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Abstract

The objective of Federated Learning (FL) is
to perform statistical inference for data which
are decentralised and stored locally on net-
worked clients. FL raises many constraints
which include privacy and data ownership,
communication overhead, statistical hetero-
geneity, and partial client participation. In
this paper, we address these problems in the
framework of the Bayesian paradigm. To this
end, we propose a novel federated Markov
Chain Monte Carlo algorithm, referred to
as Quantised Langevin Stochastic Dynamics
which may be seen as an extension to the
FL setting of Stochastic Gradient Langevin
Dynamics, which handles the communication
bottleneck using gradient compression. To
improve performance, we then introduce vari-
ance reduction techniques, which lead to two
improved versions coined QLSD? and QLSD++.
We give both non-asymptotic and asymptotic
convergence guarantees for the proposed al-
gorithms. We illustrate their performances
using various Bayesian Federated Learning
benchmarks.

1 INTRODUCTION

A paradigm shift has occurred with Federated Learning
(FL) (McMahan et al., 2017; Kairouz et al., 2021). In

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

FL, multiple entities (called clients) which own locally
stored data collaborate in learning a “global” model
which can then be “adapted” to each client. In the
canonical FL, this task is coordinated by a central
server. The initial focus of FL was on mobile and
edge device applications, but recently there has been
a surge of interest in applying the FL framework to
other scenarios; in particular, those involving a small
number of trusted clients (e.g. multiple organisations,
enterprises, or other stakeholders).

FL has become one of the most active areas of artifi-
cial intelligence research over the past 5 years. FL dif-
fers significantly from the classical (distributed) ML
setup (McMahan et al., 2017): the storage, compu-
tational, and communication capacities of each client
vary amongst each other. This poses considerable
challenges to successfully deal with many constraints
raised by (i) partial client participation (e.g. in mobile
applications, a client is not always active); (ii) com-
munication bottleneck (clients are communication-
constrained with limited bandwidth usage); (iii) model
update synchronisation and merging.

Many methods derived from stochastic gradient de-
scent techniques have been proposed in the literature
to meet the specific FL constraints (McMahan et al.,
2017; Alistarh et al., 2017; Horváth et al., 2019; Karim-
ireddy et al., 2020; Li et al., 2020; Philippenko and
Dieuleveut, 2020), see Wang et al. (2021) for a re-
cent comprehensive overview. Whilst these approaches
have successfully solved important issues associated
to FL, they are unfortunately unable to capture and
quantify epistemic predictive uncertainty which is es-
sential in many applications such as autonomous driv-
ing or precision medicine (Hunter, 2016; Franchi et al.,
2020). Indeed, these methods only provide a point es-
timate being a minimiser of a target empirical risk
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Table 1: Overview of the main existing distributed/federated approximate Bayesian approaches. Column Comm.
overhead gives the scheme employed to address the communication bottleneck. Column Heterogeneity means that
the proposed approach tackles the impact of data heterogeneity on convergence while column Bounds highlights
available non-asymptotic convergence guarantees.

Method Comm. overhead Heterogeneity Partial participation Bounds

Hasenclever et al. (2017) local steps 7 7 7
Nemeth and Sherlock (2018) one-shot 7 7 7
Bui et al. (2018) local steps 7 3 7
Jordan et al. (2019) one-shot 7 7 3
Corinzia et al. (2019) local steps 7 3 7
Kassab and Simeone (2020) local steps 7 3 7
El Mekkaoui et al. (2021) local steps 7 7 3
Plassier et al. (2021) local steps 7 7 3
Chen and Chao (2021) local steps 3 3 7
Liu and Simeone (2021a) one-shot 7 7 7
This work compression 3 3 3

function. In contrast, the Bayesian paradigm (Robert,
2001) stands for a natural candidate to quantify uncer-
tainty by providing a full description of the posterior
distribution of the parameter of interest, and as such
has become ubiquitous in the machine learning com-
munity (Andrieu et al., 2003; Hoffman et al., 2013;
Izmailov et al., 2020, 2021).

In the last decade, many research efforts have been
made to adapt serial workhorses of Bayesian com-
putational methods such as variational inference,
expectation-propagation, and Markov chain Monte
Carlo (MCMC) algorithms to massively distributed ar-
chitectures (Wang and Dunson, 2013; Ahn et al., 2014;
Wang et al., 2015; Hasenclever et al., 2017; Bui et al.,
2018; Jordan et al., 2019; Rendell et al., 2021; Vono
et al., 2022). Since the main bottleneck in distributed
computing is the communication overhead, these ap-
proaches mainly focus on deriving efficient algorithms
specifically designed to meet such a constraint, requir-
ing only periodic or few rounds of communication be-
tween a central server and clients; see Plassier et al.
(2021, Section 4) for a recent overview. As high-
lighted in Table 1, most current Bayesian FL meth-
ods adapt these approaches and focus almost exclu-
sively on Federated Averaging type updates (McMa-
han et al., 2017), performing multiple local steps on
each client. This is in contrast with predictive FL
algorithms (which are not estimating predictive un-
certainty), for which a variety of schemes have been
explored, e.g. via gradient compression or client sub-
sampling (Wang et al., 2021, Section 3.1.2). Moreover,
very few Bayesian FL works have attempted to address
the challenges raised by partial device participation
or the impact of statistical heterogeneity; see Liu and
Simeone (2021b); Chen and Chao (2021). Convergence
results in Bayesian FL lag far behind “canonical” FL.

In this paper, we attempt to fill this gap, by propos-
ing novel MCMC methods that extend Stochastic
Langevin Dynamics to the FL context. It is assumed
that the clients’ data are independent and that the
global posterior density is therefore the product of the
non-identical local posterior densities of each client.
To meet the specificity of Bayesian FL, each iteration
of the proposed approaches only requires that a sub-
set of active clients compute a stochastic gradient or-
acle for their associated negative log posterior density
and send a lossy compression of these stochastic gra-
dient oracles to the central server. The first scheme
we derive, referred to as Quantised Langevin Stochas-
tic Dynamics (QLSD), can interestingly be seen as the
MCMC counterpart of the QSGD approach in FL (Al-
istarh et al., 2017), just as the Stochastic Gradient
Langevin Dynamics (SGLD) (Welling and Teh, 2011)
extends the Stochastic Gradient Descent (SGD). How-
ever, QLSD has the same drawbacks as SGLD: in par-
ticular, the invariant distribution of QLSD may devi-
ate from the target distribution and become similar
to the invariant measure of SGD when the number of
observations is large (Brosse et al., 2018). We over-
come this problem by deriving two variance-reduced
versions QLSD? and QLSD++ that both include control
variates.

Contributions (1) We propose a general MCMC al-
gorithm called QLSD specifically designed for Bayesian
inference under the FL paradigm and two variance-
reduced alternatives, especially tackling heterogene-
ity, communication overhead and partial participation.
(2) We provide a non-asymptotic convergence analy-
sis of the proposed algorithms. The theoretical anal-
ysis highlights the impact of statistical heterogeneity
measured by the discrepancy between local posterior
distributions. (3) We propose efficient mechanisms
to mitigate the impact of statistical heterogeneity on
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convergence, either by using biased stochastic gradi-
ents or by introducing a memory mechanism that ex-
tends Horváth et al. (2019) to the Bayesian setting.
In particular, we find that variance reduction indeed
allows the proposed MCMC algorithm to converge to-
wards the desired target posterior distribution when
the number of observations becomes large. (4) We il-
lustrate the advantages of the proposed methods using
several FL benchmarks. We show that the proposed
methodology performs well compared to state-of-the-
art Bayesian FL methods.

Notations and Conventions The Euclidean norm
on Rd is denoted by ‖ · ‖ and we set N∗ = N \ {0}.
For n ∈ N∗, we refer to {1, . . . , n} with the notation
[n]. For N ∈ N∗, we use ℘N to denote the power set
of [N ] and define ℘N,n = {x ∈ ℘N : card(x) = n}
for any n ∈ [N ]. We denote by N(m,Σ) the Gaussian
distribution with mean vector m and covariance ma-
trix Σ. We define the sign function, for any x ∈ R,
as sign(x) = 1{x ≥ 0} − 1{x < 0}. We define
the Wasserstein distance of order 2 for any proba-
bility measures µ, ν on Rd with finite 2-moment by
W2(µ, ν) = (infζ∈T (µ,ν)

∫
Rd×Rd ‖θ − θ′‖2dζ(θ, θ′))1/2,

where T (µ, ν) is the set of transference plans of µ and
ν.

2 QUANTISED LANGEVIN
STOCHASTIC DYNAMICS

In this section, we present the Bayesian FL framework
and introduce the proposed methodology called QLSD
along with two variance-reduced instances.

Problem Statement We are interested in perform-
ing Bayesian inference on a parameter θ ∈ Rd based
on a training dataset D. We assume that the poste-
rior distribution admits a product-form density with
respect to the d-dimensional Lebesgue measure, i.e.

π (θ | D) = Z−1
π

∏b
i=1 e−Ui(θ) , (1)

where b ∈ N∗ and Zπ =
∫
Rd
∏b
i=1 e−Ui(θ) dθ is a nor-

malisation constant. This framework naturally en-
compasses the considered Bayesian FL problem. In
this context, {e−Ui}i∈[b] stand for the unnormalised lo-
cal posterior density functions associated to b clients,
where each client i ∈ [b] is assumed to own a local
dataset Di such that D = tbi=1Di. The dependency
of Ui on the local dataset Di is omitted for brevity.
A real-world illustration of the considered Bayesian
problem is “multi-site fMRI classification” where each
site (or client) owns a dataset coming from a local dis-
tribution because the methods of data generation and
collection differ between sites. This results in different
local likelihood functions, which combined with a local

prior distribution, lead to heterogeneous local posteri-
ors.

As in embarrassingly parallel MCMC approaches
(Neiswanger et al., 2014), (1) implicitly assumes that
the prior can be factorized across clients, which can al-
ways be done although the choice of this factorization
is an open question. This product-form formulation
can be alleviated by considering a global prior on θ
and only calculating its gradient contribution on the
central server during computations, see Algorithm 1.

A popular approach to sample from a target dis-
tribution with density π defined in (1) is based on
Langevin dynamics with stochastic gradient which,
starting from an initial point θ0, defines a Markov
chain (θk)k∈N by recursion:

θk+1 = θk − γHk+1(θk) +
√

2γZk+1 , k ∈ N , (2)

where γ ∈ (0, γ̄], for some γ̄ > 0, is a discretisa-
tion time step, (Zk)k∈N∗ is a sequence of i.i.d. stan-
dard Gaussian random variables and (Hk)k∈N∗ stand
for unbiased estimators of ∇U with U =

∑b
i=1 Ui

(Parisi, 1981; Grenander and Miller, 1994; Roberts and
Tweedie, 1996). In a serial setting involving a single
client which owns a dataset of size N ∈ N∗, the poten-
tial U writes U = U1 =

∑N
j=1 U1,j for some functions

U1,j : Rd → R, and a popular instance of this frame-
work is SGLD (Welling and Teh, 2011). This algorithm
consists in the recursion (2) with the specific choice
Hk+1(θ) = (N/n)

∑
j∈Sk+1

∇U1,j(θ), where (Sk)k∈N∗

is a sequence of i.i.d. uniform random subsets of [N ]
of cardinal n.

In the FL framework, we assume that at each itera-
tion k, the i-th client has access to an oracle H(i)

k+1

based on its local negative log posterior density Ui,
depending only on Di, so that Hk+1 =

∑b
i=1H

(i)
k+1 is

a stochastic gradient oracle of U . Note that we do not
assume that H(i)

k+1 is an unbiased estimator of ∇Ui,
but only assume that Hk+1 is unbiased. This allows
us to consider biased local stochastic gradient oracles
with better convergence guarantees, see Section 3 for
more details. A simple adaptation of SGLD to the FL
framework under consideration is given by recursion:

θk+1 = θk−γ
∑b
i=1H

(i)
k+1(θk)+

√
2γZk+1 , k ∈ N . (3)

If for any i ∈ [b], every potential function Ui also ad-
mits a finite-sum expression i.e. Ui =

∑Ni
j=1 Ui,j , simi-

lar to SGLD, we can for example use the local stochastic
gradient oracles H(i)

k+1(θ) = (Ni/ni)
∑
j∈S(i)

k+1

∇Ui,j(θ),

where (S(i)
k+1)k∈N∗, i∈[b] stand for i.i.d. uniform random

subsets of [Ni] of cardinal ni. However, considering the
MCMC algorithm associated with the recursion (3) is
not adapted to the FL context. Indeed, this algorithm
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would assume that each client is reliable and suffers
from the same issues as SGD in a risk-based minimisa-
tion context, especially a prohibitive communication
overhead (Girgis et al., 2020).

Proposed Methodology To address this problem,
we propose to both account for the partial participation
of clients and reduce the number of bits transmitted
during the upload period by performing a lossy com-
pression of a subset of {H(i)

k+1}i∈[b],k∈N∗ . This method
has been used extensively in the “canonical” FL liter-
ature (Alistarh et al., 2017; Lin et al., 2018; Haddad-
pour et al., 2020; Sattler et al., 2020), but interestingly
has never been considered in Bayesian FL; see Table 1.

To this end, we introduce a compression operator
C : Rd → Rd that is unbiased, i.e. for any v ∈ Rd,
E[C (v)] = v. In recent years, numerous compression
operators have been proposed (Seide et al., 2014; Aji
and Heafield, 2017; Stich et al., 2018). For example,
the QSGD approach proposed in Alistarh et al. (2017)
is based on stochastic quantisation.

QSGD considers for C a component-wise quantisation
operator parameterised by a number of quantisation
levels s ≥ 1, which for each j ∈ [d] and v =
(v1, . . . , vd) ∈ Rd are given by

C (s,j)(v) =
‖v‖ sign(vj)

s

(
lj + 1

{
ξj ≤

s|vj |
‖v‖ − lj

})
, (4)

where lj = bs|vj |/ ‖v‖c and {ξj}j∈[d] is a sequence of
i.i.d. uniform random variables on [0, 1]. In this par-
ticular case, we will denote the quantisation of v via
(4) by C (s)(v) = {C (s,j)(v)}j∈[d].

The proposed general methodology, called Quantised
Langevin Stochastic Dynamics (QLSD) stands for a
compressed and FL version of the specific instance of
SGLD defined in (3). More precisely, QLSD is an MCMC
algorithm associated with the Markov chain (θk)k∈N
starting from θ0 and defined for k ∈ N as

θk+1 = θk − γ
b

|Ak+1|
∑

i∈Ak+1

Ck+1

[
H

(i)
k+1(θk)

]
+
√

2γZk+1 ,

where (Ak)k∈N∗ denotes the subset of active (i.e. avail-
able) clients at iteration k, possibly random. Note that
we indexed C by k + 1 to emphasize that this com-
pression operator is a stochastic operator and hence
varies across iterations, see e.g. (4). The deriva-
tion of QLSD in the considered Bayesian FL context
is described in details in Algorithm 1. A generalisa-
tion of QLSD taking into account heterogeneous com-

munication constraints between clients by consider-
ing different compression operators {C (i)}i∈[b] is avail-
able in the Supplementary Material, see e.g. Section
S1. In the particular case of the finite-sum setting
where each client owns a dataset of size Ni, i.e. for
the choice H

(i)
k+1(θ) = (Ni/ni)

∑
j∈S(i)

k+1

∇Ui,j(θ) for

θ ∈ Rd, S(i)
k+1 ∈ ℘Ni,ni , we denote the corresponding

instance of QLSD as QLSD#.

In this paper, we have decided to focus only on a non-
adjusted sampling algorithm (QLSD) since the deriva-
tions of non-asymptotic results are already consequent,
see the Supplementary Material. In addition, up to
authors’ knowledge, a general consensus on the choice
between Metropolis-adjusted algorithms and their un-
adjusted counterparts has not been achieved yet.

Algorithm 1 Quantised Langevin Stochastic Dynam-
ics (QLSD)
Input: nb. iterations K, compression operators
{Ck+1}k∈N, stochastic gradients {H(i)

k+1}i∈[b],k∈N,
step-size γ ∈ (0, γ̄] and initial point θ0.
for k = 0 to K − 1 do

for i ∈ Ak+1 // On active clients Ak+1 do
Compute gi,k+1 = Ck+1

[
H

(i)
k+1(θk)

]
.

Send gi,k+1 to the central server.
end for
// On the central server
Compute gk+1 = b

|Ak+1|
∑
i∈Ak+1

gi,k+1.
Draw Zk+1 ∼ N(0d, Id)
Compute θk+1 = θk − γgk+1 +

√
2γZk+1.

Send θk+1 to the b clients.
end for
Output: samples {θk}Kk=0.

Variance-Reduced Alternatives Consider the
finite-sum setting i.e. for any i ∈ [b], Ui =

∑Ni
j=1 Ui,j

where Ni is the size of the local dataset Di. As
highlighted in Section 1, SGLD-based approaches, in-
cluding Algorithm 1, involve an invariant distribution
that may deviate from the target posterior distribution
when mini∈bNi goes to infinity, as stochastic gradients
with large variance are used (Brosse et al., 2018; Baker
et al., 2019). We deal with this problem by proposing
two variance-reduced alternatives of QLSD# that use
control variates. The simplest variance-reduced ap-
proach, referred to as QLSD? (see Algorithm S1) and
discussed in more details in the Supplementary Mate-
rial (see Section S2), considers a fixed-point approach
that uses a minimiser θ? of the potential U (Brosse
et al., 2018; Baker et al., 2019) defined as

θ? ∈ arg min
θ∈Rd

b∑
i=1

Ui(θ) . (5)
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In this scenario, the stochastic gradient oracles write
for each i ∈ [b], k ∈ N∗, θ ∈ Rd and S(i)

k+1 ∈ ℘Ni,ni ,
H

(i)
k+1(θ) = (Ni/ni)

∑
j∈S(i)

k+1

[∇Ui,j(θ) − ∇Ui,j(θ?)].
Although E[Hk+1] = ∇U , note that for each i ∈ [b],
E[H

(i)
k+1] 6= ∇Ui so H(i)

k+1 is not an unbiased estimate
of Ui. We show in Section 3 that introducing this bias
improves the convergence properties of QLSD# with re-
spect to the discrepancy between local posterior distri-
butions. Since estimating θ? in a FL context might im-
pose an additional computational burden on the sam-
pling procedure, we propose another variance-reduced
alternative referred to as QLSD++ (see Algorithm 2).
This method builds on the Stochastic Variance Re-
duced Gradient (SVRG): it uses control variates (ζk)k∈N
that are updated every l ∈ N∗ iterations (Johnson
and Zhang, 2013) and at each iteration k ∈ N and for
any client i ∈ [b], the stochastic gradient oracle H(i)

k+1

defined by H
(i)
k+1(θ) = (Ni/ni)

∑
j∈S(i)

k+1

[∇Ui,j(θ) −
∇Ui,j(ζk)] + ∇Ui(ζk). To reduce the impact of lo-
cal posterior discrepancy on convergence, we take in-
spiration from the “canonical” FL literature and con-
sider a memory term (η

(i)
k )k∈N on each client i ∈ [b]

(Horváth et al., 2019; Dieuleveut et al., 2020). At
each iteration k, instead of directly compressing H(i)

k+1,
we compress the difference H

(i)
k+1 − η

(i)
k , store it in

gi,k+1, and then compute the global stochastic gra-
dient gk+1 = b

|Ak+1|
∑
i∈Ak+1

gi,k+1 +
∑b
i=1 η

(i)
k . The

memory term (η
(i)
k )k∈N is then updated on each client

i ∈ [b], by the recursion η(i)
k+1 = η

(i)
k +α1Ak+1

(i)gi,k+1.
The benefits of using this memory mechanism will be
assessed theoretically in Section 3 and illustrated nu-
merically in Section S5.2 in the Supplementary Mate-
rial.

3 THEORETICAL ANALYSIS

This section provides a detailed theoretical analysis
of the proposed methodology. In particular, we will
show the impact of using stochastic gradients, partial
participation and compression by deriving quantita-
tive convergence bounds for QLSD, which is detailed
in Algorithm 1. We then derive non-asymptotic con-
vergence bounds for QLSD? and QLSD++, and explic-
itly show that these variance-reduced algorithms in-
deed succeed in reducing both the variance caused by
stochastic gradients and the effects of local posterior
discrepancy in the bounds we obtain for QLSD#. We
consider the following assumptions on the potential U .

H1. For any i ∈ [b], Ui is continuously differentiable.
In addition, suppose that the following hold.

(i) U is m-strongly convex, i.e. for any θ1, θ2 ∈ Rd,

Algorithm 2 Variance-reduced Quantised Langevin
Stochastic Dynamics (QLSD++)
Input: minibatch sizes {ni}i∈[b], number of itera-
tions K, compression operators {Ck+1}k∈N∗ , step-
size γ ∈ (0, γ̄] with γ̄ > 0, initial point θ0 and
α ∈ (0, ᾱ] with ᾱ > 0.
// Memory mechanism initialisation
Initialise {η(1)

0 , . . . , η
(b)
0 } and η0 =

∑b
i=1 η

(i)
0 .

for k = 0 to K − 1 do
// Update of the control variates
if k ≡ 0 (mod l) then

Set ζk = θk.
else

Set ζk = ζk−1

end if
for i ∈ Ak+1 // On active clients do

Draw S(i)
k+1 ∼ Uniform (℘Ni,ni).

Set H(i)
k+1(θk) = (Ni/ni)

∑
j∈S(i)

k+1

[∇Ui,j(θk) −
∇Ui,j(ζk)] +∇Ui(ζk).

Compute gi,k+1 = Ck+1

(
H

(i)
k+1(θk)− η(i)

k

)
.

Send gi,k+1 to the central server.
Set η(i)

k+1 = η
(i)
k + αgi,k+1.

end for
// On the central server
Compute gk+1 = ηk + b

|Ak+1|
∑
i∈Ak+1

gi,k+1.

Set ηk+1 = ηk + α
∑b
i∈Ak+1

gi,k+1.
Draw Zk+1 ∼ N(0d, Id).
Compute θk+1 = θk − γgk+1 +

√
2γZk+1.

Send θk+1 to the b clients.
end for
Output: samples {θk}Kk=0.

〈∇U(θ1)−∇U(θ2), θ1 − θ2〉 ≥ m ‖θ1 − θ2‖2.
(ii) U is L-Lipschitz, i.e. for any θ1, θ2 ∈ Rd,
‖∇U (θ1)−∇U (θ2)‖ ≤ L ‖θ1 − θ2‖.

Note that H1-(i) implies that U admits a unique min-
imiser denoted by θ? ∈ Rd.

The compression operators {Ck+1}k∈N are assumed to
satisfy the following assumption.

H2. The compression operators {Ck+1}k∈N are inde-
pendent and satisfy the following conditions.

(i) For any k ∈ N∗, v ∈ Rd, E[Ck(v)] = v.
(ii) There exists ω ≥ 1, such that for any k ∈ N∗,
v ∈ Rd, E[‖Ck(v)− v‖2] ≤ ω ‖v‖2.

As an example, the assumption on the variance of the
compression operator detailed in H2-(ii) is verified for
the quantisation operator C (s) defined in (4) with ω =
min(d/s2,

√
d/s) (Alistarh et al., 2017, Lemma 3.1).
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Non-Asymptotic Analysis for Algorithm 1 We
consider the following assumptions on the stochastic
gradient oracles used in QLSD.

H3. The random fields {H(i)
k+1 : Rd → Rd}i∈[b],k∈N are

independent and satisfy the following conditions.

(i) For any θ ∈ Rd and k ∈ N,
∑b
i=1 E[H

(i)
k+1(θ)] =

∇U (θ).
(ii) There exist {Mi > 0}i∈[b], such that for any i ∈ [b],

k ∈ N, θ1, θ2 ∈ Rd, E
[∥∥∥H(i)

k+1(θ1)−H(i)
k+1(θ2)

∥∥∥2
]
≤

Mi 〈θ1 − θ2,∇Ui (θ1)−∇Ui (θ2)〉 .
(iii) There exist σ?, B? ∈ R+ such that for any θ ∈
Rd, k ∈ N, we have E

[∥∥∥H(i)
k+1(θ?)

∥∥∥]2 ≤ B?/b, and

E
[∥∥∥∑b

i=1H
(i)
k+1(θ?)

∥∥∥2
]
≤ σ2

?, where θ? is defined in

(5).

We can notice that H3-(ii) implies that ∇Ui
is Mi-Lipschitz continuous since by the Cauchy-
Schwarz inequality, for any i ∈ [b] and
any θ1, θ2 ∈ Rd, ‖∇Ui (θ1)−∇Ui (θ2)‖2 ≤
Mi 〈θ1 − θ2,∇Ui (θ1)−∇Ui (θ2)〉. Conversely, in the
finite-sum setting, H3-(ii) is satisfied by QLSD# with
Mi = NiM̄ if for any i ∈ [b] and j ∈ [Ni], Ui,j is convex
and ∇Ui,j is M̄-Lipschitz continuous, for M̄ ≥ 0 by
Nesterov (2003, Theorem 2.1.5).

In addition, it is worth mentioning that the first in-
equality in H3-(iii) is also required for our derivation
in the deterministic case where H(i)

k+1 = ∇Ui due to
the compression operator. In this particular case, B?
stands for an upper-bound on

∑b
i=1 ‖∇Ui(θ?)‖

2 and
corresponds to some discrepancy between local pos-
terior density functions meaning that ∇Ui 6= ∇U for
i ∈ [b]. This phenomenon, referred to as data het-
erogeneity in the risk-based literature (Horváth et al.,
2019; Karimireddy et al., 2020), is ubiquitous in the
FL context.

Finally, we assume for simplicity that clients’ partial
participation is realised by each client having proba-
bility p ∈ (0, 1] of being active in each communication
round.
H4. For any k ∈ N∗, Ak = {i ∈ [b] : Bi,k = 1} where
{Bi,k : i ∈ [b] , k ∈ N∗} is a family of i.i.d. Bernouilli
random variables with success probability p ∈ (0, 1].

A generalisation of this scheme considering different
probabilities pi per client can be found in the Supple-
mentary Material, see e.g. Section S1.1. Under the
above assumptions and by denoting Qγ the Markov
kernel associated to Algorithm 1, the following con-
vergence result holds.
Theorem 1. Assume H1, H2, H3 and H4. Then,
there exists γ̄∞ such that for γ̄ < γ̄∞, there exist

Aγ̄ , Bγ̄ > 0 (explicitly given in Section S1 in the
Supplementary Material) satisfying for any probabil-
ity measure µ ∈ P2

(
Rd
)
, any step size γ ∈ (0, γ̄] and

k ∈ N,
W 2

2

(
µQkγ , π

)
≤ (1− γm/2)k ·W 2

2 (µ, π) + γBγ̄

+ γ2Aγ̄(1− mγ/2)k−1k ·
∫
Rd
‖θ − θ?‖2µ(dθ) ,

where θ? is defined in (5).

Similar to ULA (Dalalyan, 2017; Durmus and Moulines,
2019) and SGLD (Dalalyan and Karagulyan, 2019; Dur-
mus et al., 2019), the upper bound given in Theorem 1
includes a contracting term that depends on the ini-
tialisation and a bias term γBγ̄ that does not vanish
with k → ∞ due to the use of a fixed step size γ.
In the asymptotic scenario, i.e. γ̄ ↓ 0, Table 1 gives
the dependencies of Bγ̄ for QLSD and its particular in-
stance QLSD#, in terms of key quantities associated
with the setting we consider. Similar to SGLD, we
can observe that the use of stochastic gradients en-
tails a bias term of order σ2

? O(γ). On the other hand,
the use of partial participation and compression com-
pared to SGLD introduces an additional bias of order
(ω/p)(mB?+LMd) O(γ), which grows with in particular
B?, corresponding to the impact of the local posterior
discrepancy on convergence.

Non-Asymptotic Analysis for Variance-
Reduced Alternatives We assume in the sequel
that the potential functions {Ui}i∈[b] admit the
finite-sum decomposition Ui =

∑Ni
j=1 Ui,j for each

i ∈ [b] and consider the following assumptions.
H 5. For any i ∈ [b], j ∈ [Ni], Ui,j is continuously
differentiable and the following holds.

(i) There exists Mi > 0 such that, for
any θ1, θ2 ∈ Rd, ‖∇Ui(θ2)−∇Ui(θ1)‖2 ≤
M 〈θ2 − θ1,∇Ui(θ2)−∇Ui(θ1)〉.
(ii) There exists M̄ ≥ 0 such that, for any
θ1, θ2 ∈ Rd, ‖∇Ui,j(θ2)−∇Ui,j(θ1)‖2 ≤
M̄ 〈∇Ui,j(θ2)−∇Ui,j(θ1), θ2 − θ1〉.

As mentioned earlier, H5 is satisfied if for every i ∈ [b]
and j ∈ [Ni], Ui,j is convex and ∇Ui,j is M̄-Lipschitz
continuous. Under these additional conditions, the fol-
lowing non-asymptotic convergence results hold for the
two reduced-variance MCMC algorithms described in
Section 2. Denote by Q©? ,γ the Markov kernel associ-
ated to QLSD? with a step size γ ∈ (0, γ̄].
Theorem 2. Assume H1, H2, H4 and H5. Then,
there exists γ̄©? ,∞ such that for γ̄ < γ̄©? ,∞, there exist
A©? ,γ̄ , B©? ,γ̄ > 0 (explicitly given in Section S2 in the
Supplementary Material) satisfying for any probability
measure µ ∈ P2

(
Rd
)
, any step size γ ∈ (0, γ̄] and

k ∈ N,
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Table 2: Order of the asymptotic biases {Bγ̄ , B©? ,γ̄ , B⊕,γ̄}, associated to the three proposed MCMC algorithms, in
squared 2-Wasserstein distance for two types of asymptotic. Red dependencies prevent from (quick) convergence
while green dependencies ensure convergence of associated MCMC algorithms. θ? is defined in (5).

Algo. Bias
Dependencies of the

asymptotic bias when γ̄ ↓ 0
Dependencies of the

asymptotic bias as Ni →∞

d H
(i)
k+1 B? partial particip. ω

QLSD Bγ̄ d σ2
? B? (1− p)/p ω O(Ni)

QLSD# Bγ̄ d N2
i

∑b
i=1 ‖∇Ui(θ?)‖

2
(1− p)/p ω O(Ni)

QLSD? B©? ,γ̄ d Ni - (1− p)/p ω dO (1)
QLSD++ B⊕,γ̄ d Ni - (1− p)/p ω dO (1)

W 2
2

(
µQk©? ,γ , π

)
≤ (1− γm/2)k ·W 2

2 (µ, π) + γB©? ,γ̄

+ γ2A©? ,γ̄(1− mγ/2)k−1k ·
∫
Rd
‖θ − θ?‖2µ(dθ) ,

where θ? is defined in (5).
Compared to QLSD and QLSD?, QLSD++ only defines an
inhomogeneous Markov chain, see Section S3.3 in the
Supplementary Material for more details. For a step-
size γ ∈ (0, γ̄] and an iteration k ∈ N, we denote by
µQ

(k)
⊕,γ the distribution of θk defined by QLSD++ start-

ing from θ0 with distribution µ.
Theorem 3. Assume H1, H2, H4 and H5, and let
l ∈ N∗ and α ∈ (0, 1/(ω+ 1)]. Then, there exists γ̄⊕,∞
such that for γ̄ < γ̄⊕,∞, there exist A⊕,γ̄ , B⊕,γ̄ , C⊕,γ̄ >
0 (explicitly given in Section S3 in the Supplementary
Material and independent of α) satisfying for any prob-
ability measure µ ∈ P2

(
Rd
)
, any step size γ ∈ (0, γ̄]

and k ∈ N,

W 2
2 (µQ

(k)
©+,γ , π) ≤ (1− γm/2)k ·W 2

2 (µ, π) + γB⊕,γ̄

+ γ2A⊕,γ̄(1− γm/2)bk/lc ·
∫
Rd
‖θ − θ?‖2µ(dθ)

+ γC⊕,γ̄ [(1− α)k ∧ (1− γm/2)bk/lc]

b∑
i=1

‖∇Ui(θ?)‖2 ,

where θ? is defined in (5).

Table 2 provides the dependencies of the asymptotic
bias terms B©? ,γ̄ , B⊕,γ̄ as γ̄ ↓ 0 with respect to key
quantities associated to the problem we consider. For
comparison, we do the same regarding the specific in-
stance of Algorithm 1, QLSD#. Remarkably, thanks
to biased local stochastic gradients for QLSD? and the
memory mechanism for QLSD++, we can notice that
their associated asymptotic biases do not depend on
local posterior discrepancy in contrast to QLSD#. This
is in line with non-asymptotic convergence results in
risk-based FL which also show that the impact of data
heterogeneity can be alleviated using such a memory
mechanism (Philippenko and Dieuleveut, 2020). The
impact of stochastic gradients is discussed in further
details in the next paragraph.

Consistency Analysis in the Big Data Regime
In Brosse et al. (2018), it was shown that ULA and SGLD
define homogeneous Markov chains, each of which ad-
mits a unique stationary distribution. However, while
the invariant distribution of ULA gets closer to π as
Ni increases, conversely the invariant measure of SGLD
never approaches π and is in fact very similar to the in-
variant measure of SGD. Moreover, the non-compressed
counterpart of QLSD? has been shown not to suffer from
this problem, and it has been theoretically proven to
be a viable alternative to ULA in the Big Data envi-
ronment. Since QLSD is a generalisation of SGLD, the
conclusions of Brosse et al. (2018) hold. On the other
hand, we show that the reduced-variance alternatives
to QLSD that we introduced provide more accurate es-
timates of π as Ni increases, see the last column in
Table 2. Detailed calculations are deferred to Section
S4 in the Supplementary Material.

4 NUMERICAL EXPERIMENTS

This section illustrates our methodology with three nu-
merical experiments that include both synthetic and
real datasets. For all experiments, we consider the
finite-sum setting and use the stochastic quantisation
operator C (s) for s ≥ 1 defined in (4) to perform the
compression step. In this case H2-(ii) is verified with
ω = min(d/s2,

√
d/s). Further experimental results

are given in Section S5 in the Supplementary Mate-
rial.

Toy Gaussian Example This first experiment aims
at illustrating the general behavior of Algorithm 1 with
respect to the use of stochastic gradients and compres-
sion scheme. To this purpose, we set b = 20 and d = 50
and consider a Gaussian posterior distribution with
density defined in (1) where, for any i ∈ [b] and θ ∈ Rd,
Ui(θ) =

∑Ni
j=1 ‖θ − yi,j‖2/2, {yi,j}i∈[b],j∈[Ni] being a

set of synthetic independent but not identically dis-
tributed observations across clients and Ni ∈ [10, 200],
see Figure 1 (top row). Note that in this specific
case, θ? admits a closed form expression. For all the
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Figure 1: Toy Gaussian example. (top) 2D projec-
tion of the heterogeneous synthetic dataset where each
color refers to a client and each dot is an observation
yi,j . (bottom) Estimation performances of the consid-
ered Bayesian FL algorithms.

algorithms, we choose the (optimised) step-size γ =
4.9× 10−4 and choose a minibatch size ni = bNi/10c.
Instances of QLSD# and QLSD? using s = 2p are re-
ferred to as p-bits instances of these MCMC algo-
rithms. We compare these algorithms with the non-
compressed counterpart of QLSD? referred to as LSD?,
see Algorithm S2. Figure 1 shows the behavior of the
mean squarred error (MSE) associated to the test func-
tion f : θ 7→ ‖θ‖, computed using 30 independent
runs of each algorithm, with respect to the number of
bits transmitted. We can notice that QLSD? always
outperforms QLSD#and that decreasing the value of
ω does not significantly reduce the bias associated to
QLSD?. This illustrates the impact of the variance of
the stochastic gradients and supports our theoretical
analysis summarised in Table 2. On the other hand,
QLSD? with s = 216 achieves a similar MSE as LSD?

while requiring roughly 2.5 times less number of bits.

Bayesian Logistic Regression In this experiment,
we compare the proposed methodology based on
gradient compression with two existing FedAvg-type
MCMC algorithms. Since θ? defined in (5) is not eas-
ily available, we implement QLSD++ detailed in Al-
gorithm 2. We adopt a zero-mean Gaussian prior
with covariance matrix 2 · 10−2Id and use the FEM-
NIST dataset (Caldas et al., 2018). We set b = 50,
l = 100, α = 1/(ω + 1) and γ = 10−5. We launch
QLSD++ for s ∈ {24, 28, 216} and compare its per-
formances with DG-SGLD (Plassier et al., 2021) and
FSGLD (El Mekkaoui et al., 2021) which use multiple

Table 3: Bayesian Logistic Regression.

Algorithm 99% HPD error Rel. efficiency

FSGLD 5.4e-3 6.2
DG-SGLD 5.2e-3 6.4

QLSD++ 4 bits 6.1e-3 7.6
QLSD++ 8 bits 4.3e-3 6.7
QLSD++ 16 bits 6.9e-4 3.1

local steps to address the communication bottleneck.
We are interested in performing uncertainty quantifi-
cation by estimating highest posterior density (HPD)
regions. For any α ∈ (0, 1), we define Cα = {θ ∈
Rd;− log π(θ|D) ≤ ηα} where ηα ∈ R is chosen such
that

∫
Cα π(θ|D)dθ = 1 − α. We compute the rela-

tive HPD error based on the scalar summary ηα, i.e.
|ηα−ηLSDα |/ηLSDα where ηLSDα has been estimated using the
non-compressed counterpart of QLSD++, referred to as
LSD++ and standing for a serial variance-reduced SGLD,
see Algorithm S3. Table 3 gives this relative HPD er-
ror for α = 0.01 and provides the relative efficiency of
QLSD++ and competitors corresponding to the savings
in terms of transmitted bits per iteration. One can
notice that the proposed approach provides similar re-
sults as its non-compressed counterpart while being 3
to 7 times more efficient. In addition, we show that
QLSD++ provides similar performances as DG-SGLD and
FSGLD which highlight that gradient compression and
periodic communication are competing approaches.

Bayesian Neural Networks In our third experi-
ment, we go beyond the scope of our theoretical anal-
ysis by performing posterior inference in Bayesian neu-
ral networks. We use the ResNet-20 model (He et al.,
2016), choose a zero-mean Gaussian prior distribu-
tion with variance 1/5 and consider the classifica-
tion problem associated with the CIFAR-10 dataset
(Krizhevsky et al., 2009). We run QLSD++ with s = 2,
l = 20, α = 1/(ω + 1), and with either p = 1
(full participation) or p = 0.25 (partial participa-
tion). We compare the proposed methodology with
a long-run Hamiltonian Monte Carlo (HMC) considered
as a “ground truth” (Izmailov et al., 2021) and SGLD.
For completeness, we also implement four other dis-
tributed/federated approximate sampling approaches,
namely two instances of FedBe (Chen and Chao, 2021),
DG-SGLD and FSGLD. Following Wilson et al. (2021), we
compare the aforementioned algorithms through three
metrics: classification accuracy on the test dataset us-
ing the minimum mean-square estimator, agreement
between the top-1 prediction given by each algorithm
and the one given by HMC and total variation between
approximate and “true” (associated with HMC) predic-
tive distributions. More details about algorithms’ hy-
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Table 4: Performances of Bayesian FL algorithms on the considered Bayesian neural networks problem.

Method HMC SGLD QLSD++ QLSD++ PP FedBe-Dirichlet FedBe-Gauss. DG-SGLD FSGLD

Accuracy 89.6 88.8 88.1 86.6 90.7 90.2 92.2 87.5
Agreement 0.94 0.91 0.90 0.90 0.90 0.89 0.91 0.91

TV 0.07 0.11 0.12 0.12 0.16 0.16 0.13 0.13

Figure 2: Bayesian Neural Networks.

perparameters and considered metrics are given in Sec-
tion S5.3 in the Supplementary Material. The re-
sults we obtain are gathered in Table 4. In terms
of agreement and total variation, QLSD++ (even with
partial participation) gives similar results as SGLD and
competes favorably with other existing federated ap-
proaches. Figure 2 complements this empirical analy-
sis by showing calibration curves of posterior predic-
tive distributions.

5 CONCLUSION

In this paper, we presented a general methodology
based on Langevin stochastic dynamics for Bayesian
FL. In particular, we addressed the challenges associ-
ated with this new ML paradigm by assuming that a
subset of clients sends compressed versions of its local
stochastic gradient oracles to the central server. More-
over, the proposed method was found to have favorable
convergence properties, as evidenced by numerical il-
lustrations. In particular, it compares favorably to
FedAvg-type Bayesian FL algorithms. A limitation of
this work is that the proposed method does not target
the initial posterior distribution due to the use of a
fixed discretisation time step. Therefore, this work
paves the way for more advanced Bayesian FL ap-
proaches based, for example, on Metropolis-Hastings
schemes to remove asymptotic biases. In addition, al-
though the data ownership issue is implicitly tackled
by the FL paradigm by not sharing data, stronger pri-
vacy guarantees can be ensured, typically by combin-
ing differential privacy, secure multi-party computa-
tion and homomorphic encryption methods. Propos-
ing a differentially private version of our methodology
is a possible extension of our work, that is left for fur-

ther work. This work has no direct societal impact.

Acknowledgements

The authors acknowledge support of the Lagrange
Mathematics and Computing Research Center.

References

Sungjin Ahn, Babak Shahbaba, and Max Welling. Dis-
tributed Stochastic Gradient MCMC. In Interna-
tional Conference on Machine Learning, 2014.

Alham Fikri Aji and Kenneth Heafield. Sparse Com-
munication for Distributed Gradient Descent. In
Conference on Empirical Methods in Natural Lan-
guage Processing, 2017.

Dan Alistarh, Demjan Grubic, Jerry Li, Ry-
ota Tomioka, and Milan Vojnovic. QSGD:
Communication-efficient SGD via gradient quanti-
zation and encoding. Advances in Neural Informa-
tion Processing Systems, 2017.

Christophe Andrieu, Nando de Freitas, Arnaud
Doucet, and Michael I. Jordan. An introduction to
MCMC for machine learning. Machine Learning, 50
(1–2):5–43, 2003.

Jack Baker, Paul Fearnhead, Emily B. Fox, and
Christopher Nemeth. Control variates for stochastic
gradient MCMC. Statistics and Computing, 29(3):
599–615, 2019.

Nicolas Brosse, Alain Durmus, and Eric Moulines.
The promises and pitfalls of Stochastic Gradient
Langevin Dynamics. In Advances in Neural Infor-
mation Processing Systems, 2018.

Thang D. Bui, Cuong V. Nguyen, Siddharth Swa-
roop, and Richard E. Turner. Partitioned Varia-
tional Inference: A unified framework encompass-
ing federated and continual learning. arXiv preprint
arXiv:1811.11206, 2018.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter
Wu, Tian Li, Jakub Konecny, H. Brendan McMa-
han, Virginia Smith, and Ameet Talwalkar. LEAF:
A Benchmark for Federated Settings. arXiv preprint
arXiv:1812.01097, 2018.

Hong-You Chen and Wei-Lun Chao. FedBE: Making
Bayesian Model Ensemble Applicable to Federated



QLSD: Quantised Langevin Stochastic Dynamics for Bayesian Federated Learning

Learning. In International Conference on Learning
Representations, 2021.

Luca Corinzia, Ami Beuret, and Joachim M. Buh-
mann. Variational Federated Multi-Task Learning.
arXiv preprint arXiv:1906.06268, 2019.

Arnak S. Dalalyan. Theoretical guarantees for approx-
imate sampling from smooth and log-concave densi-
ties. Journal of the Royal Statistical Society, Series
B, 79(3):651–676, 2017.

Arnak S. Dalalyan and Avetik Karagulyan. User-
friendly guarantees for the Langevin Monte Carlo
with inaccurate gradient. Stochastic Processes and
Their Applications, 129(12):5278–5311, 2019.

Alexander Philip Dawid and Monica Musio. Theory
and applications of proper scoring rules. Metron, 72
(2):169–183, 2014.

Li Deng. The mnist database of handwritten digit
images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

Aymeric Dieuleveut, Alain Durmus, and Francis Bach.
Bridging the gap between constant step size stochas-
tic gradient descent and Markov chains. Annals of
Statistics, 48(3):1348–1382, 06 2020.

Alain Durmus and Eric Moulines. High-dimensional
Bayesian inference via the unadjusted Langevin al-
gorithm. Bernoulli, 25(4A):2854–2882, 2019.

Alain Durmus, Szymon Majewski, and Blażej Miaso-
jedow. Analysis of Langevin Monte Carlo via con-
vex optimization. Journal of Machine Learning Re-
search, 20(73):1–46, 2019.

Khaoula El Mekkaoui, Diego Mesquita, Paul Blomst-
edt, and Samuel Kaski. Distributed stochastic gra-
dient MCMC for federated learning. In Conference
on Uncertainty in Artificial Intelligence, 2021.

Gianni Franchi, Andrei Bursuc, Emanuel Aldea, Sev-
erine Dubuisson, and Isabelle Bloch. Encod-
ing the latent posterior of Bayesian Neural Net-
works for uncertainty quantification. arXiv preprint
arXiv:2012.02818, 2020.

Antonious M Girgis, Deepesh Data, Suhas Diggavi,
Peter Kairouz, and Ananda Theertha Suresh. Shuf-
fled model of federated learning: Privacy, commu-
nication and accuracy trade-offs. arXiv preprint
arXiv:2008.07180, 2020.

Ulf Grenander and Michael I. Miller. Representations
of knowledge in complex systems. Journal of the
Royal Statistical Society, Series B, 56(4):549–603,
1994.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. On calibration of modern neural networks.
In International Conference on Machine Learning,
pages 1321–1330. PMLR, 2017.

Farzin Haddadpour, Mohammad Mahdi Kamani,
Aryan Mokhtari, and Mehrdad Mahdavi. Feder-
ated Learning with Compression: Unified Anal-
ysis and Sharp Guarantees. arXiv preprint
arXiv:2007.01154, 2020.

Leonard Hasenclever, Stefan Webb, Thibaut Lien-
art, Sebastian Vollmer, Balaji Lakshminarayanan,
Charles Blundell, and Yee Whye Teh. Distributed
Bayesian Learning with Stochastic Natural Gradient
Expectation Propagation and the Posterior Server.
Journal of Machine Learning Research, 18(106):1–
37, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

Matthew D. Hoffman, David M. Blei, Chong Wang,
and John Paisley. Stochastic Variational Inference.
Journal of Machine Learning Research, 14(4):1303–
1347, 2013.

Samuel Horváth, Dmitry Kovalev, Konstantin
Mishchenko, Sebastian Stich, and Peter Richtárik.
Stochastic Distributed Learning with Gradient
Quantization and Variance Reduction . arXiv
preprint arXiv:1904.05115, 2019.

David J. Hunter. Uncertainty in the Era of Precision
Medicine. New England Journal of Medicine, 375
(8):711–713, 2016.

Pavel Izmailov, Wesley J Maddox, Polina Kirichenko,
Timur Garipov, Dmitry Vetrov, and Andrew Gor-
don Wilson. Subspace inference for Bayesian deep
learning. In Uncertainty in Artificial Intelligence,
pages 1169–1179, 2020.

Pavel Izmailov, Sharad Vikram, Matthew D Hoffman,
and Andrew Gordon Wilson. What Are Bayesian
Neural Network Posteriors Really Like? arXiv
preprint arXiv:2104.14421, 2021.

Rie Johnson and Tong Zhang. Accelerating Stochastic
Gradient Descent Using Predictive Variance Reduc-
tion. In Advances in Neural Information Processing
Systems, page 315–323, 2013.

Michael I. Jordan, Jason D. Lee, and Yun Yang.
Communication-Efficient Distributed Statistical In-
ference. Journal of the American Statistical Associ-
ation, 114(526):668–681, 2019.

Peter Kairouz, H. Brendan McMahan, Brendan
Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, K. A. Bonawitz, Zachary Charles, Gra-
ham Cormode, Rachel Cummings, Rafael G.L.
D’Oliveira, Salim El Rouayheb, David Evans,
Josh Gardner, Zachary Garrett, Adrià Gascón,
Badih Ghazi, Phillip B. Gibbons, Marco Gruteser,



Maxime Vono, Vincent Plassier, Alain Durmus, Aymeric Dieuleveut, Eric Moulines

Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan
Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi,
Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub
Konevcný, Aleksandra Korolova, Farinaz Koushan-
far, Sanmi Koyejo, Tancrède Lepoint, Yang Liu,
Prateek Mittal, Mehryar Mohri, Richard Nock,
Ayfer Özgür, Rasmus Pagh, Mariana Raykova, Hang
Qi, Daniel Ramage, Ramesh Raskar, Dawn Song,
Weikang Song, Sebastian U. Stich, Ziteng Sun,
Ananda Theertha Suresh, Florian Tramèr, Praneeth
Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu,
Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao.
Advances and Open Problems in Federated Learn-
ing. Foundations and Trends in Machine Learning,
14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar
Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. SCAFFOLD: Stochastic
Controlled Averaging for Federated Learning. In In-
ternational Conference on Machine Learning, 2020.

Rahif Kassab and Osvaldo Simeone. Federated Gen-
eralized Bayesian Learning via Distributed Stein
Variational Gradient Descent. arXiv preprint
arXiv:2009.06419, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning
multiple layers of features from tiny images. 2009.
Available at https://www.cs.toronto.edu/~kriz/
learning-features-2009-TR.pdf.

Yann LeCun, Léon Bottou, Yoshua Bengio, and
Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86
(11):2278–2324, 1998.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar
Sanjabi, Ameet Talwalkar, and Virginia Smith. Fed-
erated Optimization in Heterogeneous Networks. In
Machine Learning and Systems, 2020.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill
Dally. Deep Gradient Compression: Reducing the
Communication Bandwidth for Distributed Train-
ing. In International Conference on Learning Rep-
resentations, 2018.

Dongzhu Liu and Osvaldo Simeone. Channel-Driven
Monte Carlo Sampling for Bayesian Distributed
Learning in Wireless Data Centers. IEEE Journal
on Selected Areas in Communications, 2021a.

Dongzhu Liu and Osvaldo Simeone. Wireless Feder-
ated Langevin Monte Carlo: Repurposing Channel
Noise for Bayesian Sampling and Privacy. arXiv
preprint arXiv:2108.07644, 2021b.

Brendan McMahan, Eider Moore, Daniel Ram-
age, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks

from decentralized data. In Artificial Intelligence
and Statistics, pages 1273–1282, 2017.

Willie Neiswanger, Chong Wang, and Eric P.
Xing. Asymptotically exact, embarrassingly parallel
MCMC. In Proceedings of the 30th Conference on
Uncertainty in Artificial Intelligence, 2014.

Christopher Nemeth and Chris Sherlock. Merg-
ing MCMC Subposteriors through Gaussian-Process
Approximations. Bayesian Analysis, 13(2):507–530,
06 2018.

Yurii Nesterov. Introductory lectures on convex opti-
mization: A basic course, volume 87. Springer Sci-
ence, 2003.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado,
David Sculley, Sebastian Nowozin, Joshua V Dil-
lon, Balaji Lakshminarayanan, and Jasper Snoek.
Can you trust your model’s uncertainty? evaluating
predictive uncertainty under dataset shift. arXiv
preprint arXiv:1906.02530, 2019.

G. Parisi. Correlation functions and computer simula-
tions. Nuclear Physics B, 180(3):378–384, 1981.

Constantin Philippenko and Aymeric Dieuleveut. Bidi-
rectional compression in heterogeneous settings for
distributed or federated learning with partial par-
ticipation: tight convergence guarantees . arXiv
preprint arXiv:2006.14591, 2020.

Vincent Plassier, Maxime Vono, Alain Durmus, and
Eric Moulines. DG-LMC: a turn-key and scal-
able synchronous distributed MCMC algorithm via
Langevin Monte Carlo within Gibbs. In Interna-
tional Conference on Machine Learning, 2021.

Rahul Rahaman and Alexandre H Thiery. Uncertainty
quantification and deep ensembles. arXiv preprint
arXiv:2007.08792, 2020.

L. J. Rendell, A. M. Johansen, A. Lee, and N. White-
ley. Global consensus Monte Carlo. Journal of Com-
putational and Graphical Statistics, 30(2):249–259,
2021.

Daniel Revuz and Marc Yor. Continuous martingales
and Brownian motion, volume 293. Springer Sci-
ence, 2013.

C. P. Robert. The Bayesian Choice: from decision-
theoretic foundations to computational implementa-
tion. Springer, New York, 2 edition, 2001.

C. P. Robert and G. Casella. Monte Carlo Statistical
Methods. Springer, Berlin, 2 edition, 2004.

Gareth O. Roberts and Richard L. Tweedie. Exponen-
tial convergence of Langevin distributions and their
discrete approximations. Bernoulli, 2(4):341–363,
1996.

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf


QLSD: Quantised Langevin Stochastic Dynamics for Bayesian Federated Learning

Felix Sattler, Simon Wiedemann, Klaus-Robert
Müller, and Wojciech Samek. Robust and
Communication-Efficient Federated Learning From
Non-i.i.d. Data. IEEE Transactions on Neural Net-
works and Learning Systems, 31(9):3400–3413, 2020.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and
Dong Yu. 1-Bit Stochastic Gradient Descent and
Application to Data-Parallel Distributed Training of
Speech DNNs. In Interspeech, 2014.

Sebastian U Stich, Jean-Baptiste Cordonnier, and
Martin Jaggi. Sparsified SGD with Memory. In Ad-
vances in Neural Information Processing Systems,
2018.

Cedric Villani. Optimal Transport: Old and New.
Springer Berlin Heidelberg, 2008.

Maxime Vono, Daniel Paulin, and Arnaud Doucet. Ef-
ficient MCMC sampling with dimension-free conver-
gence rate using ADMM-type splitting. Journal of
Machine Learning Research, 23(25):1–69, 2022.

Jianyu Wang, Zachary Charles, Zheng Xu, Gauri
Joshi, H. Brendan McMahan, Blaise Aguera y Ar-
cas, Maruan Al-Shedivat, Galen Andrew, Salman
Avestimehr, Katharine Daly, Deepesh Data, Suhas
Diggavi, Hubert Eichner, Advait Gadhikar, Zachary
Garrett, Antonious M. Girgis, Filip Hanzely,
Andrew Hard, Chaoyang He, Samuel Horvath,
Zhouyuan Huo, Alex Ingerman, Martin Jaggi,
Tara Javidi, Peter Kairouz, Satyen Kale, Sai Pra-
neeth Karimireddy, Jakub Konecny, Sanmi Koyejo,
Tian Li, Luyang Liu, Mehryar Mohri, Hang Qi,
Sashank J. Reddi, Peter Richtarik, Karan Sing-
hal, Virginia Smith, Mahdi Soltanolkotabi, Weikang
Song, Ananda Theertha Suresh, Sebastian U. Stich,
Ameet Talwalkar, Hongyi Wang, Blake Wood-
worth, Shanshan Wu, Felix X. Yu, Honglin Yuan,
Manzil Zaheer, Mi Zhang, Tong Zhang, Chunxi-
ang Zheng, Chen Zhu, and Wennan Zhu. A Field
Guide to Federated Optimization. arXiv preprint
arXiv:2107.06917, 2021.

Xiangyu Wang and David B. Dunson. Parallelizing
MCMC via Weierstrass sampler. arXiv preprint
arXiv:1312.4605, 2013.

Xiangyu Wang, Fangjian Guo, Katherine A. Heller,
and David B. Dunson. Parallelizing MCMC with
random partition trees. In Advances in Neural In-
formation Processing Systems, 2015.

Max Welling and Yee Whye Teh. Bayesian Learning
via Stochastic Gradient Langevin Dynamics. In In-
ternational Conference on Machine Learning, 2011.

Andrew Gordon Wilson, Pavel Izmailov, Matthew D
Hoffman, Yarin Gal, Yingzhen Li, Melanie F
Pradier, Sharad Vikram, Andrew Foong, Sanae

Lotfi, and Sebastian Farquhar. Evaluating Approx-
imate Inference in Bayesian Deep Learning. 2021.
Available at https://izmailovpavel.github.io/
neurips_bdl_competition/files/
BDL_NeurIPS_Competition.pdf.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint
arXiv:1708.07747, 2017.

https://izmailovpavel.github.io/neurips_bdl_competition/files/BDL_NeurIPS_Competition.pdf
https://izmailovpavel.github.io/neurips_bdl_competition/files/BDL_NeurIPS_Competition.pdf
https://izmailovpavel.github.io/neurips_bdl_competition/files/BDL_NeurIPS_Competition.pdf


Supplementary Material:
QLSD: Quantised Langevin Stochastic Dynamics for Bayesian

Federated Learning

Notations and conventions. We denote by B(Rd) the Borel σ-field of Rd, M(Rd) the set of all Borel mea-
surable functions f on Rd and ‖·‖ the Euclidean norm on Rd. For µ a probability measure on (Rd,B(Rd)) and
f ∈ M(Rd) a µ-integrable function, denote by µ(f) the integral of f with respect to (w.r.t.) µ. Let µ and
ν be two sigma-finite measures on (Rd,B(Rd)). Denote by µ � ν if µ is absolutely continuous w.r.t. ν and
dµ/dν the associated density. We say that ζ is a transference plan of µ and ν if it is a probability measure on
(Rd×Rd,B(Rd×Rd)) such that for all measurable set A of Rd, ζ(A×Rd) = µ(A) and ζ(Rd×A) = ν(A). We de-
note by T (µ, ν) the set of transference plans of µ and ν. In addition, we say that a couple of Rd-random variables
(X,Y ) is a coupling of µ and ν if there exists ζ ∈ T (µ, ν) such that (X,Y ) are distributed according to ζ. We de-
note by P2(Rd) the set of probability measures with finite 2-moment: for all µ ∈ P2(Rd),

∫
Rd ‖x‖

2dµ(x) <∞. We
define the squared Wasserstein distance of order 2 associated with ‖·‖ for any probability measures µ, ν ∈ P2(Rd)
by

W 2
2 (µ, ν) = inf

ζ∈T (µ,ν)

∫
Rd×Rd

‖x− y‖2dζ(x, y) .

By Villani (2008, Theorem 4.1), for all µ, ν probability measures on Rd, there exists a transference plan ζ? ∈
T (µ, ν) such that for any coupling (X,Y ) distributed according to ζ?, W2(µ, ν) = E[‖x − y‖2]1/2. This kind
of transference plan (respectively coupling) will be called an optimal transference plan (respectively optimal
coupling) associated with W2. By Villani (2008, Theorem 6.16), P2(Rd) equipped with the Wasserstein distance
W2 is a complete separable metric space. For the sake of simplicity, with little abuse, we shall use the same
notations for a probability distribution and its associated probability density function. For n ≥ 1, we refer to
the set of integers between 1 and n with the notation [n] and ℘n the power set of [n]. The d-multidimensional
Gaussian probability distribution with mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d is denoted by N(µ,Σ).

S1 PROOF OF Theorem 1

This section aims at proving Theorem 1 in the main paper.

S1.1 Generalised quantised Langevin stochastic dynamics

We show that QLSD defined in Algorithm 1 in the main paper can be cast into a more general framework that we
refer to as generalised quantised Langevin stochastic dynamics. Then, the guarantees for QLSD will be a simple
consequence of the ones that we will establish for generalised QLSD. For ease of reading, we recall first the setting
and the assumptions that we consider all along the paper. Recall that the dataset D is assumed to be partitioned
into b shards {Di}bi=1 such that tbi=1Di = D and the posterior distribution of interest is assumed to admit a
density with respect to the d-dimensional Lebesgue measure which factorises across clients, i.e. for any θ ∈ Rd,

π(θ) = exp {−U(θ)} /
∫
Rd

e−U(θ) dθ , U(θ) =

b∑
i=1

Ui(θ) .

We consider the following assumptions on the potential U .

HS1. For any i ∈ [b], Ui is continuously differentiable. In addition, suppose that the following conditions hold.

(i) U is m-strongly convex, i.e. for any θ1, θ2 ∈ Rd,

U(θ1) ≥ U(θ2) + 〈θ1 − θ2,∇U(θ2)〉+ m ‖θ1 − θ2‖2 /2 .
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(ii) U is L-Lipschitz, i.e. for any θ1, θ2 ∈ Rd,

‖∇U(θ1)−∇U(θ2)‖ ≤ L ‖θ1 − θ2‖ .

Note thatHS1-(i) implies that U admits a unique minimiser denoted by θ? ∈ Rd. Moreover, for any (θ1, θ1) ∈ Rd,
HS1-(i)-(ii) combined with Nesterov (2003, Equation 2.1.24) shows that

〈∇U(θ2)−∇U(θ1), θ2 − θ1〉 ≥
mL

m + L
‖θ2 − θ1‖2 +

1

m + L
‖∇U(θ2)−∇U(θ1)‖2 . (S1)

We consider the following assumptions on the family {Hi : Rd × X1 → Rd}i∈[b] and C .
HS2. There exists a probability measure ν2 on a measurable space (X2,X2) and a family of measurable functions
{Ci : Rd × X2 → Rd}i∈[b] such that the following conditions hold.

(i) For any θ ∈ Rd and any i ∈ [b],
∫
X2

Ci(θ, x(2)) ν2(dx(2)) = θ.
(ii) There exist {ωi ∈ R+}i∈[b], such that for any θ ∈ Rd and any i ∈ [b],∫

X2

∥∥∥Ci(θ, x(2))− θ
∥∥∥2

ν2(dx(2)) ≤ ωi ‖θ‖2 .

HS3. There exist a family of probability measures {ν(i)
1 }i∈[b] defined on measurable spaces {(X(i)

1 ,X (i)
1 )}i∈[b] and

a family of measurable functions {Hi : Rd × X
(i)
1 → Rd}i∈[b] such that the following conditions hold.

(i) For any θ ∈ Rd,
b∑
i=1

∫
X
(i)
1

Hi(θ, x
(1,i))ν

(i)
1 (dx(1,i)) = ∇U(θ) .

(ii) There exist {Mi > 0}i∈[b], such that for any i ∈ [b], θ1, θ2 ∈ Rd,∫
X
(i)
1

∥∥∥Hi(θ2, x
(1,i))−Hi(θ1, x

(1,i))
∥∥∥2

ν
(i)
1 (dx(1,i)) ≤ Mi 〈θ2 − θ1,∇Ui(θ2)−∇Ui(θ1)〉 .

(iii) There exists σ?, B? ∈ R+ such that for any i ∈ [b], θ ∈ Rd, we have

∫
X
(i)
1

∥∥∥Hi(θ
?, x(1))

∥∥∥2

ν
(i)
1 (dx(1)) ≤ B?/b ,

∫
X
(1)
1 ×···×X

(b)
1

∥∥∥∥∥
b∑
i=1

Hi(θ
?, x(1,i))

∥∥∥∥∥
2

⊗bi=1 ν
(i)
1 (dx(1,i)) ≤ σ2

? . (S2)

We can notice that HS3-(ii) implies that ∇Ui is Mi-Lipschitz continuous since by the Cauchy Schwarz inequality,
for any i ∈ [b] and any θ1, θ2 ∈ Rd,

‖∇Ui(θ1)−∇Ui(θ2)‖2 ≤ Mi 〈θ1 − θ2,∇Ui(θ1)−∇Ui(θ2)〉 .

In addition, it is worth mentioning that the first inequality in (S2) is also required for our derivation in the
deterministic case where Hi = ∇Ui for any i ∈ [b] due to the compression step. For k ≥ 1, consider
(X

(1,1)
k , . . . , X

(1,b)
k )k∈N and (X

(2,1)
k , . . . , X

(2,b)
k )k∈N two independent sequences of random variables distributed

according to ν(1:b)
1 = ν

(1)
1 ⊗ · · · ⊗ ν(b)

1 and ν⊗b2 , respectively.

In addition, we consider the partial device participation context where at each communication round k ≥ 1, each
client has a probability pi ∈ (0, 1] of participating, independently from other clients.
HS4. For any k ∈ N∗, Ak = {i ∈ [b] : Bi,k = 1} where for any i ∈ [b], {Bi,k : , k ∈ N∗} is a family of
i.i.d. Bernouilli random variables with success probability pi ∈ (0, 1].

In other words, there exists a sequence (X
(3,1)
k , · · · , X(3,b)

k )k∈N of i.i.d. random variables distributed according
ν3 = Uniform((0, 1]), such that for any k ≥ 1 and i ∈ [b], client i is active at step k if X(3,i)

k ≤ pi. We denote
Ak+1 = {i ∈ [b];X

(3,i)
k+1 ≤ pi} the set of active clients at round k. Given a step-size γ ∈ (0, γ̄] for some γ̄ > 0 and

starting from θ0 ∈ Rd, QLSD recursively defines (θk)k∈N, for any k ∈ N, as

θk+1 = θk − γ
∑
i∈Ak+1

(1/pi)Ci(Hi(θk, X
(1,i)
k+1 ), X

(2,i)
k+1 ) +

√
2γZk+1 , (S3)
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where (Zk+1)k∈N is a sequence of standard Gaussian random variables. Let X3 = [0, 1]. For any i ∈ [b], consider
the unbiased partial participation operator Si : Rd × X3 → Rd defined, for any θ ∈ Rd and x(3) ∈ X3 by

Si(θ, x
(3)) = 1{x(3) ≤ pi}θ/pi . (S4)

Then, (S3) can be written of the form

θk+1 = θk − γ
b∑
i=1

H̃i(θk, X
(i)
k+1) +

√
2γZk+1 , k ∈ N , (S5)

where for any i ∈ [b], we denote X(i)
k+1 = (X

(1,i)
k+1 , X

(2,i)
k+1 , X

(3,i)
k+1 ) and for any θ ∈ Rd, x(1,i) ∈ X

(i)
1 , x(2) ∈ X2 and

x(3) ∈ X3,
H̃i

(
θ, (x(1,i), x(2), x(3))

)
= Si

(
Ci
(
Hi(θ, x

(1,i)), x(2)
)
, x(3)

)
. (S6)

With this notation and setting for any i ∈ [b] X̃(i) = X
(i)
1 × X2 × X3 and ν̃(i) = ν

(i)
1 ⊗ ν2 ⊗ ν3, the Markov kernel

associated with (S3) is given for any (θ,A) ∈ Rd × B(Rd) by

Qγ(θ,A) =

∫
A×X̃(1)×···×X̃(b)

exp
(
−‖θ̃ − θ + γ

∑b
i=1 H̃i(θ, x

(i))‖2/(4γ)
) dθ̃ ν̃(1)(dx(1))⊗ · · · ⊗ ν̃(b)(dx(b))

(4πγ)d/2
. (S7)

The following result establishes an essential property of {H̃i}i∈[b] under HS2 and HS3.

Lemma S1. Assume HS2, HS3 and HS4. Then, for any θ ∈ Rd, we have∑b
i=1

∫
X̃(i) H̃i(θ, x

(i)) dν̃(i)(x(i)) = ∇U(θ) , (S8)∫
X̃(1:b)

∥∥∥∑b
i=1 H̃i(θ, x

(i))−∇U(θ)
∥∥∥2

⊗bi=1 ν̃
(i)(dx(i)) ≤ 2 max

i∈[b]
{Mi(ωi + 1)/pi} 〈θ − θ?,∇U(θ)〉

+ 2

[
σ2
? + (B?/b)

b∑
i=1

(1− pi + ωi)/pi

]
, (S9)

where for any i ∈ [b], H̃i is defined in (S6).

Proof. The first identity (S8) is straightforward using HS3-(i) and HS2-(i). We now show the inequality (S9).
Let θ ∈ Rd. Using HS2-(i) or HS3-(i), we get∫

X̃(1:b)

∥∥∥∑b
i=1 H̃i(θ, x

(i))−∇U(θ)
∥∥∥2

⊗bi=1 ν̃
(i)(dx(i))

=

∫
X̃(1:b)

∥∥∥∥∥
b∑
i=1

[
H̃i(θ, x

(i))− Ci
(
Hi(θ, x

(1,i)), x(2,i)
)]∥∥∥∥∥

2

⊗bi=1 ν̃
(i)(dx(i))

+

∫
X
(1:b)
1 ×Xb2

∥∥∥∥∥
b∑
i=1

Ci
(
Hi(θ, x

(1,i)), x(2,i)
)
−∇U(θ)

∥∥∥∥∥
2

ν⊗b2 (dx(2,1:b))⊗bi=1 ν
(i)
1 (dx(1,i)) . (S10)

In addition, by HS2-(i) and HS2-(ii), we obtain

∫
X̃(1:b)

∥∥∥∥∥
b∑
i=1

[
H̃i(θ, x

(i))− Ci
(
Hi(θ, x

(1,i)), x(2,i)
)]∥∥∥∥∥

2

⊗bi=1 ν̃
(i)(dx(i))

=

b∑
i=1

∫
X̃(i)

∥∥∥H̃i(θ, x
(i))− Ci

(
Hi(θ, x

(1,i)), x(2,i)
)∥∥∥2

ν
(i)
1 (dx(1,i))ν2(dx(2,i))ν3(dx(3,i))

≤
b∑
i=1

(
1− pi
pi

)∫
X
(i)
1 ×X2

∥∥∥Ci (Hi(θ, x
(1,i)), x(2,i)

)∥∥∥2

ν
(i)
1 (dx(1,i))ν2(dx(2,i))
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=

b∑
i=1

(
1− pi
pi

)∫
X
(i)
1 ×X2

∥∥∥Ci (Hi(θ, x
(1,i)), x(2,i)

)
−Hi(θ, x

(1,i)) +Hi(θ, x
(1,i))

∥∥∥2

ν
(i)
1 (dx(1,i))ν2(dx(2,i))

=

b∑
i=1

(
1− pi
pi

)∫
X
(i)
1 ×X2

∥∥∥Ci (Hi(θ, x
(1,i)), x(2,i)

)
−Hi(θ, x

(1,i))
∥∥∥2

ν
(i)
1 (dx(1,i))ν2(dx(2,i))

+

b∑
i=1

(
1− pi
pi

)∫
X
(i)
1

∥∥∥Hi(θ, x
(1,i))

∥∥∥2

ν
(i)
1 (dx(1,i))

≤
b∑
i=1

[(
1− pi
pi

)
(ωi + 1)

] ∫
X
(i)
1

∥∥∥Hi(θ, x
(1,i))

∥∥∥2

ν
(i)
1 (dx(1,i)) . (S11)

Using ‖a‖2 ≤ 2‖a− b‖2 + 2‖b‖2 and HS3-(ii)-(iii), for any i ∈ [b], we obtain∫
X
(i)
1

∥∥∥Hi(θ, x
(1,i))

∥∥∥2

ν
(i)
1 (dx(1,i)) ≤ 2Mi 〈θ − θ?,∇Ui(θ)−∇Ui(θ?)〉

+ 2

∫
X
(i)
1

∥∥∥Hi(θ
?, x(1,i))

∥∥∥2

ν
(i)
1 (dx(1,i))

≤ 2Mi 〈θ − θ?,∇Ui(θ)−∇Ui(θ?)〉+ 2B?/b . (S12)

Therefore, combining this result and (S11) gives∫
X̃(1:b)

∥∥∥∥∥
b∑
i=1

[
H̃i(θ, x

(i))− Ci
(
Hi(θ, x

(1,i)), x(2,i)
)]∥∥∥∥∥

2

⊗bi=1 ν̃
(i)(dx(i))

≤ 2

b∑
i=1

Mi

(
1− pi
pi

)
(ωi + 1) 〈θ − θ?,∇Ui(θ)−∇Ui(θ?)〉+

2B?

b

b∑
i=1

(
1− pi
pi

)
(ωi + 1) . (S13)

Similarly, by HS2-(i) and HS2-(ii), we have∫
X
(1:b)
1 ×Xb2

∥∥∥∥∥
b∑
i=1

Ci
(
Hi(θ, x

(1,i)), x(2,i)
)
−∇U(θ)

∥∥∥∥∥
2

ν⊗b2 (dx(2,1:b))⊗bi=1 ν
(i)
1 (dx(1,i))

=

∫
X
(1:b)
1 ×Xb2

∥∥∥ b∑
i=1

[
Ci
(
Hi(θ, x

(1,i)), x(2,i)
)
−Hi(θ, x

(1,i))
]

+

b∑
i=1

{Hi(θ, x
(1,i))} − ∇U(θ)

∥∥∥2

ν⊗b2 (dx(2,1:b))⊗bi=1 ν
(i)
1 (dx(1,i))

=

b∑
i=1

∫
X
(i)
1 ×X2

∥∥∥Ci (Hi(θ, x
(1,i)), x(2)

)
−Hi(θ, x

(1,i))
∥∥∥2

ν2(dx(2))ν
(i)
1 (dx(1,i))

+

∫
X
(1:b)
1

∥∥∥∥∥
b∑
i=1

Hi(θ, x
(1,i))−∇U(θ)

∥∥∥∥∥
2

⊗bi=1 ν
(i)
1 (dx(1,i))

≤
b∑
i=1

ωi

∫
X
(i)
1

∥∥∥Hi(θ, x
(1,i))

∥∥∥2

ν
(i)
1 (dx(1,i)) +

∫
X
(1:b)
1

∥∥∥∥∥
b∑
i=1

Hi(θ, x
(1,i))−∇U(θ)

∥∥∥∥∥
2

⊗bi=1 ν
(i)
1 (dx(1,i)) . (S14)

Since for any a, b ∈ Rd, ‖a+ b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2, we have by HS3-(i)∫
X
(1:b)
1

∥∥∥∥∥
b∑
i=1

Hi(θ, x
(1,i))−∇U(θ)

∥∥∥∥∥
2

⊗bi=1 ν
(i)
1 (dx(1,i))

=

∫
X
(1:b)
1

∥∥∥∥∥
b∑
i=1

[
Hi(θ, x

(1,i))−
∫
X
(i)
1

Hi(θ, x
(1))ν

(i)
1 (dx(1))

]∥∥∥∥∥
2

⊗bi=1 ν
(i)
1 (dx(1,i))
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=

b∑
i=1

∫
X
(i)
1

∥∥∥∥∥Hi(θ, x
(1,i))−

∫
X
(i)
1

Hi(θ, x
(1))ν

(i)
1 (dx(1))

∥∥∥∥∥
2

ν
(i)
1 (dx(1,i))

≤ 2

b∑
i=1

∫
X
(i)
1

∥∥∥∥∥Hi(θ, x
(1,i))−Hi(θ

?, x(1,i))−

[∫
X
(i)
1

(Hi(θ, x
(1))−Hi(θ

?, x(1)))ν
(i)
1 (dx(1))

]∥∥∥∥∥
2

ν
(i)
1 (dx(1,i))

+ 2

b∑
i=1

∫
X
(i)
1

∥∥∥∥∥Hi(θ?, x
(1,i))−

∫
X
(i)
1

Hi(θ?, x
(1))ν

(i)
1 (dx(1))

∥∥∥∥∥
2

ν
(i)
1 (dx(1,i))

≤ 2σ2
? + 2

b∑
i=1

Mi 〈∇Ui(θ)−∇Ui(θ?), θ − θ?〉 . (S15)

By combining (S12), (S14) and (S15), we obtain∫
X
(1:b)
1

∥∥∥∥∥
b∑
i=1

Ci
(
Hi(θ, x

(1,i)), x(2,i)
)
−∇U(θ)

∥∥∥∥∥
2

ν⊗b2 (dx(2,1:b))⊗bi=1 ν
(i)
1 (dx(1,i))

≤ 2

b∑
i=1

Mi(ωi + 1) 〈∇Ui(θ)−∇Ui(θ?), θ − θ?〉+ 2

(
σ2
? +

2B?

b

b∑
i=1

ωi

)
.

Finally, the last inequality combined with (S10) and (S13) completes the proof.

In view of Lemma S1, it suffices to study the recursion specified in (S5) under the following assumption on (H̃i)i∈[b]

gathered in HS5. Indeed, Lemma S1 shows that Condition HS5 below holds with X(i) = X̃(i) = X
(i)
1 × X2 × X3,

X (i) = X̃ (i) = X (i)
1 ⊗X2 ⊗X3, ν̃(i) = ν

(i)
1 ⊗ ν2 ⊗ ν3, {H̃i}bi=1 = {Fi}bi=1,

M̃ = 2 max
i∈[b]
{Mi(1 + ωi)/pi} ,

B̃? = 2[σ2
? + (B?/b)

b∑
i=1

(1− pi + ωi)/pi] .

HS5. There exists a family of probability measure {ν(i)}i∈[b] on a measurable spaces {(X̃(i), X̃ (i))}i∈[b] and a
family of measurable functions {Fi : Rd × X(i) → Rd}i∈[b] such that the following conditions hold.

(i) For any θ ∈ Rd, we have
b∑
i=1

∫
X̃(i)

Fi(θ, x
(i))ν(i)(dx(i)) = ∇U(θ) .

(ii) There exists (M̃, B̃?) ∈ R2
+ such that for any θ ∈ Rd, we have∫

X̃(1:b)

∥∥∥∥∥
b∑
i=1

Fi(θ, x
(i))−∇U(θ)

∥∥∥∥∥
2

⊗bi=1 ν
(i)(dx(i)) ≤ M̃ 〈θ − θ?,∇U(θ)−∇U(θ?)〉+ B̃? .

Then under HS5, consider (X
(1)
k , . . . , X

(b)
k )k∈N∗ an independent sequence distributed according to ⊗bi=1ν

(i).
Define the general recursion

θ̃k+1 = θ̃k − γ
b∑
i=1

Fi(θ̃k, X
(i)
k+1) +

√
2γZk+1 , k ∈ N . (S16)

and the corresponding the Markov kernel given for any γ ∈ R∗+, θ ∈ Rd,A ∈ B(Rd) by

Q̃γ(θ,A) = (4πγ)−d/2
∫
A×X̃(1:b)

exp(−(4γ)−1‖θ̄ − θ + γ
∑b
i=1 Fi(θ, x

(i))‖2) dθ̄ d⊗bi=1 ν
(i)(x(i)) . (S17)

We refer to this Markov kernel as the generalised QLSD kernel. In our next section, we establish quantitative
bounds between the iterates of this kernel and π inW2. We then apply this result to QLSD and QLSD? as particular
cases.
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S1.2 Quantitative bounds for the generalised QLSD kernel

Define
γ̄ = γ̄1 ∧ γ̄2 ∧ γ̄3 , γ̄1 = 2/[5(m + L)] , γ̄2 = (m + L + M̃)−1 , γ̄3 = (10m)−1 . (S18)

Theorem S4. Assume HS1 and HS5. Then, for any probability measure µ ∈ P2(Rd), any step size γ ∈ (0, γ̄],
any k ∈ N, we have

W 2
2 (µQ̃kγ , π) ≤ (1− γm/2)kW 2

2 (µ, π) + γB̃γ̄ + γ2Ãγ̄(1− mγ/2)k−1k

∫
Rd
‖θ − θ?‖2µ(dθ) ,

where Q̃γ is defined in (S17) and

B̃γ̄ = (2dL2/m)(1/m + 5γ̄)
[
1 + γ̄L2/(2m) + γ̄2L2/12

]
+ 2B̃?/m + 2LM̃(2d+ γ̄B̃?)/m2

Ãγ̄ = LM̃ .

Let ξ ∈ P2(R2d) be a probability measure on (R2d,B(R2d)) with marginals ξ1 and ξ2, i.e. ξ(A×Rd) = ξ1(A) and
ξ(A×Rd) = ξ2(A) for any A ∈ B(Rd). Note that under HS1, the Langevin diffusion defines a Markov semigroup
(Pt)t≥0 satisfying πPt = π for any t ≥ 0, see e.g. Roberts and Tweedie (1996, Theorem 2.1). We introduce
a synchronous coupling (ϑkγ , θk) between ξ1Pkγ and ξ2Q̃

k
γ for any k ∈ N based on a d-dimensional standard

Brownian motion (Bt)t≥0 and a couple of random variables (θ0, ϑ0) with distribution ξ independent of (Bt)t≥0.
Consider (ϑt)t≥0 the strong solution of the Langevin stochastic differential equation (SDE)

dϑt = −∇U(ϑt)dt+
√

2 dBt , (S19)

starting from ϑ0. Note that under HS1-(i), this SDE admits a unique strong solution (Revuz and Yor, 2013,
Theorem (2.1) in Chapter IX). In addition, define (θk)k∈N starting from θ0 and satisfying the recursion: for
k ≥ 0,

θk+1 = θk − γ
b∑
i=1

Fi(θk, x
(i)
k+1) +

√
2(Bγ(k+1) −Bγk) , (S20)

where (x
(1)
j , . . . , x

(b)
j )j∈N∗ is an independent sequence of random variables with distribution ⊗bi=1ν

(i). Then, by
definition, (ϑkγ , θk) is a coupling between ξ1Pkγ and ξ2Q̃kγ for any k ∈ N and therefore

W2(ξ1Pkγ , ξ2Q̃
k
γ) ≤ E

[
‖ϑγk − θk‖2

]1/2
. (S21)

We can now give the proof of Theorem S4.

Proof. By Villani (2008, Theorem 4.1), for any couple of probability measures on Rd, there exists an opti-
mal transference plan ξ? between ν and π since π ∈ P2(Rd) by the strong convexity assumption HS1-(i).
Let (ϑ0, θ0) be a corresponding coupling which therefore satisfies W2(µ, π) = E1/2[‖ϑ0 − θ0‖2]. Consider then
(ϑk)k∈N, (θk)k∈N defined in (S19)-(S20) starting from (ϑ0, θ0). Note that since πPt = π by Roberts and Tweedie
(1996, Theorem 2.1) for any t ≥ 0 and θ0 has distribution π, we get by Durmus and Moulines (2019, Proposition
1) that for any k ∈ N, E[‖ϑkγ − θ?‖2] ≤ d/m and then Lemma S3 below shows that for any k ∈ N,

E[
∥∥ϑ(k+1)γ − θk+1

∥∥2
] ≤ κγE[‖ϑkγ − θk‖2] + γ2LM̃E

[
‖θ0 − θ?‖2

]
κ̃kγ + γ2Dγ ,

where we have set

κγ = 1− γm(1− 5γm) , κ̃γ = 1− γm
[
2− γ(m + M̃)

]
, Dγ = D0,γ + (1/m + 5γ)(γdL4/2m) .

A straightforward induction shows that

E[‖ϑkγ − θk‖2] ≤ κkγW 2
2 (µ, π) + γ2LM̃E

[
‖θ0 − θ?‖2

] k−1∑
l=0

κlγ κ̃
k−1−l
γ + γ2Dγ/(1− κγ) .

Using κγ ∧ κ̃γ ≤ 1− mγ/2 since γ ≤ γ̄, (S21) and πPt = π for any t ≥ 0 completes the proof.
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S1.2.1 Supporting Lemmata

In this subsection, we derived two lemmas. Taking (θk)k∈N defined by the recursion (S20), Lemma S2 aims to
upper bound the squared deviation between θk and the minimiser of U denoted θ?, for any k ∈ N.
Lemma S2. Assume HS1 and HS5. Let γ ∈

(
0, 2/(m + L + M̃)

]
. Then, for any k ∈ N, θ0 ∈ Rd, we have∫

Rd
‖θ − θ?‖2 Q̃kγ(θ0, dθ) ≤ (1− γm

[
2− γ(m + M̃)

]
)k‖θ0 − θ?‖2 +

2d+ γB̃?

m
[
2− γ(m + M̃)

] ,
where Q̃γ is defined in (S17).

Proof. For any θ0 ∈ Rd, by definition (S17) of Q̃γ and using HS5-(i), we obtain∫
Rd
‖θ − θ?‖2 Q̃γ(θ0, dθ) = ‖θ0 − θ?‖2 − 2γ 〈θ0 − θ?,∇U(θ0)〉

+ γ2

∫
X̃(1:b)

∥∥∥∑b
i=1 Fi(θ0, x

(i))
∥∥∥2

⊗bi=1 ν
(i)(dx(i)) + 2γd . (S22)

Moreover, using HS1, HS5 and (S1), it follows that∫
X̃(1:b)

∥∥∥∑b
i=1 Fi(θ0, x

(i))
∥∥∥2

⊗bi=1 ν
(i)(dx(i)) =

∫
X̃(1:b)

∥∥∥∑b
i=1 Fi(θ0, x

(i))−∇U(θ0)
∥∥∥2

⊗bi=1 ν
(i)(dx(i))

+ ‖∇U(θ0)‖2

≤ M̃ 〈θ0 − θ?,∇U(θ0)〉+ B̃? + ‖∇U(θ0)−∇U(θ?)‖2

≤ [m + L + M̃] 〈θ0 − θ?,∇U(θ0)〉+ B̃? − Lm ‖θ0 − θ?‖2 . (S23)

Plugging (S23) in (S22) implies∫
Rd
‖θ − θ?‖2 Q̃γ(θ0,dθ) ≤ (1 − γ2mL)‖θ0 − θ?‖2 − γ{2 − γ[m + L + M̃]} 〈θ0 − θ?,∇U(θ0)〉 + γ2B̃? + 2γd .

Using HS1-(i), we have 〈θ0 − θ?,∇U(θ0)〉 ≥ m‖θ0 − θ?‖2 which, combined with the condition γ ≤ 1/(m + L + M̃),
gives ∫

Rd
‖θ − θ?‖2 Q̃γ(θ0,dθ) ≤ (1− γm[2− γ(m + M̃)])‖θ0 − θ?‖2 + γ(2d+ γB̃?) .

Using 0 < γ < 2/(m + M̃) and the Markov property combined with a straightforward induction completes the
proof.

For any k ∈ N, the following lemma gives an explicit upper bound on the expected squared norm between
ϑk+1 and θk+1 in function of ϑk, θk. The purpose of this lemma is to derive a contraction property involving a
contracting term and a bias term which is easy to control.

Lemma S3. Assume HS1 and HS5. Consider (ϑt)t≥0 and (θk)k∈N defined in (S19) and (S20), respectively, for
some initial distribution ξ ∈ P2(R2d). For any k ∈ N and γ ∈

(
0, 2/[(5(m + L)) ∨ (m + M̃ + L)]

)
, we have

E
[∥∥ϑγ(k+1) − θk+1

∥∥2
]
≤ {1− γm(1− 5γm)}E

[
‖ϑk − θk‖2

]
+ γ2D0,γ

+ γ2LM̃(1− γm
[
2− γ(m + M̃)

]
)kE[‖θ0 − θ?‖2]

+ γ3(1/m + 5γ)L4E
[
‖ϑkγ − θ?‖2

]
/2 ,

where

D0,γ = dL2(1/m + 5γ)
[
1 + γ2L2/12

]
+ B̃? +

LM̃(2d+ γB̃?)

m
[
2− γ(m + M̃)

] .
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Proof. Let k ∈ N. By (S19) and (S20), we have

ϑγ(k+1) − θk+1 = ϑγk − θk − γ [∇U(ϑγk)−∇U(θk)]

−
∫ γ

0

[∇U(ϑγk+s)−∇U(ϑγk)] ds+ γ

b∑
i=1

[
Fi(θk, X

(i)
k+1)−∇Ui(θk)

]
.

Define the filtration (Fk̃)k̃∈N as F0 = σ(ϑ0, θ0) and for k̃ ∈ N∗,

Fk̃ = σ(ϑ0, θ0, (X
(1)
l , . . . , X

(b)
l )1≤l≤k̃, (Bt)0≤t≤γk̃) .

Note that since (ϑt)t≥0 is a strong solution of (S19), then is easy to see that (ϑγk̃, θk̃)k̃∈N is (Fk̃)k̃∈N-adapted.
Taking the squared norm and the conditional expectation with respect to Fk, we obtain using HS5-(i) that

EFk
[∥∥ϑγ(k+1) − θk+1

∥∥2
]

= ‖ϑγk − θk‖2 − 2γ 〈ϑγk − θk,∇U(ϑγk)−∇U(θk)〉

+ 2γ

∫ γ

0

〈
∇U(ϑγk)−∇U(θk),EFk [∇U(ϑγk+s)−∇U(ϑγk)]

〉
ds

− 2

∫ γ

0

〈
ϑγk − θk,EFk [∇U(ϑγk+s)−∇U(ϑγk)]

〉
ds

+ γ2 ‖∇U(ϑγk)−∇U(θk)‖2

+ EFk
[∥∥∥∥∫ γ

0

[∇U(ϑγk+s)−∇U(ϑγk)] ds

∥∥∥∥2
]

+ γ2EFk

∥∥∥∥∥
b∑
i=1

Fi(θk, X
(i)
k+1)−∇U(θk)

∥∥∥∥∥
2
 . (S24)

First, using Jensen inequality and the fact that for any a, b ∈ Rd, |〈a, b〉| ≤ 2 ‖a‖2 + 2 ‖b‖2, we get∫ γ

0

〈
∇U(ϑγk)−∇U(θk),EFk [∇U(ϑγk+s)−∇U(ϑγk)]

〉
ds

≤ 2γ ‖∇U(ϑγk)−∇U(θk)‖2 + 2

∫ γ

0

EFk
[
‖∇U(ϑγk+s)−∇U(ϑγk)‖2

]
ds , (S25)

EFk
[∥∥∥∥∫ γ

0

[∇U(ϑγk+s)−∇U(ϑγk)] ds

∥∥∥∥2
]
≤ γ

∫ γ

0

EFk
[
‖∇U(ϑγk+s)−∇U(ϑγk)‖2

]
ds .

In addition, given that for any ε > 0, a, b ∈ Rd, |〈a, b〉| ≤ ε ‖a‖2 + (4ε)−1 ‖b‖2, we get∣∣∣∣∫ γ

0

〈
θk − ϑγk,EFk [∇U(ϑγk+s)−∇U(ϑγk)]

〉
ds

∣∣∣∣ ≤ γε ‖ϑγk − θk‖2
+ (4ε)−1

∫ γ

0

EFk
[
‖∇U(ϑγk+s)−∇U(ϑγk)‖2

]
ds . (S26)

By HS1, for k ∈ N we get by (S1)

‖∇U(ϑγk)−∇U(θk)‖2 ≤ (m + L) 〈ϑγk − θk,∇U(ϑγk)−∇U(θk)〉 − mL ‖ϑγk − θk‖2 . (S27)

Lastly, HS5-(ii) yields

EFk

∥∥∥∥∥
b∑
i=1

Fi(θk, X
(i)
k+1)−∇U(θk)

∥∥∥∥∥
2
 ≤ M̃ 〈θk − θ?,∇U(θk)−∇U(θ?)〉+ B̃? . (S28)

Combining (S25), (S26), (S27) and (S28) into (S24), for k ∈ N we get for any ε > 0,

EFk
[∥∥ϑγ(k+1) − θk+1

∥∥2
]
≤ (1 + 2γε− 5γ2mL) ‖ϑγk − θk‖2
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− γ [2− 5γ(m + L)] 〈ϑγk − θk,∇U(ϑγk)−∇U(θk)〉

+ (5γ + (2ε)−1)

∫ γ

0

EFk
[
‖∇U(ϑγk+s)−∇U(ϑγk)‖2

]
ds

+ γ2M̃ 〈θk − θ?,∇U(θk)−∇U(θ?)〉+ γ2B̃? . (S29)

Next, we use that under HS1, 〈ϑγk−θk,∇U(ϑγk)−∇U(θk)〉 ≥ m‖ϑγk−θk‖2 and |〈θk−θ?,∇U(θk)−∇U(θ?)〉| ≤
L‖θk − θ?‖2, which implies taking ε = m/2 and since 2− 5γ(m + L) ≥ 0,

EFk
[∥∥ϑγ(k+1) − θk+1

∥∥2
]
≤ (1− γm(1− 5γm)) ‖ϑγk − θk‖2

+ (5γ + m−1)

∫ γ

0

EFk
[
‖∇U(ϑγk+s)−∇U(ϑγk)‖2

]
ds

+ γ2M̃L ‖θk − θ?‖2 + γ2B̃? . (S30)

Further, for any s ∈ R+, using Durmus and Moulines (2019, Lemma 21) we have

L−2 EFk
[
‖∇U(ϑγk+s)−∇U(ϑγk)‖2

]
≤ ds

(
2 + s2L2/3

)
+ 3s2L2/2 ‖ϑγk − θ?‖2 .

Integrating the previous inequality on [0, γ], for k ≥ 0 we obtain

L−2

∫ γ

0

EFk
[
‖∇U(ϑγk+s)−∇U(ϑγk)‖2

]
ds ≤ dγ2 + dγ4L2/12 + γ3L2/2 ‖ϑγk − θ?‖2 .

Plugging this bounds in (S30) and taking the expectation combined with Lemma S2 conclude the proof.

S1.3 Proof of Theorem 1

Based on Theorem S4, the next corollary explicits an upper bound in Wasserstein distance between π and µQkγ ,
where we consider (θk)k∈N defined in (S3) and starting from θ̃ following µ ∈ P2(Rd).
Theorem S5. Assume HS1, HS2, HS3 and HS4. Then, for any probability measure µ ∈ P2(Rd), any step size
γ ∈ (0, γ̄] where γ̄ is defined in (S18), any k ∈ N, we have

W 2
2 (µQkγ , π) ≤ (1− γm/2)kW 2

2 (µ, π) + γBγ̄ + γ2Aγ̄(1− mγ/2)k−1k

∫
Rd
‖θ − θ?‖2µ(dθ) ,

where Qγ is defined in (S7) and

Bγ̄ = (2dL2/m) (1/m + 5γ̄)
[
1 + γ̄L2/(2m) + γ̄2L2/12

]
+ 4[σ2

? + (B?/b)

b∑
i=1

(1− pi + ωi)/pi]/m

+ 8Lmax
i∈[b]
{Mi(1 + ωi)/pi})

[
d+ γ̄[σ2

? + (B?/b)

b∑
i=1

(1− pi + ωi)/pi]

]
/m2 (S31)

Aγ̄ = 2Lmax
i∈[b]
{Mi(1 + ωi)/pi}) .

Proof. By Lemma S1, the assumption HS5 is satified for a choice of M̃ = 2 maxi∈[b]{Mi(1 + ωi)/pi}) and B̃? =

2[σ2
? + (B?/b)

∑b
i=1(1− pi + ωi)/pi]. Therefore, applying Theorem S4 completes the proof.

S2 PROOF OF Theorem 2

We assume here that {Ui}i∈[b] are defined, for any i ∈ [b] and θ ∈ Rd, by

Ui(θ) =

Ni∑
j=1

Ui,j(θ) , Ni ∈ N∗ .

We consider the following set of assumptions on {Ui}i∈[b] and {Ui,j : j ∈ [Ni]}i∈[b].
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HS6. For any i ∈ [b], j ∈ [Ni], Ui,j is continuously differentiable and the following conditions hold.

(i) There exist {Mi > 0}i∈[b], such that for any i ∈ [b], θ1, θ2 ∈ Rd,

‖∇Ui(θ2)−∇Ui(θ2)‖2 ≤ Mi 〈θ2 − θ1,∇Ui(θ2)−∇Ui(θ1)〉 .

(ii) There exists M̄ ≥ 0 such that, for any θ1, θ2 ∈ Rd,

‖∇Ui,j(θ2)−∇Ui,j(θ1)‖2 ≤ M̄ 〈∇Ui,j(θ2)−∇Ui,j(θ1), θ2 − θ1〉 .

In all this section, we assume for any i ∈ [b] that ni ∈ N∗, ni ≤ Ni is fixed. For any i ∈ [b], recall that ℘Ni
denotes the power set of [Ni] and

℘Ni,ni = {x ∈ ℘Ni : card(x) = ni} .

We set in this section ν(i)
1 as the uniform distribution on ℘Ni,ni . We consider the family of measurable functions

{H?
i : Rd × Rd × ℘Ni → Rd}i∈[b], defined for any i ∈ [b], θ ∈ Rd, x ∈ ℘Ni,ni by

H?
i (θ, x) =

Ni
ni

Ni∑
j=1

1x(j) [∇Ui,j(θ)−∇Ui,j(θ?)] . (S32)

Using this specific family of gradient estimators boils down to the QLSD? algorithm detailed in Algorithm S1.

Algorithm S1 Variance-reduced Quantised Langevin Stochastic Dynamics (QLSD?)
Input: minibatch sizes {ni}i∈[b], number of iterations K, compression operators {Ck+1}k∈N∗ , step-size γ ∈
(0, γ̄] with γ̄ > 0 and initial point θ0.
for k = 0 to K − 1 do

for i ∈ Ak+1 // On active clients do
Draw S(i)

k+1 ∼ Uniform (℘Ni,ni).
Set H(i)

k+1(θk) = (Ni/ni)
∑

j∈S(i)
k+1

[∇Ui,j(θk)−∇Ui,j(θ
?)].

Compute gi,k+1 = Ck+1

(
H

(i)
k+1(θk)

)
.

Send gi,k+1 to the central server.
end for
// On the central server
Compute gk+1 = b

|Ak+1|
∑
i∈Ak+1

gi,k+1.
Draw Zk+1 ∼ N(0d, Id).
Compute θk+1 = θk − γgk+1 +

√
2γZk+1.

Send θk+1 to the b clients.
end for
Output: samples {θk}Kk=0.

Let (X
(1,1)
k , . . . , X

(1,b)
k )k∈N∗ and (X

(2,1)
k , . . . , X

(2,b)
k )k∈N∗ be two independent i.i.d. sequences with distribution

⊗bi=1ν
(i)
1 and ν⊗b2 . Let (Zk)k∈N∗ be an i.i.d. sequence of d-dimensional standard Gaussian random variables

independent of (X
(1,1)
k , . . . , X

(1,b)
k )k∈N∗ and (X

(2,1)
k , . . . , X

(2,b)
k )k∈N∗ . Similarly as before, we consider the partial

device participation context where at each communication round k ≥ 1, each client has a probability pi ∈ (0, 1] of
participating, independently from other clients. In other words, there exists a sequence (X

(3,1)
k , · · · , X(3,b)

k )k∈N∗

of i.i.d. random variables distributed according ν3 = Uniform((0, 1]), such that for any k ≥ 1 and i ∈ [b],
client i is active at step k if X(3,i)

k ≤ pi. We denote Ak+1 = {i ∈ [b];X
(3,i)
k+1 ≤ pi} the set of active clients at

round k. For ease of notation, denote for any k ∈ N∗, X(1)
k = (X

(1,1)
k , . . . , X

(1,b)
k ), X(2)

k = (X
(2,1)
k , . . . , X

(2,b)
k ),

X
(3)
k = (X

(3,1)
k , . . . , X

(3,b)
k ) and Xk = (X

(1)
k , X

(2)
k , X

(3)
k ).

Note that with this notation and underHS2, QLSD? can be cast into the framework of the generalised QLSD scheme
defined in (S3) since the recursion associated to QLSD? can be written as

θ̃k+1 = θ̃k − γ
b∑
i=1

Si

[
Ci
(
H?
i (θ̃k, X

(1,i)
k+1 ), X

(2,i)
k+1

)
, X

(3,i)
k+1

]
+
√

2γZk+1 , k ∈ N , (S33)
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where, for any i ∈ [b], Si is defined in (S4). Therefore, we only need to verify that HS5 is satisfied with
X(i) = X̃(i) = X

(i)
1 × X2 × X3, X (i) = X̃ (i) = X (i)

1 ⊗ X2 ⊗ X3, ν̃(i) = ν
(i)
1 ⊗ ν2 ⊗ ν3 for i ∈ [b] and {Fi}bi=1 =

{F ?i }bi=1 = {Si ◦ Ci ◦H?
i }bi=1. This is done in Appendix S2.2.

S2.1 Proof of Theorem 2

The Markov kernel associated with (S33) is given for any (θ,A) ∈ Rd × B(Rd) by

Q©? ,γ(θ,A) = (4πγ)−d/2
∫
A×X̃b

exp
(
−‖θ̃ − θ + γ

∑b
i=1 F

?
i (θ, x(i))‖2/(4γ)

)
dθ̃ ⊗bi=1 ν̃

(i)(dx(i)) . (S34)

Then, the following non-asymptotic convergence result holds for QLSD?.
Theorem S6. Assume HS1, HS2, HS4 and HS6. Then, for any probability measure µ ∈ P2(Rd), any step size
γ ∈ (0, γ̄] where γ̄ is defined in (S18), any k ∈ N, we have

W 2
2 (µQk©? ,γ , π) ≤ (1− γm/2)kW 2

2 (µ, π) + γB©? ,γ̄ + γ2A©? ,γ̄(1− mγ/2)k−1k

∫
Rd
‖θ − θ?‖2µ(dθ) ,

where Q©? ,γ is defined in (S34) and

B©? ,γ̄ = (2dL2/m) (1/m + 5γ̄)
[
1 + γ̄L2/(2m) + γ̄2L2/12

]
(S35)

+ 4LdM̄max
i∈[b]
{ωiNi + (ωi + 1)(Ni[1− pi]/pi +Ani,Ni)} /m2

A©? ,γ̄ = LM̄max
i∈[b]
{ωiNi + (ωi + 1)(Ni[1− pi]/pi +Ani,Ni)} ,

Ani,Ni being defined in (S36) for any i ∈ [b].

Proof. Using Lemma S5, HS5 is satisfied and applying Theorem S4 completes the proof.

S2.2 Supporting Lemmata

In this subsection, we derive two key lemmata in order to prove Theorem S6.
Lemma S4. For any i ∈ [b] and any sequence {aj}Nij=1 ∈ (Rd)⊗Ni where Ni ≥ 2, we have

∫
X
(i)
1

∥∥∥∥∥∥
Ni∑
j=1

[
1x(1)(j)−

ni
Ni

]
aj

∥∥∥∥∥∥
2

ν
(i)
1 (dx(1)) ≤ ni(Ni − ni)

Ni(Ni − 1)

Ni∑
j=1

‖aj‖2 .

Proof. Let i ∈ [b] and X(1,i) distributed according to ν(i)
1 . Since

∑Ni
j=1 1X(1,i)(j) = ni, we have

Ni∑
l=1

1X(1,i)(l) +
∑
j 6=j′

1X(1,i)(j)1X(1,i)(j′) = n2
i .

Integrating this equality over X(i)
1 gives

Ni ×
ni
Ni

+Ni(Ni − 1)×
∫
X
(i)
1

[1x(1,i)(1)1x(1,i)(2)] ν
(i)
1 (dx(1,i)) = n2

i .

Thus, we deduce that
∫
X
(i)
1

[1x(1,i)(1)1x(1,i)(2)]ν
(i)
1 (dx(1,i)) = ni(ni − 1) [Ni(Ni − 1)]

−1. In addition, using that∫
X
(i)
1

(
1x(1,i)(j)−

ni
Ni

)(
1x(1,i)(j′)−

ni
Ni

)
ν

(i)
1 (dx(1,i)) =

∫
X
(i)
1

[1x(1,i)(1)1x(1,i)(2)]ν
(i)
1 (dx(1,i))− n2

i

N2
i

,

we obtain ∫
X
(i)
1

∥∥∥∥∥∥
Ni∑
j=1

[
1x(1,i)(j)−

ni
Ni

]
aj

∥∥∥∥∥∥
2

ν
(i)
1 (dx(1,i)) =

ni(Ni − ni)
N2
i

 Ni∑
l=1

‖al‖2 −
∑
j 6=j′

〈aj , aj′〉
Ni − 1
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=
ni(Ni − ni)
N2
i (Ni − 1)

Ni Ni∑
l=1

‖al‖2 −

∥∥∥∥∥
Ni∑
l=1

al

∥∥∥∥∥
2
 .

For any i ∈ [b], denote

Ani,Ni =
Ni(Ni − ni)
ni(Ni − 1)

. (S36)

The next lemma aims at controlling the variance of the global stochastic gradient considered in QLSD?, required
to apply Theorem S4.

Lemma S5. Assume HS2, HS4 and HS6. Then, for any θ ∈ Rd, we have∫
X(1:b)

∥∥∥∑b
i=1 Si

[
Ci
(
H?
i (θ, x(1,i)), x(2,i)

)
, x(3,i)

]
−∇U(θ)

∥∥∥2

⊗bi=1 ν
(i)(dx(i))

≤ M̄max
i∈[b]
{ωiNi + (ωi + 1)(Ni[1− pi]/pi +Ani,Ni)} 〈θ − θ?,∇U(θ)−∇U(θ?)〉 ,

where {H?
i }i∈[b] and {Ani,Ni}i∈[b] are defined in (S32) and (S36), respectively. Hence HS5 is satified with B̃? = 0

and M̃ = M̄maxi∈[b] {ωiNi + (ωi + 1)(Ni[1− pi]/pi +Ani,Ni)}.

Proof. Let θ ∈ Rd, using HS2 gives∫
X(1:b)

∥∥∥∑b
i=1 Si

[
Ci
(
H?
i (θ, x(1,i)), x(2,i)

)
, x(3,i)

]
−∇U(θ)

∥∥∥2

⊗bi=1 ν
(i)(dx(i))

=

∫
X(1:b)

∥∥∥∑b
i=1 Si

[
Ci
(
H?
i (θ, x(1,i)), x(2,i)

)
, x(3,i)

]
− Ci

(
H?
i (θ, x(1,i)), x(2,i)

)∥∥∥2

⊗bi=1 ν
(i)(dx(i))

+

∫
X
(1:b)
1 ×Xb2

∥∥∥∑b
i=1 Ci

(
H?
i (θ, x(1,i)), x(2,i)

)
−∇U(θ)

∥∥∥2

ν⊗b2 (dx(2,1:b))⊗bi=1 ν
(i)
1 (dx(1,i))

≤
b∑
i=1

(
1− pi
pi

)
(ωi + 1)

∫
X
(i)
1

∥∥∥H?
i (θ, x(1,i))

∥∥∥2

ν
(i)
1 (dx(1,i))

+

∫
X
(1:b)
1 ×Xb2

∥∥∥∑b
i=1 Ci

(
H?
i (θ, x(1,i)), x(2,i)

)
−∇U(θ)

∥∥∥2

ν⊗b2 (dx(2,1:b))⊗bi=1 ν
(i)
1 (dx(1,i))

≤ M̄

b∑
i=1

(
1− pi
pi

)
(ωi + 1)Ni 〈θ − θ?,∇Ui(θ)−∇Ui(θ?)〉

+

∫
X
(1:b)
1 ×Xb2

∥∥∥∑b
i=1 Ci

(
H?
i (θ, x(1,i)), x(2,i)

)
−∇U(θ)

∥∥∥2

ν⊗b2 (dx(2,1:b))⊗bi=1 ν
(i)
1 (dx(1,i)) . (S37)

Again using HS2, it follows that∫
X
(1:b)
1 ×Xb2

∥∥∥∑b
i=1 Ci

(
H?
i (θ, x(1,i)), x(2,i)

)
−∇U(θ)

∥∥∥2

ν⊗b2 (dx(2,1:b))⊗bi=1 ν
(i)
1 (dx(1,i))

=

∫
X
(1:b)
1 ×Xb2

∥∥∥∥∥
b∑
i=1

Ci

Ni
ni

Ni∑
j=1

1x(1,i)(j) [∇Ui,j(θ)−∇Ui,j(θ?)] , x(2,i)


−

b∑
i=1

Ni
ni

Ni∑
j=1

1x(1,i)(j) [∇Ui,j(θ)−∇Ui,j(θ?)]

∥∥∥∥∥
2

+

∫
X
(1:b)
1

∥∥∥∥∥∥
b∑
i=1

Ni
ni

Ni∑
j=1

(
1x(1,i)(j)−

ni
Ni

)
[∇Ui,j(θ)−∇Ui,j(θ?)]

∥∥∥∥∥∥
2

⊗bi=1 ν
(i)
1 (dx(1,i))
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≤
b∑
i=1

ωi

(
Ni
ni

)2 ∫
X
(i)
1

∥∥∥∥∥∥
Ni∑
j=1

1x(1,i)(j) [∇Ui,j(θ)−∇Ui,j(θ?)]

∥∥∥∥∥∥
2

ν
(i)
1 (dx(1,i))

+

b∑
i=1

(
Ni
ni

)2 ∫
X
(i)
1

∥∥∥∥∥∥
N∑
j=1

(
1x(1,i)(j)−

ni
Ni

)
[∇Ui,j(θ)−∇Ui,j(θ?)]

∥∥∥∥∥∥
2

ν
(i)
1 (dx(1,i))

=

b∑
i=1

ωi ‖∇Ui(θ)−∇Ui(θ?)‖2

+

b∑
i=1

(ωi + 1)

(
Ni
ni

)2 ∫
X
(i)
1

∥∥∥∥∥∥
Ni∑
j=1

(
1x(1,i)(j)−

ni
Ni

)
[∇Ui,j(θ)−∇Ui,j(θ?)]

∥∥∥∥∥∥
2

ν
(i)
1 (dx(1,i)) . (S38)

Using Lemma S4 combined with HS6 yields, for any i ∈ [b],∫
X
(i)
1

∥∥∥∑Ni
j=1 (1x(1,i)(j)− ni/Ni) [∇Ui,j(θ)−∇Ui,j(θ?)]

∥∥∥2

ν
(i)
1 (dx(1,i))

≤ ni(Ni − ni)
Ni(Ni − 1)

M̄ 〈θ − θ?,∇Ui(θ)−∇Ui(θ?)〉 . (S39)

In addition, Jensen inequality implies, for any i ∈ [b], that

‖∇Ui(θ)−∇Ui(θ?)‖2 ≤ Ni
Ni∑
j=1

‖∇Ui,j(θ)−∇Ui,j(θ?)‖2 ,

and therefore, using HS6, we have for any i ∈ [b],

‖∇Ui(θ)−∇Ui(θ?)‖2 ≤ M̄Ni 〈∇Ui(θ)−∇Ui(θ?), θ − θ?〉 . (S40)

Injecting (S39) and (S40) into (S38) and using (S37) conclude the proof.

S3 PROOF OF Theorem 3

S3.1 Problem formulation.

We assume here that U is still of the form (1) and that there exist {Ni ∈ N∗}i∈[b] such that for any i ∈ [b], there
exist Ni functions {Ui,j : θ ∈ Rd → R}j∈[Ni] such that for any θ ∈ Rd,

Ui(θ) =

Ni∑
j=1

Ui,j(θ) .

In all this section, we assume for any i ∈ [b] that ni ∈ N∗, ni ≤ Ni is fixed. Recall that ℘N denotes the power
set of [N ] and

℘N,n = {x ∈ ℘N : card(x) = n} .

In addition, we set in this section ν(i)
1 as the uniform distribution on ℘Ni,ni . We consider the family of measurable

functions {Gi : Rd × Rd × ℘Ni → Rd}i∈[b], defined for any i ∈ [b], θ ∈ Rd, ζ ∈ Rd, x ∈ ℘Ni,ni by

Gi(θ, ζ;x) =
Ni
ni

Ni∑
j=1

1x(j) [∇Ui,j(θ)−∇Ui,j(ζ)] +∇Ui(ζ) . (S41)

For ease of reading, we formalise more precisely the recursion associated with QLSD++ under HS2. Let
(X

(1,1)
k , . . . , X

(1,b)
k )k∈N∗ and (X

(2,1)
k , . . . , X

(2,b)
k )k∈N∗ be two independent i.i.d. sequences with distribution
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⊗bi=1ν
(i)
1 and ν⊗b2 . Let (Zk)k∈N∗ be an i.i.d. sequence of d-dimensional standard Gaussian random variables

independent of (X
(1,1)
k , . . . , X

(1,b)
k )k∈N∗ and (X

(2,1)
k , . . . , X

(2,b)
k )k∈N∗ . Similarly as before, we consider the par-

tial device participation context where at each communication round k ≥ 1, each client has a probabil-
ity pi ∈ (0, 1] of participating, independently from other clients. In other words, there exists a sequence
(X

(3,1)
k , · · · , X(3,b)

k )k∈N∗ of i.i.d. random variables distributed according ν3 = Uniform((0, 1]), such that for
any k ≥ 1 and i ∈ [b], client i is active at step k if X(3,i)

k ≤ pi. We denote Ak+1 = {i ∈ [b];X
(3,i)
k+1 ≤ pi}

the set of active clients at round k. For ease of notation, denote for any k ∈ N∗, X(1)
k = (X

(1,1)
k , . . . , X

(1,b)
k ),

X
(2)
k = (X

(2,1)
k , . . . , X

(2,b)
k ), X(3)

k = (X
(3,1)
k , . . . , X

(3,b)
k ) and Xk = (X

(1)
k , X

(2)
k , X

(3)
k ). Let l ∈ N∗, γ ∈ (0, γ̄] and

α ∈ (0, ᾱ] for γ̄, ᾱ > 0. Given Θ0 = (θ0, ζ0, {η(i)
0 }i∈[b]) ∈ Rd × Rd × Rdb, with ζ0 = θ0, we recursively define the

sequence (Θk)k∈N = (θk, ζk, {η(i)
k }i∈[b])k∈N, for any k ∈ N as

θk+1 = θk − γG̃(Θk;Xk+1) +
√

2γZk+1 , (S42)

where

G̃(Θk;Xk+1) =

b∑
i=1

[
Si

(
Ci
{
Gi

(
θk, ζk;X

(1,i)
k+1

)
− η(i)

k ;X
(2,i)
k+1

}
, X

(3,i)
k+1

)
+ η

(i)
k

]
, (S43)

ζk+1 =

{
θk+1 , if k + 1 ≡ 0 (mod l) ,

ζk , otherwise ,
(S44)

and for any i ∈ [b],

η
(i)
k+1 = η

(i)
k + αSi

(
Ci
{
Gi

(
θk, ζk;X

(1,i)
k+1

)
− η(i)

k ;X
(2,i)
k+1

}
, X

(3,i)
k+1

)
. (S45)

Since QLSD++ involves auxiliary variables gathered with (θk)k∈N in (Θk)k∈N, we cannot follow the same proof as
for QLSD? by verifying HS5 and then applying Theorem S4. Instead, we will adapt the proof Theorem S4 and
in particular Lemma S2 and bound the variance associated to the stochastic gradient defined in (S43). Once
this variance term will be tackled, the proof of Theorem 3 will follow the same lines as the proof of Theorem S4
upon using specific moment estimates for QLSD++. In the next section, we focus on these two goals: we provide
uniform bounds in the number of iterations k on the variance of the sequence of stochastic gradients associated
with QLSD++, (E[‖G̃i(Θk, Xk+1)−∇U(θk)‖2])k∈N for any i ∈ [b], and (E[‖θk− θ?‖2])k∈N, see Proposition S8 and
Corollary S7. To this end, a key ingredient is the design of an appropriate Lyapunov function defined in (S57).

S3.2 Uniform bounds on the stochastic gradients and moment estimates for QLSD++

Consider the filtration associated with (Θk)k∈N defined by G0 = σ(Θ0) and for k ∈ N∗,

Gk = σ(Θ0, (Xk̃)k̃≤k, (Zk̃)k̃≤k) .

We denote for any i ∈ [b], θ, ζ ∈ Rd,
∆i(θ, ζ) = ∇Ui(θ)−∇Ui(ζ) . (S46)

Similarly, we consider, for any i ∈ [b], j ∈ [N ], θ, ζ ∈ Rd,

∆i,j(θ, ζ) = ∇Ui,j(θ)−∇Ui,j(ζ) . (S47)

The following lemma provides a first upper bound on the variance of the stochastic gradients used in QLSD++.
Lemma S6. Assume HS1, HS2, HS4 and HS6 and let γ ∈ (0, γ̄], α ∈ (0, ᾱ] for some γ̄, ᾱ > 0. Then, for any
s ∈ N, r ∈ {0, . . . , l − 1}, we have

EGsl+r
[∥∥∥G̃(Θsl+r;Xsl+r+1)−∇U(θsl+r)

∥∥∥2
]
≤

[
2

b∑
i=1

M2
i

pi
(ωi + 1− pi) +

(
ωi + 1

pi

)
Ani,Ni M̄Mi

]
‖θsl+r − θ?‖2

+

[
2

b∑
i=1

(ωi + 1− pi)/pi

]∥∥∥∇Ui(θ?)− η(i)
sl+r

∥∥∥2

+ 2M̄

b∑
i=1

[(
ωi + 1

pi

)
Ani,NiMi

]
‖θsl − θ?‖2 ,

where (Θk̃)k̃∈N = (θk̃, ζk̃, {η
(i)

k̃
}i∈[b])k̃∈N, G̃ and An,N are defined in (S42), (S44), (S45), (S43) and (S36),

respectively.
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Proof. Let s ∈ N and r ∈ {0, . . . , l − 1}. Using HS2, (S46) and (S47), we have

EGsl+r
[∥∥∥G̃(Θsl+r;Xsl+r+1)−∇U(θsl+r)

∥∥∥2
]

=

b∑
i=1

EGsl+r
[∥∥Si

(
Ci
{
Gi

(
θsl+r, ζsl+r;X

(1,i)
sl+r+1

)
− η(i)

sl+r;X
(2,i)
sl+r+1

}
, X

(3,i)
sl+r+1

)
− Ci

{
Gi

(
θsl+r, ζsl+r;X

(1,i)
sl+r+1

)
− η(i)

sl+r;X
(2,i)
sl+r+1

}∥∥2]
+

b∑
i=1

EGsl+r
[∥∥∥Ci {Gi (θsl+r, ζsl+r;X(1,i)

sl+r+1

)
− η(i)

sl+r;X
(2,i)
sl+r+1

}
+ η

(i)
sl+r −∇Ui(θsl+r)

∥∥∥2
]

≤
b∑
i=1

(
1− pi
pi

)
EGsl+r

[∥∥∥Ci {Gi (θsl+r, ζsl+r;X(1,i)
sl+r+1

)
− η(i)

sl+r;X
(2,i)
sl+r+1

}∥∥∥2
]

+

b∑
i=1

ωiEGsl+r
[∥∥∥Gi (θsl+r, ζsl+r;X(1,i)

sl+r+1

)
− η(i)

sl+r

∥∥∥]+

b∑
i=1

EGsl+r
[∥∥∥Gi (θsl+r, ζk;X

(1,i)
sl+r+1

)
−∇Ui(θsl+r)

∥∥∥2
]

≤
b∑
i=1

(
ωi + 1− pi

pi

)
EGsl+r

[∥∥∥Gi (θsl+r, ζsl+r;X(1,i)
sl+r+1

)
− η(i)

sl+r

∥∥∥2
]

+

b∑
i=1

EGsl+r
[∥∥∥Gi (θsl+r, ζsl+r;X(1,i)

sl+r+1

)
−∇Ui(θsl+r)

∥∥∥2
]

≤
b∑
i=1

(
ωi + 1

pi

)
EGsl+r


∥∥∥∥∥∥Nini

Ni∑
j=1

{
1
X

(1,i)
sl+r+1

(j)∆i,j(θsl+r, ζsl+r)
}
−∆i(θsl+r, ζsl+r)

∥∥∥∥∥∥
2


+

b∑
i=1

(
ωi + 1− pi

pi

)
EGsl+r

[∥∥∥∇Ui(θsl+r)− η(i)
sl+r

∥∥∥2
]

≤
b∑
i=1

(
ωi + 1

pi

)
Ni(Ni − ni)
ni(Ni − 1)

M̄〈θsl+r − ζsl+r,∇Ui(θsl+r)−∇Ui(ζsl+r)〉

+

b∑
i=1

(
ωi + 1− pi

pi

)
EGsl+r

[∥∥∥∇Ui(θsl+r)− η(i)
sl+r

∥∥∥2
]
,

where the last line follows from HS6 and Lemma S4. The proof is concluded by using the Cauchy-Schwarz
inequality, HS1 and ζsl+r = θsl.

The two following lemmas aim at controlling the terms that appear in Lemma S6.
Lemma S7. Assume HS1, HS2, HS4 and HS6, and let γ ∈ (0, γ̄], α ∈ (0, ᾱ] for some γ̄, ᾱ > 0. Then, for any
s ∈ N and r ∈ [l], we have

EGsl+r−1

[
‖θsl+r − θ?‖2

]
≤
(
1− 2γm+ γ2Bn,N

)
‖θsl+r−1 − θ?‖2

+ γ2

[
2

b∑
i=1

(ωi + 1− pi)/pi

]∥∥∥∇Ui(θ?)− η(i)
sl+r−1

∥∥∥2

+ 2M̄γ2
b∑
i=1

[(
ωi + 1

pi

)
Ani,NiMi

]
‖θsl − θ?‖2 + 2γd ,

where

Bn,N = 2

b∑
i=1

{
M2
i

pi
(ωi + 1− pi) +

(
ωi + 1

pi

)
Ani,Ni M̄Mi

}
+ L2 , (S48)

(Θk̃)k̃∈N = (θk̃, ζk̃, {ηik̃}i∈[b])k̃∈N and An,N are defined in (S42), (S44), (S45) and (S36) respectively.

Proof. Let s ∈ N and r ∈ [l]. Using (S42) and HS2, it follows
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EGsl+r−1

[
‖θsl+r − θ?‖2

]
= ‖θsl+r−1 − θ?‖2 + 2γd− 2γ〈∇U(θsl+r−1), θsl+r−1 − θ?〉

+ γ2EGsl+r−1

[∥∥∥G̃(Θsl+r−1;Xsl+r)
∥∥∥2
]
. (S49)

Using HS2 and (S41)-(S43), we have

EGsl+r−1

[∥∥∥G̃(Θsl+r−1;Xsl+r)
∥∥∥2
]

=

b∑
i=1

EGsl+r−1

[∥∥∥∥∥Si

(
Ci
{
Gi

(
θsl+r−1, ζsl+r−1;X

(1,i)
sl+r

)
− η(i)

sl+r−1;X
(2,i)
sl+r

}
, X

(3,i)
sl+r

)

− Ci
{
Gi

(
θsl+r−1, ζsl+r−1;X

(1,i)
sl+r

)
− η(i)

sl+r−1;X
(2,i)
sl+r

}∥∥∥∥∥
2]

+ EGsl+r−1

∥∥∥∥∥
b∑
i=1

Ci
{
Gi

(
θsl+r−1, ζsl+r−1;X

(1,i)
sl+r

)
− η(i)

sl+r−1;X
(2,i)
sl+r

}
+ η

(i)
sl+r−1

∥∥∥∥∥
2


≤
b∑
i=1

(
ωi + 1− pi

pi

)
EGsl+r−1

[∥∥∥Gi (θsl+r−1, ζsl+r−1;X
(1,i)
sl+r

)
− η(i)

sl+r−1

∥∥∥2
]

+

b∑
i=1

EGsl+r−1


∥∥∥∥∥∥Nini

Ni∑
j=1

{
1
X

(1,i)
sl+r

(j)∆i,j(θsl+r−1, ζsl+r−1)
}
−∆i(θsl+r−1, ζsl+r−1)

∥∥∥∥∥∥
2
+ ‖∇U(θsl+r−1)‖2

=

b∑
i=1

(
ωi + 1

pi

)
EGsl+r−1


∥∥∥∥∥∥Nini

Ni∑
j=1

{
1
X

(1,i)
sl+r

(j)∆i,j(θsl+r−1, ζsl+r−1)
}
−∆i(θsl+r−1, ζsl+r−1)

∥∥∥∥∥∥
2


+

b∑
i=1

(
ωi + 1− pi

pi

)
EGsl+r−1

[∥∥∥∇Ui(θsl+r−1)− η(i)
sl+r−1

∥∥∥2
]

+ ‖∇U(θsl+r−1)‖2

≤
b∑
i=1

(
ωi + 1

pi

)
Ni(Ni − ni)
ni(Ni − 1)

M̄〈θsl+r−1 − ζsl+r−1,∇Ui(θsl+r−1)−∇Ui(ζsl+r−1)〉

+

b∑
i=1

(
ωi + 1− pi

pi

)∥∥∥∇Ui(θsl+r−1)− η(i)
sl+r−1

∥∥∥2

+ ‖∇U(θsl+r−1)‖2 , (S50)

where the last line follows from HS6 and Lemma S4. The proof is concluded by injecting (S50) into (S49), using
the Cauchy-Schwarz inequality, ∇U(θ?) = 0, HS1 and ζsl+r−1 = θsl.

Lemma S8. Assume HS1, HS2, HS4 and HS6. Let γ ∈ (0, γ̄] for some γ̄ > 0 and α ∈ (0, 1/(maxi∈[b] ωi + 1)].
Then, for any s ∈ N and r ∈ [l], we have

b∑
i=1

EGsl+r−1

[∥∥∥∇Ui(θ?)− η(i)
sl+r

∥∥∥2
]
≤ (1− α)

b∑
i=1

∥∥∥∇Ui(θ?)− η(i)
sl+r−1

∥∥∥2

+ αCn,N ‖θsl+r−1 − θ?‖2 + 2α

[
b∑
i=1

Ani,Ni M̄Mi

]
‖θsl − θ?‖2 ,

where

Cn,N = 2

b∑
i=1

{
Ani,Ni M̄Mi + M2

i

}
, (S51)

(Θk̃)k̃∈N = (θk̃, ζk̃, {ηik̃}i∈[b])k̃∈N and An,N are defined in (S42), (S44), (S45) and (S36), respectively.
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Proof. Let s ∈ N and r ∈ [l]. Then, it follows

b∑
i=1

EGsl+r−1

[∥∥∥∇Ui(θ?)− η(i)
sl+r

∥∥∥2
]

=

b∑
i=1

∥∥∥∇Ui(θ?)− η(i)
sl+r−1

∥∥∥2

+

b∑
i=1

EGsl+r−1

[∥∥∥η(i)
sl+r − η

(i)
sl+r−1

∥∥∥2
]

+ 2

b∑
i=1

〈EGsl+r−1

[
η

(i)
sl+r − η

(i)
sl+r−1

]
, η

(i)
sl+r−1 −∇Ui(θ

?)〉 . (S52)

Using (S45) and HS2, we have for any i ∈ [b],

EGsl+r−1

[∥∥∥η(i)
sl+r − η

(i)
sl+r−1

∥∥∥2
]

≤ α2(ωi + 1)EGsl+r−1

[∥∥∥Gi (θsl+r−1, ζsl+r−1;X
(1,i)
sl+r

)
− η(i)

sl+r−1

∥∥∥2
]
, (S53)

EGsl+r−1

[
η

(i)
sl+r − η

(i)
sl+r−1

]
= αEGsl+r−1

[
Gi

(
θsl+r−1, ζsl+r−1;X

(1,i)
sl+r

)
− η(i)

sl+r−1

]
. (S54)

Plugging (S53) and (S54) into (S52) yields

b∑
i=1

EGsl+r−1

[∥∥∥∇Ui(θ?)− η(i)
sl+r

∥∥∥2
]
≤

b∑
i=1

∥∥∥∇Ui(θ?)− η(i)
sl+r−1

∥∥∥2

+ α2
b∑
i=1

(ωi + 1)EGsl+r−1

[∥∥∥Gi (θsl+r−1, ζsl+r−1;X
(1,i)
sl+r

)
− η(i)

sl+r−1

∥∥∥2
]

+ 2α

b∑
i=1

〈EGsl+r−1

[
Gi

(
θsl+r−1, ζsl+r−1;X

(1,i)
sl+r

)
− η(i)

sl+r−1

]
, η

(i)
sl+r−1 −∇Ui(θ

?)〉 .

Using for any i ∈ [b] α(1 + ωi) ≤ 1 and the fact, for any a, b, c ∈ Rd, that ‖a− c‖2 + 2〈(a − c), (c − b)〉 =

‖a− b‖2 − ‖c− b‖2, we have

b∑
i=1

EGsl+r−1

[∥∥∥∇Ui(θ?)− η(i)
sl+r

∥∥∥2
]
≤ (1− α)

b∑
i=1

∥∥∥∇Ui(θ?)− η(i)
sl+r−1

∥∥∥2

+ α

b∑
i=1

EGsl+r−1

[∥∥∥Gi (θsl+r−1, ζsl+r;X
(1,i)
sl+r

)
−∇Ui(θ?)

∥∥∥2
]
. (S55)

Using (S41), HS6 and Lemma S4, it follows

b∑
i=1

EGsl+r−1

[∥∥∥Gi (θsl+r−1, ζsl+r−1;X
(1,i)
sl+r

)
−∇Ui(θ?)

∥∥∥2
]

≤
b∑
i=1

Ni(Ni − ni)
ni(Ni − 1)

M̄〈θsl+r−1 − ζsl+r−1,∇Ui(θsl+r−1)−∇Ui(ζsl+r−1)〉

+

b∑
i=1

‖∇Ui(θsl+r−1)−∇Ui(θ?)‖2 . (S56)

The proof is concluded by plugging (S56) into (S55), using the Cauchy-Schwarz inequality, HS1 and ζsl+r−1 =
θsl.

Lemma S7 and Lemma S8 involve two dependent terms which prevents us from using a straightforward induction.
To cope with this issue, we consider a Lyapunov function ψ : Rd × Rbd → R defined, for any θ ∈ Rd and
η = (η(1), . . . , η(b))> ∈ Rbd by

ψ(θ, η) = ‖θ − θ?‖2 + (3/α) max
i∈[b]
{(ωi + 1− pi)/pi}γ2

b∑
i=1

∥∥∥∇Ui(θ?)− η(i)
∥∥∥2

. (S57)
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The following lemma provides an upper bound on this Lyapunov function. Define for α > 0,

γ̄α,1 = m−1[{m2(Bn,N + 3ωCn,N)−1} ∧ {α/3}] , (S58)

where Bn,N and Cn,N are defined in (S48) and (S51) respectively.
Lemma S9. Assume HS1, HS2, HS4 and HS6. Let α ∈ (0, 1/(1 + maxi∈[b] ωi)], γ ∈ (0, γ̄α,1]. Then, for any
s ∈ N and r ∈ [l], we have

EGsl+r−1 [ψ(θsl+r, ηsl+r)] ≤ (1− γm)ψ(θsl+r−1, ηsl+r−1)

+ 8M̄γ2 max
i∈[b]
{(ωi + 1)/pi}

b∑
i=1

Ani,NiMi ‖θsl − θ?‖
2

+ 2γd ,

where ψ is defined in (S57) and (Θk̃)k̃∈N = (θk̃, ζk̃, {ηik̃}i∈[b])k̃∈N and An,N are defined in (S42), (S44), (S45) and
(S36), respectively.

Proof. Let s ∈ N and r ∈ [l]. Using Lemma S7 and Lemma S8, we have

EGsl+r−1 [ψ(θsl+r, ηsl+r)]

≤
(
1− 2γm + γ2 [Bn,N + 3ωCn,N]

)
‖θsl+r−1 − θ?‖2

+ [(2/3)α+ (1− α)] (3γ2/α) max
i∈[b]
{(ωi + 1− pi)/pi}

b∑
i=1

∥∥∥∇Ui(θ?)− η(i)
sl+r−1

∥∥∥2

+ 8M̄γ2 max
i∈[b]
{(ωi + 1)/pi}

b∑
i=1

Ani,NiMi ‖θsl − θ?‖
2

+ 2γd .

Since γ ≤ γ̄α,1 with γ̄α,1 given in (S58), it follows that

1− 2γm + γ2 [Bn,N + 3ωCn,N] ≤ 1− γm
(2/3)α+ (1− α) ≤ 1− γm .

Therefore, we have

EGsl+r−1 [ψ(θsl+r, ηsl+r)] ≤ (1− γm)ψ(θsl+r−1, ηsl+r−1)

+ 8M̄γ2 max
i∈[b]
{(ωi + 1)/pi}

b∑
i=1

Ani,NiMi ‖θsl − θ?‖
2

+ 2γd .

Lemma S10. Let j ∈ N∗ and fix γ > 0 such that

γ ≤ m

16jM̄γ2 maxi∈[b]{(ωi + 1)/pi}
∑b
i=1Ani,NiMi

∧ 1

m
.

Then,

(1− γm)
j

+ 8jγ2M̄max
i∈[b]
{(ωi + 1)/pi}

b∑
i=1

Ani,NiMi ≤ 1− γm/2 ,

where An,N is defined in (S36).

Proof. The proof is straightforward using (1− γm)j ≤ 1− γm.

We have the following corollary regarding the Lyapunov function defined in (S57).

Denote for α > 0,
γ̄α,2 = γ̄α,1 ∧ [m/{16lM̄max

i∈[b]
{(ωi + 1)/pi}

∑b
i=1Ani,NiMi}]

1/3 , (S59)

where γ̄α,1 is given in (S58).
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Corollary S7. Assume HS1, HS2, HS4 and HS6. Let α ∈ (0, 1/(1 + maxi∈[b] ωi)] and γ ∈ (0, γ̄α,2]. Then, for
any s ∈ N and r ∈ {0, . . . , l − 1} we have

EGsl
[
ψ(θ(s+1)l−r, η(s+1)l−r

]
≤ (1− γm/2)ψ(θsl, ηsl) + 2γ(l − r)d ,

where ψ is defined in (S57) and (Θk̃)k̃∈N = (θk̃, ζk̃, {ηik̃}i∈[b])k̃∈N is defined in (S42), (S44), (S45).

Proof. The proof follows from a straightforward induction of Lemma S9 combined with Lemma S10.

We are now ready to control explicitly the variance of the stochastic gradient defined in (S43).
Proposition S8. Assume HS1, HS2, HS4 and HS6. Let α ∈ (0, 1/(1+maxi∈[b] ωi)] and γ ∈ (0, γ̄α,2], where γ̄α,2
is defined in (S59). Then, for any k = sl+ r with s ∈ N, r ∈ {0, . . . , l− 1}, θ0 ∈ Rd and η0 = (η

(1)
0 , . . . , η

(b)
0 )> ∈

Rdb, we have

E
[∥∥∥G̃(Θsl+r;Xsl+r+1)−∇U(θk)

∥∥∥2
]
≤ (1− γm/2)sDn,Nψ(θ0, η0) + 4ldDn,N/m

+

[
2

b∑
i=1

(ωi + 1− pi)/pi

]
(1− α)k

b∑
i=1

E
[∥∥∥∇Ui(θ?)− η(i)

0

∥∥∥2
]
,

where

Dn,N =

[
2

b∑
i=1

M2
i

pi
(ωi + 1− pi) +

(
ωi + 1

pi

)
Ani,Ni M̄Mi

]
+2M̄

b∑
i=1

[(
ωi + 1

pi

)
Ani,NiMi

]
+4Cn,N

b∑
i=1

(ωi+1−pi)/pi ,

(S60)
An,N and Cn,N are defined in (S36) and (S51) respectively, ψ is defined in (S57), and (Θk̃)k̃∈N =
(θk̃, ζk̃, {ηik̃}i∈[b])k̃∈N is defined in (S42), (S44), (S45).

Proof. Let k ∈ N and write k = sl + r with s ∈ N, r ∈ {0, . . . , l − 1} Then, using Lemma S6, we have

E
[∥∥∥G̃(Θsl+r;Xsl+r+1)−∇U(θk)

∥∥∥2
]

≤

[
2

b∑
i=1

M2
i

pi
(ωi + 1− pi) +

(
ωi + 1

pi

)
Ani,Ni M̄Mi

]
E
[
‖θk − θ?‖2

]
+

[
2

b∑
i=1

(ωi + 1− pi)/pi

]
E
[∥∥∥∇Ui(θ?)− η(i)

k

∥∥∥2
]

+ 2M̄

b∑
i=1

[(
ωi + 1

pi

)
Ani,NiMi

]
E
[
‖θsl − θ?‖2

]
. (S61)

We now use our previous results to upper bound the three expectations at the right-hand side of (S61). First,
using Corollary S7 and a straightforward induction gives

E
[
‖θsl − θ?‖2

]
≤ (1− γm/2)sψ(θ0, η0) + 2γld

s−1∑
j=0

(1− γm/2)j

≤ (1− γm/2)sψ(θ0, η0) + 4ld/m . (S62)

Similarly, we have

E
[
‖θk − θ?‖2

]
≤ (1− γm/2)s+1ψ(θ0, η0) + 2γld

s∑
j=0

(1− γm/2)j

≤ (1− γm/2)sψ(θ0, η0) + 4ld/m . (S63)

Finally, using Lemma S8 combined with (S62) and (S63), we obtain

b∑
i=1

E
[∥∥∥∇Ui(θ?)− η(i)

k

∥∥∥2
]
≤ (1− α)

b∑
i=1

E
[∥∥∥∇Ui(θ?)− η(i)

k−1

∥∥∥2
]
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+ 2αCn,N(1− γm/2)sψ(θ0, η0) + 8ldαCn,N/m .

Then, a straightforward induction leads to

b∑
i=1

E
[∥∥∥∇Ui(θ?)− η(i)

k

∥∥∥2
]
≤ (1− α)k

b∑
i=1

∥∥∥∇Ui(θ?)− η(i)
0

∥∥∥2

+ 2Cn,N(1− γm/2)sψ(θ0, η0) + 8ldCn,N/m . (S64)

Combining (S62), (S63) and (S64) in (S61) concludes the proof.

S3.3 Proof of Theorem 3

Note that γ ∈ (0, γ̄], α ∈ (0, ᾱ] and l ∈ N∗, (Θk̃)k̃∈N = (θk̃, ζk̃, {η
(i)

k̃
}i∈[b])k̃∈N defined in (S42), (S44), (S45) is a

inhomogeneous Markov chain associated with the sequence of Markov kernel (Q
(k)
γ,α,l)k∈N defined by as follows.

Define for any (θ, ζ, η) ∈ Rd × Rd × Rd, and x(1) ∈ ℘Ni,ni , x(2) ∈ X2 and x(3) ∈ X3,

Fi((θ, ζ, η); (x(1), x(2), x(3))) = Si

(
Ci
{
Gi

(
θ, ζ;x(1)

)
− η;x(2)

}
;x(3)

)
Gi((θ, ζ, η); (x(1), x(2), x(3))) = η + αFi((θ, ζ, η); (x(1), x(2), x(3))) .

and for θ̃ ∈ Rd, {η(i)}bi=1 ∈ Rdb, {x(1,i)}bi=1 ∈ ⊗bi=1℘Ni,ni , {x(2,i)}bi=1 ∈ Xb2, {x(3,i)}bi=1 ∈ Xb3, setting x(1:b) =
{(x(1,i), x(2,i), x(3,i))}bi=1,

ϕγ((θ̃, θ, ζ, {η(i)}bi=1);x(1:b)) = (4πγ)−d/2 exp
(
−‖θ̃ − θ + γ

∑b
i=1 Fi((θ, ζ, η

(i));x(i))‖2/(4γ)
)
.

Denote X̃(i) = ℘Ni,ni × X2 × X3 and ν̃(i) = ν
(i)
1 × ν2 × ν3. Set Q(0)

γ,α,l = Id and for k ≥ 0, k = ls + r, s ∈ N,
r ∈ {0, . . . , l − 1}, (θ, ζ, η) ∈ Rd × Rd × Rdb and A ∈ B(Rd × Rd × Rdb),

if r = 0

Q
(k+1)
γ,α,l ((θ, ζ, η),A) =∫
⊗bi=1X̃

(i) 1A(θ̃, ζ̃, η̃)ϕγ((θ̃, θ, ζ, {η(i)}bi=1);x(1:b)){
∏b
i=1 δGi((θ,ζ,η);x(i))(dη̃

(i))}δθ(dζ̃) dθ̃ ⊗bi=1 ν̃
(i)(dx(i))

otherwise

Q
(k+1)
γ,α,l ((θ, ζ, η),A) =∫
⊗bi=1X̃

(i) 1A(θ̃, ζ̃, η̃)ϕγ((θ̃, θ, ζ, {η(i)}bi=1);x(1:b)){
∏b
i=1 δGi((θ,ζ,η);x(i))(dη̃

(i))}δζ(dζ̃) dθ̃ ⊗bi=1 ν̃
(i)(dx(i)) .

Consider then, the Markov kernel on Rd × B(Rd),

R
(k)
γ,α,l,η0

(θ0,A) = Q
(k)
γ,α,l((θ0, θ0, η0),A× Rd × Rdb) . (S65)

Define
γ̄α = γ̄α,2 ∧ γ̄4 , γ̄4 = 1/(10m) , (S66)

where γ̄α,2 is defined in (S59). The following theorem provides a non-asymptotic convergence bound for the
QLSD++ kernel.

Theorem S9. Assume HS1, HS2, HS4 and HS6. and let l ∈ N∗. Then, for any probability measure µ ∈ P2(Rd),
η0 ∈ Rdb, α ∈

(
0, 1/(1 + maxi∈[b] ωi)

]
, γ ∈ (0, γ̄α], and k = sl + r ∈ N with s ∈ N, r ∈ {0, . . . , l − 1}, we have

W 2
2 (µR

(k)
γ,α,l,η0

, π) ≤ (1− γm/2)kW 2
2 (µ, π) + (2γ/m)(1− γm/2)sDn,N

∫
Rd
ψ(θ0, η0)dµ(θ0)

+ (4γ/m)

[
b∑
i=1

(ωi + 1− pi)/pi

]
(1− α)k

b∑
i=1

∥∥∥∇Ui(θ?)− η(i)
0

∥∥∥2

+ γB⊕,γ̄α ,
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where R(k)
γ,α,l,η0

is defined in (S65), ψ is defined in (S57), Dn,N in (S60) and

B⊕,γ̄α = 2dL2(1/m + 5γ̄α)
[
1 + γ̄αL

2/(2m) + γ̄2
αL

2/12
]
/m + 96ld

(
b∑
i=1

Mi(ωi + 1)(Mi + M̄Ani,Ni)/pi

)
/m2 . (S67)

Proof. Let k ∈ N. The proof follows from the same lines as Theorem S5. By (S19) and (S42), we have

ϑγ(k+1) − θk+1 = ϑγk − θk − γ [∇U(ϑγk)−∇U(θk)]

−
∫ γ

0

[∇U(ϑγk+s)−∇U(ϑγk)] ds+ γ
[
G̃(Θk;Xk+1)−∇U(θk)

]
.

Define the filtration (Hk̃)k̃∈N as H0 = σ(ϑ0,Θ0) and for k̃ ∈ N∗,

Hk̃ = σ(ϑ0,Θ0, (X
(1)
l , . . . , X

(b)
l )1≤l≤k̃, (Bt)0≤t≤γk̃) .

Note that since (ϑt)t≥0 is a strong solution of (S19), then is easy to see that (ϑγk̃,Θk̃)k̃∈N is (Hk̃)k̃∈N-adapted.
Taking the squared norm and the conditional expectation with respect to Hk, we obtain using HS5-(i) that

EHk
[∥∥ϑγ(k+1) − θk+1

∥∥2
]

= ‖ϑγk − θk‖2 − 2γ 〈ϑγk − θk,∇U(ϑγk)−∇U(θk)〉

+ 2γ

∫ γ

0

〈
∇U(ϑγk)−∇U(θk),EHk [∇U(ϑγk+u)−∇U(ϑγk)]

〉
du

− 2

∫ γ

0

〈
ϑγk − θk,EHk [∇U(ϑγk+u)−∇U(ϑγk)]

〉
du

+ γ2 ‖∇U(ϑγk)−∇U(θk)‖2

+ EHk
[∥∥∥∥∫ γ

0

[∇U(ϑγk+u)−∇U(ϑγk)] du

∥∥∥∥2
]

+ γ2EHk
[∥∥∥G̃(Θk;Xk+1)−∇U(θk)

∥∥∥2
]
. (S68)

Using Proposition S8, we obtain

E
[∥∥∥G̃(Θk;Xk+1)−∇U(θk)

∥∥∥2
]
≤ (1− γm/2)bk/lcDn,Nψ(θ0, η0) + 4ldDn,N/m

+

[
2

b∑
i=1

(ωi + 1− pi)/pi

]
(1− α)k

b∑
i=1

E
[∥∥∥∇Ui(θ?)− η(i)

0

∥∥∥2
]
. (S69)

Then, we control the remaining terms in (S68) using (S25), (S26) and (S27). Combining these bounds and (S69)
into (S68), for any ε > 0, yields

E
[∥∥ϑγ(k+1) − θk+1

∥∥2
]
≤ (1 + 2γε− 5γ2mL)E

[
‖ϑγk − θk‖2

]
− γ [2− 5γ(m + L)]E [〈ϑγk − θk,∇U(ϑγk)−∇U(θk)〉]

+ (5γ + (2ε)−1)

∫ γ

0

E
[
‖∇U(ϑγk+u)−∇U(ϑγk)‖2

]
du

+ γ2(1− γm/2)bk/lcDn,NE [ψ(θ0, η0)] + 4ldDn,N/m

+ 2γ2

[
b∑
i=1

(ωi + 1− pi)/pi

]
(1− α)k

b∑
i=1

∥∥∥∇Ui(θ?)− η(i)
0

∥∥∥2

.
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Next, we use that under HS1, 〈ϑγk−θk,∇U(ϑγk)−∇U(θk)〉 ≥ m‖ϑγk−θk‖2 and |〈θk−θ?,∇U(θk)−∇U(θ?)〉| ≤
L‖θk − θ?‖2, which implies taking ε = m/2 and since 2− 5γ(m + L) ≥ 0,

E
[∥∥ϑγ(k+1) − θk+1

∥∥2
]
≤ (1− γm(1− 5γm))E

[
‖ϑγk − θk‖2

]
+ (5γ + m−1)

∫ γ

0

E
[
‖∇U(ϑγk+u)−∇U(ϑγk)‖2

]
du

+ γ2(1− γm/2)bk/lcDn,NE [ψ(θ0, η0)] + 4ldDn,N/m

+ 2γ2

[
b∑
i=1

(ωi + 1− pi)/pi

]
(1− α)k

b∑
i=1

∥∥∥∇Ui(θ?)− η(i)
0

∥∥∥2

. (S70)

Further, for any u ∈ R+, using Durmus and Moulines (2019, Lemma 21) we have

L−2 E
[
‖∇U(ϑγk+u)−∇U(ϑγk)‖2

]
≤ du

(
2 + u2L2/3

)
+ 3u2L2/2E

[
‖ϑγk − θ?‖2

]
.

Integrating the previous inequality on [0, γ], we obtain

L−2

∫ γ

0

E
[
‖∇U(ϑγk+u)−∇U(ϑγk)‖2

]
du ≤ dγ2 + dγ4L2/12 + γ3L2/2E

[
‖ϑγk − θ?‖2

]
.

Plugging this bounds in (S70) and using Durmus and Moulines (2019, Proposition 1) complete the proof.

S4 CONSISTENCY ANALYSIS IN THE BIG DATA REGIME

In this section, we assume that the number of observations on each client i ∈ [b] writes Ni = bciNc where
{ci > 0}i∈[b], N ∈ N∗, and provide upper bounds on the asymptotic bias associated to each algorithm when N
tends towards infinity. For simplicity, we assume for any i ∈ [b], that ni = bcinc with n ∈ [N ], Mi = M with M > 0,
pi = 1 and ωi = ω with ω > 0 but note that our conclusions also hold for the general setting considered in this
paper.

S4.1 Asymptotic analysis for Algorithm 1

The following corollary is associated with QLSD defined in Algorithm 1 in the main paper.

Corollary S10. Assume HS1, HS2 HS3 and HS4. In addition, assume that lim infN→∞ m/N > 0 and
lim supN→∞ A/N <∞ for A ∈ {L, M, B?, σ?}. Then, we have γ̄ = η̄/N where η̄ > 0 and γ̄ is defined in (S18). In
addition,

Bγ̄ = (ω + 1) O(N) ,

where Bγ̄ is defined in (S31).

Proof. Since we assume that lim infN→∞ m/N > 0 and lim supN→∞ A/N < ∞ for A ∈ {L, M, B?, σ?}, there exist
Cm, CL, CM, CB? and Cσ? > 0 such that m ≥ CmN , L ≤ CLN , M ≤ CMN , B? ≤ CB?N and σ? ≤ Cσ?N . Under these
assumptions, it is straightforward from (S18) to see that there exists η̄ > 0 such that γ̄ = η̄/N . In addition, it
follows from (S31) that

Bγ̄ ≤
2dC2

L

Cm

(
1

Cm

+ 5η̄

)[
1 +

η̄C2
L

2Cm

+
η̄2C2

L

12

]
+

4

Cm

(ωCB? + C2
σ?N) +

8(ω + 1)CLCM

C2
m

[
d+ η̄

(
ωCB? + C2

σ?N
)]
.

The proof is concluded by letting N tend towards infinity.

Regarding the specific instance QLSD# of Algorithm 1 in the main paper, a similar result holds. Indeed, by
using Lemma S4, we can notice that HS3-(iii) is verified with σ? = Cσ?N for some Cσ? > 0 and we can apply
Corollary S10.
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S4.2 Asymptotic analysis for Algorithm 2

The following corollary is associated with QLSD? defined in Algorithm 2 in the main paper.
Corollary S11. Assume HS1, HS2, HS4 and HS6. In addition, assume that lim infN→∞ m/N > 0 and
lim supN→∞ A/N < ∞ for A ∈ {L, M}. Then, we have γ̄ = η̄/N where η̄ > 0 and γ̄ is defined in (S18). In
addition,

B©? ,γ̄ = d(ω + 1) O(1) ,

where B©? ,γ̄ is defined in (S35).

Proof. Since we assume that lim infN→∞ m/N > 0 and lim supN→∞ A/N < ∞ for A ∈ {L, M}, there exist Cm, CL

and CM > 0 such that m ≥ CmN , L ≤ CLN and M ≤ CMN . Under these assumptions, it is straightforward from
(S18) to see that there exists η̄ > 0 such that γ̄α = η̄/N . In addition, it follows from (S10) that

B©? ,γ̄ ≤
2dC2

L

Cm

(
1

Cm

+ 5η̄

)[
1 +

η̄C2
L

2Cm

+
η̄2C2

L

12

]
+

4dM̄CL

C2
m

max
i∈[b]

{
ciω + (ω + 1) · N − n

n(bciNc − 1)

}
.

The proof is concluded by letting N tend towards infinity.

Lastly, we have the following asymptotic convergence result regarding QLSD++ defined in Algorithm 2 in the
main paper.
Corollary S12. Assume HS1, HS2, HS4 and HS6. In addition, assume that lim infN→∞ m/N > 0 and
lim supN→∞ A/N < ∞ for A ∈ {L, M}. Then, we have γ̄α = η̄/N where η̄ > 0 and γ̄α is defined in (S66).
In addition,

B⊕,γ̄α = d(ω + 1) O(1) ,

where B⊕,γ̄α is defined in (S67).

Proof. Since we assume that lim infN→∞ m/N > 0 and lim supN→∞ A/N < ∞ for A ∈ {L, M}, there exist Cm, CL

and CM > 0 such that m ≥ CmN , L ≤ CLN and M ≤ CMN . Under these assumptions, it is straightforward from
(S66) to see that there exists η̄ > 0 such that γ̄α = η̄/N . In addition, it follows from (S67) that

B⊕,γ̄α ≤
2dC2

L

Cm

(
1

Cm

+ 5η̄

)[
1 +

η̄C2
L

2Cm

+
η̄2C2

L

12

]
+

96(ω + 1)ldbCM

C2
m

(
(N − n)M̄

n(mini∈[b]{bciNc} − 1)
+ CM

)
.

The proof is concluded by letting N tend towards infinity.

S5 EXPERIMENTAL DETAILS

In this section, we provide additional details regarding our numerical experiments. The code, data and instruc-
tions to reproduce our experimental results can be found in the supplementary material (see folder ./code).

S5.1 Toy Gaussian example

Pseudo-code of LSD?. For completeness, we provide in Algorithm S2 the pseudo-code of the non-compressed
counterpart of QLSD?, namely LSD?.

Additional experimental details. The code associated to this experiment can be found in the supplementary
material (see ./code/notebook_toy_Gaussian-experiment.ipynb). As highlighted in Section 4 (Toy Gaussian
example paragraph) in the main paper, the synthetic dataset has been generated so that each client owns a
heterogeneous and unbalanced dataset. An illustration of the unbalancedness is given in Figure S1. The precise
procedure to generate such a dataset can be found in the aforementioned notebook.

To obtain the figure at the bottom row of Figure 1 in the main paper, we launched all the MCMC algorithms
with K = 500, 000 outer iterations and considered a burn-in period of 450, 000 iterations. Hence, only the last
50, 000 samples have been used to compute the MSE associated to the test function f : θ 7→ ‖θ‖. In order to
compute the expected number of bits transmitted during each upload period, we considered the Elias encoding
scheme and used the upper-bounds given in Alistarh et al. (2017, Theorem 3.2 and Lemma A.2).
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Algorithm S2 Variance-reduced Langevin Stochastic Dynamics (LSD?)
Input: minibatch sizes {ni}i∈[b], number of iterations K, step-size γ ∈ (0, γ̄] with γ̄ > 0 and initial point θ0.
for k = 0 to K − 1 do

for i ∈ Ak+1 // On active clients do
Draw S(i)

k+1 ∼ Uniform (℘Ni,ni).
Set H(i)

k+1(θk) = (Ni/ni)
∑

j∈S(i)
k+1

[∇Ui,j(θk)−∇Ui,j(θ
?)].

Compute gi,k+1 = H
(i)
k+1(θk).

Send gi,k+1 to the central server.
end for
// On the central server
Compute gk+1 = b

|Ak+1|
∑
i∈Ak+1

gi,k+1.
Draw Zk+1 ∼ N(0d, Id).
Compute θk+1 = θk − γgk+1 +

√
2γZk+1.

Send θk+1 to the b clients.
end for
Output: samples {θk}Kk=0.

Figure S1: Illustration of the unbalancedness of the synthetic dataset used in the Toy Gaussian experiment.

• License of the assets: No existing asset has been used for this experiment.

• Total amount of compute and type of resources used: This experiment has been run on a laptop
running Windows 10 and equipped with Intel(R) Core(TM) i7_8565U CPU 1.80GHz with 16Go of RAM.
The total amount of compute is roughly 33 hours.

• Training details: All training details (here hyperparameters) are detailed in Section 4 in the main paper.

Discretisation step-size and compression trade-off. We complement the analysis made in the main paper
by showing on Figure S2 that the saving in terms of number of transmitted bits can be further improved by
decreasing the value of γ. This numerical finding illustrates our theory which in particular shows that the
asymptotic bias associated to QLSD? is of the order ωO(γ), see Table 1 in the main paper.

S5.2 Bayesian logistic regression

Pseudo-code of LSD++. For completeness, we provide in Algorithm S3 the pseudo-code of the non-compressed
counterpart of QLSD++, namely LSD++.

Additional experimental details. The code associated to this experiment can be found in the supplemen-
tary material (see ./code/notebook_logistic_regression.ipynb). For the Bayesian logistic regression experiment
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Figure S2: Toy Gaussian example. Trade-off between step-size and compression parameter values.

Figure S3: Bayesian logistic regression on synthetic data.

detailed in the main paper, we ran the MCMC algorithms with K = 500, 000 outer iterations and considered a
burn-in period of length 50, 000.

Benefits of the memory mechanism. We also run an additional experiment on a low-dimensional synthetic
dataset to highlight the benefits brought by the memory mechanism involved in QLSD++ when the dataset is
highly heterogeneous. To this end, we consider the Synthetic(α, β) dataset (Li et al., 2020) with α = β = 1,
d = 2 and b = 50. We run QLSD++ with and without memory terms using l = 100, α = 1/(ω+ 1), γ = 10−5 and
for huge compression parameters, namely s ∈ {21, 22}. We use K = 100, 000 outer iterations without considering
a burn-in period. In order to have access to some ground truth, we also implement the Metropolis-adjusted
Langevin algorithm (MALA) (Robert and Casella, 2004).

Figure S3 shows the Euclidean norm of the error between the true variance under π estimated with MALA and the
empirical variance computed using samples generated by QLSD++. As expected, we can notice that the memory
mechanism reduces the impact of the compression on the asymptotic bias of QLSD++ when ω is large.

Results on a non-image dataset. In order to complement our results on an image dataset (FEMNIST), we
also implement our methodology and one competitor (DG-SGLD) on the covtype1 dataset. Again, the ground
truth has been obtained by implementing a long-run Metropolis-adjusted Langevin algorithm. The results we
obtained are gathered in Table S1.

• License of the assets: We use the Synthetic dataset whose associated code is under the MIT license, and
the FEMNIST dataset whose data are publicy available and associated code is under MIT license.

1https://archive.ics.uci.edu/ml/datasets/covertype
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Algorithm S3 Variance-reduced Langevin Stochastic Dynamics (LSD++)
Input: minibatch sizes {ni}i∈[b], number of iterations K, step-size γ ∈ (0, γ̄] with γ̄ > 0, initial point θ0 and
α ∈ (0, ᾱ] with ᾱ > 0.
// Memory mechanism initialisation
Initialise {η(1)

0 , . . . , η
(b)
0 } and η0 =

∑b
i=1 η

(i)
0 .

for k = 0 to K − 1 do
// Update of the control variates
if k ≡ 0 (mod l) then

Set ζk = θk.
else

Set ζk = ζk−1

end if
for i ∈ Ak+1 // On active clients do

Draw S(i)
k+1 ∼ Uniform (℘Ni,ni).

Set H(i)
k+1(θk) = (Ni/ni)

∑
j∈S(i)

k+1

[∇Ui,j(θk)−∇Ui,j(ζk)] +∇Ui(ζk).

Compute gi,k+1 = H
(i)
k+1(θk)− η(i)

k .
Send gi,k+1 to the central server.
Set η(i)

k+1 = η
(i)
k + αgi,k+1.

end for
// On the central server
Compute gk+1 = ηk + b

|Ak+1|
∑
i∈Ak+1

gi,k+1.

Set ηk+1 = ηk + α
∑b
i∈Ak+1

gi,k+1.
Draw Zk+1 ∼ N(0d, Id).
Compute θk+1 = θk − γgk+1 +

√
2γZk+1.

Send θk+1 to the b clients.
end for
Output: samples {θk}Kk=0.

• Total amount of compute and type of resources used: This experiment has been run on a laptop
running Windows 10 and equipped with Intel(R) Core(TM) i7_8565U CPU 1.80GHz with 16Go of RAM.
The total amount of compute is roughly 30 hours.

• Training details: Hyperparameter values are detailed in Section 4 in the main paper. Regarding our
experiment on real data, we use a random subset of the initial training data (for computational reasons).

S5.3 Bayesian neural networks

The code associated to this experiment can be found in the supplementary material (see ./code/experiments-
bayesian_neural_network/).

• License of the assets: We use the MNIST, FMNIST, CIFAR10 and SVHN datasets which are publicly
downloadable with the torchvision.datasets package.

Table S1: Bayesian Logistic Regression on covtype dataset.

Algorithm 99% HPD error

DG-SGLD 1.8e-2
QLSD++ 4 bits 2.2e-3
QLSD++ 8 bits 2.0e-2
QLSD++ 16 bits 1.9e-2
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• Total amount of compute and type of resources used: The total computational cost depends on the
dataset, but is roughly 40 hours in the worst case.

• Training details: We consider the same hyperparameter values detailed in Table S2 for both training on
MNIST and CIFAR10 except for the initialisation and the sampling period. For the MNIST dataset, we
use the default random weights given by pytorch whereas for CIFAR-10 we use the warm-start provided by
the pytorchcv library and consider a burn-in period of half the sampling period (K = 104 iterations) with
a thinning of 10.

In the following, we denote Dtest the test dataset and for any data (x, y) ∈ Dtest, we define the preditive density
by

p(y | x) =

∫
p(y | x, θ) π(θ | D) dθ , (S71)

where p(y | x, θ) is the conditional likelihood. For any input x, the predicted label is denoted by ypred(x) =
arg maxy p(y | x).

Metrics used for the Bayesian neural network experiment in the main paper. In the main paper, we
consider three metrics to compare the different Bayesian FL algorithms, namely Accuracy, Agreement and TV.
They are defined in the following.

• Accuracy: Based on samples from the approximate posterior distribution, we compute the minimum
mean-square estimator (i.e. corresponding to the posterior mean) and use it to make predictions on the test
dataset. The Accuracy metric corresponds to the percentage of well-predicted labels.

• Agreement: Let denote pref and p the predictive densities associated to HMC and an approximate simulation-
based algorithm, respectively. Similar to Izmailov et al. (2021), we define the agreement between pref and p
as the fraction of the test datapoints for which the top-1 predictions of pref and p, i.e.

agreement(pref , p) =
1

|Dtest|
∑

x∈Dtest

1

{
arg max

y′
pref(y

′ | x) = arg max
y′

p(y′ | x)

}
.

• Total variation (TV): By denoting Y the set of possible labels, we consider the total variation metric
between pref and p, i.e.

TV(pref , p) =
1

2|Dtest|
∑

x∈Dtest

∑
y′∈Y

|pref(y
′ | x)− p(y′ | x)| .

Performance results on a highly heterogeneous dataset. We train LeNet5 (LeCun et al., 1998) ar-
chitechture on the MNIST dataset (Deng, 2012) and we consider the FMNIST (Xiao et al., 2017) as the out-of-
distribution dataset. To obtain a highly heterogeneous setting, we split the data among b = 20 clients so that
each client has a dominant label representing 40% of the total amount in the training set and 1% of the other
labels as described in Figure S4.

Inspired by the scores defined in Guo et al. (2017), we measure the performance of the different algorithms and
report those results in Table S2. These statistics aim to better understand the predictions in order to calibrate
the models (Rahaman and Thiery, 2020).

Expected Calibration Error (ECE). To measure the difference between the accuracy and confidence of
the predictions, we group the data into M ≥ 1 buckets defined for any m ∈ [M ] by Bm = {(x, y) ∈ Dtest :
p(ypred(x)|x) ∈ ](m− 1)/M,m/M ]}. As in the previous work of Ovadia et al. (2019), we denote the model
accuracy on Bm by

acc (Bm) =
1

|Bm|
∑

(x,y)∈Bm

1ypred(x)=y

and define the confidence on Bm by

conf (Bm) =
1

|Bm|
∑

(x,y)∈Bm

p(ypred(x)|x) .
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Figure S4: Number of labels owned by different clients.

Method SGLD pSGLD QLSD QLSD PP QLSD++ QLSD++ PP FedBe-Gauss. FedBe-Dirich. FSGLD

Accuracy 99.1 99.2 98.8 98.3 98.8 98.7 43.5 79.3 98.5
102× ECE 0.577 1.25 0.916 1.57 0.692 0.930 7.51 21.3 2.65
102× BS 1.38 1.39 1.98 2.23 1.91 2.18 66.6 36.1 2.64

102× nNLL 2.86 3.16 4.15 4.82 4.11 4.65 139 78.0 6.19
Weight Decay 5 5 5 5 5 5 0 0 5

Batch Size 64 64 64 64 64 64 64 64 64
Learning rate 1e-07 1e-08 1e-07 1e-07 1e-07 1e-07 1e-02 1e-02 1e-07
Local steps N/A N/A 1 1 1 1 250 250 16

Burn-in 100epch. 100epch. 1e04 1e04 1e04 1e04 N/A N/A 1e04
Thinning 1 1 500 500 500 500 N/A N/A 500
Training 1e03epch. 1e03epch. 1e05it. 1e05it. 1e05it. 1e05it. N/A N/A 1e05it.

Table S2: Performance of Bayesian FL algorithms trained on the highly-heterogeneous dataset.

As stressed in Guo et al. (2017), for any m ∈ [M ] the accurcay acc (Bm) is an unbiased and consistent estimator
of P (ypred(x) = y | (m− 1)/M < p(ypred(x)|x) ≤ m/M). Therefore, the ECE defined by

ECE =

M∑
m=1

|Bm|
|Dtest|

|acc (Bm)− conf (Bm)|

is an estimator of
E(x,y)

[∣∣P (ypred(x) = y | p(ypred(x)|x))− p(ypred(x)|x)
∣∣].

Thus, ECE measures the absolute difference between the confidence level of a prediction and its accuracy.

Brier Score (BS). The BS is a proper scoring rule (see for example Dawid and Musio (2014)) that can only
evaluate random variables taking a finite number of values. Denote by Y the finite set of possible labels, the BS
measures the model’s confidence in its predictions and is defined by

BS =
1

|Dtest|
∑

(x,y)∈Dtest

∑
c∈Y

(p(y = c|x)− 1y=c)
2 .

Normalised negative log-likelihood (nNLL). This classical score defined by

nNLL = − 1

|Dtest|
∑

(x,y)∈Dtest

log p(y|x)

measures the model ability to predict good labels with high probability.
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Out of distribution detection. Here we study the behavior of our proposed algorithms in the out-of-
distribution (OOD) framework, we consider the pairs MNIST/FMNIST and CIFAR10/SVHN, comparing the
densities of the predictive entropies on the ID vs OOD data. These densities denoted by pin and pout respectively,
are approximated using a kernel estimator based on of the histogram associated with {Ent(x) : x ∈ Dx

test} for
Dtest ∈ {MNIST,FMNIST} or {CIFAR10,SVHN}, where Ent(x) is the predictive entropy defined by:

Ent(x) =
∑
y∈Y

p(y|x) log p(y|x) ,

and p(y|x) is defined by (S71) and estimated by the different methods that we consider. The resulting densities
from the different methods that we consider ared displayed in Figure S5.

Figure S5: Predictive entropies comparison between MNIST and FMNIST.

A new data point x is then labeled in the original dataset (MNIST or CIFAR10) if pin(Ent(x)) > pout(Ent(x))
and out-of-distribution otherwise.

Calibration results. Interpreting the predicted outputs as probabilities is only correct for well a calibrated
model. Indeed, when a model is calibrated, the confidence is closed to the accuracy of the predictions. In order
to evaluate the calibration of the models, we display the reliability diagram on the left-hand side of Figure S6.
It represents the evolution of acc(Bm) − conf(Bm) in function of conf(Bm), closer the values are to zero better
the model is calibrated.

For the second sub-experiment, we consider for any τ ∈ [0, 1], the set D
(τ)
pred = {x ∈ Dx

test : p(y|x) ≥ τ} of

classified data with credibility greater than τ . We define the test accuracy on D
(τ)
pred by

Card({x ∈ D
(τ)
pred : ytrue(x) = ypred(x)})/Card(D

(τ)
pred) .

The right-hand side of Figure S6 shows the evolution of the test accuracy on D
(τ)
pred with respect to the credibility

threshold τ . It can be noted that in both plots of Figure S6, the accuracy tends to 100% for confident predictions.
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Figure S6: Left: Calibration test from reliability diagrams – Right: Test accuracy on D
(τ)
pred with respect to the

threshold τ .


