2∑
j=1

(
n

2j − 1

)
θ2j−1.

Finally for 0 ≤ j ≤ (n− 1)/2, consider µ ∈ Dn ωn−1 with 2j positive coordinates. Then

ωn−1 + µ


= 2ωn−1, if j =

n− 1

2
, µn = −1

2

∈ Dn ω2j+1, else
and ωn + µ


= 0, if j = 0

∈ Dn (ωn + ωn−1), if j =
n− 1

2
∈ Dn ω2j , else

.

After counting the number of possibilities in each case, we obtain the two equations

2n−1 θ2n−1 = Θ2ωn−1
+

(n−3)/2∑
j=0

(
n

2j + 1

)
θ2j+1 and 2n−1 θn−1 θn = 1 + nΘωn+ωn−1

+

(n−3)/2∑
j=1

(
n

2j

)
θ2j .

This completes the proof. �

7.2 Hermite matrix for Dn

Proposition 7.3. Define the map

ψ : (C∗)n → (C∗)n,
x 7→ (x1, x2 x

−1
1 , . . . , xn−2 x

−1
n−3, xn xn−1 x

−1
n−2, xn x

−1
n−1).

1. ψ is surjective. The preimage of Tn under ψ is Tn.

2. Every point in Tn has exactly two distinct preimages x, x′ ∈ Tn with x′ = (x1, . . . , xn−2,−xn−1,−xn).

3. If x 6= x′ ∈ Tn with ψ(x) = ψ(x′), then θi(x) = θi(x
′) for 1 ≤ i ≤ n−2 and θn−1(x) = −θn−1(x′), θn(x) =

−θn(x′).

4. For all x ∈ T, there exists a x̃ ∈ T, such that θi(x) = θi(x̃) for 1 ≤ i ≤ n − 2 and θn−1(x) =
θn(x̃), θn(x) = θn−1(x̃).
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Proof. 1. and 2. For all y ∈ (C∗)n, there exists x ∈ (C∗)n with x1 = y1, x2 = y1 x1, . . . , xn−2 = yn−2 xn−3
and x2n−1 = y−1n yn−1 xn−2, xn = yn xn−1. Hence, x is uniquely determined by y up to a sign in xn−1, xn.
We have y ∈ Tn if and only if x ∈ Tn.

3. We deduce from the Coxeter diagram in Equation (5.2) that StabDn(ωn) ∼= StabDn(ωn−1) ∼= An−1 ∼= Sn.
Hence, Dn ωn−1 = {±1}n+ ωn−1, respectively Dn ωn = {±1}n+ ωn, and by Proposition 7.1 this orbit consists
of elements

µ =
δ1
2
e1 + . . .+

δn
2
en =

δ1
2
ω1 +

n−2∑
i=2

δi
2

(ωi − ωi−1) +
δn−1

2
(ωn + ωn−1 − ωn−2) +

δn
2

(ωn − ωn−1)

=
δn−1 + δn

2
ωn +

δn−1 − δn
2

ωn−1 + ν ∈ Ω

with δi ∈ {±1} for 1 ≤ i ≤ n satisfying

δ1 . . . δn =

{
−1, if µ ∈ Dn ωn−1

1, if µ ∈ Dn ωn

and ν ∈ Zω1⊕ . . .⊕Zωn−2. Let α, β ∈ Zn be the coordinate vectors of µ, ν in Ω. Then βn−1 = βn = 0 and
the monomial in θn−1, respectively θn, corresponding to µ is

xα = xβ1

1 . . . x
βn−2

n−2 x
(δn−1−δn)/2
n−1 x(δn−1+δn)/2

n

with (δn−1 ± δn)/2 ∈ {−1, 0, 1}. Therefore, xα is linear in xn−1 and independent of xn or vice versa. With
x, x′ from the hypothesis we have xα = −(x′)α. Since every monomial in θn−1, respectively θn, can be
written in terms of such β, δ, we obtain θn−1(x) = −θn−1(x′) as well as θn(x) = −θn(x′). Furthermore,
θi(x) = θi(x

′) holds according to Proposition 7.1, since yk(x) = yk(x′) for all 1 ≤ k ≤ n.

4. Following the proof for the third statement, this holds for x̃ := (x1, . . . , xn−2, xn, xn−1). �

We state the main result for Weyl groups of type D.

Theorem 7.4. Consider the n–dimensional R–vector space

W :=

{
Rn, if n is even

{z ∈ Cn | z1, . . . , zn−2 ∈ R, zn = zn−1}, if n is odd
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and define the matrix H ∈ Q[z]n×n by

H(z)ij = Trace(4 (C(z))i+j−2 − (C(z))i+j) with

C(z) =



0 · · · · · · 0 (−1)n+1 cn fn(z)
1 0 (−1)n cn−1 fn−1(z)

. . . (−1)n−1 cn−2 zn−2
. . .

...
0 1 c1 z1

 , where ci = 2i
(
n

i

)
and

fn−1(z) =


2n−1 zn zn−1 −

(n−2)/2∑
j=1

(
n

2j−1
)
z2j−1, if n is even

2n−1 zn zn−1 −
(n−3)/2∑
j=1

(
n
2j

)
z2j − 1, if n is odd

,

fn(z) =


2n−2 (z2n + z2n−1) −

(n−2)/2∑
j=1

(
n
2j

)
z2j − 1, if n is even

2n−2 (z2n + z2n−1) −
(n−3)/2∑
j=0

(
n

2j+1

)
z2j+1, if n is odd

.

For all z ∈W , H(z) ∈ Rn×n and T = {z ∈W |H(z) � 0}.

Proof. Let z ∈ Rn and set c̃i := (−1)i ci zi ∈ R for 1 ≤ i ≤ n − 2, c̃n−1 := (−1)n−1 cn−1 fn−1(z), c̃n :=
(−1)n cn fn(z). Then (−1)i+1 ci zi = −c̃i for 1 ≤ i ≤ n−2, (−1)n cn−1 fn−1(z) = −c̃n−1, (−1)n+1 cn fn(z) =
−c̃n are the entries of the last column of C(z).

To show “⊆”, assume that z ∈ T . Then there exists a x ∈ Tn, such that θi(x) = zi. By Proposition 7.1 and
Lemma 7.2, the solution of

(II) σi(y1 + y−11 , . . . , yn + y−1n ) = (−1)i c̃i for 1 ≤ i ≤ n

is y = ψ(x) ∈ Tn, where ψ is the map from Proposition 7.3. Applying Corollary 3.7 yields H(z) � 0.

For “⊇” on the other hand, assume H(z) � 0 and fix c̃i as above. Then by Corollary 3.7, the solution y
of the above system (II) is contained in Tn. According to Proposition 7.3, y has two distinct preimages
x, x′ ∈ Tn. Then zi = θi(x) = θi(x

′) for 1 ≤ i ≤ n − 2 and z2n−1 + z2n = θn−1(x)2 + θn(x)2 = θn−1(x′)2 +
θn(x′)2 as well as zn−1 zn = θn−1(x) θn(x) = θn−1(x′) θn(x′) with θn−1(x) = −θn−1(x′), θn(x) = −θn(x′).
Therefore, {zn−1, zn} ∈ {{θn−1(x), θn(x)}, {θn−1(x′), θn(x′)}}. Assume that we are in the first case. If
zn−1 = θn−1(x), zn = θn(x), then z = ϑ(x). Otherwise by Proposition 7.3, there exists x̃, such that
zn−1 = θn−1(x̃), zn = θn(x̃) and z = ϑ(x̃). A similar argument holds for x′. Therefore, z is contained in T .

�

Remark 7.5.

1. Concerning points z̃ ∈ T ⊆ W , we are in a similar situation as in the An−1 case: −ωn−1 ∈ Dn ωn
leads to W * Rn, when n is odd. In order to obtain a point z ∈ Rn, that corresponds to z̃, we substitute
zn = <(z̃n) and zn−1 = =(z̃n). This leaves us with the substitutions zn zn−1 7→ z2n + z2n−1 in fn−1(z)
and z2n + z2n−1 7→ 2 (z2n − z2n−1) in fn(z).

2. The entries H(z)ij ∈ Q[z] have degree i+ j. Independent of the parity of n, the determinant of H(z)
has degree 3n+ 1.
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7.3 Example D4

In this subsection, we further investigate the case n = 4.

D4 = S4 n {±1}4+

ω1 = [1, 0, 0, 0]t

ω2 = [1, 1, 0, 0]t

ω3 = [1, 1, 1,−1]t/2
ω4 = [1, 1, 1, 1]t/2

Figure 8: A partial projection of the root system D4 in R4 with fundamental weights ω1, ω2, ω3, ω4.

The 4–simplex with vertices 0, ω1, ω2/2, ω3, ω4 is mapped under reflection by D4 = S4 n {±1}4+ to an
icositetrachoron. This is a polytope in R4 with boundary consisting of 24 octahedral cells. In Figure 8, we
depict a projection of the unique cell with center ω2/2 and three out of six vertices ω1, ω3, ω4 to R3. The
blue shaded region is the 3–simplex with projected vertices ω1, ω2/2, ω3, ω4.

Let z = (z1, z2, z3, z4) ∈ R4. Then the matrix H(z) from Theorem 7.4 has determinant

Det(H(z)) =− 4294967296 (z23 − 8z3z4 + z24 + 3z1) (−z23 − 8z3z4 − z24 + 3z1) (−32768z31z
3
3z

3
4

− 432z41z
4
3 + 48288z41z

2
3z

2
4 − 432z41z

4
4 + 3456z31z2z

3
3z4 + 3456z31z2z3z

3
4

+ 2304z21z
2
2z

2
3z

2
4 − 1536z21z

4
3z

2
4 − 1536z21z

2
3z

4
4 + 55296z1z2z

3
3z

3
4 − 110592z43z

4
4

− 24576z51z3z4 − 432z41z2z
2
3 − 432z41z2z

2
4 − 7488z31z

2
2z3z4 + 1536z31z

3
3z4

+ 1536z31z3z
3
4 − 216z21z

3
2z

2
3 − 216z21z

3
2z

2
4 + 864z21z2z

4
3 − 78912z21z2z

2
3z

2
4

+ 864z21z2z
4
4 − 5760z1z

2
2z

3
3z4 − 5760z1z

2
2z3z

3
4 − 1536z1z

5
3z4 + 218112z1z

3
3z

3
4

− 1536z1z3z
5
4 − 3456z32z

2
3z

2
4 + 13824z2z

4
3z

2
4 + 13824z2z

2
3z

4
4 + 4096z61 + 2196z41z

2
2

− 168z41z
2
3 − 168z41z

2
4 + 38304z31z2z3z4 + 324z21z

4
2 + 288z21z

2
2z

2
3 + 288z21z

2
2z

2
4

+ 768z21z
4
3 − 163968z21z

2
3z

2
4 + 768z21z

4
4 + 12096z1z

3
2z3z4 − 9216z1z2z

3
3z4

− 9216z1z2z3z
3
4 + 324z42z

2
3 + 324z42z

2
4 − 288z22z

4
3 − 21312z22z

2
3z

2
4 − 288z22z

4
4 + 64z63

+ 192z43z
2
4 + 192z23z

4
4 + 64z64 − 6228z41z2 + 54912z31z3z4 − 3186z21z

3
2 + 720z21z2z

2
3

+ 720z21z2z
2
4 + 18720z1z

2
2z3z4 + 768z1z

3
3z4 + 768z1z3z

3
4 − 486z52 + 864z32z

2
3 + 864z32z

2
4

− 288z2z
4
3 − 4032z2z

2
3z

2
4 − 288z2z

4
4 − 6843z41 − 3528z21z

2
2 − 384z21z

2
3 − 384z21z

2
4

+ 2304z1z2z3z4 − 729z42 + 576z22z
2
3 + 576z22z

2
4 − 48z43 − 96z23z

2
4 − 48z44 − 234z21z2

− 96z1z3z4 − 432z32 + 144z2z
2
3 + 144z2z

2
4 + 48z21 − 126z22 + 12z23 + 12z24 − 18z2 − 1).
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8 Conjecture

In this section, we formulate the conjecture that the T–orbit space of G can be computed as the negativity–
locus of another matrix polynomial, which is closer to the characterization [PS85, Main Theorem] for the
linear action of a compact Lie group on a polynomial ring.

G is not necessarily the Weyl group of a root system in this section, but simply a group with an integer
representation G as in Equation (2.1). Assume that Q[x±]G = Q[θ1, . . . , θm] for some n ≤ m ∈ N. On Q[x±],
define the Euler derivation xi ∂/∂xi with xi ∂/∂xi(xi) = xi and xi ∂/∂xi(xj) = 0 for 1 ≤ i 6= j ≤ n as

well as the associated gradient ∇̃ := [x1 ∂/∂x1, . . . , xn ∂/∂xn]t. We fix a symmetric positive definite matrix
S ∈ Qn×n with Bt S B = S for all B ∈ G. For example S = 1/|G|

∑
B∈G B

tB has the desired property. For
f, f ′ ∈ Q[x±]n, write 〈f, f ′〉S := f t S f ′.

We give a necessary condition for points to be contained in the image T . First, we show that the S–induced
G–invariant inner product of two gradients of G–invariant Laurent polynomials is again G–invariant.

Proposition 8.1. Let f, f ′ ∈ Q[x±]G.

1. For all B ∈ G, B (∇̃ f)(xB) = ∇̃ f(x).

2. We have 〈∇̃ f, ∇̃ f ′〉S = (∇̃ f)t S (∇̃ f ′) ∈ Q[x±]G.

Proof. We obtain the first statement from

∇̃ f(x) = ∇̃ (B · f)(x) = B

[
xB·1

∂f

∂x1
(xB), . . . , xB·n

∂f

∂xn
(xB)

]t
= B (∇̃ f)(xB),

where we applied the hypothesis that f is G–invariant and then the chain rule. Therefore,

(B · ((∇̃ f)t S (∇̃ f ′)))(x) = ((∇̃ f)(xB))t S ((∇̃ f ′)(xB))

= (B−1 ∇̃ f(x))t S (B−1 ∇̃ f ′(x))

= (∇̃ f(x))t (B−1)t S B−1 (∇̃ f ′(x))

= ((∇̃ f)t S (∇̃ f ′))(x)

proves the second statement. �

For f ∈ Q[x±], define f̂ ∈ Q[x±] by f̂(x) = f(x−In).

Proposition 8.2. Let f ∈ Q[x±].

1. We have ∇̃ f̂(x) = −(̂∇̃f)(x).

2. If f ∈ Q[x±]G, then f̂ ∈ Q[x±]G.

Proof. By the chain rule, we have

∇̃ f̂(x) = −
[
x(−In)·1

∂f

∂x1
(x−In), . . . , x(−In)·n

∂f

∂xn
(x−In)

]t
= −(∇̃f)(x−In) = −(̂̃∇ f)(x).

The second statement follows from the fact that for all B ∈ G, (B · f̂)(x) = f(x−B) = f(x−In) = f̂(x), if f
is G–invariant. �

Lemma 8.3. For f ∈ Q[x±]G and x ∈ Tn, 〈∇̃ f, ∇̃ f̂〉S(x) ≤ 0.
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Proof. By Proposition 8.2, we have

〈∇̃ f, ∇̃ f̂〉S(x) = −(∇̃ f(x))t S ((̂∇̃ f)(x)) = −(∇̃ f(x))t S ((∇̃ f)(x−In)).

Since x ∈ Tn, x = (x1, . . . , xn) = (x−11 , . . . , x−1n ) = x−In and thus,

〈∇̃ f, ∇̃ f̂〉S(x) = −(∇̃ f(x))t S ((∇̃ f)(x)) = −(∇̃ f(x))t S (∇̃ f(x)) ≤ 0

completes the proof. �

We can now state a necessary condition for points in Cn to be contained in the T–orbit space of G given by
the image of Tn under ϑ.

Corollary 8.4. Define the matrix M̃ ∈ (Q[x±]G)m×m with entries M̃ij = 〈∇̃ θi, ∇̃ θ̂j〉S. For x ∈ Tn, M̃(x)
is Hermitian negative semi–definite.

Proof. Let ∇̃ϑ = [∇̃ θ1 | . . . | ∇̃ θm] be the Jacobian transpose of ϑ with respect to the Euler derivations and
assume that S = Ct C is the Cholesky decomposition of S for an upper triangular matrix C ∈ Qn×n. We

write M̃(x) = (∇̃ϑ(x))t S (∇̃ ϑ̂(x)). Since x ∈ Tn, x = x−In and consecutively ∇̃ ϑ̂(x) = −∇̃ϑ(x). Then

M̃(x) = (∇̃ϑ(x))t Ct C (∇̃ ϑ̂(x)) = −(C ∇̃ϑ(x))t (C ∇̃ϑ(x))

is Hermitian negative semi–definite. �

Conjecture 8.5. Let M ∈ Q[z]m×m, such that M̃ = M(θ1, . . . , θm) ∈ (Q[x±]G)m×m. Furthermore, let
I ⊆ Q[z] be the ideal of relations among the θ1, . . . , θm and denote by V(I) ⊆ Cm the variety of I.

If z ∈ V(I) is such that M(z) is Hermitian negative semi–definite, then z ∈ T .

With Corollary 8.4, we obtain a necessary and sufficient condition and therefore a characterization of the
T–orbit space as a basic semi–algebraic set. There are upsides and downsides for using M instead of the
Hermite matrix polynomial H for Weyl groups. Generically, the matrix M admits the same number of
necessary polynomial inequalities, respectively one less in the case of An−1. There is to our knowledge no
closed expression for M . Therefore, one needs to express the entries of M(θ1, . . . , θn) as polynomials in the
fundamental invariants.

Remark 8.6. The entry Hij of the Hermite matrix polynomial has degree i + j, whereas all entries of M
are expected to have degree 2 and the determinant of M has degree at most 2n. Computations indicate that
this bound is sharp. Remarks 4.4, 5.4, 6.5 and 7.5 state that the degree of the determinant of H can also be
expected to be linear in n. We observe

deg(H) =


2 3 · · · n+ 1
3 4 · · · n+ 2
...

...
. . .

...
n+ 1 n+ 2 · · · 2n

 , deg(Det(H)) =


4n− 2, if G = An−1
3n, if G = Bn
2n, if G = Cn
3n+ 1, if G = Dn

,

deg(M) =


2 2 · · · 2
2 2 · · · 2
...

...
. . .

...
2 2 · · · 2

 , deg(Det(M)) = 2n.

To support Conjecture 8.5, we give a visualization of the two–dimensional cases for Weyl groups.
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Example 8.7.

1. Let z = (z1 + i z2, z1− i z2) ∈ C2 and consider G = A2. The matrix H(z) ∈ Q[z]3×3 from Theorem 4.3,
which characterizes the T–orbit space of A2, was computed in Section 4.3, so that we obtain a de-
scription of T in terms of polynomials h0(z), h1(z), h2(z) ∈ Q[z]. The Hermitian matrix M(z) from
Conjecture 8.5 is

M(z) =
2

3

[
z21 + z22 − 1 2 (z1 + i z2)2 − 2 (z1 − i z2)

2 (z1 − i z2)2 − 2 (z1 + i z2) z21 + z22 − 1

]
∈ Q[z]2×2.

(a) Det(−M(z)) ≥ 0 (b) Trace(−M(z)) ≥ 0
(c) Det(−M(z)),Trace(−M(z)) ≥
0

Figure 9: Vanishing points and positivity regions for determinant and trace of M(z).

As in Section 4.3, we observe a D3–invariance: With g1(z) := z21 + z22 , g2(z) := z1 (z21 − 3 z22) we have
Q[z]D3 = R[g1, g2] and

Det(−M(z)) = 1/9 (−12 z41 − 24 z21 z
2
2 − 12 z42 + 32 z31 − 96 z1 z

2
2 − 24 z21 − 24 z22 + 4) (solid)

= 4/9 (−3 g1(z)2 − 6 g1(z) + 8 g2(z) + 1),
Trace(−M(z)) = −4/3 (z21 + z22 − 1) (dots)

= −4/3 (g1(z)− 1).

One can observe that Det(−M(z)) divides h0(z) = Det(H(z)) and the quotient (3z1 + 1)2 z42 (up to a
positive scalar) is a square.

2. The property “Det(−M(z)) divides Det(H(z)) in Q[z]” is also true for the other two–dimensional
cases. We have

A2 : Det(H(z)) = 19683/256 (3z1 + 1)2 z42 Det(−M(z)) (solid) ,
B2 : Det(H(z)) = 16384/9 z22Det(−M(z)) (solid) ,
C2 : Det(H(z)) = 1024/9 Det(−M(z)) (solid) .
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(a) A2: H(z) � 0 (b) A2: M(z) � 0

(c) B2: H(z) � 0 (d) B2: M(z) � 0

(e) C2: H(z) � 0 (f) C2: M(z) � 0

Figure 10: The regions “H(z) � 0” and “M(z) � 0” for A2,B2, C2.
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9 Orthogonality of Chebyshev polynomials

The image T of ϑ that we describe in this article also appears in other contexts of interest to analysis. The
equations were known for specific examples such as the deltoid in Figure 3 and Steiner’s hypocycloid in
Figure 1. These domains contain sampling points with logarithmic Lebesgue number [MKNR12, Theorem
1.24] and minimal cubature points [LSX12, HMP16]. They are also the domain of orthogonality for a family
of generalized Chebyshev polynomials [EL82, HW88, LU13]. As far as we know, we have given their first
explicit general characterization as semi–algebraic sets.

9.1 Generalized cosine functions

Assume that G is the Weyl group of a rank n root system R, which is represented over Rn equipped with the
Euclidean scalar product 〈·, ·〉 . G is the subgroup of the orthogonal matrix group On(R), that is generated
by the orthogonal reflections

sρ : Rn → Rn,
u 7→ u− 〈ρ∨, u〉 ρ

with ρ∨ :=
2

〈ρ, ρ〉
ρ (9.1)

for ρ ∈ R. The affine Weyl group is the semi–direct product of G with the group of translations, with
respect to the lattice of coroots Λ, that is the Z–module generated by R∨ := {ρ∨ | ρ ∈ R}. Assume that
ρ1, . . . , ρn form a base of R and that ρ0 is the highest root. For µ in the weight lattice Ω, define the map

eµ : Rn → C,
u 7→ exp(−2πi 〈µ, u〉).

(9.2)

Lemma 9.1.

1. A fundamental domain for Gn Λ is the closed alcove

4 := {u ∈ Rn | 〈u, ρ0〉 ≤ 1, 〈u, ρ1〉 ≥ 0, . . . , 〈u, ρn〉 ≥ 0}.

and G4 =
⋃
A∈GA4 is a fundamental domain for the group of translations Λ.

2. {eµ |µ ∈ Ω} is an orthonormal basis for both

• the Λ–periodic locally square integrable function L2(Rn/Λ) and

• the square integrable functions on G4

with respect to the inner product

(f, g) 7→ 1

|G|Vol(4)

∫
G4

f(u) g(u) du,

where Vol(4) is the Lebesgue measure of 4 in Rn.

Proof. The first statement follows from [Bou68b, §2, Proposition 2 and Proposition 5].

The second statement is a consequence of [Fug74, Section 5]. �

Definition 9.2. The generalized cosine function associated to µ ∈ Ω is the G–invariant Λ–periodic
function

cµ : Rn → C,

u 7→ 1

|G|
∑
A∈G

eAµ(u).
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The generalized sine function associated to µ ∈ Ω is the G–anti–invariant Λ–periodic function

sµ : Rn → C,

u 7→ 1

|G|
∑
A∈G

Det(A) eAµ(u).

Let µ, ν ∈ Ω. By Lemma 9.1 and the G–invariance, we have

1

Vol(4)

∫
4

cµ cν du =


|StabG(µ)|
|G|

, if µ ∈ G ν

0, else
. (9.3)

If α ∈ Zn such that W α = µ and α ∈ Nn \ ([1, . . . , 1]t + Nn), then µ lies on a wall of a Weyl chamber
[Bou68a, §1.4] and thus sµ = 0. For α ∈ [1, . . . , 1]t + Nn on the other hand, µ is called strongly dominant
and we have |StabG(µ)| = 1. Furthermore, for strongly dominant weights µ, ν ∈ Ω,

1

Vol(4)

∫
4

sµ sν du =


1

|G|
, if µ ∈ G ν

0, else
. (9.4)

We show that the image of the generalized cosine functions associated to the fundamental weights is precisely
the T–orbit space T .

Lemma 9.3. We have T = c(4) = c(Rn), where c(u) := (cω1(u), . . . , cωn(u)) ∈ Cn for u ∈ Rn.

Proof. We have c(4) = c(Rn), because cωj is G–invariant and Λ–periodic for all 1 ≤ j ≤ n. Fix an
index j. Since the fundamental weights ω1, . . . , ωn form a basis of Rn, we have u ∈ Rn if and only if
exp(−2πi 〈ωi, u〉) ∈ T for all 1 ≤ i ≤ n. For A ∈ G, let α(A) ∈ Zn be the vector of coordinates of Aωj in Ω.
Hence,

θj(ζ) =
1

|G|
∑
A∈G

n∏
i=1

ζ
α

(A)
i

i and cωj (u) =
1

|G|
∑
A∈G

n∏
i=1

(exp(−2πi 〈ωi, u〉))α
(A)
i .

Given u ∈ Rn, choose ζi = exp(−2πi 〈ωi, u〉) ∈ T to obtain θj(ζ) = cωj (u).

On the other hand, if ζ ∈ Tn has entries ζi = exp(−2πiϕi) for ϕi ∈ [0, 1), then the unique solution u ∈ Rn
of the linear equations 〈ωi, u〉 = ϕi for 1 ≤ i ≤ n is the preimage of ϑ(ζ) ∈ T . �

9.2 Generalized Chebyshev polynomials

Assume that G has the integer representation G from Equation (2.1) and Q[x±]G = Q[θ1, . . . , θn] as in
Theorem 2.7. For α ∈ Zn, there exists a unique multivariate polynomial Tα ∈ Q[z], such that Θα =
Tα(θ1, . . . , θn). We call {Tα ∈ Q[z] |α ∈ Zn} the generalized Chebyshev polynomials of the first kind
associated to the root system R.

If µ ∈ Ω is such that W α = µ, then cµ = θα ◦ (eω1 , . . . , eωn) = Tα ◦ (cω1 , . . . , cωn). Thus, Definition 9.2 is a
generalization of the univariate case T`(cos(u)) = cos(` u) for ` ∈ N.

The second kind Chebyshev polynomials are defined through the character polynomials. Thanks to Weyl’s
character formula [Bou75, §9, Théorème 1], those are given by

Ξα =
Υα+δ

Υδ
∈ Q[x±]G (9.5)

for α ∈ Zn, where δ := [1, . . . , 1]t and Υα :=
∑
B∈G Det(B)xB α ∈ Q[x±] is anti–invariant. The anti–

invariant polynomials form a free Q[x±]G–module of rank 1, which is generated by Υδ. As we shall review,
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Υδ also determines the weight of orthogonality. The generalized Chebyshev polynomials of the second
kind associated to the root system R are the unique {Uα ∈ Q[z] |α ∈ Zn} satisfying Uα(θ1, . . . , θn) = Ξα.
Hence, for W α = µ ∈ Ω and ω0 := W δ = ω1 + . . .+ ωn,

Uα ◦ (cω1 , . . . , cωn) =
Υα+δ

Υδ
◦ (eω1 , . . . , eωn) =

sµ+ω0

sω0

. (9.6)

In the classical univariate case G = A1, we have

Ξ` =
x`+1 − x−`−1

x− x−1
= x` + x`−1 + . . .+ x1−` + x−` (9.7)

and thus U`(cos(u)) = sin((`+ 1)u)/ sin(u) for ` ∈ N.

We shall review now that T is the domain of orthogonality of the generalized Chebyshev polynomials and
show that the weight of orthogonality can be given in terms of Υδ, also known as the “Weyl denominator”.

Lemma 9.4. Let J := [∇̃ θ1| . . . |∇̃ θn] ∈ Q[x±]n×n. Then Det(J) ∈ Q[x±] is anti–invariant with

Det(J) =

n∏
i=1

|StabG(ei)|

|G|n
Υδ.

Proof. By Proposition 8.1, we have J(xB) = B J(x) for any B ∈ G. Hence, Det(J) is anti–invariant in Q[x±]
and there exists a unique f ∈ Q[x±]G , such that Det(J) = f Υδ. We show that xδ is the highest monomial
of Det(J) in the partial ordering given in [Bou75, §6.2]. Note that

Jij =
[
∇̃ θ1| . . . |∇̃ θn

]
ij

= xi ∂/∂xi θj =
|StabG(ej)|
|G|

xi
∂

∂ xi

∑
α∈G ej

xα =
|StabG(ej)|
|G|

xi
∂

∂ xi
(xj +

∑
α≺ej

cα x
α),

where cα ∈ {0, 1} and α ≺ ej if and only if ei − α 6= 0 is the vector of coordinates in Ω for a sum of positive
roots [Bou75, §6, Lemma 2]. Therefore, there exist coefficient cα ∈ N, such that

Det(J) =

n∏
i=1

|StabG(ei)|

|G|n

x1 · · ·xn︸ ︷︷ ︸
=xδ

+
∑
α≺δ

cα x
α

 = f Υδ.

Thus, f must be the constant, which is the given quotient. �

For the square integrable functions on G 4 with basis {eµ |µ ∈ Ω}, define the gradient∇ := [∂/∂u1, . . . , ∂/∂un]t.

The relation to the gradient of Euler derivations ∇̃ is given by the next statement.

Lemma 9.5. We have
[∇ cω1

| . . . |∇ cωn ] (u) = 2πiW J(eω1
(u), . . . , eωn(u)),

where W is the matrix with columns ω1, . . . , ωn.

Proof. This is a straightforward computation from the definition

[∇ cω1
| . . . |∇ cωn ]ij (u) =

∂cωj
∂ui

(u) = 2πi
n∑
k=1

(ωk)i xk ∂/∂xk θj(eω1
(u), . . . , eωn(u))

= 2πi
n∑
k=1

Wik Jkj(eω1
(u), . . . , eωn(u)) = 2πi(W J(eω1

(u), . . . , eωn(u)))ij .

�
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The generalized Chebyshev polynomials satisfy the following orthogonality property.

Theorem 9.6. For α, β ∈ Nn,

∫
T
Tα(z)Tβ(z) (φ(z))−1/2 dz =

2π |Det(W )|
n∏
i=1

|G ei|
Vol(4) |StabG(α)|

|G|
, if α = β

0, else

and
∫
T
Uα(z)Uβ(z) (φ(z))1/2 dz =

2π |Det(W )|
n∏
i=1

|G ei|
Vol(4)

|G|
, if α = β

0, else
,

where the weight function φ ∈ Q[z] is defined via

φ(θ1, . . . , θn) = (Υδ)
2 ∈ Q[x±]G

with δ = [1, . . . , 1]t ∈ Zn.

Proof. Assume that W α = µ,W β = ν ∈ Ω. By Lemma 9.3 and the definition of generalized Chebyshev
polynomials of the first kind, we can conduct the transformation

∫
T
Tα(z)Tβ(z) (φ(z))−1/2 dz =

∫
4
cµ(u) cν(u)

|Det([∇ cω1
| . . . |∇ cωn ] (u))|

|Υδ(eω1(u), . . . , eωn(u))|
du

=
∫
4
cµ(u) cν(u)

|G|n
n∏
i=1

|StabG(ei)|

|2πi Det(W ) Det(J)|
|Det(J)|

(eω1
(u), . . . , eωn(u)) du

=
n∏
i=1

|G ei| |2πi Det(W )|
∫
4
cµ(u) cν(u) du.

According to Equation (9.3),

∫
T

Tα(z)Tβ(z) (φ(z))−1/2dz = 2π |Det(W )|
n∏
i=1

|G ei|Vol(4)
|StabG(α)|
|G|

if µ ∈ G ν and 0 otherwise.

The result on generalized Chebyshev polynomials of the second kind is analogous with

Uα(c(u))Uβ(c(u)) (φ(c(u)))1/2 =
sµ+ω0

sω0

(u)
sν+ω0

sω0

(u) |Υδ(eω1(u), . . . , eωn(u))|

=
sµ+ω0(u) sν+ω0(u)

|Υδ(eω1
(u), . . . , eωn(u))|2

|Υδ(eω1
(u), . . . , eωn(u))|

and then applying Equation (9.4). �

Remark 9.7. In Section 8 we make use of M̃ = J t S Ĵ ∈ (Q[x±]G)m×m to give the equations of T . According
to Remark 2.10, in the present case of Weyl groups the fundamental invariants θ1, . . . , θn are such that there
exists a permutation σ ∈ Sn with θ̂i = θσ(i). Hence, Det([∇̃ θ̂1| . . . |∇̃ θ̂n]) = sgn(σ) Det([∇̃ θ1| . . . |∇̃ θn]) and
thus the determinant of M is a scalar multiple of φ in Q[z].
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10 Conclusion

To our knowledge, we have given the first explicit and simultaneously general characterization for the orbits of
a nonlinear action of a Weyl group on the complex torus as semi–algebraic sets. This was originally motivated
by the problem of determining the chromatic number for infinite graphs, which can be reformulated as a
polynomial optimization problem on the T–orbit space thanks to the properties of the generalized Chebyshev
polynomials. The fact that the T–orbit space is a compact basic semi–algebraic set in these cases is a self–
contained result. Future work revolves around finding such explicit descriptions also for the Weyl groups of
root systems E,F,G. Using a computer algebra system, such characterizations can be given, but a unifying
theory for all root systems is desirable. Conjecture 8.5 would extend our concrete results in that sense.
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