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Abstract: We present a signal decomposition procedure, which separates modes into individual
components while preserving their integrity, in effort to tackle the challenges related to the charac-
terization of modes in an acoustic dispersive environment. With this approach, each mode can be
analyzed and processed individually, which carries opportunities for new insights into their character-
ization possibilities. The proposed methodology is based on the eigenanalysis of the autocorrelation
matrix of the analyzed signal. When eigenvectors of this matrix are properly linearly combined, each
signal component can be separately reconstructed. A proper linear combination is determined based
on the minimization of concentration measures calculated exploiting time-frequency representations.
In this paper, we engage a steepest-descent-like algorithm for the minimization process. Numer-
ical results support the theory and indicate the applicability of the proposed methodology in the
decomposition of acoustic signals in dispersive channels.

Keywords: concentration measures; dispersive channels; multivariate signals; non-stationary signals;
multicomponent signal decomposition

1. Introduction

Signals with time-varying spectral content, known as non-stationary signals, are
analyzed using time-frequency signal (TF) signal analysis [1–17]. Some commonly used
TF representations include short-time Fourier transform (STFT) [1,3], pseudo-Wigner
distribution (WD) [1,9,12], and S-method (SM) [3]. Time-scale, multi-resolution analysis
using the wavelet transform is an additional approach to characterize non-stationary signal
behavior [4]. Various representations are primarily applied in the instantaneous frequency
(IF) estimation and related applications [8–15], since they concentrate the energy of a signal
component at and around the respective instantaneous frequency. Concentration measures
provide a quantitative description of the signal concentration in the given representation
domain [18], and can be used to assess the area of the time-frequency plane covered by a
signal component.

In order to characterize multicomponent signals, it is quite common to perform signal
decomposition, which assumes that each individual component is extracted for separate
analysis, such as for the IF estimation. Decomposition techniques for multicomponent
signals are quite efficient if components do not overlap in the time-frequency plane [19–26].
The method originally presented in [26] can be used to completely extract each component
by using an intrinsic relation between the PWD and the SM. In the analysis of multicom-
ponent signals, it is, however, common that various components partially overlap in the
time-frequency plane, making the decomposition process particularly challenging [19–26].
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In this rather unfavorable scenario, overlapped components partially share the same do-
mains of supports, and existing decomposition techniques provide only partial results in
the univariate case, limited to very narrow signal classes. For example, linear frequency
modulated signals are decomposed using the chirplet transform, Radon transform, or
similar techniques [20,25], whereas sinusoidally modulated signals are separated using the
inverse Radon transform [27]. However, these techniques cannot perform the decomposi-
tion when components have a general, non-stationary form.

In the multivariate (multichannel) framework, it is assumed that the signals are ac-
quired using multiple sensors, [28–44]. The sensors modify component amplitudes and
phases. However, the interdependence of values from various channels can be utilized
in the signal decomposition. This concept has also been exploited in the empirical mode
decomposition (EMD) [39–43]. It was previously shown that WD-based decomposition
is possible if signals are available in the multivariate form [28–30]. Moreover, the decom-
position can be performed by directly engaging the eigenanalysis of the auto-correlation
matrix, calculated for signals in the multivariate form [31–34]. It should also be noted that
the problem of multicomponent signal decomposition has some similarities with the blind
source separation [45–48]. However, the basic difference is in the aim to extract each signal
component in the decomposition framework, whereas in the blind source separation, the
aim is to separate signal sources (although one source may generate several components).
The mixing scheme from the blind source separation framework is used in a recently
proposed mode decomposition approach [49]. Another line of the decomposition-related
research includes mode decomposition techniques, which could be used for separation of
modal responses and identification of progressive changes in modal parameters [50].

Overlapped components pose a challenge in various applications, such as in biomed-
ical signal processing [44,51,52], radar signal processing [53], and processing of lamb
waves [54]. Popular approaches, such as the EMD and multivariate EMD (MEMD), [39–43]
cannot respond to the challenges posed by components overlapped in the time-frequency
plane and do not provide acceptable decomposition results in this particular case [28]. Ad-
ditionally, the applicability of these methods is highly influenced by amplitude variations
of the signal components. In this paper, we present a framework for the decomposition of
acoustic dispersive environment signals into individual modes based on the multivariate
decomposition of multicomponent non-stationary signals. Even when simple signal forms
are transmitted, acoustic signals in dispersive channels appear in the multicomponent
form, with either very close or partially overlapped components. Being reflected from the
underwater surfaces and objects, each individual component carries information about
the underwater environment. That information is inaccessible while the signal is in its
multicomponent form. This makes analyzing acoustic signals (mainly their localization and
characterization) a challenging problem for research [55–60]. The presented decomposition
approach enables complete separation of components and their individual characterization
(e.g., IF estimation, based on which knowledge regarding the underwater environment can
be acquired).

We aim at solving this notoriously difficult practical problem by exploiting the inter-
dependencies of multiply acquired signals: such signals can be considered as multivariate
and are subject to slight phase changes across various channels, occurring due to different
sensing positions and due to various physical phenomena, such as water ripples, uneven
seabed, and changes in the seabed substrate. As each eigenvector of the autocorrelation
matrix of the input signal represents a linear combination of the signal components [31,33],
slight phase changes across the various channels are actually favorable for forming an
undetermined set of linearly independent equations relating the eigenvectors and the
components. Moreover, we have previously shown that each component is a linear combi-
nation of several eigenvectors corresponding to the largest eigenvalues, with unknown
weights [31] (the number of these eigenvalues is equal to the number of signal compo-
nents). Among infinitely many possible combinations of eigenvectors, the aim is to find the
weights producing the most concentrated combination, as each individual signal compo-
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nent (mode) is more concentrated than any linear combination of components, as discussed
in detail in [31]. Therefore, we engage concentration measures [18] to set the optimization
criterion and perform the minimization in the space of the weights of linear combinations
of eigenvectors.

We revisit our previous research from [28,31,33], and the main contributions are two-
fold. The decomposition principles of the auto-correlation matrix [31,33] are reconsidered.
Instead of exploiting direct search [31] or a genetic algorithm [33], we show that the mini-
mization of concentration measure in the space of complex-valued coefficients acting as
weights of eigenvectors, which are linearly combined to form the components, can be per-
formed using a steepest-descent-based methodology, originally used in the decomposition
from [28]. The second contribution is the consideration of a practical application of the
decomposition methodology.

The paper is organized as follows. After the Introduction, we present the basic theory
behind the considered acoustic dispersive environment in Section 2. Section 3 presents
the principles of multivariate signal decomposition of dispersive acoustic signals. The
decomposition algorithm is summarized in Section 4. The theory is verified on numer-
ical examples and additionally discussed in Section 5. Whereas the paper ends with
concluding remarks.

2. Dispersive Channels and Shallow Water Theory

Our primary goal is the decomposition of signals transmitted through dispersive
channels. Decomposition assumes the separation of signal components while preserving
the integrity of each component. Signals transmitted through dispersive channels are
multicomponent and non-stationary, even in cases when emitted signals have a simple form.
This makes the challenging problem of decomposition, localization, and characterization
of such signals a fairly studied topic [55–67]. The decomposition can be performed using
the time-frequency phase-continuity of the signals [55], or using the mode characteristics
of the signal [56]. After being transmitted through a dispersive environment, measured
signals consist of several components called modes. The non-stationarity of these modes is
a consequence of frequency dependent properties of the signal propagation media.

The dispersive acoustic environment is commonly studied within the context of shallow
waters, defined by the depth of the sea/ocean, which are less than D = 200 m [55,57–67].
The speed of signals traveling through water is affected by many factors, such as the
salinity, the temperature, or the pressure of the water, but it is usually approximated around
1480–1500 m/s. Note that this speed is larger than the speed of signals traveling through the
air, which is estimated at approximately 340–360 m/s. Such setups typically have extremely
complex analyses. Moreover, bottom properties and water volume add up to this complexity,
as well as noise caused by activities on the water surface and on the coastlines (commonly
related to cavitation). Dispersivity of shallow waters occurs due to many reasons, among
which are the roughness of the bottom, strength of the waves, and cavity level. Dispersive
channels have varying frequency characteristics (phase and spectral content) during the
transmission of the signal.

2.1. Normal Mode Solution

The propagation of sound in a shallow water environment is mathematically repre-
sented by the wave equations. Among several methods of deriving the solution of the
wave equation, the most commonly used is the normal mode solution, based on solving
depth-dependent equations using the method of variable separation. Further analysis will
be developed based on the isovelocity waveguide model presented in Figure 1, which char-
acterizes a rigid boundary of the seabed. This further yields to an ideally spread velocity c.
Furthermore, channel models assume that the structure of a channel is a waveguide, where
multiple normal-modes are received as delayed and scaled versions of the transmitted
signal [56,58,59,65]. Our aim is to decompose the received signal by extracting each mode
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separately. Such extracted modes can be used in further processing, such as IF estimation,
characterization, and classification.

More general models assume a more complicated environment, where the boundary
of the bottom depends on the nature of the ocean, such as the roughness, depending on the
weather conditions and different environments in the ocean itself. These models take into
account the scattering of the transmitted signal as well. Our future work will be oriented
towards these models as well.

Figure 1. The considered underwater isovelocity setup. Water depth is D, transmitter depth is zt, the
receiver is positioned at depth zr, and the transmitter–receiver range is r.

2.2. Problem Formulation—Signal Processing Approach

The practical setup, shown in Figure 1 is further considered. In this setup, it is assumed
that the transmitter is located in the water at the depth of zt, whereas the receiver is located
at the depth of zr meters. It is assumed that the wave is transmitted through an isovelocity
channel as in [55–57,61–63,67]. The distance between the transmitter and the receiver is r.

Taking into account the spectrum of the received signal, in the normal-mode case, the
transfer function reads

H(ω) =
+∞

∑
p=1

Gp(zt)Gp(zr)
exp(jkr(p, ω)r)√

kr(p, ω)r
=

+∞

∑
p=1

At(p, ω) exp
(

jkr(p, ω)r
)
, (1)

with Gp(zt) and Gp(zr) being the modal functions of the p-th mode corresponding to the
transmitter and the receiver [55,56,65], with the attenuation rate is At(p, ω) = A(p, ω)/

√
r.

Angular frequency is denoted by ω. The modes are dependent on wavenumbers kr(p, ω) [55]

k2
r (p, ω) =

(ω

c

)2
−
(
(p− 0.5)

π

D

)2
. (2)

The multicomponent structure of the transfer function is dependent on the number of
modes. The speed of sound propagation underwater is c = 1500 m/s.

The response to a monochromatic signal

s(n) = exp(jω0n) (3)

at the p-th mode can be written as

sp(n) ≈ At(p, ω0) exp(jω0n− jkr(p, ω0)r). (4)

The phase velocity of this signal is

νp(ω) =
ω

kr(p, ω)
=

ω√(
ω
c
)2 −

(
(p− 0.5) π

D
)2

. (5)
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This is the horizontal velocity of the corresponding phase for the p-th mode. The
energy propagation of the signal component is represented by the group velocity

up(ω) =
dr(t)

dt
=

dω

dkr(p, ω)
=

1
dkr(p,ω)

dω

=
1

d
dω

√(
ω
c
)2 −

(
(p− 0.5) π

D
)2

. (6)

The received signal can be represented in the Fourier transform domain as a product
of the Fourier transform of the transmitted signal, S(ω) and the transfer function H(ω) of
the channel in the normal-mode form; that is

X(ω) = S(ω)H(ω). (7)

In time domain, the received signal, x(n), is the convolution of the transmitted signal,
s(n) and the impulse response, h(n), from (1), i.e.,

x(n) = s(n) ∗ h(n). (8)

In the following sections, we present an efficient methodology for the decomposition
of mode functions, which will make the problem of detecting and estimating the received
signal parameters straightforward.

3. Multivariate Decomposition
3.1. Multivariate (Multichannel) Signals

Multivariate or multichannel signals are acquired using multiple sensors. It is further
assumed that C sensors at the receiving position are used for the acquisition of signal xR(n).
Here, subscript R is used to denote the fact that the acquired signal is real-valued. All
C sensors placed at the depth zr are part of the receiver. In the range direction, sensor
distances from the transmitter are r + δc, c = 1, 2, . . . , C. Deviations δc, c = 1, 2, . . . , C, are
small as compared to the distance, r, between the transmitter and receiver locations in
Figure 1 in range direction.

Since the measured signal, xR(n), is real-valued, its analytic extension

x(n) = xR(n) + jH{xR(n)} (9)

is assumed in the further multivariate decomposition setup, whereH{xR(n)} is the Hilbert
transform of this signal. This analytic form assumes only non-negative frequencies. Each
sensor modifies the amplitude and the phase of the acquired signal. Therefore, the channel
signals take the form ac(n) exp(jφc(n)) = αc exp(jϕc)x(n), for each sensor c = 1, 2, . . . , C.
When a monocomponent signal x(n) = A(n) exp(jψ(n)), is measured at sensor c, this
yields

ac(n) exp(jφc(n)) = αc exp(jϕc)x(n),

or ac(n) cos(φc(n)) in the case of a real-valued signal. The corresponding analytic signal,
ai(n) exp(jφi(n)) = ai(n) cos(φi(n)) + jH{ai(n) cos(φi(n))} is a valid representation of
the real amplitude-phase signal ac(n) cos(φc(n)) if the spectrum of ai(n) is nonzero only
within the frequency range |ω| < B and the spectrum of cos(φi(n)) occupies a non-
overlapping (much) higher frequency range [5]. If variations of the amplitude, ac(n), are
much slower than the phase φc(n) variations, then this signal is monocomponent [31]. A
unified representation of a multichannel (multivariate) signal, acquired using C sensors,
assumes the following vector form

x(n) =


x(1)(n)
x(2)(n)

...
x(C)(n)

 =


a1(n)ejφ1(n)

a2(n)ejφ2(n)

...
aC(n)ejφC(n)

, n = 1, 2, . . . , N. (10)
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3.2. Multivariate Multicomponent Signals

When the measured signal consists of a linear combination of P linearly independent
components sp(n) = Ap(n)ejψp(n), p = 1, 2, . . . , P, then it is commonly referred to as a
multicomponent signal

x(n) =
P

∑
p=1

sp(n) =
P

∑
p=1

Ap(n)ejψp(n). (11)

Component amplitudes, Ap(n), are characterized by slow-varying dynamics as com-
pared to the variations of the component phases, ψp(n). Linear independence of the
components assumes that neither component can be represented as a linear combination of
other components for any considered time instant n.

Incorporation of multicomponent signal definition (11) into the multichannel form
(10), yields

x(n) =


x(1)(n)
x(2)(n)

...
x(C)(n)

 =


a1(n)ejφ1(n)

a2(n)ejφ2(n)

...
aC(n)ejφC(n)

 =


∑P

p=1 α1psp(n)ejϕ1p

∑P
p=1 α2psp(n)ejϕ2p

...
∑P

p=1 αCpsp(n)ejϕCp

, n = 1, 2, . . . , N, (12)

or, more briefly, 
x(1)(n)
x(2)(n)

...
x(C)(n)

 =


a11 a12 . . . a1P
a21 a22 . . . a2P
...

...
. . .

...
aC1 aC2 . . . aCP




s1(n)
s2(n)

...
sP(n)

, (13)

that is
x(n) = As(n), (14)

where the vector of signal components, s(n) is, for instant n, given by

s(n) =


s1(n)
s2(n)

...
sP(n)

, n = 1, 2, . . . , N. (15)

Matrix A of size C× P, which relates the signal in the c-th channel, x(c)(n) with signal
components, sp(n), in form of a linear combination

x(c)(n) =
P

∑
p=1

acpsp(n) =
P

∑
p=1

αcpsp(n)ejφcp (16)

has the following form

A =


a11 a12 . . . a1P
a21 a22 . . . a2P
...

...
. . .

...
aC1 aC2 . . . aCP

,
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with elements being complex constants acp = αcpejϕcp , c = 1, 2, . . . , C, p = 1, 2, . . . , P. These
constants linearly relate the channel signals with signal components. Clearly, the maximum
number of independent channels x(1)(n), x(2)(n), . . . , x(C)(n) in x(n) is

M = min{C, P}, (17)

since rank{A} ≤ min{C, P}.
The relation between the C measured channel signals, x(c)(n), and P components,

xp(n), can be, taking into consideration all time instants, formed by introducing C × N
matrix Xsen with elements being the sensed signal values, and Xcom comprising the samples
of signal components sp(n). In that case, the relation is

x(1)(1) . . . x(1)(N)

x(2)(1) . . . x(2)(N)
...

. . .
...

x(C)(1) . . . x(C)(N)

 = A


s1(1) . . . s1(N)
s2(1) . . . s2(N)

...
. . .

...
sP(1) . . . sP(N)

. (18)

or
Xsen = AXcom. (19)

Now we can introduce the autocorrelation matrix R of the sensed signal, whose
eigenvectors will be used in the multivariate decomposition framework:

R = XH
senXsen, (20)

where (·)H denotes the Hermitian transpose. Individually, elements of this matrix are
products of x(n1) and xH(n1) at given instants n1 and n2:

R(n1, n2) = xH(n2)x(n1) =
C

∑
i=1

x(i)∗(n2)x(i)(n1), (21)

where x(n1) = [x(1)(n1) x(2)(n1) . . . x(C)(n1)]
T is the column vector of sensed values

at a given instant n1. As it will be shown next, the eigenvectors of the autocorrelation
matrix, R, corresponding to the largest eigenvalues, consist of linear combinations of signal
components. This fact will be used to develop the algorithm for the extraction of those
components.

3.3. Eigendecomposition of the Autocorrelation Matrix

It is well-known that any square matrix R, of dimensions K × K, can be subject of
eigenvalue decomposition

R = QΛQH =
K

∑
p=1

λpqpqH
p , (22)

with λp being the eigenvalues and qp being the corresponding eigenvectors of matrix R.
Matrix Λ contains eigenvalues λp, p = 1, 2, . . . , K on the main diagonal and zeros at other
positions. Matrix Q = [q1, q2, . . . , qK] contains the eigenvectors qp as its columns. Since R
is symmetric, eigenvectors are orthogonal.

From definition (20) and based on relation Xsen = AXcom, autocorrelation matrix R
can be rewritten as

R = XH
senXsen = XH

comAHAXcom =
P

∑
i=1

P

∑
j=1

āijsisH
j , (23)
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where āij is used to denote elements of matrix AHA and si = [si(1), si(2), . . . si(N)]H .
Elements of matrix R are

R(n1, n2) =
P

∑
i=1

P

∑
j=1

āijsi(n1)s∗j (n2) =
[
s∗1(n2), s∗2(n2), . . . , s∗P(n2)

]
AHA


s1(n1)
s2(n1)

...
sP(n1)

. (24)

Based on the decomposition of matrix R on its eigenvalues and eigenvectors, we
further have

R =
M

∑
p=1

λpqpqH
p =

P

∑
i=1

P

∑
j=1

āijsisH
j , (25)

with M = min{C, P}. It will be further assumed that the number of sensors, C is such that
C ≥ P. In that case, there are M = P eigenvectors in (25). Two general cases can be further
discussed:

• Non-overlapped components. Note that the case when no components si and sj overlap
in the time-frequency plane implies that these components are orthogonal. In that
case, the right side of (25) becomes:

R =
P

∑
i=1

sisH
i

P

∑
j=1

āij = κp

P

∑
p=1

spsH
p =

P

∑
p=1

λpqpqH
p (26)

where κp = ∑P
j=1 āij. The considered case of non-overlapped (orthogonal) components

further implies that
κpsp = λpqp, p = 1, 2, . . . , P. (27)

• Partially overlapped components. Based on (25), since the partially overlapped compo-
nents are non-orthogonal; that is, such components are linearly dependent, eigenvec-
tors can be expressed as linear combinations of such components

q1 = ξ11s1 + ξ21s2 + · · ·+ ξP1sP

q2 = ξ12s1 + ξ22s2 + · · ·+ ξP2sP

...

qM = ξ1Ms1 + ξ2Ms2 + · · ·+ ξPMsP, (28)

with M = min{C, P}, i.e., for assumed C ≥ P, M = P.

3.4. Components as the Most Concentrated Linear Combinations of Eigenvectors

Based on (28) and for assumed M = P, each signal component, sp can be expressed as
a linear combination of eigenvectors qp of matrix R, p = 1, 2, . . . , P; that is

sp = γ1pq1 + γ2pq2 + · · ·+ γPpqP, (29)

where γip, i = 1, 2, . . . P, p = 1, 2, . . . P are unknown coefficients. Obviously, there are M =

P linear equations for P components, with P2 unknown weights. Among infinitely many
solutions of this undetermined system of equations, we aim at finding those combinations
that produce signal components. Moreover, since components are partially overlapped,
in the case when one component is detected, its contribution should be removed from all
equations (linear combinations of eigenvectors) in order to avoid that it is detected again.

Obviously, for the detection of linear combinations of eigenvectors, which represent
signal components, a proper detection criterion shall be established. Since non-stationary
signals can be suitably represented using time-frequency representations, and signal com-
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ponents tend to be concentrated along their instantaneous frequencies, our criterion will be
based on time-frequency representations.

Time-frequency signal analysis provides a mathematical framework for a joint rep-
resentation of signals in time and frequency domains. If w(m) denotes a real-valued,
symmetric window function of length Nw, then signal sp(n) can be represented using
the STFT

STFTp(n, k) =
Nw−1

∑
m=0

w(m)sp(n + m)e−j2πmk/Nw , (30)

which renders the frequency content of the portion of signal around the each considered
instant n, localized by the window function w(n).

To determine the level of the signal concentration in the time-frequency domain, we
can exploit concentration measures. Among various approaches, inspired by the recent
compressed sensing paradigm, measures based on the `ρ norm of the STFT have been used
lately [18]

M
{

STFTp(n, k)
}
= ‖STFT(n, k)‖ρ

ρ

= ∑
n

∑
k
|STFT(n, k)|ρ = ∑

n
∑
k

SPECρ/2(n, k), (31)

where SPEC(n, k) = |STFT(n, k)|2 represents the commonly used spectrogram, whereas
0 ≤ ρ ≤ 1. For ρ = 1, the `1-norm is obtained.

We consider P components, sp(n), p = 1, 2, . . . , P. Each of these components has
finite support in the time-frequency domain, Pp, with areas of support Πp, p = 1, 2, . . . , P.
Supports of partially overlapped components are also partially overlapped. Furthermore,
we will make a realistic assumption that there are no components that overlap completely.
Assume that Π1 ≤ Π1 ≤ · · · ≤ ΠP.

Consider further the concentration measureM
{

STFTp(n, k)
}

of

y = η1q1 + η2q2 + · · ·+ ηPqP, (32)

for p = 0. If all components are present in this linear combination, then the concentration
measure ‖STFT(n, k)‖0, obtained for p = 0 in (31), will be equal to the area of P1 ∪ P2 ∪
. . .PP.

If the coefficients ηp, p = 1, 2, . . . , P are varied, then the minimum value of the `0-norm
based concentration measure is achieved for coefficients η1 = γ11, η2 = γ21, . . . , ηP = γP1
corresponding to the most concentrated signal component s1(n), with the smallest area of
support, Π1, since we have assumed, without the loss of generality, that Π1 ≤ Π1 ≤ · · · ≤
ΠP holds. Note that, due to the calculation and sensitivity issues related with the `0-norm,
within the compressive sensing area, `1-norm is widely used as its alternative, since under
reasonable and realistic conditions, it produces the same results [31]. Therefore, it can be
considered that the areas of the domains of support in this context can be measured using
the `1-norm.

The problem of extracting the first component, based on eigenvectors of the autocorre-
lation matrix of the input signal, can be formulated as follows

[β11, β21, . . . , βP1] = arg min
η1,...,ηP

‖STFT(n, k)‖1. (33)

The resulting coefficients produce the first component (candidate)

s̄1 = β11q1 + β21q2 + · · ·+ βPqP1. (34)

Note that if β11 = γ11, β21 = γ21, . . . βP1 = γP1 holds, then the component is exact;
that is, s̄1 = s1 holds. In the case when the number of signal components is larger than two,
the concentration measure in (33) can have several local minima in the space of unknown
coefficients η1, η2, . . . , ηP, corresponding not only to individual components but also to



Mathematics 2021, 9, 2796 10 of 29

linear combinations of two, three or more components. Depending on the minimization
procedure, it can happen that the algorithm finds this local minimum; that is, a set of
coefficients producing a combination of components instead of an individual component.
In that case, we have not extracted successfully a component since s̄1 6= s1 in (34), but as
it will be discussed next, this issue does not affect the final result, as the decomposition
procedure will continue with this local minimum eliminated.

3.5. Extraction of Detected Component and Further Decomposition

Upon detection of the first local minimum, being a signal component or a linear
combination of several components, s̄1, first eigenvector, q1 should be replaced by s̄1 in the
linear combination

y = η1q1 + η2q2 + · · ·+ ηPqP, (35)

i.e., q1 = s̄1 is further used as the first eigenvector. However, since (28) holds, the contribu-
tion of this detected component (or linear combination of components) is still present in
remaining eigenvectors qp, p = 2, 3, . . . , P and shall be removed from these eigenvectors as
well. To this aim, we utilize the signal deflation theory [31], and remove the projections of
this component from remaining eigenvectors using

qp =
qp − qH

1 qpq1√
1− |qH

1 qp|2
. (36)

This ensures that s̄1 is not repeatedly detected afterward. If s̄1 = s1, then the first
component is found and extracted, whereas its projection on other eigenvectors is removed.

The described procedure is then repeated iteratively, with linear combination y =
η1q1 + η2q2 + · · ·+ ηPqP with first eigenvector q1 = s̄1 and eigenvectors qp, p = 1, 2, . . . , P,
modified according to (36). Upon detecting the second component (or linear combination
of a small number of components), s̄2, the second eigenvector is replaced, q1 = s̄2, whereas
its projections from remaining eigenvectors is removed using

qp =
qp − qH

2 qpq2√
1− |qH

2 qp|2
. (37)

The process repeats until all components are detected and extracted. These principles
are incorporated into the decomposition algorithm presented in the next section.

4. The Decomposition Algorithm and Concentration Measure Minimization
4.1. Decomposition Algorithm

The decomposition procedure can be summarized with the following steps:

1. For given multivariate signal

x(n) =


x(1)(n)
x(2)(n)

...
x(C)(n)


calculate the input autocorrelation matrix

R = XH
senXsen (38)

where
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Xsen =


x(1)(1) . . . x(1)(N)

x(2)(1) . . . x(2)(N)
...

. . .
...

x(C)(1) . . . x(C)(N)

. (39)

2. Find eigenvectors qp and eigenvalues λp, p = 1, 2, . . . , P of matrix R.
It should be noted that the number of components, P, can be estimated based on the
eigenvalues of matrix R. Namely, as discussed in [31], P largest eigenvalues of matrix
R correspond to signal components. These eigenvalues are larger than the remaining
N − P eigenvalues. This property holds even in the presence of a high-level noise: a
threshold for separation of eigenvalues corresponding to signal components can be
easily determined based on the input noise variance [28].

3. Initialize variable Nu = 0 and variable k = 0. Variable Nu will store the number of
updates of eigenvectors qp, p 6= i when projection of detected component (candidate)
is removed from eigenvectors qp, p 6= i. Variable k represents the index of the detected
components.

4. For i = 1, 2, . . . , P, repeat the following steps:

(a) Solve minimization problem

min
β1k ,...,βPk

∥∥∥∥∥STFT

{
1
C

P

∑
p=1

βpkqp

}∥∥∥∥∥
1

subject to βik = 1

where STFT{·} is the STFT operator. Signal y = 1
C ∑P

p=1 βpkqp is scaled with

C =

√∥∥∥∑P
p=1 βpkqp

∥∥∥
2

in order to normalize energy of the combined signal to 1. Coefficients
β1k, β2k, . . . , βPk are obtained as a result of the minimization.

(b) Increment component index k← k + 1
(c) If for any p 6= i, βpk 6= 0 holds, then

• Increment variable Nu ← Nu + 1
• Upon replacing the i-th eigenvector by the detected component,

qi =
1
C

P

∑
p=1

βpkqp (40)

remove projections of detected component (candidate) from remaining
eigenvectors. For l = i + 1, i + 2, . . . , P repeat:

i. b = qH
i ql

ii. ql =
1√

1−|b|2
(ql − bqi)

5. If Nu > 0, return to Step 3.

Finally, as a result, we obtain the number of components, P, and the set of extracted
components, q1, q1, . . . , qP.

It should be noted that checking whether Nu > 0 holds in Step 5 is crucial for removing
possibly detected local minima of concentration measure not corresponding to individual
components, but to a linear combination of several components. Namely, if this situation
happens, upon applying signal deflation by removing projection of the linear combination
of components from other eigenvectors, a linear dependence among eigenvectors will still
remain, and it will not allow Nu to fall to zero. This returns the algorithm to Step 3, and the
procedure for the component detection repeats, but with the local minimum removed from



Mathematics 2021, 9, 2796 12 of 29

the concentration measure since all the eigenvectors are already updated in the previous
cycle. Note that the component index k is reset to zero in this case.

Moreover, it should be emphasized that, while the presented procedure produces P
eigenvectors, which is exactly equal to the given number of components, this number is not
always a priori known. In practical applications, it can be determined based on eigenvalues
of matrix R. As it will be illustrated in numerical examples, the largest eigenvalues
correspond to signal components [28,31]. The remaining eigenvalues correspond to the
noise. Therefore, a simple threshold can be used to calculate the exact number of signal
components. Namely, we simply count the number of eigenvalues larger than a predefined
threshold T, being a small positive constant. In the presence of the noise, threshold T
should be at least equal to the noise variance. The larger the noise, the larger are the
eigenvalues corresponding to the noise (thus, larger should the threshold T be). Of course,
the procedure works without the exact information about the number of components: for
p > P, eigenvectors qp contain only the noise after the decomposition is finished.

4.2. Concentration Measure Minimization

The concentration measure minimization is performed in the steepest descent manner,
as presented in Algorithm 1. The coefficient βpk = 1 is fixed for p = i, whereas the values
of other coefficients are varied for ±∆. Note that real and imaginary parts are varied
separately.

For the real part, and for each p = 1, 2, . . . , P, p 6= i, the `1-norm based concentration
measure is calculated in both cases, for auxiliary signal formed when given coefficient is
increased by ∆, and for the other auxiliary signal formed when ∆ is subtracted from the
given coefficient.

For illustration, observe linear combination y = ∑P
p=1 βpkqp. When ∆ is added to

given βpk, p 6= i, p = p0, signal

y+
r =

P

∑
p=1

p 6=p0

βpkqp + (βp0k + ∆)qp0 =
P

∑
p=1

βpkqp + ∆qp0 = y + ∆qp0 (41)

is formed. For this signal, with energy normalized using the `2-norm; that is

y+
r

‖y+
r ‖2

=
y + ∆qp0

‖y + ∆qp0‖2
, (42)

concentration measureM+
r is calculated, as the `1-norm of the corresponding STFT coeffi-

cients
M+

r =
∥∥STFT

{
y+

r
}∥∥

1. (43)

Similarly, for the coefficient βp0k changed in the opposite direction; that is, for −∆,
measure

M−
r =

∥∥STFT
{

y−r
}∥∥

1. (44)

is calculated for signal
y−r
‖y−i ‖2

=
yr − ∆qp0

‖y− ∆qp0‖2
. (45)
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Algorithm 1 Minimization procedure

Input:
• Vectors q1, q2, . . . , qP
• Index i where corresponding vector qi should be kept with unity coefficient

βpk = 1
• Required precision ε

1: βpk =

{
1 for p = i
0 for p 6= i

for p = 1, 2, . . . , P

2: Mold ← ∞
3: ∆ = 0.1
4: repeat

5: y←
P

∑
p=1

βpkqp

6: Mnew ←
∥∥∥∥STFT

{
y
‖y‖2

}∥∥∥∥
1

7: ifMnew >Mold then
8: ∆← ∆/2
9: βpk ← βpk +∇p, for p = 1, 2, . . . , P . Cancel the last coefficients update

10: y←
P

∑
p=1

βpkqp

11: else
12: Mold ←Mnew
13: end if
14: for p = 1, 2, . . . , P do
15: if p 6= i then

16: M+
r ←

∥∥∥∥∥STFT

{
y + ∆qp∥∥y + ∆qp

∥∥
2

}∥∥∥∥∥
1

17: M−
r ←

∥∥∥∥∥STFT

{
y− ∆qp∥∥y− ∆qp

∥∥
2

}∥∥∥∥∥
1

18: M+
i ←

∥∥∥∥∥STFT

{
y + j∆qp∥∥y + j∆qp

∥∥
2

}∥∥∥∥∥
1

19: M−
i ←

∥∥∥∥∥STFT

{
y− j∆qp∥∥y− j∆qp

∥∥
2

}∥∥∥∥∥
1

20: ∇p ← 8∆
M+

r −M−
r

Mnew
+ j8∆

M+
i −M

−
i

Mnew

21: else
22: ∇p ← 0
23: end if
24: end for
25: βpk ← βpk −∇p, for p = 1, 2, . . . , P . Coefficients update

26: until ∑P
p=1 |∇p|2 is below required precision ε

Output:
• Coefficients β1k, β2k, . . . , βPk
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Since each considered coefficient βp0k is complex-valued in general, the same proce-
dure is repeated for the imaginary parts of coefficients. Therefore, signals

y+
i

‖y+
i ‖2

=
yi + j∆qp0

‖y + j∆qp0‖2
. (46)

and
y−i
‖y−‖2

=
yi − j∆qp0

‖y− j∆qp0‖2
. (47)

are formed, serving as a basis to calculate the corresponding concentration measures

M+
i =

∥∥STFT
{

y−i
}∥∥

1 (48)

and
M−

i =
∥∥STFT

{
y−i
}∥∥

1. (49)

Now, based on the calculated concentration measures for variations of real and imag-
inary parts, concentration measure gradient ∇p is calculated and used to determine the
direction for the update of βp0k

∇p = 8∆
M+

r −M−
r

Mnew
+ j8∆

M+
i −M

−
i

Mnew
(50)

whereMnew used for scaling the gradient is calculated as concentration measure of

y =
P

∑
p=1

βpkqp,

scaled by its energy, before updates of coefficient βpk; that is

Mnew =

∥∥∥∥STFT
{

y
‖y‖2

}∥∥∥∥
1
. (51)

For coefficients βpk, p 6= i, the gradient is equal to zero; that is, ∇p = 0, meaning that
these coefficients should not be updated.

Coefficient βpk is updated using the calculated gradient, in the steepest descent manner

βpk ← βpk −∇p, for p = 1, 2, . . . , P. (52)

The process is repeated until ∑P
p=1 |∇p|2 becomes smaller than a predefined preci-

sion ε.

5. Results

For the visual presentation of the results, the discrete Winger distribution (pseudo-
Wigner distribution) will be used in our numerical examples. For a discrete signal x(n),
this second-order time-frequency representation is calculated according to

WD(n, k) =
Nw−1

∑
m=0

w(m)w(−m)x(n + m)x∗(n−m)e−j4π mk
Nw , (53)

where w(n) is a window function of length Nw.
For examples 1, 2, and 3, the quality of the decomposition will be determined based

on two criteria:

• WD calculated for the pth original component (signal is given analytically), denoted
by WDo

p(n, k) = WD{sp}, is compared with WDe
p(n, k) = WD{ŝp}, being the WD cal-
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culated for pth extracted component, for p = 1, 2, . . . , P. Here, ŝ denotes the vector of
the pth extracted component, whereas sp is the actual (original) pth signal component.

• Estimation results for the discrete IFs obtained from the two previous WDs are com-
pared by the means of mean squared error (MSE) for each pair of components. The IF
estimate based on the WD of the original pth component, WDo

p(n, k), p = 1, 2, . . . , P is
calculated as [3]

ko
p(n) = arg max

k
WDo

p(n, k) (54)

whereas the IF estimate based on the WD of the pth component extracted by the
proposed approach is calculated as

ke
p(n) = arg max

k
WDe

p(n, k). (55)

Since the extracted components do not have any particular order after the decompo-
sition is finished, the corresponding pairs of original and extracted components are
automatically determined using the following procedure:

1. For p in 1, 2, . . . , P repeat steps (a)–(f)

(a) Calculate ko
p(n) based on (54) for analytically defined component sp.

(b) Run decomposition algorithm. Use only eigenvectors corresponding to
the largest P eigenvalues. Each of these eigenvectors, qp, contain an
extracted signal component. If P is not given, estimate the number of
components, P, as the number of eigenvalues, λp, of matrix R, larger than
threshold T = σ2

ε + 10−4.
(c) Initialize set E← ∅, to store the errors between IFs estimated based on

the given original component sp and extracted (unordered) components
qi, i = 1, 2, . . . , P, being the outputs of the decomposition procedure.

(d) For each extracted component, q1, q2, . . . , qP repeat steps i–iii:

i. Calculate the IF estimate ke
i (n) as:

ke
i (n)← arg max

k
WD{qi}.

ii. Calculate mean squared error (MSE) between ko
p(n) and ke

i (n) as

MSE(i)← 1
N

N−1

∑
n=0

∣∣∣ko
p(n)− ke

i (n)
∣∣∣2.

iii. E← E∪MSE(i).

(e) p̂← arg mini MSE(i)
(f) ŝp ← q p̂ is the pth estimated component, corresponding to the original

component sp.

Upon determining pairs of original and estimated components, (sp, ŝp), respective IF
estimation MSE is calculated for each pair

MSEp =
1
N

N−1

∑
n=0

∣∣∣ko
p(n)− ke

p(n)
∣∣∣2, p = 1, 2, . . . , P, (56)

where ke
p(n) = arg maxk WD{ŝp}.

It should also be noted that in Examples 1–3, in order to avoid IF estimation errors at
the ending edges of components (since they are characterized by time-varying amplitudes),
the IF estimation is based on the WD auto-term segments larger than 10% of the maximum
absolute value of the WD corresponding to the given component (auto-term), i.e.,
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k̂o
p(n) =

{
ko

p(n), for |WDo
p(n, k)| ≥ TWDo ,

0, for |WDo
p(n, k)| < TWDo ,

(57)

where TWDo = 0.1 max{|WDo
p(n, k)|} is a threshold used to determine whether a compo-

nent is present at the considered instant n. If it is smaller than 10% of the maximal value of
the WD, it indicates that the component is not present.

Examples

Example 1. To evaluate the presented theory, we consider a general form of a multicomponent
signal consisted of P non-stationary components

x(c)p (n) =
P

∑
p=1

Ap exp

(
− n2

L2
p

)
exp

(
j

1
N2 n3 + j

2π fp

N
n2 + j

2πφp

N
n + jϑc

)
+ ε(c)(n), (58)

−128 ≤ n ≤ 128 and N = 257. Phases ϑc, c = 1, 2, . . . , C, are random numbers with uniform
distribution drawn from interval [−π, π]. The signal is available in the multivariate form x(n) =[

x(1)(n), x(2)(n), . . . , x(C)(n)
]T

, and is consisted of C channels, since it is embedded in a complex-

valued, zero-mean noise ε(c)(n) with a normal distribution of its real and imaginary part,N (0, σ2
ε ).

Noise variance is σ2
ε , whereas Ap = 1.2. Parameters fp and φp are FM parameters, while Lp is

used to define the effective width of the Gaussian amplitude modulation for each component.

We generate the signal of the form (58) with P = 6 components, whereas the noise
variance is σε = 1. The respective number of channels is C = 128. The corresponding
autocorrelation matrix, R, is calculated, according to (20), and the presented decomposition
approach is used to extract the components. Eigenvalues of matrix R are given in Figure 2a.
Largest six eigenvalues correspond to signal components, and they are clearly separable
from the remaining eigenvalues corresponding to the noise. WD and spectrogram of the
given signal (from one of the channels) are given in Figure 2b,c, indicating that the signal is
not suitable for the classical TF analysis, since the components are highly overlapped.

Each of eigenvectors of the matrix R is a linear combination of components, as shown
in Figure 3. The presented decomposition approach is applied to extract the components
by linearly combining the eigenvectors from Figure 3. The results are shown in Figure 4a–f.
Although a small residual noise is present in the extracted components, they highly match
the original components, presented in Figure 4g–l. The original components in Figure 4g–l
are not corrupted by the noise.

As a measure of quality, we engage MSEp given by (56), which is the error between
the IF estimation result based on the pth extracted signal component (shown in Figure 4a–f)
versus the IF estimation calculated based on the WD of original, noise-free component
(from Figure 4g–l). The IF estimates and the corresponding MSEs are, for each pair of
components, presented in Figure 5, for standard deviation of the noise σε = 1, where the
number of channels is C = 128.
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Figure 2. (a) Eigenvalues of autocorrelation matrix R, (b) Wigner distribution of the signal from
Example 1 and (c) Spectrogram of the signal from Example 1. Signal consists of P = 6 non-stationary
components. The signal is embedded in an intensive complex, Gaussian, zero-mean noise with σε = 1.
The number of channels is C = 128. The largest six eigenvalues correspond to signal components.
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Since MSEp given by (56) serves as a measure of the component extraction quality,
we evaluate the decomposition performance for various standard deviations of the noise,
σε ∈ {0.1, 0.4, 0.7, 1.0, 1.3, 1.9, 2.1} . Results are presented in Table 1. The presented MSEs
are calculated by averaging the results obtained based on 10 realizations of multichannel
signal of the form (58) with random phases ϑc, c = 1, 2, . . . , C and corrupted by random
realizations of the noise ε(c)(n)r, for each observed variance (standard deviation) of the
noise. Based on the results from Table 1, it can be concluded that each signal component is
successfully extracted for noise characterized by standard deviation up to σε = 1.3. For
stronger noise, only some components are successfully extracted. It shall be noted that the
performance of the algorithm depends also on the number of channels, C. For the results
from Table 1, the number of channels was set to C = 256. A larger value of C increases the
probability of successful decomposition, as investigated in [31].
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Figure 3. Time-frequency representations of eigenvectors corresponding to the largest six eigenvalues
of the autocorrelation matrix R of the signal from Example 1. Each eigenvector represents a linear
combination of non-stationary components with polynomial frequency modulation. Panels (a–f)
show Wigner distribution of each eigenvector.
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Figure 4. Extracted and original signal components of the non-stationary multicomponent multi-
channel signal considered in Example 1. Panels (a–f) present extracted using the proposed approach,
whereas panels (g–l) show Wigner distributions calculated for individual components of the original,
noise-free signal.
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Figure 5. Instantaneous frequency estimation for individual signal components based on: extracted
signal components (dashed black) and original signal components (solid white). MSEs between the
two IF estimates is provided for each component of the signal from Example 1. The noise variance is
σ2

ε = 1. Decomposition is based on C = 128 channels.
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Table 1. Mean squared errors (MSEs) between IF estimations based on extracted and original
components, for signal from Example 1 with P = 6 components. MSEp, p = 1, 2, . . . , 6 corresponds
to the pth component. The results are presented for various values of the standard deviation of the
noise, σε. The results are averaged based on 10 random realizations of signals with random phases
and noise, for each considered value of σε.

σε MSE1 MSE2 MSE3 MSE4 MSE5 MSE6

0.1 −20.89 dB −16.12 dB −18.67 dB −15.66 dB −11.86 dB −22.65 dB
0.4 −16.63 dB −14.52 dB −11.19 dB −12.44 dB −10.22 dB −17.21 dB
0.7 −20.89 dB −12.23 dB −12.04 dB −12.04 dB −9.13 dB −15.66 dB
1.0 −13.62 dB −10.89 dB −7.27 dB −10.22 dB −6.21 dB −12.04 dB
1.3 −12.65 dB −9.86 dB −7.46 dB −9.53 dB −3.99 dB −13.62 dB
1.6 −9.63 dB 16.67 dB 35.04 dB −10.74 dB 27.28 dB 36.01 dB
1.9 −9.75 dB 32.50 dB 39.85 dB −12.87 dB 30.28 dB 34.61 dB
2.1 −9.86 dB −7.33 dB −8.42 dB −9.64 dB 7.03 dB −7.46 dB

Example 2. The decomposition algorithm is tested on a more complex signal of the form (58), with
P = 8 components, whereas the standard deviation of the noise is now σε = 0.1. The number of
channels is C = 128. After the input autocorrelation matrix, R, is calculated, according to (20),
eigendecomposition produced the eigenvalues given in Figure 6a. Signal components overlap in
the time-frequency domain and, therefore, the corresponding Wigner distribution and spectrogram
shown in Figure 6b,c cannot be used as adequate tools for their analysis. Figure 7 indicates
that the components are neither visible in the time-frequency representation of any eigenvector
corresponding to the largest eigenvalues. This is in accordance with the fact that eigenvectors
contain signal components in the form of their linear combinations. Upon applying the presented
multivariate decomposition procedure on this set of eigenvectors, we obtain results presented in
Figure 8. By comparing the results with Wigner distributions of individual, noise-free components,
shown in Figure 9, comprising the considered multicomponent signal, it can be concluded that the
components are successfully extracted with preserved integrity. This is additionally confirmed by
the IF estimation results shown in Figure 10, where even lower MSE values for each component can
be explained by the lower noise level, as compared with results from the previous example.
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Figure 6. (a) Eigenvalues of autocorrelation matrix R, (b) Wigner distribution of the signal from
Example 2, and (c) spectrogram of the signal from Example 2. Signal consists of P = 8 non-stationary
components. The signal is embedded in an intensive complex, Gaussian, zero-mean noise with σε = 1.
The number of channels is C = 128. The largest eight eigenvalues correspond to signal components.
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Figure 7. (a–h) Time-frequency representations of eigenvectors corresponding to the largest eight
eigenvalues of autocorrelation matrix R of the signal from Example 2. Each eigenvector represents a
linear combination of non-stationary components with polynomial frequency modulation.
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Figure 8. (a–h) Extracted signal components of the non-stationary multicomponent multichannel
signal considered in Example 2. The decomposition is performed using the presented multivariate
approach. The number of components is P = 8.
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Figure 9. (a–h) Original signal components of the non-stationary multicomponent multichannel
signal considered in Example 2. Wigner distributions are calculated, each individual, noise free
component.
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Figure 10. Instantaneous frequency estimation for individual signal components based on the
extracted signal components (dashed black) and the original signal components (solid white). MSEs
between the two IF estimates is provided for each component of the signal from Example 2. The
noise variance is σ2

ε = 0.1. Decomposition is based on C = 128 channels.
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Example 3. To illustrate the applicability of the presented approach in decomposition of components
with faster or progressive frequency variations over time, we observe a signal consisted of P = 6
components, three of which have polynomial modulations as components in model (58), whereas
three other components have frequency modulations of sinusoidal nature. The first three components
are defined as:

s(c)1 (n) = exp
(
−(n/128)2

)
exp(j40.5 cos(2.34πn/N) + j10πn/N + jϑc) (59)

s(c)2 (n) =
{

exp(j16 sin(9πn/N) + jϑc), for ≥ 0
exp(j85.33 sin(2π(n + 128)/N) + jϑc), for n < 0

(60)

s(c)3 (n) = exp
(
−(n/128)2

)
exp(j30.5 sin(5.47πn/N) + j10πn/N + jϑc) (61)

The remaining components have polynomial frequency modulation, as in previous examples:

s(c)p (n) = Ap exp

(
− n2

L2
p

)
exp

(
j

1
N2 n3 + j

2π fp

N
n2 + j

2πφp

N
n + ϑc

)
+ ε(c)(n) (62)

for p = 4, 5, 6. Again, the signal is defined for discrete indices −128 ≤ n ≤ 128 and N = 257
phases ϑc, c = 1, 2, . . . , C, are random numbers with uniform distribution drawn from interval
[−π, π]. The resulting multicomponent signal is formed in cth channel as:

x(c)p (n) =
6

∑
p=1

s(c)p (n) + ε(c)(n), (63)

and is, as in previous examples, embedded in additive, white, complex-valued Gaussian noise, now
with variance σε = 1. The number of channels is C = 256. Eigenvalues of the autocorrelation matrix
R, WD and spectrogram are given in Figure 11, again proving the that the considered signal with
heavily overlapped components cannot be analyzed with these tools. Eigenvectors corresponding
to the largest six eigenvalues are given in Figure 12. Extracted and original components can be
visually compared in Figure 13, again proving the efficiency of the approach, even in the case for
components with a faster varying frequency content. This is additionally confirmed by IF estimation
results in Figure 14. Larger estimation errors when faster sinusoidal frequency modulations are
present are related to poorer concentration of the WD in these cases [3].

0

0.2

0.4

0.6

0.8

1

 eigenvalue index

Eigenvalues

(a)
5 10 15

 time

 f
re

q
u

en
cy

WD of signal

(b)
-100 -50 0 50 100

-2

0

2

 time

 f
re

q
u

en
cy

Spectrogram of signal

(c)
-100 -50 0 50 100

-2

0

2

Figure 11. (a) Eigenvalues of autocorrelation matrix R, (b) Wigner distribution of the signal from
Example 3, and (c) Spectrogram of the signal from Example 3. Signal consists of P = 6 non-stationary
components. The signal is embedded in an intensive complex, Gaussian, zero-mean noise with
σε = 1. The number of channels is C = 256. The largest six eigenvalues correspond to the signal
components.
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Figure 12. (a–f) Time-frequency representations of eigenvectors corresponding to the largest six
eigenvalues of autocorrelation matrix R of signal from Example 3. Each eigenvector represents a
linear combination of non-stationary components with polynomial frequency modulation.
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Figure 13. Extracted and original signal components of the non-stationary multicomponent mul-
tichannel signal considered in Example 3. Panels (a–f) present the extracted using the proposed
approach, whereas panels (g–l) show Wigner distributions calculated for individual components of
the original, noise-free signal.
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Figure 14. Instantaneous frequency estimation for individual signal components based on the
extracted signal components (dashed black) and the original signal components (solid white). MSEs
between the two IF estimates is provided for each component of the signal from Example 3. The
noise variance is σ2

ε = 1. Decomposition is based on C = 256 channels.

Example 4. In this example, we consider the dispersive environment setup described in Section 2.2,
with the transmitter located in the water at the depth of zt. However, to obtain a multivariate
signal, instead of one sensor, K = 25 sensors are placed at the depth zr, comprising the receiver
at distances r + δc, c = 1, 2, . . . , C, from the transmitter. Moreover, the mutual sensor distances
are negligible compared with their distance from the transmitter, r = 2000 m; that is δc � r.
This further implies that the range direction remains unchanged in our model. As a response
to a monochromatic signal s(n) = exp(jω0n), at sensor c, the linear combination of modes
s(c)p (n) = At(m, ω0) exp(jω0n− jkc(p, ω0)r) is received:

x(c)(n) =
P

∑
p=1

s(c)p (n) =
P

∑
p=1

At(m, ω0) exp(jω0n− jkc(p, ω0)r), (64)

where c = 1, 2, . . . , C, and wavenumbers are modeled as kc(m, ω) [55]

k2
r (m, ω) =

(ω

c

)2
−
(
(m− 0.5)

π

D + ϑc

)2
, (65)

D = 20 m and ϑc is a random variable drawn from interval [−0.25, 0.25] with uniform distribution;
therefore, corresponding to depth variations of ±0.25 cm, modeling channel depth changes due to
surface waves or uneven seabed. The speed of sound propagation underwater is c = 1500 m/s. The
same results in this example are obtained for a more precise speed, i.e., at c = 1480 m/s. The received
multichannel signal is of the form

x(n) =


x(1)(n)
x(2)(n)

...
x(C)(n)

. (66)

Upon performing the eigenvalue decomposition of autocorrelation matrix R, eigen-
values shown in Figure 15a are obtained. The Wigner distribution of the received signal is
shown in Figure 15b, with very close and partially overlapped nodes. Wigner distributions
of individual eigenvectors are shown in Figure 16a–e. The presented procedure for the
decomposition of multicomponent signals successfully extracted the individual acous-
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tic modes, as presented in Figure 17a–e. Such separated acoustic modes can be further
analyzed; for example, their IF can be estimated and characterized.
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Figure 15. (a) Eigenvalues of autocorrelation matrix R, (b) Wigner distrubution and (c) spectrogram
of the considered acoustic signal from the dispersive environment. The number of sensors is C = 25,
whereas the number of modes is P = 5.
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Figure 16. (a–e) Time-frequency representations of eigenvectors corresponding to the largest eigen-
values of autocorrelation matrix R. Each eigenvector represents a linear combination of acoustic
modes of the signal received from the dispersive environment.
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Figure 17. (a–e) Extracted modes of the signal received from the dispersive acoustic environment.
The decomposition is performed using the presented multivariate approach.
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6. Discussion

Decomposition of non-stationary multicomponent signals has been a long-term, chal-
lenging topic in time-frequency signal analysis [19–34]. Although decomposition of non-
overlapping components can be done using the S-method relations with the WD [26], this
approach cannot be applied when the components partially overlap, i.e., share the same
domain of support in the time-frequency plane.

Other alternative methodologies are specialized for some specific signal classes, and
are efficient in the case of partially overlapped components [20,25,27]. In this sense, chirplet
and Radon transform-based decomposition is applicable for linear frequency modulated
signals [20,25]. Inverse Radon transform has produced excellent results in separation
of micro-Doppler appearing in radar signal processing, characterized by a sinusoidal
frequency modulation and periodicity [27]. However, outside the scope of their predefined
signal models, these techniques are inefficient in separation of non-stationary signals
characterized by some different laws of non-stationarity. Another very popular concept,
namely the EMD, has been also applied multivariate data [39–43]. However, successful
EMD-based multicomponent signal decomposition is possible only for signals having
non-overlapping components in the TF plane. Amplitude variations of components pose
an additional challenge to the EMD-based decomposition. The efficiency of the proposed
method does not depend on the considered frequency range, but only on the ability of
a time-frequency representation to concentrate signal components in the time-frequency
plane. We use the STFT in concentration measure (31) due to its ability to concentrate signal
energy at the instantaneous frequency of individual signal components. The decomposition
approach studied in this paper successfully extracts components highly overlapped in the
time-frequency plane. The method is not sensitive to the extent of overlap of the signal
components.

Since the modes appearing in the considered acoustic dispersive environment frame-
work are characterized by a non-linear (and non-sinusoidal) law of frequency variations
and have a partially overlapped support, neither of the mentioned univariate techniques
can produce acceptable decomposition results.

7. Conclusions

Characterization of modes in the acoustic dispersive environment is an ongoing
research topic. As modes are non-stationary and present in a multicomponent form in the
received signals, their separation (extraction) has been a challenging task. In this paper,
we have shown that the modes can be successfully extracted based on a multivariate
decomposition technique that exploits the eigenanalysis of the autocorrelation matrix of
the received signal. This method, which utilizes concentration measures calculated based
on time-frequency representations, separates the modes while completely preserving their
integrity, thus opening the possibility for their individual analysis. IF estimations based on
extracted components were highly accurate, even for a high level of noise. Results indicate
that the efficiency of the method is increased with the larger number of sensors (channels).
Our future work will be oriented towards the analysis of the separated components.
Instantaneous frequency estimation techniques developed within the time-frequency signal
analysis field can be applied directly on separated modes, providing new insights and tools
for the analysis of dispersive channels.
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3. Stanković, L.; Daković, M.; Thayaparan,T. Time-Frequency Signal Analysis with Applications: Artech House: Norwood, NJ,

USA, 2013.
4. Ouahabi, A. Signal and Image Multiresolution Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2012.
5. Boashash, B. Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals. Proc. IEEE 1992, 80, 520–538.

[CrossRef]
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