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A B S T R A C T

A reduced micromorphic model is formulated in the scope of crystal plasticity and crystalline
cleavage damage. The finite strain formulation utilizes a single additional microvariable that
is used to regularize localized inelastic deformation mechanisms. Damage is formulated as a
strain-like variable to fit the generalized micromorphic microslip and/or microdamage based
formulation. Strategies of treating slip and damage simultaneously and separately as non-local
variables are investigated. The model accounts for size-effects that simultaneously affect the
hardening behavior and allow to predict finite width damage localization bands. The results
show that the micromorphic extension introduces extra-hardening in the vicinity of grain
boundaries and slip localization zones in polycrystals. At the single crystal level slip band
width is regularized. Two ways of dealing with damage localization were identified: An indirect
method based on controlling width of slip bands that act as initiation sites for damage and a
direct method in which damage flow is regularized together with or separately from plastic
slip. Application to a real martensitic steel microstructure is investigated.

. Introduction

Martensitic steels are widely used engineering materials because of their high strength and decent ductility, that play a role, for
xample, in the fatigue performance of the material. The microstructure of martensite is often rationalized by making distinction of
rior austenite, blocks, packets and laths (Morito et al., 2003; Chatterjee et al., 2018).

Various recent experimental and numerical studies have been devoted to investigate the deformation response of dual-phase,
artensitic, and bainitic steels with an objective to reveal reasoning for strength–ductility trade-off, thermo-mechanical response,

esponse to cyclic fatigue loading, and aging behavior of different steel grades. A matter of particular interest is the quantification
f strengthening induced by plastic activity impeded by the hierarchical microstructure of these materials (Morsdorf et al., 2016;
u et al., 2016; Kwak et al., 2016). Strain heterogeneity further increases in the presence of soft ferrite phase and intra-lath
reasy austenite layers, which both can notably or only marginally increase the materials ductility (Asik et al., 2020; Tasan
t al., 2014; Maresca et al., 2014, 2016). The latter allows for ductile-like plastic deformation accommodation between hard
aths, but can transform to martensite already at small strains (Morsdorf et al., 2016). The ferrite phase, in turn, is stable and
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actively accommodating strains in the mixtures of ferrite–martensite–austenite microstructures, often at the expense of overall
strength (Laukkanen et al., 2021). Adjusting the suitable phase fractions is challenging whenever detrimental effects are aimed
to be minimized. As it comes, precipitates are one source of fine scale strengthening, however, they can also act as nucleation sites
for, for example, brittle failure (Li et al., 2014; Vincent et al., 2010; Monnet et al., 2019).

Optimization of advanced steels using robust R&D processes becomes attractive to enhance their performance and sustainability
fficiently. To accomplish rapid development of these materials towards desired extreme mechanical properties, a valid computa-
ional framework can be used. In aforementioned studies, crystal plasticity models are the favored choice to undertake microstructure
ased analysis and design well-performing materials with targeted properties. In this domain, the intrinsic hierarchical microstruc-
ural characteristics of martensite containing steels provide a focus of research not only for a length scale dependent plasticity model
ut also for a damage model capable of shedding light on damage and crack evolution in the microstructure.

Length scale dependent plasticity is indeed required when the size of the modeled constituents becomes close to the characteristic
engths of underlying plastic deformation mechanisms (Fleck and Hutchinson, 1997; Kocks and Mecking, 2003). Accounting for the
torage of geometrically necessary dislocations (GND) arising from shear strain gradients can be used in order to incorporate such
cale dependencies in crystal plasticity theories (Ashby, 1970; Acharya and Bassani, 2000). Models considering the full dislocation
ensity tensor were developed for this purpose (Gurtin, 2002; Cordero et al., 2010; Kaiser and Menzel, 2019; Rys et al., 2020). These
odels were shown to be capable of predicting size-dependent hardening behaviors as well as to regularize shear band formation
hen strain softening occurs. In parallel, reduced gradient-enhanced crystal plasticity theories accounting for the gradients of a single

calar accumulated plastic slip variable were established (Wulfinghoff and Böhlke, 2012; Ling et al., 2018b; Scherer et al., 2019).
his approach allows one to obtain less computationally demanding models, while still accounting for strain gradient contributions.

Two principally different approaches remain popular for introducing damage with crystal plasticity level analysis when
onsidering cyclic loading, the so called fatigue indicator parameters (FIP) and evolution based damage models. FIPs usually utilize
he stress–strain response of a crystal plasticity model and post-process prevailing state after certain number of loading cycles to
xtrapolate material failure and/or remaining (fatigue) lifetime. The computational cost in most cases is less for the FIP based models
han for evolution based damage, at the expense of omitting grain-to-grain propagation of damage and its effect on the performance
utcome. Nonetheless, considering the effectiveness of the FIP-models, it is possible to analyze causalities within the hierarchical
artensitic microstructure (Schäfer et al., 2019; Li et al., 2016) or evaluate the effect of existing small and large defects (Pinomaa

t al., 2019; Pineau and Forest, 2017).
Evolution based crystal plasticity damage models are rarer, much owing firstly to the complexity of fracture in general and

econdly to the distinguishing constitutive relations between dislocation driven plasticity and damage or crack evolution. Effort
as been placed on adapting classical continuum damage mechanics to crystal plasticity and degrading material’s integrity during
eformation with a plastic strain threshold value and evolution equation (Li et al., 2018; Zhao et al., 2019). In the same context,
on-local crystal plasticity models are considered relevant to produce scaling effects and control of damage through a non-locality
elation with dislocations, plastic strain, and defected area growth (Boeff et al., 2014, 2015; Abu Al-Rub et al., 2015; Kweon, 2016;
ing et al., 2018b; Scherer et al., 2019). In terms of brittle fracture, cleavage fracture based models introduce crystalline level
nformed damage with a stress based initiation criterion (Wu and Zikry, 2014), which can be extended with a softening evolution
oupling damage and plasticity (Aslan et al., 2011a; Lindroos et al., 2019). In many occasions, the non-locality of the models
pproaches the scope of scale dependent hardening provided by geometrically necessary dislocations at sufficiently small grain
izes. Micromorphic models have been developed in order to address regularization of plasticity and damage (Brepols et al., 2017),
hile extensions to crystal plasticity were introduced to cope with the need of microstructure level predictions (Aslan et al., 2011a,b;
abnis et al., 2016). Recent advancements also include the use of a coupled approach to describe damage evolution with phase field
odel and establish mechanical stress/strain state with a crystal plasticity model, including a capability to regularize damage (Tu

nd Ray, 2020). In order to account for size effects related to slip and address the regularization requirements of damage, there is
need to incorporate finite strain non-local plasticity behavior and damage regularization in the same model for brittle fracture in
computationally efficient way.

The micromorphic approach used in this work represents an extension of Eringen’s original micromorphic theory (Eringen and
uhubi, 1964) to additional degrees of freedom other than Erigen’s microdeformation tensor. Eringen, and Mindlin (Eringen and
uhubi, 1964; Mindlin, 1964) initially proposed to include the microdeformation of a triad of microstructure directors and its
radient into the continuum modeling. The micromorphic approach proposed by Forest (2009, 2016) introduces additional degrees
f freedom and their gradient that can be related to micro-plastic and micro-damage variables. The advantage is that scalar degrees of
reedom can be used instead of Eringen’s full microdeformation tensor, so that computational efficiency can be improved. Since then,
he method has been used by several authors, see for instance Poh et al. (2011), Brepols et al. (2017), in the case of isotropic plasticity
nd damage. This approach was also applied to single crystals considering the curl of a plastic microdeformation tensor (Cordero
t al., 2010). However this model is very expensive since it involves 9 additional degrees of freedom at each node. That is why
reduced micromorphic model was then proposed by Ling et al. (2018a) making use of the gradient of a single scalar variable

epresenting the cumulative plastic slip. This model was further developed by Scherer et al. (2019) for ductile damage applications.
his reduced micromorphic model is explained in detail in the present work and extended to include new crystallographic damage
echanisms.

In line with this view, this work uses a finite strain reduced micromorphic crystal plasticity model to investigate non-local
ehavior of slip and damage in BCC metals. The novelty of the present approach is within the scale dependent regularization of
lastic slip bands and crystalline level damage incorporated fully in the same model. Their interdependence is investigated in the
2

ontext of lath martensitic steels. Special attention is placed on martensitic steels due to their inherent hierarchical strengthening



International Journal of Plasticity 151 (2022) 103187M. Lindroos et al.

a

a

characteristics making them a suitable application with also practical engineering significance. First, single crystal cases are studied
with and without the damage model in order to determine the influences of several material parameters on size effects and
regularization of localized inelastic phenomena. In the second part, the size effects produced by the model in absence of damage are
investigated for polycrystals to assess the arising scale dependent hardening. Then, the model behavior is further analyzed with a
prior-austenite based polycrystalline microstructure quantifying damage effects. Throughout, a range of parameters is studied to infer
model behavior and prepare for future efforts focusing on directly establishing material specific calibrations. Finally, a martensitic
microstructure is introduced and the model’s deformation and damage response are examined in this domain. Discussion focuses on
the essence of the crystal plasticity-damage modeling scheme’s suitability for polycrystals, especially on the application to modern
martensitic steels. The choice of regularization method is finally reviewed in light of producing physically relevant length-scale
dependent plasticity and damage response in a computationally efficient and tractable finite strain scheme.

2. Crystal plasticity model

2.1. Micromorphic approach

A finite strain framework is adopted in which the deformation gradient 𝑭
̃

is multiplicatively decomposed into an elastic part 𝑭
̃
𝑒

nd an inelastic part 𝑭
̃
𝑖.

𝑭
̃
=
𝜕𝒙
𝜕𝑿

= 𝑭
̃
𝑒.𝑭
̃
𝑖 (1)

The velocity gradient 𝑳
̃

comprises a purely elastic contribution and a contribution associated to inelastic deformation mechanisms.

𝑳
̃
= �̇�
̃
.𝑭
̃
−1 = �̇�

̃
𝑒.𝑭
̃
𝑒−1 + 𝑭

̃
𝑒.𝑳
̃
𝑖.𝑭
̃
𝑒−1 (2)

In the context of crystal plasticity the latter is classically decomposed into a sum of plastic slip rates �̇�𝑠 over all slip systems (slip
system number is denoted by superscript 𝑠). The direction of plastic slip rate is governed by the dislocations gliding directions 𝒎𝑠

nd normal to slip planes 𝒏𝑠. Following Aslan et al. (2011a) additional inelastic rates are introduced in order to account for damage
by crack opening rate �̇�𝑘𝑐 and crack shearing rates �̇�𝑘1 and �̇�𝑘2 (damage mechanism number is denoted by superscript 𝑘). The direction
of damage rate is governed by the normal to cleavage planes 𝒏𝑘𝑑 and their in plane orthogonal directions 𝓵𝑘𝑑1 and 𝓵𝑘𝑑2.

𝑳
̃
𝑖 = �̇�

̃
𝑖.𝑭
̃
𝑖−1 =

𝑁𝑠
∑

𝑠=1
�̇�𝑠(𝒎𝑠 ⊗ 𝒏𝑠)

+
𝑁𝑑𝑎𝑚𝑎𝑔𝑒
∑

𝑘=1
�̇�𝑘𝑐 (𝒏

𝑘
𝑑 ⊗ 𝒏𝑘𝑑 ) + �̇�

𝑘
1 (𝓵

𝑘
𝑑1 ⊗ 𝒏𝑘𝑑 ) + �̇�

𝑘
2 (𝓵

𝑘
𝑑2 ⊗ 𝒏𝑘𝑑 )

(3)

In keeping with Wulfinghoff and Böhlke (2012) an equivalent plastic strain gradient enhancement of single crystal plasticity is
adopted. The micromorphic approach (Forest, 2009) is followed in order to derive a finite strain crystal plasticity model which
accounts for and regularizes plastic slip and/or damage. The variable 𝛾𝑐𝑢𝑚 is introduced as the variable whose gradients will play a
role in the constitutive behavior. Three different formulations are considered, for each of which the definition of 𝛾𝑐𝑢𝑚 differs. The
first considers plastic slip regularization only:

𝛾𝑐𝑢𝑚 = ∫

𝑡

0

𝑁𝑠
∑

𝑠=1
|�̇�𝑠| d𝑡 (4)

The second accounts for both plastic slip and damage regularization:

𝛾𝑐𝑢𝑚 = ∫

𝑡

0

𝑁𝑠
∑

𝑠=1
|�̇�𝑠| d𝑡 + ∫

𝑡

0

𝑁𝑑𝑎𝑚𝑎𝑔𝑒
∑

𝑘=1
(|�̇�𝑘𝑐 | + |�̇�𝑘1 | + |�̇�𝑘2 |) d𝑡 (5)

The third involves damage regularization only:

𝛾𝑐𝑢𝑚 = ∫

𝑡

0

𝑁𝑑𝑎𝑚𝑎𝑔𝑒
∑

𝑘=1
(|�̇�𝑘𝑐 | + |�̇�𝑘1 | + |�̇�𝑘2 |) d𝑡 (6)

In all three cases, the non-local counterpart of 𝛾𝑐𝑢𝑚 is denoted 𝛾𝜒 and is treated as an additional degree of freedom. Therefore even
when both slip and damage are regularized simultaneously, a single micromorphic variable is used. The Lagrangian gradient of 𝛾𝜒
is denoted 𝑲𝜒 .

𝑲𝜒 =
𝜕𝛾𝜒
𝜕𝑿

(7)

In conventional continuum mechanics the power of internal forces is 𝑺
̃
∶ �̇�
̃

, where 𝑺
̃

denotes the first Piola–Kirchhoff stress related
to the Cauchy stress by 𝑺 = det

(

𝑭
)

𝜎𝑭 −𝑇 . The standard principle of virtual power is extended to higher order contributions, namely
3
̃ ̃ ̃̃
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to contributions of 𝛾𝜒 and 𝑲𝜒 which energetic counterparts are respectively the scalar stress 𝑆 and vector stress 𝑴 . In addition a
generalized contact force 𝑀 , conjugate to 𝛾𝜒 is introduced. For any subdomain 𝐷0 it is written as

∫𝐷0

(

𝑺
̃
∶ �̇�
̃
+ 𝑆 ̇𝛾𝜒 +𝑴 .�̇�𝜒

)

d𝑉0 = ∫𝜕𝐷0

(

𝑻 .�̇� +𝑀�̇�𝜒
)

d𝑆0 ∀�̇�, ∀�̇�𝜒 , ∀𝐷0 (8)

The application of Gauss’ theorem leads to the balance equations

Div𝑺
̃

= 0 (9)

Div𝑴 − 𝑆 = 0 (10)

and associated boundary conditions, with surface normal 𝒏0 in the reference configuration

𝑻 = 𝑺
̃
.𝒏0 (11)

𝑀 = 𝑴 .𝒏0 (12)

The elastic Green–Lagrange strain 𝑬
̃
𝑒
𝐺𝐿 is introduced as follows

𝑬
̃
𝑒
𝐺𝐿 = 1

2

(

𝑭
̃
𝑒𝑇 .𝑭

̃
𝑒 − 𝟏

̃

)

(13)

t is considered as a state variable involved in the elastic part of the free energy density. Other state variables are hardening variables
nvolved in the hardening part of the free energy density. The hardening variables noted 𝜌𝑠, left to be defined, and the cumulated
amage variable 𝑑 = ∫ 𝑡0

∑𝑁𝑑𝑎𝑚𝑎𝑔𝑒
𝑘=1 �̇�𝑘𝑐 + �̇�

𝑘
1 + �̇�𝑘2 d𝑡 will be used as the hardening variables. Furthermore 𝛾𝑐𝑢𝑚, 𝛾𝜒 and 𝑲𝜒 are the state

variables involved in the nonlocal part or the free energy density. A quadratic form of the nonlocal free energy potential is chosen
for simplicity. The higher order modulus 𝐴 scales the material characteristic length. In addition a penalization term is introduced
with the penalization modulus 𝐻

𝜒
. In order to enforce quasi-equality between 𝛾𝑐𝑢𝑚 and 𝛾𝜒 a large value of the penalization modulus

is usually used. The chosen specific free energy density is given by

𝜓
(

𝑬
̃
𝑒
𝐺𝐿, 𝜌

𝑠, 𝛾𝑐𝑢𝑚, 𝛾𝜒 ,𝑲𝜒

)

= 1
2𝜌♯

𝑬
̃
𝑒
𝐺𝐿 ∶ 𝑪

≈
∶ 𝑬
̃
𝑒
𝐺𝐿 + 𝜓ℎ(𝜌𝑠, 𝑑)

+ 𝐴
2𝜌0

𝑲𝜒 .𝑲𝜒 +
𝐻𝜒

2𝜌0
(𝛾𝑐𝑢𝑚 − 𝛾𝜒 )2

(14)

𝜌♯ and 𝜌0 denote the volumetric mass density in the intermediate and initial configurations respectively. It must be noted that the
non-local contribution to the free energy, namely the two last terms in Eq. (14), depend on the choice of the expression of 𝛾𝑐𝑢𝑚
that is made. If Eq. (4) is chosen, only plastic slip gradients play a role in the free energy density, while if Eq. (6) is used, only
damage gradients play a role in the free energy density. When Eq. (5) is considered, it is gradients of the cumulated damage and
slip variable which come into play in the free energy density. The Clausius–Duhem inequality obtained from 1st and 2nd principles
of thermodynamics enforces

𝑺
̃
𝜌0

∶ �̇�
̃
+ 𝑆
𝜌0
�̇�𝜒 +

𝑴
𝜌0

�̇�𝜒 − �̇� ≥ 0 (15)

The first term on left-hand side of Eq. (15) can be reformulated in terms of the following stress measures

𝜫
̃
𝑒 = det

(

𝑭
̃
𝑒)𝑭
̃
𝑒−1.𝜎

̃
.𝑭
̃
𝑒−𝑇 = det

(

𝑭
̃
𝑒)𝑭
̃
𝑒−1.𝑺

̃
.𝑭
̃
𝑖𝑇 (16)

𝜫
̃
𝑀 = 𝑭

̃
𝑒𝑇 .𝑭

̃
𝑒.𝜫
̃
𝑒 (17)

where 𝜫
̃
𝑀 is Mandel’s stress tensor. Eq. (15) becomes

𝜫
̃
𝑒

𝜌♯
∶ �̇�
̃
𝑒
𝐺𝐿 +

𝜫
̃
𝑀

𝜌♯
∶
(

�̇�
̃
𝑖.𝑭
̃
𝑖−1

)

+ 𝑆
𝜌0
�̇�𝜒 +

𝑴
𝜌0
.�̇�𝜒 − �̇� ≥ 0 (18)

Following the Colleman–Noll procedure the state laws are postulated

𝜫
̃
𝑒 = 𝜌♯

𝜕𝜓
𝜕𝑬
̃
𝑒
𝐺𝐿

= 𝑪
≈
∶ 𝑬
̃
𝑒
𝐺𝐿 (19)

𝑆 = 𝜌0
𝜕𝜓
𝜕𝛾𝜒

= −𝐻𝜒 (𝛾𝑐𝑢𝑚 − 𝛾𝜒 ) (20)

𝑴 = 𝜌0
𝜕𝜓

= 𝐴𝑲𝜒 (21)
4
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When both plastic slip and damage are accounted for in the definition of 𝛾𝑐𝑢𝑚, the residual mechanical dissipation can hence be
written

𝑑 =
𝑁𝑠
∑

𝑠=1

(

|𝜏𝑠| +
𝜌♯
𝜌0
𝑆
)

|�̇�𝑠| − 𝜌♯
𝜕𝜓ℎ
𝜕𝜌𝑠

�̇�𝑠

+
𝑁𝑑𝑎𝑚𝑎𝑔𝑒
∑

𝑘=1

(

|𝜎𝑑𝑐 | +
𝜌♯
𝜌0
𝑆 − 𝜌♯

𝜕𝜓ℎ
𝜕𝑑

)

|�̇�𝑘𝑐 |

+
𝑁𝑑𝑎𝑚𝑎𝑔𝑒
∑

𝑘=1

(

|𝜏𝑘𝑑1| +
𝜌♯
𝜌0
𝑆 − 𝜌♯

𝜕𝜓ℎ
𝜕𝑑

)

|�̇�𝑘1 |

+
𝑁𝑑𝑎𝑚𝑎𝑔𝑒
∑

𝑘=1

(

|𝜏𝑘𝑑2| +
𝜌♯
𝜌0
𝑆 − 𝜌♯

𝜕𝜓ℎ
𝜕𝑑

)

|�̇�𝑘2 |

(22)

where 𝜏𝑠 is the resolved shear stress on slip system 𝑠, 𝜎𝑑𝑐 is the opening stress for a cleavage plane, 𝜏𝑘𝑑1 and 𝜏𝑘𝑑2 are shear stresses
on the cleavage planes. The damage model is further reviewed in the following sections.

However, if only plastic slips are considered to define 𝛾𝑐𝑢𝑚 the term (𝜌♯∕𝜌0)𝑆 vanishes from the three last terms in Eq. (22). On the
contrary, if only damage is used to define 𝛾𝑐𝑢𝑚 the term (𝜌♯∕𝜌0)𝑆 vanishes from the first sum in Eq. (22). Positivity of the dissipation
in all these three cases will be ensured by the choice of adequate yield and damage criteria presented in following section.

2.2. Single crystal model

The single crystal model follows the general principles of our previous work focusing on fatigue damage formulation of
martensitic steels using conventional crystal plasticity framework (Lindroos et al., 2019). A gradient plasticity extension and applied
modifications on the damage model are presented in the following. Inelastic strain rate consist in the sum of plastic slip of dislocations
and a strain-like contribution due to damage. A strain-like formulation of damage presents the benefits of allowing the tracking of
opening and closure of cracks and of being straightforwardly embedded in the present micromorphic crystal plasticity model. The
form presented in Eq. (3) may be expressed as an additive decomposition:

𝑳
̃
𝑖 = 𝑳

̃
𝑝 +𝑳

̃
𝑑 (23)

The contribution of dislocation slip responsible of plastic deformation is given by:

𝑳
̃
𝑝 =

𝑁𝑠
∑

𝑠=1

̇𝛾𝑠
(

𝒎𝑠 ⊗ 𝒏𝑠
)

(24)

The slip rate is provided by a rate dependent form

̇𝛾𝑠 = �̇�𝑠 𝑠𝑖𝑔𝑛(𝜏𝑠) =
⟨

|𝜏𝑠| − (𝑟𝑠 + 𝜏0 − 𝑆)
𝐾

⟩𝑛
𝑠𝑖𝑔𝑛(𝜏𝑠) (25)

where ⟨⋅⟩ are Macaulay brackets, material parameters 𝐾 and 𝑛 characterize the viscosity, 𝜈𝑠 = ∫ 𝑡0 |𝛾𝑠| dt, and 𝜏𝑠 = 𝒏𝑠 ⋅ 𝜫̃
𝑀 ⋅ 𝓵𝑠,

are the current cumulative slip and resolved shear stress in a system 𝑠, respectively. Slip plane normal is denoted with 𝒏𝑠 and slip
irection by 𝓵𝑠. 𝜏0 is the initial shear resistance of slip system families {110} <111> and {112} <111>. For simplicity, the initial shear
esistance is assumed the same for both slip families. 𝑟𝑠 is the isotropic hardening term derived from 𝜓ℎ, and 𝑆 is the generalized
tress. 𝑆 only appears in Eq. (25) if plastic slips are accounted for to define 𝛾𝑐𝑢𝑚 and is thus absent if damage regularization only (i.e.

Eq. (6)) is considered. Following the nonlinear form suggested by Aslan et al. (2011a), the hardening potential 𝜓ℎ(𝜌𝑠, 𝑑) unspecified
in Eq. (14) is supposed to take the following expression

𝜓ℎ(𝜌𝑠, 𝑑) =
1
2𝜌0

𝑄
𝑁𝑠
∑

𝑖=1
(𝜌𝑖)2 +

𝜎0𝑐 𝑑
𝜌0

exp

(

−𝛽
𝑁𝑠
∑

𝑠=1
𝜈𝑠
)

+ 1
2𝜌0

𝐻𝑑2 (26)

= 1
2𝜌0

𝑄
𝑁𝑠
∑

𝑖=1

(𝑁𝑠
∑

𝑗=1
𝐻𝑖𝑗

(

1 − exp
(

−𝑏𝜈𝑗
))

−
𝜎0𝑐 𝛽𝑑
𝑄

exp

(

−𝛽
𝑁𝑠
∑

𝑗=1
𝜈𝑗
))2

(27)

+
𝜎0𝑐 𝑑
𝜌0

exp

(

−𝛽
𝑁𝑠
∑

𝑠=1
𝜈𝑠
)

+ 1
2𝜌0

𝐻𝑑2

where the chosen expression of the hardening variables 𝜌𝑖 is defined in Eq. (27). 𝐻𝑖𝑗 is the slip–slip interaction matrix (24 × 24)
for which only 8 independent coefficients ℎ1,… , ℎ8 are considered (Hoc and Forest, 2001) (see Table 1). 𝜎0𝑐 is the initial cleavage
resistance, and 𝛽 is the coupling factor relating slip and damage mechanisms. Isotropic hardening arises from dislocation interactions
and damage is assumed to soften the slip resistance after damage initiation. The hardening terms take the following expression

𝑟𝑖 = 𝜌0
𝜕𝜓ℎ
𝜕𝜌𝑖

= 𝑄
𝑁𝑠
∑

𝐻𝑖𝑗
(

1 − exp(−𝑏𝜈𝑗 )
)

− 𝜎0𝑐 𝛽𝑑 exp

(

−𝛽
𝑁𝑠
∑

𝜈𝑗
)

(28)
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Exponential form results from the choice of free energy potential that couples slip and damage activities. Accumulation of slip
is assumed to decrease the cleavage resistance, as it becomes clear in the presentation of the damage formulation hereafter. The
damage contribution to inelastic strain is a sum of three damage mechanism related contributions.

𝑳
̃
𝑑 =

𝑁𝑑𝑎𝑚𝑎𝑔𝑒
∑

𝑘=1
�̇�𝑘𝑐

(

𝒏𝑘𝑑 ⊗ 𝒏𝑘𝑑
)

+ �̇�𝑘1
(

𝓵𝑘𝑑1 ⊗ 𝒏𝑘𝑑
)

+ �̇�𝑘2
(

𝓵𝑘𝑑2 ⊗ 𝒏𝑘𝑑
)

(29)

where �̇�𝑘𝑐 , �̇�𝑘1 , �̇�𝑘2 are the strain rates for mode I like crack opening, mode II and mode III shear crack growth, respectively. The
number of damage planes is noted 𝑁𝑑𝑎𝑚𝑎𝑔𝑒. In the following, {100} crystallographic planes will be considered as the cleavage planes
existing in a BCC crystal structure. Cleavage damage is activated by the opening 𝛿𝑐 of cleavage planes with the normal vector 𝒏𝑘𝑑 .
Shear damage accommodate in-plane deformation in orthogonal directions 𝓵𝑘𝑑1 and 𝓵𝑘𝑑2. The evolution of the opening rate is given
by:

�̇�𝑘𝑐 =
⟨

|𝜎𝑑𝑐 | − (𝑌 𝑘𝑐 − 𝑆)
𝐾𝑑

⟩𝑛𝑑
𝑠𝑖𝑔𝑛(𝜎𝑑𝑐 ) 𝑤𝑖𝑡ℎ 𝜎𝑑𝑐 = 𝒏𝑘𝑑 ⋅𝜫̃

𝑀 ⋅ 𝒏𝑘𝑑 (30)

Crack opening damage strain �̇�𝑘𝑐 becomes active when the cleavage opening resistance 𝑌 𝑘𝑐 is exceeded by the normal stress 𝜎𝑑𝑐 acting
on the cleavage planes. The strain like treatment of the opening damage allows to track crack closure. In the spirit of smeared crack
behavior the constraint that 𝛿𝑘𝑐 ≥ 0 is imposed, in order to prevent crack opening when the opening stress is negative. The rates of
damage shear mechanisms use the same rate dependent formulation:

�̇�𝑘𝑖 =
⟨

|𝜏𝑑𝑖| − (𝑌 𝑘𝑖 − 𝑆)
𝐾𝑑

⟩𝑛𝑑
𝑠𝑖𝑔𝑛(𝜏𝑑𝑖) 𝑤𝑖𝑡ℎ 𝜏𝑑𝑖 = 𝒏𝑘𝑑 ⋅𝜫̃

𝑀 ⋅ 𝓵𝑘𝑑𝑖 (31)

here shear stress 𝜏𝑑𝑖 activates the damage shear mechanisms after shear resistance 𝑌 𝑘𝑖 is met. Viscous parameters 𝐾𝑑 and 𝑛𝑑 are
taken to be same for crack opening and shearing mechanisms. 𝑆 only appears in Eq. (30) and (31) if damage mechanisms are
accounted for to define 𝛾𝑐𝑢𝑚 and is thus absent if slip regularization only (i.e. Eq. (4)) is considered.

Cleavage is expected to occur in the region with large plastic activity. Shear localization therefore reduces cleavage resistance and
romotes damage initiation at these sites. After damage initiation, the cleavage resistance also decreases with the linear softening
odulus 𝐻 . Cleavage resistance is set to be always positive for numerical reasons with a constraint that 𝑌 𝑘𝑐 ≥ 𝜎𝑢𝑙𝑡, where residual

strength 𝜎𝑢𝑙𝑡 is chosen small, for example 𝜎𝑢𝑙𝑡 = 𝜎0𝑐 ∕200.

𝑌 𝑘𝑐 = 𝑌 𝑘𝑖 = 𝜌0
𝜕𝜓ℎ
𝜕𝑑

= 𝜎0𝑐 exp

(

−𝛽
𝑁𝑠
∑

𝑠=1
𝜈𝑠
)

+𝐻𝑑 (32)

Regularization established with the generalized stress can then be chosen to adapt on slip alone, regularizing slip band formation
and generating plasticity size effects. The effect on damage is indirect through the control of plasticity affected regions. Damage
regularization may be achieved directly by introducing a contribution of the generalized stress term into the cleavage resistance.
This is achieved by accounting for the definition of 𝛾𝑐𝑢𝑚 at Eq. (6). This formulation also regularizes plastic slip indirectly by affecting
the damage related softening of the slip resistance. If the cumulative inelastic variable is chosen to account for both slip and damage
as in Eq. (5), the regularization is hybrid, affecting and creating direct coupling between both inelastic mechanisms. The following
section reviews some of the characteristics of these alternatives.

3. Results

The model was implemented in the finite element software Z-set (Besson and Foerch, 1998; Z–set package, 2013). The constitutive
behavior is discretized following a forward-Euler scheme and integration is achieved with a Runge–Kutta algorithm. In order to
validate the finite element implementation in absence of damage, numerical predictions were compared to analytical solutions
derived on a two-phase laminate in the spirit of Forest (2008). Details on this benchmark example are presented in Appendix A.
Influence of the key material parameters are analyzed below.

3.1. Single crystal case with damage

A single crystal perforated plate of width 𝐿0, and cylindrical void radius 𝑅0, is loaded in tension as depicted in Fig. 1. The initial
void volume fraction, defined as 𝜋𝑅2

0∕𝐿
2
0, is equal to 1% . The orientation of the BCC single crystal is defined with respect to the

orthonormal basis (𝑿1,𝑿2,𝑿3) attached to the specimen. Three dimensional brick elements with reduced integration at 8 Gauss
oints are used. The displacement degrees of freedom are interpolated with quadratic shape functions and the microslip degrees of
reedom 𝛾𝜒 are interpolated with linear shape functions. After (Hoc and Forest, 2001), the number of independent coefficients is

reduced to eight in the 24 × 24 interaction matrix by classifying the slips systems belonging to the same slip family into collinear and
non-collinear systems. These coefficients are noted ℎ𝑖 with 𝑖 = 1..8 as presented in Table 1. Numerical values of material parameters
re listed in Table 2. Convergence with respect to mesh size was checked as presented in Appendix B and showed that predictions
re already converged with a mesh composed of 400 elements and 9880 degrees of freedom. Unless otherwise stated crystal axes

, 𝑿 and 𝑿 .
6

100], [010] and [001] are initially respectively aligned with the basis vectors 𝑿1 2 3
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Fig. 1. Single crystal perforated plate geometry and applied boundary conditions.

Table 1
Coefficients for the interaction matrix in BCC crystals (Hoc and Forest, 2001).

Plane {110} ∩ {110} {110} ∩ {112} {112} ∩ {112}

Same ℎ8 – ℎ1
Collinear ℎ2 ℎ3 ℎ6
Non-collinear ℎ4 ℎ5 ℎ7

Table 2
Numerical values of material parameters for single crystal model used in single
and polycrystal simulations. ℎ𝑖 are interaction matrix coefficients.

Parameter Value Unit

Elastic constants
𝐶11 197 000 [MPa]
𝐶12 134 000 [MPa]
𝐶44 105 000 [MPa]
Slip parameters
𝜏𝑠0 163 [MPa]
𝐾 163 [MPa s1∕𝑛]
𝑛 30 [MPa]
𝑏 19 –
𝑄 30 –
ℎ1 1.3 –
ℎ2 1.0 –
ℎ3 1.05 –
ℎ4 1.15 –
ℎ5 1.1025 –
ℎ6 1.3 –
ℎ7 1.495 –
ℎ8 1.0 –
Damage parameters
𝜎0𝑐 2100 [MPa]
𝐾𝑑 50 [MPa s1∕𝑛𝑑 ]
𝑛𝑑 3 –
𝐻 −1750 [MPa]
𝛽 5 –
Gradient parameters
𝐻𝜒 103–107 [MPa]
𝐴 0; 1; 10; 100; 1000 [N]
7
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Fig. 2. Influence of the chosen variable for gradient regularization on (a) the stress–strain behavior and (b) average cumulated damage evolution for a
[100] − [010] − [001] crystal orientation. 𝐻

𝜒
is set to 104 MPa.

Importance of the variable on which regularization operates is first assessed. Three different definitions of the scalar variable
𝛾𝑐𝑢𝑚 bearing gradient effects were given in Eq. (4), (5) and (6). Each formulation is used in the perforated plate specimen example
with the same initial crystal orientation and material parameters. Simulations were run with the mesh composed of 400 elements.
The same test is also performed without any regularization. Fig. 2 shows the macroscopic stress–strain and average cumulated
damage responses. The choice of the regularized variable definition appears critical since very distinct behaviors are observed for
each definition. When only plastic slip is regularized (Eq. (4)) acceleration of damage sets on the earliest and consequently the
macroscopic stress drops the earliest. This is due to the fact that damage is only indirectly smoothed out by the strain gradient
hardening induced by plastic slip localization. When only damage is regularized (Eq. (5)) steepening of the average cumulated
damage evolution occurs at slightly larger macroscopic strains. Therefore macroscopic softening is also slightly postponed as
compared to slip-only regularization. In this case, damage localization is directly penalized and plastic slip localization is indirectly
smoothed out by damage localization induced hardening. When both slip and damage variables are regularized (Eq. (6)), average
cumulated damage acceleration is again postponed as compared to the case when only one of the two variables is considered for
regularization. Nevertheless the slope of cumulated damage increase is almost identical for the three regularization options. On the
contrary the softening regime observed with the combined slip and damage regularization is much less abrupt. Influence of the
choice of the regularization variable will be further investigated and discussed on polycrystals simulations presented in Sections 3.3
and 3.4.

The influence of higher order moduli 𝐻
𝜒

and 𝐴 are investigated. The penalty modulus 𝐻
𝜒

serves to penalize the difference
between 𝛾𝑐𝑢𝑚 and 𝛾𝜒 . Therefore the larger 𝐻

𝜒
is, the lower this difference is. Usually a large value is used so that the micromorphic

formulation approaches results corresponding to conventional strain gradient plasticity which is the limit case when 𝐻
𝜒

goes to
infinity. Five different values of 𝐻

𝜒
, ranging from 103 to 107 MPa, are considered. Fig. 3(a) displays how 𝐻

𝜒
plays on the macroscopic

hardening behavior. It can be observed that the macroscopic apparent yield stress is not affected by the value of 𝐻
𝜒
. However

increasing 𝐻
𝜒

results in a larger apparent hardening modulus. Although convergence in terms of 𝐻
𝜒

value was not attained, it is
expected that when increasing 𝐻

𝜒
a saturation of the increase of the hardening slope would eventually be reached. A corollary

effect can be noted on the average cumulated damage curves plotted in Fig. 3(b). For the lowest 𝐻
𝜒

value of 103 MPa, damage
acceleration sets on the earliest. However for larger 𝐻

𝜒
values it can be observed that the higher 𝐻

𝜒
is, the earlier average damage

starts to accelerate and simultaneously macroscopic stress starts to drop. Once damage accelerated, the slopes of damage evolution
are parallel to one another for 𝐻

𝜒
values ranging from 104 to 107 MPa. Yet, increasing the value of 𝐻

𝜒
raises significantly the

computation time. This is due to the fact that increasing 𝐻
𝜒

forces to reduce the time steps when integrating the plastic slip evolution
equations in which the higher order stress 𝑆 = 𝐻

𝜒
(𝛾𝜒 − 𝛾𝑐𝑢𝑚) is involved. The choice of a suitable 𝐻

𝜒
value is hence a competition

between desired scaling behavior and affordable computational effort.
The higher order modulus 𝐴 (unit MPa mm2) contains the characteristic length of the medium. Conventional plasticity, not

accounting for strain gradient effects, corresponds to a medium with a vanishing characteristic length with 𝐴 = 0 MPa mm2.
Increasing 𝐴 amounts to increase this intrinsic length. In order to characterize the effect of 𝐴 on regularization of slip and damage we
consider three different crystal orientations, respectively having the triplet of crystal directions ([100], [010], [001]), ([110], [1̄10], [001])
and ([111], [2̄11], [01̄1]) aligned with the orthonormal basis (𝑿1, 𝑿2, 𝑿3). For each orientation several values of 𝐴 are used ranging
between 0 MPa mm2 and 1000 MPa mm2. Fig. 4 displays macroscopic stress–strain and average cumulated damage curves obtained
for each crystal orientation and 𝐴 values. The main features to be noted is that 𝐴 plays an important role simultaneously on the
hardening behavior, on strain at damage onset and softening behavior. When 𝐴 is increased a stronger apparent strain hardening is
observed, damage onset is postponed and softening rate is reduced. It can interestingly be remarked that intensity of the effect of 𝐴
8

varies with the initial crystal orientation. A significant influence of 𝐴 is visible on hardening and strain at damage onset for crystal



International Journal of Plasticity 151 (2022) 103187M. Lindroos et al.

i

Fig. 3. Influence of penalty modulus 𝐻𝜒 on (a) the stress–strain behavior and (b) average cumulated damage evolution for a [100] − [010] − [001] crystal
orientation.

orientations ([100], [010], [001]) and ([111], [2̄11], [01̄1]). However for crystal orientation ([110], [1̄10], [001]) almost no influence of
𝐴 is observed on the behavior prior to damage onset. For the three crystal orientations, a larger value of 𝐴 results in a slower
acceleration of damage. In addition, when comparing results with 𝐴 = 100 MPa mm2 and 𝐴 = 1000 MPa mm2 a saturation of the
size effect induced by 𝐴 seems to have been reached in this example since stress–strain and average cumulated damage curves are
almost superimposed.

The effect of 𝐴 on damage fields is of paramount importance. The aim of this strain gradient model to regularize simultaneously
slip and damage quantities can be assessed by comparing results when 𝐴 vanishes (conventional plasticity) and when it takes values
different from zero. Fig. 5 shows the contours of damage fields for each crystal orientation and for several values of 𝐴. When 𝐴=0
MPa mm2 damage is localized in the vicinity of the hole and forms a very thin band oriented perpendicularly to the loading direction.
The width of this localization band is mesh-size dependent. However when strain or damage gradients are accounted for (i.e. 𝐴 ≠ 0)
the localization band spreads over a larger distance along the tensile direction and perpendicularly to the tensile direction. In this
case results are no longer mesh-size dependent (owing to the fact that convergence was reached as shown in Appendix B). It can
be observed that orientation of the regularized damage localization band is not only affected by the main loading direction but
also by the initial crystal orientation. The damage localization band appears slanted for the ([100], [010], [001]) orientation, while it
remains perpendicular to the loading direction for the ([111], [2̄11], [01̄1]) orientation. The largest 𝐴 value causes damage to spread
over almost the whole geometry. However, and although saturation of macroscopic size effects seems to have been reached, some
gradients of damage still persist.

A description of the role of parameter 𝛽 and 𝐻 involved in the evolution of cleavage resistance defined at Eq. (32) is given in
Appendix C.

3.2. Scaling effects in polycrystals

To demonstrate the grain-to-grain strengthening behavior of the model, a polycrystalline microstructure is introduced. The
polycrystal includes 50 non-equal sized grains all having different orientation. This setting reduces martensitic microstructure greatly
to only include prior austenite grains for the sake of simplicity. Kinematic uniform boundary conditions are imposed for a uniaxial
tensile simulation, as is presented in Fig. 6h. All meshes are 3D with one element in the thickness direction. At grain boundaries,
continuity of displacement and microslip degrees of freedom are considered. In addition, continuity of usual tractions (𝜎

̃
.𝒏, with 𝒏

the grain boundary normal) and generalized tractions (𝑴 .𝒏) are used. Other possibilities would be to consider so-called microhard
nterface conditions (𝛾𝜒 = 0) or microfree interface conditions (𝑴 .𝒏 = 0) as proposed by Gurtin (2004).

Fig. 6 demonstrates the scaling capability of the model for a polycrystalline microstructure with two values of 𝐻
𝜒

in an uniaxial
tensile test. Although the model does not predict a scaling of initial critical resolved shear stress, the curves show an apparent
increase in yield strength. That increase is introduced by microplasticity and related strain gradient induced hardening. It is observed
that the reduced gradient model produces a tanh-shaped scaling law with a capability to saturate at diminishing small grain sizes
that contrast the unbounded increase in flow stress of conventional strain gradient plasticity (see also the analytical scaling law
obtained on the two-phase laminate in Appendix A). The stress–strain curves homogenized over the whole polycrystal show varying
hardening responses depending on the chosen micromorphic gradient parameters. As expected, a larger 𝐻

𝜒
value generates greater

hardening response. The modulus 𝐴 scales the material intrinsic length and thereby increasing 𝐴, at a given microstructure size,
results in a harder response. Fig. 6g contains early plasticity comparison between experimental and simulated tensile stress–strain
curve. The model parameters were set based on previous non-gradient crystal plasticity study (Lindroos et al., 2019), but with a
9
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Fig. 4. Influence of parameter 𝐴 on macroscopic stress–strain and average cumulated damage curves for crystal directions ([100], [010], [001]) in (a–b),
[110], [1̄10], [001]) in (c–d) and ([111], [2̄11], [01̄1]) in (e–f). 𝐻

𝜒
is set to 104 MPa.

ow amount of length-scale hardening i.e., 𝐴 = 0.1 MPa mm2 and 𝐻
𝜒
= 104 MPa, to distinguish the length-scale hardening effect

ith different parametrization.
Fig. 7 visualizes conventional crystal plasticity response and several gradient plasticity cases at 5% of macroscopic strain. At

rain boundaries, interface conditions are chosen such as to have continuity of displacements and microslip, as well as usual and
10
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Fig. 5. Influence of parameter 𝐴 on damage variable fields for crystal directions ([100], [010], [001]) in (a–c), ([110], [1̄10], [001]) in (d–f) and ([111], [2̄11], [01̄1])
in (g–i). 𝐴 = 0 𝑁 in (a, d, g), 𝐴 = 10 𝑁 in (b, e, h) and 𝐴 = 1000 𝑁 in (c, f, i). 𝐻

𝜒
is set to 104 MPa.

generalized tractions. As expected, regularization is established with variations in generalized stress in the region with a high plastic
mismatch, such as the vicinity of grain boundaries and at zones prone to slip localization. As a limiting low-end case, the non-
regularized response with conventional crystal plasticity shows more freedom in developing higher magnitude of slip in plasticity
dominated regions and the grain boundary region hardening is significantly smaller than for the gradient cases. Cumulative slip in
the gradient cases becomes more diffuse because of the penalized development of strain gradients in the analyzed microstructure.
The smallest of the two investigated aggregate sizes, 1.0 mm and 0.1 mm, represents a case, whose deformation response is strongly
influenced by the scaling effects, as seen in Fig. 7b. The generalized stress term gains more importance and the equivalent stress
appears more spreading. This spreading is of similar type to the one observed with the norm of dislocation density tensor (Forest,
2008), in which this norm value is higher close to grain boundaries and begins to spread towards interiors of the grains with
11
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Fig. 6. Stress–strain evolution and scaling effects of different polycrystal aggregate sizes. Scaling laws in (c) and (f) are plotted for three different values of
macroscopic strain, namely 0.01, 0.035 and 0.05. Hardening response of the model is adjusted with the experimental curve using 𝐻𝜒 = 104 MPa and A = 0.1
MPa mm2 as baseline with corresponding prior austenite grain size to QT-steel (Lindroos et al., 2019). Polycrystalline aggregate in (h) is scaled in the simulations.
Numbers in legends of figure (a) and (d) refer to aggregate width in [mm].

decreasing grain size. The characteristic length-scale, estimated with 𝓁𝑐 =
√

𝐴∕𝐻
𝜒
, plays a crucial role in the saturation of size

effects. When the grain size is getting close to this value, gradient-induced hardening begins to saturate.
Plastic deformation responses of conventional crystal plasticity and strain gradient plasticity are very distinct in the plots tracked

along a certain path in the microstructure, which is shown in Fig. 8. Denotation ‘‘sc.’’ throughout the work refers to width of
the polycrystalline RVE, e.g., sc 1.0 refers to the microstructure of width 1.0 mm. Plastic slip concentrations are observed for
both cases over the chosen region in Fig. 8c, yet the gradient plasticity case displays smoother distribution of plastic slip. Fig. 8d
shows that stress concentrations develop near the grain boundary as a result of the plastic incompatibility between two grains. The
phenomenological basis of the constitutive equations in the present work does not explicitly use dislocation densities. However, the
12
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Fig. 7. (a) Computational polycrystal mesh, (b) scaling effects on flow stress at 5% of axial strain generated by gradient parametrization, (c) Von Mises stress
contours, and (d) cumulative slip contours for two polycrystal size scales and with different gradient plasticity parametrization.

results indicate that the gradient model is capable of bringing the significant extra-hardening generally related to the evolution of
geometrically necessary dislocations at grain boundaries within the reach of the current model in a phenomenological sense. It is
worth noting, however, that the interpretation of the single gradient variable is less intuitive than gradient variables used in other
models. For instance, there is not a direct straightforward link such as the relation which exist between the curl of the plasticity
tensor and the dislocation density tensor (Rys et al., 2020; Cordero et al., 2013).

3.3. Damage behavior of polycrystals

The following addresses damage behavior provided by the model in a polycrystalline structure as an extension of the single crystal
analyses. Fig. 9 shows stress–strain responses and damage evolution of non-regularized and regularized cases for two values of 𝐻

𝜒
.

Non-regularized slip with conventional crystal plasticity has a tendency to activate damage earlier because of the faster developing
of localized slip zones. By reducing slip localization, whether or not damage is taken into account in the non-local variable 𝛾𝑐𝑢𝑚, the
gradient-enhanced model postpones the onset of average cumulated damage increase.

It becomes apparent that the model is capable of producing brittle and ductile-like evolution of damage. In the case damage
is regularized together with slip, the softening and damage occur at lower rate, as expected. A physical interpretation would be
that nano-scale cracks extend at a lower rate because of dislocation pile-ups interfering with crack progression, making the material
more ductile. Brittle like behavior is observed when regularization is placed on slip alone. In that case, damage resistance decreases
drastically faster, because generalized stress effects do not come into play in the cleavage resistance. This can be viewed to be in
line with the deformation process zones producing different kinds of failure mechanisms in metallic materials. Further sensitivity
analysis on the effect of model parameters is presented in Appendix D.

Grain size affects not only the hardening behavior generated by the model but also the damage onset. It is seen that in the case
of smaller grain size (sc. 0.1 mm), damage does not begin to develop at the same time as for the scale of 1.0 mm. Despite the fact
that stress levels are larger for the smaller grain size, damage sets on at larger strains than what is observed with larger grains.
Certain amount of slip is in fact required to decrease the cleavage resistance and eventually activate damage. Since plastic slip is
less localized at grain boundaries and spread more towards the bulk of grains in the smaller scale microstructure, larger macroscopic
strains are thus required in order to set damage on.
13
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Fig. 8. (a) Plots over predefined path (in black) cumulative plastic slip contours for conventional and strain gradient cases, (b) slip and stress line plots on
polycrystalline microstructure, (c) cumulative plastic slip profile, and (d) stress distribution over the line plots. Position coordinates of the gradient case with
scaling 0.1 (100 μm) are upscaled 10 times to match normal 1.0 scaling (1000 μm) of the polycrystal aggregate in Figures (c) and (d).

It can be noted that generalized stresses are larger in the vicinity of grain boundaries, since strain gradients are more intense
in these regions. It can therefore be argued that models accounting for grain size effects by using a common Hall–Petch (H–P)
modification of slip resistance, 𝜏𝑠𝐶𝑅𝑆𝑆 = 𝜏0+ 𝑟𝑠+𝐾𝐻𝑃 ∕

√

𝑑𝑔 are fundamentally more prone to trigger damage unintentionally earlier.
Such an extension indeed does not take into consideration the heterogeneity of slip resistance increase which non-local models
predict. However, the common H–P relation could still be used to offset the initial yield for very fine grain sizes with the present
model.

The contributions of slip and damage to inelastic strain are further presented in Fig. 10 for slip-only, slip-damage and damage-
only regularization. The figure plots only material points of the polycrystalline mesh with non-zero values of damage in order to
concentrate on the characteristic of damaged zones. Hence, the probability plot does not include all plastic slip data points, only
the ones with non-zero damage. Largest level of cumulative damage are reached when only regularization of slip is considered. In
this case, extra hardening introduced by the regularization off-balances the slip-to-damage competition and favors crack growth in
spite of the simultaneous softening inflicted to slip resistance by damage. When regularization is placed on both slip and damage,
both inelastic strain mechanisms contribute almost equally.

When regularization is placed only on damage in the spirit of Aslan et al. (2011a), slip is highly favored due to strong
regularization of damage flow. These observations are visualized in Fig. 11a, b. Plots along a specific path in the mesh, presented in
Fig. 11c, d display the smoothening effect of gradient model as well as the biased accumulation of either slip or damage depending
on the choice of regularization.

3.4. Application to martensitic microstructures

As an application for the model, tensile simulations were performed on a martensitic microstructure constructed from a scanning
electron microscope electron back-scatter diffraction map. Computationally accessible sections intersecting several prior austenite
grains and some of their internal blocks and packets are presented in Fig. 12. Three subsections were investigated which correspond
to different slices of the material produced by serial sectioning. The section RVEs are discretized to one element thickness. This
14
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Fig. 9. (a), (c) Stress–strain evolution for two length scales with and without damage regularization, (b), (d) evolution of cumulated damage in a polycrystal,
for two 𝐻

𝜒
values. Aggregate sizes 1.0 and 0.1 mm are referred with sc. 1.0 and sc. 0.1 (scale).

Fig. 10. Distribution of cumulative plastic slip in (a) correlation between cumulative slip and cumulative damage in (b) for material points with non-zero
damage at the last step of simulations with different regularization strategies and different values of 𝐻

𝜒
.

choice essentially provides a limited deformation behavior for a polycrystal, as in-depth grain interaction is not taken into account
and in-plane damage is enforced. We provide a preliminary investigation of the slip localization and related damage initiation which
was performed up to the level of the ultimate tensile strength and early damage progression, as well as a strategy for parametrization.
Regularization is placed on slip alone to avoid excessive limitation of damage growth and overall spread with a single length-scale
operator. Furthermore, we exclude the case with only damage regularization, since it does not include length-scale hardening of the
microstructure naturally.

The model parameters were first fitted to account for the hardening behavior of steel with a plasticity model without damage
on the early part of the stress–strain curve. At the same time, emphasis is placed on replicating the average size of slip localization
zones, but not individual slip bands, observed in experiments. The nucleation and evolution of damage was introduced to capture
material early cracking and softening behavior near ultimate tensile strength. The next step is the choice of the regularization length,
related to the selection of parameter A. This choice amounts to setting the wanted resolution in the simulations with finite width
cracks whose thickness is chosen to be sufficiently smaller than the grain size but not too small for computational efficiency. Once
the resolution length is set, the remaining damage parameters can be calibrated from the softening part of the tensile curves of
the studied material. The procedure is similar to the identification of ductile damage models (Scherer et al., 2021). The parameters
used in the simulations with martensite-like meshes that differ from the ones presented in Table 2 are: 𝜏𝑠 = 190 MPa, 𝐾 = 190,
15
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Fig. 11. (a) Slip localization and (b) damage strain during uniaxial tension. Plot over predefined path on damaged region (c) cumulative damage strain, (d)
cumulative plastic slip distribution, and (e) prescribed path for position plots on polycrystalline mesh on (c–d). Contours are plotted on undeformed configuration
for clarity.

𝑄 = 7 MPa, 𝑏 = 15, 𝜎0𝑐 = 1350 MPa, 𝐻 = −500 MPa, 𝛽 = 1.9 MPa, ℎ1..ℎ8 = 1.0, 𝐾𝑑 = 170, 𝑛𝑑 = 4. Length scale parameters were set to
𝐻𝜒 = 104 MPa and 𝐴 = 0.01 MPa mm2.

Fig. 13a, b show simulated stress–strain and cumulative damage curves. Of the chosen microstructures, both microstructure B
and C show stronger hardening capability after initial micro-yield due to overall smaller grain size in the subdomain. This is seen in
the nominal yield point in the simulations even though that the initial critical resolved shear stress was the same for all simulations.
Initiation of damage takes place already around 5% of macroscopic strain. After this incubation period damage increases more
rapidly after the ultimate tensile strength observed in the experimental curve. Figs. 13c, d illustrate the fields of cumulative plastic
slip, cleavage resistance and cumulative damage in the microstructures A and C. Both show a significant plastic strain localization
within 10 μm region, which was also observed in the experiments illustrated in Fig. 13e. This shear concentrated region includes
several grains. Due to the chosen coupling between damage and slip and related decrease in cleavage resistance, damage tends to
occur mainly within the slip rich region. Intense damage can be observed to select both intra-granular and grain boundary type
damage mechanisms. This essentially depends on the local grain orientation, susceptibility to intra-grain strain localization, and
stress concentrations arising from grain-to-grain interactions.

The present preliminary simulations imply that a parametric set capable of describing macroscopic stress–strain curve is
obtainable. However, a more quantitative verification would be necessary to verify the strain fields with in-situ digital image
correlation methodology on the present material to address the model’s local capability to present or suppress strain localization,
such as suggested by Zouaghi et al. (2016). This is one future item of work. For initial evaluation, Fig. 13c show strain patterning on
the surface of a small scale tensile sample deformed inside SEM. It was observed that slip localization precedes damage formation,
as found in the simulations. However, the observations from the experiment was not sufficient to quantify slip-to-damage causality
and the identification of damage (fine scale cracks) is not straightforward based only on imaging of the surface deformation. It
is desired to identify the relation of preceding slip localization to damage to establish coupling between the mechanisms. The
resulting damage scattering with slip and damage regularization suggests, that separation of length-scales related to slip and damage
might be necessary too, since the present approach rudimentary involves slip and damage under one regularization variable due to
computational robustness.
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Fig. 12. Three computational microstructures sub-sectioned from different EBSD measurements.

4. Discussion

4.1. Scaling effects

Modern advanced steels set aim to extreme strength and ductility. One key aspect of reaching this goal is the refinement of
grain size and modification of grain morphologies, and enhancing the effect of hierarchical strengthening mechanisms (arising
from, e.g., martensite and bainite size, and nano-scale twins), assisted by secondary phases such as fine austenite intra-lath films,
retained austenite as well as precipitates and carbides. Furthermore, the local strains can become large and plastic gradients may
easily develop for such complex microstructure, especially when the material is imperfect for example with voids, cracks, inclusions,
secondary soft and hard phases. Thus, the material design challenge of how to provide better properties is certainly not trivial. These
aspects readily justify the need for length-scale dependent analysis tools operating at microstructural level from the strengthening
point of view and up to evolution based damage presentations, for which the present investigation provides a reasonable initial
perspective. It should be noted that detailed analysis of strengthening mechanisms related to GNDs, slip or kink bands, might further
benefit of more elaborate generalized continuum methods (Forest, 2009; Chang et al., 2016), instead of a single cumulative variable
contributed by all slip systems and possibly damage.

Nonetheless, finite sized slip bands and bundles, kink bands, and related size effects are necessary to be considered in materials
operating at very fine effective grain sizes in general, whether their formation is controlled with the reduced (current) or full
model (Rys et al., 2020; Chang et al., 2016). The present method aims to remain computationally efficient, provide sufficient
regularization effects and give a tractable basis for further development and incorporation of features of generalized continua,
all in a finite strain formalism.

To this effect, Cordero et al. (2013) and Chang et al. (2016) observed a wide scaling capability for a micromorphic based crystal
plasticity model, that can achieve extended scaling law exponents 𝑚 from 0 to −2 (𝛥𝜎 ∝ 𝑑𝑚), in addition to conventional Hall–Petch
like grain size exponent of −0.5. This model called microcurl utilizes the full curl of the plasticity deformation tensor, which can be
related to dislocation density allowing interpretation of geometrically necessary dislocations (Rys et al., 2020; Chang et al., 2016).
For the microcurl model and the present case, the scaling effects can be rationalized and related to characteristic length scale 𝓁𝑐 ,
which has a dependency on two generalized moduli 𝐻

𝜒
and 𝐴 so that 𝓁𝑐 =

√

𝐴∕𝐻
𝜒

(Cordero et al., 2013). The control over the
parametrization allows to achieve different tanh-shaped scaling curves with respect to effective grain size, which was observed in
Fig. 6 and in Fig. A.16 in Appendix A.

4.2. Choice of regularization method

In micromorphic crystal plasticity without damage, the higher order modulus 𝐴 relating the higher order stress to the gradient
of the micromorphic variable has a physical meaning which is related typically to the characteristic size of dislocation pile-ups at
obstacles like phase and grain boundaries, e.g., as discussed in Forest and Sedláček (2003) for dislocation based estimates for 𝐴.
However, when the micromorphic approach is applied to damage phenomena in single crystals, as initially proposed by Aslan et al.
(2011a) the physical meaning is somewhat lost since the model is used for the purpose of regularization of the damage model. In
that case, the characteristic length associated with 𝐴 sets a minimal resolution for the simulation, and the meaning is related to a
17
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Fig. 13. (a) Experimental and simulated stress–strain curves, (b) simulated cumulative damage over the whole microstructure, (c) and (d) microstructure,
cumulative plastic, effective cleavage resistance, and cumulative damage for microstructures A (𝜖 = 10.5%) and C (𝜖 = 11.5%), respectively. (e) SEM characterization
of a small-scale tensile specimen with strain localization and cracking.

modeling choice, discussed below. Events taking place at a smaller scale are smeared out. This resolution can be phenomenologically
related to the typical size of the damaged zone along the crack path. In the present work, the micromorphic approach was used for
regularization purposes.

It is found that the choice of model framework related to regularization of inelastic flow is not necessarily unique. In many cases,
the decision is driven by the need to introduce length-scale driven extra-hardening and control of slip localization phenomenon.
In addition, the regularization of crack like behavior as damage is an object of special interest when crack growth is considered
in heterogeneous materials such as martensite. The model results showed that regularization placed on slip alone is capable of
18
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introducing length-scale relevant hardening and undertake necessary regularization of slip localization that indirectly affects damage
behavior. This is an outcome of how the model couples damage and plasticity, however, the magnitude of this effect is much
dependent on chosen parametrization as shown in Fig. D.22.

The second option to regularize both slip and damage allows the control of slip band formation in the first place and then the
xtra-hardening stabilizes damage rate and produces more bounded strain localization sites and damage bands. This was clearly
bserved in Figs. 9 and 11. There is, however, a vital restriction with this alternative. If damage is taken to crack the material
uccessfully and the crack is open, regularization should no longer be applied to avoid unrealistic hardening behavior of non-intact
aterial regions. The same restriction exists in cyclic fatigue conditions under which the model allows smeared crack closure. Thus,

ne of its main advantage relies with the desired control of damage band width. The main restriction then exists with the slip bands
hemselves. They are not effectively regularized and the extra-hardening related to plasticity, and its inherent capability to provide
rain size related scaling vanishes. As a result it is not possible to associate distinct length scales for the plasticity and damage
henomena, which can be seen as a drawback of the formulation. If necessary, it is however possible to consider two gradient
ontributions with two distinct length scales. This was not attempted in the present work as pointed out.

.3. Slip and damage in single and polycrystals

The single crystal analyses showed that spurious mesh dependency related to softening with damage is reduced greatly or
isappearing when compared to conventional crystal plasticity approach. This is one of the key objectives of the model. Another
spect is that the model is anisotropic since it considers specific crystallographic planes for cleavage, which is in contrast to a
ariety of recent polycrystal models which mainly rely on isotropic damage formulations (Mareau, 2020). The model contains a
ingle characteristic length parameter, 𝐴, corresponding to isotropic or cubic gradient contribution, however, again the damage

model itself is strongly anisotropic.
As pointed out, the diffusivity or concentration of damaged bands can be controlled with a suitable parametrization. Besides, the

length-scale hardening occurring in the polycrystalline structure and the constrained widening of damaged bands affect the failure
predictions. Importantly, the single crystal results also show that defect (e.g. pores) induced slip and damage banding remains finite
sized. Prediction of initiation of failure process depends largely on the smoothening subjected to slip. Therefore, the meaning of
diffuse slip bands is mostly damage delaying and scattering. In contrast, the high stresses produced at grain boundaries by using
high penalty factors together with concentrated slip flow, are a source promoting damage in the present model. This not only allows
the intra-grain level damage, but also allows the interfacial damage to occur naturally in the model because of the projection of
opening stress at cleavage planes. Characteristic martensite length-scales with relation to hardening and damage can be investigated
with the model but careful quantification should be performed in future. Importantly, the guided length-scale saturation is a critical
perk in terms of generating realistic damage patterning. The main advantage of the presented model is that it includes the possibility
of accounting for cleavage cracking in polycrystals in combination with usual crystal plasticity.

5. Future work

An interesting future topic for lath martensitic steel is to introduce 3D tomography reconstructed models having defects, such
as inclusions with realistic geometries, local microstructure (matrix and defect), and interfaces, to have a view on the effect of
defects to damage evolution. With proper higher order description of the present model together with a detailed microstructure,
it is possible to investigate relations between lath martensite matrix hierarchies and strengthening and size effects related to a
specific 3D geometry of the inclusions regarding susceptibility to damage. The objective of this work was not to utilize dislocation
density based formulation, however, it remains as an alternative to the currently proposed constitutive equations. Furthermore,
a comparison of the cleavage-based damage model used in this work, and the porosity-based single crystal ductile failure model
developed in Han et al. (2013), Ling et al. (2016) could also be envisaged.

The micromorphic model presented in this work can be computationally demanding when large scale simulations are envisaged.
The main reason of such a feature lies in the necessity to use a large penalty modulus 𝐻

𝜒
in order to ensure quasi-equality

between 𝛾𝑐𝑢𝑚 and 𝛾𝜒 . Given that it is combined with a quasi rate-independent viscoplastic formulation of crystal plasticity (i.e.
a large viscous exponent 𝑛) time-integration of the resulting stiff constitutive equations requires small time steps to be performed.
In order to alleviate such difficulties a non-local formulation based on a Lagrange multiplier approach as in Zhang et al. (2018)
could be applied. Scherer et al. (2020) recently followed this path and compared the computational efficiency of micromorphic and
Lagrangian approaches for rate-independent and viscoplastic crystal plasticity settings.

6. Conclusions

The main outcomes of the work are the following:

• Reduced micromorphic crystal plasticity model produces size dependent scaling and bounded tanh-type hardening with respect
to grain size produced by the regularization power of the model. Extra strain-hardening is observed near the grain boundaries
and at strain localization sites. Decreasing grain size and its relation to model’s characteristic length-scale introduce spreading
of strengthening, with a similar phenomenological characteristic to geometrically necessary dislocation assisted hardening.
Similar hardening behavior is achievable with the microcurl-model (Cordero et al., 2013), making the reduced model very
attractive as a computationally efficient alternative.
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Fig. A.14. Periodic two phase laminate geometry with the soft phase (gray) of width 𝑠 undergoing elasto-plastic deformations with a single slip system (𝒏,𝒎)
and the hard phase (red) of width ℎ undergoing purely elastic deformations. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

• Different regularization techniques subjected to dislocation slip and crystalline level damage were investigated. Main advantage
of the model with damage is the capability to produce regularized cleavage damage. Scaling effects can be introduced in the
model by the control of slip band evolution with the regulated slip flow rule. This choice leads to indirect coupling between
slip and indirectly regulated damage, since slip regularization affects the width of zones susceptible to damage through the
plasticity-damage constitutive coupling. When a single micromorphic inelastic microstrain variable is contributed by both slip
and damage mechanisms, the length-scale effects are observed and the damage evolution is more regulated and smoothened.
Excessive damage regularization should be avoided, when the material is completely fractured to avoid unrealistic hardening.

• The reduced micromorphic approach allows for analyzing of microscale deformation and damage phenomena in martensitic
steels. An advantage of the model is the capability to generate size dependent hardening with proper higher order conditions
at the hierarchical packet/block/lath and grain boundaries. Shear banding phenomenon can be controlled with regularization
and damage initiation is dependent on length-scale hardening and shear band formation. Model parametrization is adjustable
to generate brittle or quasi-brittle type of fracture in martensitic microstructures related to shear bands or scattering of
damage, depending on characteristics of failure evolution in the material. Predictions of tensile failure with the model depend
mainly on the scaling effects (grain size, slip localization), material tendency to cleavage fracture (atomistic setting and
defect population), and non-local evolution of damage and its spreading (regularization, diffuse/localized and microstructural
scattering), all included in the same model concept.
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Appendix A. Two-phase laminate without damage

Following Forest (2008), Cordero et al. (2010) and Aslan et al. (2011a), the behavior of a periodic two-phase single crystal
laminate under a macroscopic shear loading is investigated. The periodic microstructure is sketched in Fig. A.14 where a hard
phase (ℎ) is colored in red and a soft phase (𝑠) is colored in gray. The hard phase is purely elastic, while the soft phase can undergo
elasto-plastic deformations. In the soft phase, plastic slip can occur only in a single slip system composed of the normal to slip plane
𝒏 and slip direction 𝒎. We consider a linear hardening behavior of the soft phase such that 𝜏𝑐 = 𝜏0 +𝐻0𝛾, where 𝐻0 is a positive
linear hardening modulus. A macroscopic shear deformation �̄� is applied in the crystal slip direction. The following displacements
and micro-slip fields 𝒖(𝑿) and 𝛾𝜒 (𝑿) are considered

𝑢1 = �̄�𝑥2 𝑢2 = 𝑢2(𝑥1) 𝑢3 = 0 𝛾𝜒 = 𝛾𝜒 (𝑥1) (A.1)

In the context of finite deformations and with the assumption of small elastic deformations this results in
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From Eq. (16) and assumption of small elastic deformations one also obtains 𝜫
̃
𝑀 ≃ 𝜫

̃
𝑒 and therefore

𝜏 = 𝜫
̃
𝑀 ∶ (𝒎⊗ 𝒏) ≃ 𝜫

̃
𝑒 ∶ (𝒎⊗ 𝒏)

= 𝛱𝑒
12 = 2𝐶44𝐸𝑒𝐺𝐿,12 = 𝐶44(�̄� − 𝛾 + 𝑢2,1)

(A.4)

where 𝐶44 refers to the shear modulus. The balance Eq. (9) imposes 𝛱𝑒
12 to be uniform across the laminate and thus also 𝜏. Combining

Eq. (10), (20) and (21) yields the second order partial differential equation

𝐴𝛾𝜒,11 = 𝐻𝜒 (𝛾𝜒 − 𝛾) (A.5)

Upon neglecting viscous stresses one has from the yield condition in the soft phase

𝜏 + 𝑆 = 𝜏0 +𝐻0𝛾 (A.6)

It follows that Eq. (A.5), in the soft phase (superscript 𝑠), is an hyperbolic linear in-homogeneous differential equation

𝛾𝑠𝜒,11 − (𝜔𝑠)2𝛾𝑠𝜒 + (𝜔𝑠)2
𝜏 − 𝜏0
𝐻0

= 0, 𝜔𝑠 =

√

√

√

√

𝐻0𝐻𝑠
𝜒

𝐴𝑠(𝐻0 +𝐻𝑠
𝜒
)

(A.7)

1∕𝜔𝑠 represents the characteristic length of the material in the soft phase. In the hard phase (superscript ℎ) 𝛾 = 0 and Eq. (A.5)
simply becomes an hyperbolic linear homogeneous second order differential equation

𝛾ℎ𝜒,11 − (𝜔ℎ)2𝛾ℎ𝜒 = 0, 𝜔ℎ =

√

𝐻ℎ
𝜒

𝐴ℎ
(A.8)

1∕𝜔ℎ represents the characteristic length of the material in the hard phase. Eq. (A.7) and (A.8) can be solved analytically and
separately in order to obtain the form of the profile in the whole periodic microstructure. One obtains an hyperbolic profile in each
phase such that
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] (A.9)

where the symmetry condition 𝛾𝜒 (−𝑥1) = 𝛾𝜒 (𝑥1) was used. Interestingly, exactly the same form of solution is found for the scalar
micro-slip variable 𝛾𝜒 as the one developed for the microdeformation component 𝜒12 by Aslan et al. (2011a). To that extent the
present model can be seen as a degenerate formulation of the so-called 𝑚𝑖𝑐𝑟𝑜𝑐𝑢𝑟𝑙 model. Although plastic slip is inactive in the hard
elastic phase, the micro-slip variable does not vanish in this phase. This attribute is imposed by continuity of the higher order stress
traction 𝑀1 at the interfaces. As explained by Cordero et al. (2010) this feature is essential to trigger size effects. The coefficients
𝐶𝑠, 𝐷 and 𝐶ℎ are integration constants which can be determined by considering interfaces and periodicity conditions.
∙ Continuity of 𝛾𝜒 at the interfaces (𝑥1 = ±𝑠∕2)
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(A.10)

∙ Continuity of the higher order traction 𝑀1 at the interfaces (𝑥1 = ±𝑠∕2)
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∙ Periodicity of the displacement component 𝑢2.
Recalling Eq. (A.4), the yield condition in the soft phase Eq. (A.6) and 𝛾 = 0 in the hard phase it comes

𝑢2,1 =

⎧

⎪

⎨

⎪

⎩

𝜏0
𝐶44

− �̄� + 𝐴𝑠𝜔𝑠2𝐶𝑠

𝐻0
cosh

(

𝜔𝑠𝑥1
)

+
𝐻0 + 𝐶44
𝐶44

𝐷 𝑥1 ∈
[

− 𝑠
2 ;

𝑠
2

]

𝜏0
𝐶44

− �̄� +
𝐻0
𝐶44

𝐷 ±𝑥1 ∈
[

𝑠
2 ;

𝑠+ℎ
2

]
(A.12)

Periodicity of 𝑢2 enforces the average of 𝑢2,1 over the whole laminate to vanish. Therefore, introducing the microstructure length
𝓁 = 𝑠 + ℎ, one obtains

(

𝜏0
𝐶44

− �̄�
)

𝓁 + 2𝐴𝑠𝜔𝑠𝐶𝑠
𝐻0

sinh
(

𝜔𝑠 𝑠
2

)

+
𝐻0𝓁 + 𝐶44𝑠

𝐶44
𝐷 = 0 (A.13)

We introduce the soft phase fraction 𝑓𝑠 = 𝑠∕𝓁. The yield condition in the soft phase (A.6) allows to derive the macroscopic (mean)
tress 𝛱

𝑒
12

𝛱
𝑒
12 = ∫

𝓁
2

− 𝓁
2

𝜏d𝑋1 = 𝜏0 +
𝐻0
𝑓𝑠

⟨𝛾⟩ − 𝐴𝑠

𝑓 𝑠
⟨𝛾𝑠𝜒,11⟩ = 𝜏0 +𝐻0𝐷 (A.14)

where it was used according to (A.5) that ⟨𝛾⟩ =
⟨

𝛾𝑠𝜒 − (𝐴𝑠∕𝐻𝑠
𝜒
)𝛾𝑠𝜒,11

⟩

. From the latter it also follows from (A.9)

⟨𝛾⟩ = 2𝐴𝑠𝜔𝑠𝐶𝑠 sinh
(

𝜔𝑠
𝑓𝑠𝓁

)

+ 𝑓𝑠𝐷 (A.15)
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Table A.3
Set of material parameters used in the single slip analytical resolution and finite element simulations in accordance with Aslan
et al. (2011a).

Phase 𝜇 [MPa] 𝜏0 [MPa] 𝐻 [MPa] 𝐻
𝜒

[MPa] A [MPa mm2]

Soft (s) 35,000 40 5000 5 × 105 1 × 10−3

Hard (h) 35,000 – – 5 × 105 5 × 10−5

Fig. A.15. Analytical (solid lines) and numerically computed (colored dots) profiles of micro-slip in the periodic two-phase laminate at 0.2% macroscopic shear
strain obtained with the micromorphic model with material parameters presented in Table A.3. (1) in absence of mismatch of the characteristic length between
the two phases 𝐴𝑠 = 𝐴ℎ = 5 × 10−5 MPa mm2, (2) an intermediate mismatch between the two phases 𝐴𝑠 = 1 × 10−3 MPa mm2 and 𝐴ℎ = 5 × 10−5 MPa mm2, (3) a
stronger mismatch between the two phases 𝐴𝑠 = 5 × 10−2 MPa mm2 and 𝐴ℎ = 5 × 10−5 MPa mm2. The fraction of soft phase is 𝑓𝑠 = 0.7 and the microstructure
size 𝓁 = 1 μm.

Introducing the constant 𝜅 as

𝜅 =
coth

(

𝜔𝑠 𝑓𝑠𝓁2
)

𝐴𝑠𝜔𝑠
+

coth
(

𝜔ℎ (1−𝑓𝑠)𝓁
2

)

𝐴ℎ𝜔ℎ
(A.16)

from Eq. (A.10), (A.11) and (A.15) one identifies the integration constants involved in (A.9)

𝐶𝑠 = −⟨𝛾⟩
[

𝐴𝑠𝜔𝑠 sinh
(

𝜔𝑠
𝑓𝑠𝓁
2

)(

𝑓𝑠𝜅 −
2𝐻0
𝓁

)]−1
(A.17)

𝐷 = ⟨𝛾⟩
[

𝑓𝑠 −
2

𝐻0𝓁𝜅

]−1
(A.18)

𝐶ℎ = ⟨𝛾⟩
[

𝐴ℎ𝜔ℎ sinh
(

𝜔ℎ
(1 − 𝑓𝑠)𝓁

2

)(

𝑓𝑠𝜅 −
2𝐻0
𝓁

)]−1
(A.19)

Fig. A.15 plots the analytical and numerically computed micro-slip profiles obtained for three different couples (𝐴ℎ, 𝐴𝑠) and other
aterial parameters, taken from Aslan et al. (2011a), are presented in Table A.3. The penalization moduli are taken equal in both
hases 𝐻

𝜒
= 𝐻𝑠

𝜒
= 𝐻ℎ

𝜒
and the fraction of soft phase is chosen as 𝑓𝑠 = 0.7. The numerical solutions (solid lines) obtained by finite

lement analysis fit very well the analytical solutions and are also in agreement with the solutions found in Aslan et al. (2011a). For
small characteristic length of the soft phase, non-negligible gradients can exist in the microstructure and thus the micro-slip profile
ppears rounded (red circles). As the characteristic length increases, gradients of micro-slip tend to vanish resulting in an almost
lat profile in the soft phase. Continuity of 𝛾𝜒 and non-vanishing values in the elastic phase are unfailingly observed as expected.

Fig. A.16 plots the evolution of the macroscopic stress 𝛱
𝑒
12 at 0.2% overall shear deformation obtained from Eq. (A.14) as a

function of the microstructure length 𝓁. Several values of the penalty parameter 𝐻
𝜒
(= 𝐻𝑠

𝜒
= 𝐻ℎ

𝜒
) are used and other material

arameters are presented in Table A.3. For large microstructure no significant size effects are observed and 𝐻
𝜒

plays almost no role
n the macroscopic shear stress. Nevertheless as the microstructure size decreases size effects become substantial and the effect of

𝜒
becomes paramount. The effect of 𝐻

𝜒
pertains two major aspects. First, in the log–log plot of Fig. A.16 the slope of the scaling

aw at intermediate microstructure length becomes steeper as 𝐻
𝜒

increases. In addition, the saturation value of 𝛱
𝑒
12|0.2 for small

icrostructures increases with 𝐻
𝜒
. All in all 𝐻

𝜒
induces jointly a more sensitive dependence to the microstructure size and more

mportant size effects.
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v

Fig. A.16. Evolution of the normalized macroscopic stress 𝛱

𝑒
12|0.2∕𝜏0 at 0.2% macroscopic shear strain as a function of the microstructure length 𝓁 for several

alues of the penalization parameter 𝐻
𝜒

with 𝑓𝑠 = 0.7 and material parameters presented in Table A.3.

Fig. B.17. Mesh size convergence analysis on [100] − [010] − [001] crystal orientation in terms of (a) macroscopic stress–strain and average cumulated damage
measures and (b) local cumulated damage at 𝛥𝐿∕𝐿0 = 0.1 when acceleration of average cumulated damage sets on. 𝐻

𝜒
is set to 104 MPa. (For interpretation of

the references to color in this figure legend, the reader is referred to the web version of this article.)

Appendix B. Convergence with respect to mesh size

In order to demonstrate the regularization capability of the single crystal damage model, when both slip and damage are
accounted for regularization (see Eq. (4)), three mesh densities are considered. The convergence with respect to mesh size was
also verified for the two other formulations (see Eq. (4) or Eq. (6)), but results are not reported here for conciseness. Meshes
used for mesh density convergence validation are composed of 80, 400 and 1440 elements and respectively possess 2112, 9880
and 34 480 degrees of freedom. Mesh convergence analysis is performed on a BCC single crystal with crystal axes [100], [010]
and [001] initially respectively aligned with the basis vectors. Fig. B.17(a) shows the engineering stress–strain curves (black) and
volume average cumulated damage curves (blue) obtained with the different mesh densities. It can be noted that before acceleration
of average cumulated damage (strains lower than ∼ 0.1) all meshes result in identical predictions in terms of stress and average
cumulated damage. The onset of acceleration of average cumulated damage, and corresponding stress drop, is slightly anticipated
with the coarsest mesh. However, from the results obtained with the two most refined meshes it is clear that mesh convergence,
in terms of macroscopic measures, is attained. In Fig. B.17(b) are plotted, at 𝛥𝐿∕𝐿0 = 0.1, the local values of cumulated damage
along the blue line (where damage localizes because of the load-bearing section reduction due to the void) depicted in Fig. 1. It
can be observed that the coarsest mesh predicts the largest value of local cumulated damage over the whole profile line. In contrast
the two most refined meshes produce less intense and rather close local cumulated damage profiles. Far from the highly damaged
zone some discrepancies can be observed in terms of local cumulated damage. However, in the vicinity of the void, where damage
is intense both most refined meshes are in agreement.
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Fig. C.18. Influence of parameter 𝛽 on (a) the stress–strain behavior and (b) average cumulated damage evolution for a [100] − [010] − [001] crystal orientation
ith 𝐻

𝜒
= 104 MPa.

ppendix C. Influence of material parameters 𝜷 and 𝑯

Influence of the coupling parameter 𝛽 in Eq. (28) and (32) is assessed. This parameter scales the relation between damage and
ritical resolved shear stress driven softening. The larger 𝛽 is, the more softening induced by damage there is. Furthermore, larger
alues of 𝛽 also make damage and slip resistance to decrease faster. Nevertheless 𝛽 only plays a role on the slip resistance once
amage is activated. These observations appear clearly in Fig. C.18 where several values of 𝛽 ranging between 2 and 20 were used.
t can be noticed indeed that prior to onset of damage all curves are identical regardless of the value of 𝛽. However damage sets on
arlier with the largest 𝛽 value since the damage resistance has decreased more rapidly. The computation with largest value of 𝛽
lso predicts a rapid acceleration of average cumulated damage which is accompanied by an early macroscopic stress drop. On the
ontrary the lowest value of 𝛽 postpones onset of damage, because the slip resistance decreases slowly. In addition the increase of
verage cumulated damage and thus the softening part of the stress–strain curve are delayed. It appears that 𝛽 can hence be used
s a scaling parameter that settles the local strain at which damage will start to occur and how it will affect acceleration of slip
esistance drop provoking final failure.

The additional term 𝐻𝑑 is added in Eq. (32) in order to accelerate the decline of damage resistance. This triggers apparition
f localization of damage into crack-like zone as noted in Aslan et al. (2011a). Influence of the linear modulus 𝐻 is analyzed
nd presented in Fig. C.19 which displays macroscopic stress–strain and average cumulative damage curves obtained with 𝐻 ∈
103; 104} MPa. On the macroscopic stress–strain behavior the main effect of 𝐻 is to step up the softening rate. When 𝐻 is increased
sharper drop of the stress is predicted. At local level a larger value of 𝐻 induces a faster reduction of slip resistance and as feedback
amage increases faster. This results in an early rise of average cumulated damage. As a collateral effect softening occurs slightly
arlier on the macroscopic stress–strain curve. A side effect of the rapid acceleration of softening when a large value of 𝐻 is used
s that damage becomes more localized. This is discernable on damage fields but also evidenced on the average cumulated curves
here a flattening of damage augmentation can be observed for the largest 𝐻 values.

ppendix D. Effect of strain gradient and damage parametrization

Plasticity and damage evolution in the model are contributed by several plasticity and damage related parameters. The following
nalysis assesses the phenomena originating from different parametrizations in polycrystals, either related to the strain-gradient
nd plasticity-damage parts. Generalized moduli 𝐻

𝜒
and 𝐴 grant the scale-dependency in the model that influences primarily slip

ocalization and the following damage. Furthermore, the explicit constitutive relations placed on coupling of plasticity and damage
mposes direct interaction between the two mechanisms of inelastic strain in the model. It follows that regularization further affects
he coupling directly or indirectly as previously observed in Fig. 10.

Fig. D.20 shows the effect of three values of penalty modulus 𝐻
𝜒
. The characteristic length scale 𝓁𝑐 also changes when the value

f 𝐻
𝜒

increases in addition to the actual changes in grain size related scaling exponent, given that 𝐴 is set constant. A polycrystal
icrostructure shown in Fig. 7a was used in the simulations. Damage band shape and magnitude in Fig. D.20c suggest that the
enalization caused by 𝐻

𝜒
= 104 MPa does not yet reach the saturation like behavior of the greater 𝐻

𝜒
values, confirming the

ingle crystal results. The two higher 𝐻
𝜒

values produce very similar damage bands, which in turn indicates that 𝐻
𝜒
= 105 MPa

enerally suffices as a penalty term value for slip and damage regulated flow.
It is characteristic for reduced micromorphic model that, increasing value of the higher order modulus 𝐴 widens the effective slip

and width and reduces cumulative slip absolute magnitude, when modulus 𝐴 is constant (Ling et al., 2018b; Scherer et al., 2019).
t the same time, spreading of the extra-hardening affected zone occurs at the microstructure level in conjunction with grain–grain
24
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Fig. C.19. Influence of parameter 𝐻 on damage onset and softening acceleration for [100] − [010] − [001] crystal orientation with 𝐻
𝜒
= 104 MPa. Parameter 𝐻

is treated as negative value to cause softening.

Fig. D.20. (a) Polycrystal hardening response for three 𝐻
𝜒

values, and (b) effective damage responses, and (c) line plot over a damage region at 5.5% of axial
strain, using slip and damage regularization mode. Modulus 𝐴 is set to 1.0 MPa mm2.

interactions. The stress–strain response in Fig. D.21a elucidates this phenomenon with the realization of stronger hardening rate of
the polycrystal. The simulations were performed with regularization placed on both slip and damage. The hardening characteristics
of higher value of 𝐻

𝜒
= 105 MPa increases the local stresses that trigger damage at an earlier stage than with 𝐻

𝜒
= 104 MPa.

This observation is contrary to what is observed in Fig. 9 mainly because the stresses are elevated to a such extend that damage is
triggered more and more by the influence of stress and not prior slip related softening of cleavage resistance. Parameter 𝐴 can be
used to evolve length-scale during deformation since it does not need remain constant (Dahlberg and Boåsen, 2019; Scherer et al.,
2019; Chang et al., 2016). This alternative formulation allows to control the finite size of shear band thickness and therefore it
could also be used to control damage in the shear band region.

As has become clear with single crystal simulations, the severity of damage is controlled with two main parameters after
nucleation, the coupling parameter 𝛽 and softening parameter 𝐻 . Here, their meaning is further examined with polycrystalline
structure. One physical interpretation for exercising slow or fast damage rate in the simulations is the control over the formation
of nano-cracks and their extension to micro-cracks, which eventually is perceived as short-crack growth towards failure critical
crack formation. Fig. D.22a, b present the effect of softening parameter 𝐻 on overall softening behavior for a polycrystalline
microstructure. A large parameter value promotes very rapid brittle-like damage growth soon after damage onset, similarly to single
crystal cases. A decreasing value then oppositely reflects more ductile behavior. Coupling parameter 𝛽 dictates how early damage
develops after plastic slip concentration begin to form and eventually assists strain and damage localization due to two-way coupling
effect of the parameter. High 𝛽 value effectively decreases cleavage resistance at highly deformed zones in the first place, promoting
rapid deterioration. Relative smooth softening curves are achievable whenever softening parameter 𝐻 is chosen low.

Regularization of both slip and damage provides significant additional control on damage propagation. The curves feature small
or large incubation softening periods after damage initiation before softening occurs on more detrimental slope. At increasing values
of either or both 𝛽 and 𝐻 , the rapid softening following the incubation period begins to feature similar slopes than without dual-
regularization. Whenever regularization is placed on slip alone, a damage biased flow begins to overtake after damage initiation
irrespective of the value of 𝛽, supporting the observed behavior in Fig. 10.
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Fig. D.21. (a) Stress–strain curves for three higher order modulus and two penalty modulus values, and (b) average damage evolution in the microstructure for
each simulation. Origin is shifted for different cases in the stress–strain plot for clarity.

Fig. D.22. Effect of damage softening parameter 𝐻 on (a) stress–strain behavior, (b) damage evolution with 𝛽 = 5.0. Effect of plasticity-damage coupling
parameter 𝛽 on (a) stress–strain behavior and (b) damage evolution with 𝐻 = −1750 MPa. Micromorphic parameters are 𝐻

𝜒
= 105 MPa and 𝐴 = 1.0 MPa mm2.
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