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On the torsion of isotropic elastoplastic Cosserat circular cylinders

Flavien Ghiglione and Samuel Forest∗

MINES ParisTech, PSL Research University, MAT – Centre des matériaux, CNRS UMR 7633
BP 87 91003 Evry, France

Abstract Torsional loading of elastoplastic materials leads to size effects which are
not captured by classical continuum mechanics and require the use of enriched models.
In this work, an analytical solution for the torsion of isotropic perfectly plastic Cosserat
cylindrical bars with circular cross–section is derived in the case of generalized von Mises
plasticity accounting solely for the symmetric part of the deviatoric stress tensor. The
influence of the characteristic length on the microrotation, stress and strain profiles as
well as torsional size effects are then investigated. In particular, a size effect proportional
to the inverse of the radius of the cylinder is found for the normalized torque. A similar
analysis for an extended plasticity criterion accounting for both the couple-stress tensor
and the skew-symmetric part of the stress tensor is performed by means of systematic
finite element simulations. These numerical experiments predict size effects which are
similar to those predicted by the analytical solution. Saturation effects and limit loads
are found when the couple stress tensor enters the yield function.

Keywords Cosserat, micropolar, elasticity, plasticity, torsion, elastoplasticity, size effect

1. Introduction

The theory of Cosserat/micropolar media in the general finite deformation setting

has been established by Kafadar and Eringen [1971]; Eringen [1976] and finally

reported in the book [Eringen, 1999]. Eringen and Kafadar applied their theory to

hyperelasticity of Cosserat media. The extension of this model to finite deformation

elasto-visco-plasticity was proposed much later in [Dluzewski, 1992; Sievert, 1995;

Sansour, 1998; Forest and Sievert, 2003]. The present work however concentrates

on small deformations, rotations and curvatures because this theoretical framework

is more easily amenable to analytical solutions in elasticity and even plasticity.

Solutions of many boundary value problems in Cosserat elasticity have been

made available in the literature since more than 50 years. Kim and Eringen [1973]

solved the problem of the stress concentration at a hole in a micropolar plate.

The general Saint-Venant problem was extended to elastic micropolar media in the

case of circular cylinders by Reddy and Venkatasubramanian [1976]. The torsion

problem is a particular case of the Saint-Venant problem and is the subject of the
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present work. Note that the torsion problem has been solved for several other gener-

alized continua like strain gradient elastic media [Lazopoulos and Lazopoulos, 2012;

Iesan, 2013; Beheshti, 2018], and recently elastic stress gradient media [Kaiser et al.,

2021]. The torsion of Cosserat bars is of physical relevance for the identification of

Cosserat elasticity moduli and associated internal length scales [Gauthier and Jash-

man, 1975]. This test was applied to several materials with highly heterogeneous

microstructures like bones [Yang and Lakes, 1981] and other foam materials [Lakes,

1987; Onck, 2002]. Early solutions of the torsion problem for elastic Cosserat bars

were provided by Smith [1967]; Ieşan [1971]. In the present work, the solution given

by Taliercio and Veber [2016]; Drugan and Lakes [2018] will be recalled and used

as a starting point for tackling the elastoplastic case.

Extensions of the von Mises plasticity criterion to Cosserat media go back to

pioneering contributions by Neuber [1966, 1968]; Lippmann [1969]; Besdo [1974];

Sawczuk [1967]. First applications to the plasticity of metals were proposed by

Diepolder et al. [1991]; Lippmann [1995]. Kaplunov and Lippmann [1995] provided

the first asymptotic solution for the elastic-plastic Cosserat continuum in the case

of torsion of circular cylinders. More recently, torsion in Cosserat plasticity was

considered from the computational perspective by Grammenoudis and Tsakmakis

[2005, 2009] which allows for the consideration of isotropic and kinematic hardening.

The objective of the present work is to provide a fully explicit analytical solution

of the torsion problem for elastic perfectly plastic Cosserat bars with circular cross-

section. This is made possible by the use of a simplified version of a general extension

of the von Mises yield function to Cosserat media. The reduced form includes an

equivalent stress measure that depends solely on the symmetric part of the force–

stress tensor. The proposed solution is then compared to finite element results in the

case of more general formulations involving the skew–symmetric part of the force–

stress tensor and the full couple–stress tensor. The analytical solution is shown to be

sufficient to exhibit the main features of the elastic–plastic response of Cosserat bars

including stress-strain distributions in the cross–section. In particular it predicts size

effects depending on the ratio between the bar radius and the intrinsic length arising

in the elasticity solution.

The proposed solution is based on the elastic analysis recalled in section 2.

Section 3 is dedicated to the elastic-plastic case. It contains the formulation of a

general extension of the von Mises yield criterion to Cosserat media (section 3.1), the

analytical solution in the case of a reduced form of the yield function (section 3.2)

and comparison with more general finite element solutions (section 3.4), highlighting

the predicted size effects.

Notations

Vectors and second order tensors are respectively denoted by a and A∼ . The trans-

pose is given by A∼
T . Third and fourth order tensors are respectively written a∼ and

C
≈

. Identity tensor of order two and Levi-Civita permutation tensor are called I∼ and
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ε∼, respectively. The symmetric and skew-symmetric parts of a second order tensor

are given by:

A∼
sym =

1

2

(
A∼ +A∼

T
)
, A∼

skw =
1

2

(
A∼ −A∼

T
)

(1)

The deviatoric part of a second order tensor is written as:

A∼
′ = A∼ −

1

3
tr(A∼ )I∼ (2)

where trace(A∼ ) = Aii is the trace operator. Simple contraction Aijbj is denotedA∼ ·b
and double contraction AijBij is written asA∼ : B∼ . The Cartesian components of the

gradient operator acting on a vector a ⊗∇ are ai,j = ∂ai/∂xj . The components of

the divergence operator A∼ ·∇ acting on a second order tensor are Aij,j = ∂Aij/∂xj .

2. Torsion of a cylindrical bar in Cosserat linear isotropic elasticity

2.1. Problem setting

Consider a solid cylinder of radius R and height L subjected to an angle of torsion

±ϑ at the top and bottom surfaces respectively (figure 1). The difference between

the angle of torsion at the top and that at the bottom is denoted ∆ϑ. The angle of

torsion per unit length is written as

a =
∆ϑ

L
(3)

The Cartesian coordinate (e x, e y, e z) and the cylindrical coordinate (e r, e θ, e z)

systems are shown in figure 1. The lateral sides of the cylinder are traction-free,

namely:

σ∼(r = R) · e r = 0 , m∼ (r = R) · e r = 0 (4)

where σ∼ and m∼ are the (generally non-symmetric) Cosserat force and couple stress

tensors.

2.2. Governing equations

The constitutive equations of Cosserat materials are briefly recalled here. The kine-

matic fields are the displacement and micro-rotation vectors u and ϕ . The strain

measures are the strain and curvature tensors e∼ and κ∼, defined as:

e∼ = u ⊗∇+ ε∼ ·ϕ (5)

κ∼ = ϕ ⊗∇ (6)

The work-conjugate variables of the strain measures respectively are the force stress

and couple-stress tensors, which, for an isotropic linear elastic medium, are given

by:

σ∼ = λtrace(e∼)I∼ + 2µe∼
sym + 2µce∼

skw (7)
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Fig. 1: Torsion of a cylindrical bar and coordinates systems.

m∼ = αtr(κ∼)I∼ + 2βκ∼
sym + 2γκ∼

skw (8)

where λ and µ are the classical Lamé coefficients, µc is the Cosserat coupling mod-

ulus and α, β, γ are Cosserat bending-torsion moduli with force units.

The stress tensors must fulfill the balance of momentum and moment of mo-

mentum equations: {
σ∼ · ∇ = 0

m∼ · ∇ − ε∼ : σ∼ = 0
(9)

here written in the static case in the absence of bulk forces or couples for the sake

of brevity. These field equations must be accompanied by boundary conditions, for

instance in the form of Neumann conditions:

t = σ∼ · n , m = m∼ · n (10)

where n is the unit normal vector at any boundary point and t ,m respectively

are the traction and couple stress vectors representing applied surface densities of

forces and couples. Note that the convention for the definition of the stress tensors is
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the same as in [Toupin, 1962; Borst, 1993]. In many other textbooks like [Nowacki,

1986; Eringen, 1999], the divergence operator and the normal vectors are applied

to the left instead of the right side of the second order tensor. This means that

the corresponding force and couple stress tensors must be transposed following the

latter convention.

2.3. Problem solution

The analytical solution for an isotropic elastic Cosserat bar is recalled here in cylin-

drical coordinates. The displacement and micro-rotation fields are of the form:

u =

 0

arz

0

 , ϕ =

φ(r)

0

az

 (11)

The displacement vector is exactly the same as for a classical continuum. The micro-

rotation field keeps the classical component ϕz = az. However, the r component of

the rotation is the unknown function ϕr = φ(r) which, for symmetry reasons, can

be assumed to only depend on r. The strain and curvature tensors are calculated

using equations (5) and (6) respectively:

e∼ =

0 0 0

0 0 ar + φ

0 −φ 0

 , κ∼ =

φ
′ 0 0

0
φ

r
0

0 0 a

 (12)

where ′ denotes a derivation with respect to r. The stress and couple-stress tensors

then follow from equations (7) and (8):

σ∼ =

0 0 0

0 0 (µ+ µc)ar + 2µcφ

0 (µ− µc)ar − 2µcφ 0

 (13)

m∼ =


(α+ 2β)φ′ + α

(
φ

r
+ a

)
0 0

0 (α+ 2β)
φ

r
+ α (φ′ + a) 0

0 0 (α+ 2β)a+ α

(
φ′ +

φ

r

)


(14)

The balance equation (9) gives:

m′rr +
mrr −mθθ

r
− (σθz − σzθ) = 0 (15)

Replacing the force stresses by their expression one gets:

m′rr +
mrr −mθθ

r
− 2µc(ar + 2φ) = 0 (16)
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which can finally be expressed as an ODE for the unknown function φ(r):

φ′′ +
φ′

r
−
(

4µc
α+ 2β

+
1

r2

)
φ = 2

µc
α+ 2β

ar (17)

This differential equation is a modified Bessel equation with right-hand side. The

regular solution takes the form:

φ(r) = AI1 (r/`)− a

2
r, with ` =

√
α+ 2β

4µc
(18)

where I1 is the modified Bessel function of the first kind, A is an integration constant

and ` is the characteristic length, which only depends of the new moduli introduced

in the Cosserat formulation. Note that the term −a2 r is exactly the r component of

the material rotation of a classical continuum subjected to torsion. The integration

constant A can be determined from the traction-free boundary condition on the

lateral sides of the cylinder:

m∼ (r = R)·e r = 0 =⇒ mrr(r = R) = 0 =⇒ A =
βaR

4µc`RI0(R/`)− 2βI1(R/`)
(19)

The final expression for φ finally is:

φ(r) =
βaR

4µc`RI0(R/`)− 2βI1(R/`)
I1 (r/`)− a

2
r (20)

This analytical solution is now illustrated and used to validate the Finite Ele-

ment implementation of the Cosserat model in Zset software [Besson and Foerch,

1997]. The radius and height of the cylinders are respectively R = 1 mm and

L = 10 mm. The chosen material parameters are given in table 1, with for all cases

E = 70000 MPa, ν = 0.3, and µc = 50000 MPa. The Finite Element mesh of the

bar used throughout the paper contains 24000 3D quadratic brick elements with

reduced integration (8 Gauss points per element) and 102121 nodes. This amounts

to more than 600000 degrees of freedom since each node is endowed with 3 trans-

lation and 3 microrotation degrees of freedom. The implementation of the Cosserat

element in the Zset code is explained in the reference [Forest et al., 2000].

The simplification γ = β is used throughout. The characteristic length of the

medium will be varied in the analysis.

` [mm] α [N] β [N]

0.05 300 100

0.1 1000 500

0.2 4000 2000

0.9 62000 50000

Table 1: Material parameters used for the calculations.
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Figure 2 shows the influence of ` on the profiles of φ normalized by aR. Note

that in classical Cauchy elasticity, the material rotation along axis e r is −ar/2. It

can be seen that as ` increases, so does φ. For the case `→ 0 the classical solution

is retrieved.

Fig. 2: Profiles of φ along a radius for various internal lengths for torsion in linear

isotropic Cosserat elasticity. Analytical solutions are in black solid lines. Symbols

denote Finite Element predictions.

Figure 3 shows the influence of ` on the stress profiles of σθz and σzθ, normalized

by the shear at the outer radius for a classical continuum, i.e. µaR. The curves are

roughly symmetric with respect to the line y = r/R, σθz and σzθ being respectively

above and below that line. They tend to coincide with that line for decreasing length

scale `→ 0, where the stress tensor becomes symmetric as expected in the classical

case. Strong asymmetry is observed for large values of `.

Finally, the sensitivity of the components of the couple-stress tensor to the char-

acteristic length is illustrated in figure 4. The components mrr,mθθ and mzz are

normalized by the classical torque divided by the area of a section of the cylin-

der. The components of the couple-stress tensor are fairly uniform for low internal

lengths. An increase in ` leads to nonlinear profiles as well as an increase of the

maximum absolute value attained by the solution. Decreasing ` to zero leads to van-

ishing couple stress values, as it should be for a classical continuum. The boundary



February 26, 2022 9:25 GHIGLIONE˙FOREST˙JMM˙HAL

8 F. Ghiglione and S. Forest

Fig. 3: Profiles of σθz (in blue) and σzθ (in red) along a radius for various internal

lengths, for torsion in linear isotropic Cosserat elasticity. Analytical solutions are in

black solid lines. Symbols denote Finite Element predictions.

condition mrr(r = R) = 0 is clearly satisfied, as can be seen from the profile of mrr.

2.4. Size effect

For a Cosserat continuum, the resulting torque on a given cross-section of the cylin-

drical bar involves two contributions: One from the stress tensor (moment of forces),

as for classical media, and one from the couple-stress tensor (intrinsic surface cou-

ples), as follows:

M =

∫ 2π

0

∫ R

0

(
OM ∧

(
σ∼ · e z

)
+m∼ · e z

)
rdrdθ (21)

The torque C is then simply the component of M with respect to axis z, given by:

C = 2π

∫ R

0

(rσθz +mzz) rdrdθ (22)

which in turn gives, in the linear isotropic elastic case:

Ce = Ceclass
(

1 +
4β

µR2

(
1 +

µc`RI0(R/`)− βI1(R/`)

2µc`RI0(R/`)− βI1(R/`)

))
(23)
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(a) Profiles of mrr. (b) Profiles of mθθ.

(c) Profiles of mzz.

Fig. 4: Profiles of mrr , mθθ and mzz along a radius for various internal lengths in

the case of linear isotropic Cosserat elasticity. Analytical solutions are in black solid

lines. Symbols denote Finite Element predictions.
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where the torque for a classical continuum reads:

Ceclass = π
µaR4

2
(24)

An alternative and useful expression has been derived by Taliercio and Veber [2016]:

Ce

Ceclass
= 1 +

4β

µR2

(
2−

(
2− βI1(R/`)

µc`RI0(R/`)

)−1)
(25)

Using this expression, various limit cases can be studied. Let us start with the

case R/`→ 0. For fixed R, this limit behavior can be obtained by taking `→ +∞.

According to formula (18), this situation can equivalently be studied either by taking

µc → 0 keeping other parameter constants (which uncouples the micro-rotation and

displacement fields but keeps the contribution of intrinsic couples to the resulting

torque) or for both α, β → +∞.

Using the equivalents

In(x) ∼ (x/2)n

Γ(n+ 1)
for x→ 0 (26)

one gets:

I0(R/`) →
`→+∞

1, I1(R/`) →
`→+∞

R

4`
(27)

and finally

Ce

Ceclass
→

`→+∞
1 +

4β

µR2

3α+ 4β

2α+ 3β
(28)

In this expression, a size effect proportional to R−2 clearly appears. This can be

verified in figure 5, which illustrates in a log-log plot the ratio of torques as a function

of the normalized radius. A fit is also plotted to verify the R−2 scaling. It can be

seen that as R
` → +∞ the classical torque is retrieved, whereas for R

` → 0 the

ratio of torques increases. Thus, the smaller the radius of the cylinder, the stiffer

the response. Note that this result seems to also hold true also for more general

prismatic bars, as investigated by Drugan and Lakes [2018].

Another interesting limit case arises when µc → +∞ and other parameters are

fixed, which leads to:

Ce

Ceclass
→

`→+0
1 +

6β

µR2
(29)

This corresponds to the solution obtained for Koiter’s couple stress theory, which

constrains the micro-rotation to be equal to the material rotation.
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Fig. 5: Cosserat torque normalized by that of a Cauchy continuum as a function of

the bar’s normalized radius for ` = 0.1 mm.

3. Torsion in Cosserat elasto-plasticity

3.1. Rate-independent Cosserat plasticity

The framework of Cosserat rate-independent plasticity in a general case is briefly

introduced here. Consider a single, extended von Mises equivalent stress measure

incorporating both the stress and couple-stress tensors, adapted from [Besdo, 1974;

Diepolder et al., 1991]:

σeq(σ∼ ,m∼ ) =

√
3

2

(
σ∼
′sym : σ∼

′sym + bσ∼
skw : σ∼

skw + c1m∼
sym : m∼

sym + c2m∼
skw : m∼

skw
)

(30)

The proposed extended von Mises yield function for the Cosserat continuum is given

by:

f(σ∼ ,m∼ ) = σeq(σ∼ ,m∼ )− σY (31)

where σY is the current value of the yield stress.

The total deformation and curvature tensors are split into elastic and plastic

parts:

e∼ = e∼
e + e∼

p, κ∼ = κ∼
e + κ∼

p (32)
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The plastic strain and curvature rates are then derived from a generalized normality

rule in the form:

ė∼
p = ṗ

∂f

∂σ∼
, κ̇∼

p = ṗ
∂f

∂m∼
(33)

where ṗ is a single plastic multiplier. Time integration of the plastic multiplier

provides the path-dependent cumulative plastic strain variable p. In the case of the

present extended von Mises yield criterion, this gives

ė∼
p = ṗ

3

2

σ∼
′sym + bσ∼

skw

σeq(σ∼ ,m∼ )
, κ̇∼

p = ṗ
3

2

c1m∼
sym + c2m∼

skw

σeq(σ∼ ,m∼ )
(34)

The plastic multiplier can be expressed as the following norm of the plastic strain

and curvature rates:

ṗ =

√
2

3

(
ė∼
p sym : ė∼

p sym +
1

b
ė∼
p skw : ė∼

p skw +
1

c1
κ̇∼
p sym : κ̇∼

p sym +
1

c2
κ̇∼
p skw : κ̇∼

p skw

)
(35)

The yield stress can be a function σY (p) to describe isotropic hardening of the

material. In the present work, hardening is not considered for simplicity and σY is

a constant value, the initial yield threshold, corresponding to perfect plasticity.

In the following, the analytical solution is derived in the particular case b =

0, c1 = c2 = 0 of extended von Mises elastoplasticity in which only the symmetric

part of the stress tensor appears in the equivalent stress measure. This analytical

solution is compared to Finite Element predictions in more general cases in sections

3.4 and 3.5:

• A criterion accounting for both the symmetric and skew-symmetric parts

of the stress tensor in the equivalent stress measure: b = 1, c1 = c2 = 0.

• A criterion accounting for both the symmetric and skew-symmetric parts of

the stress tensor as well as the couple-stress tensor in the equivalent stress

measure: b = 1, c1 = c2 = 1 mm−2.

3.2. Analytical solution in a simplified case

In this section, an analytical solution is derived in the following particular case of

formula (30):

b = 0, c1 = c2 = 0 (36)

The yield function reduces in that case formally to the classical von Mises criterion

involving the quadratic norm of the symmetric deviatoric stress tensor:

σeq(σ∼) =

√
3

2
σ∼
′sym : σ∼

′sym (37)

Plasticity occurs when f(σ∼) = 0. In the torsion case, this gives

3

4
(σθz + σzθ)

2 = σ2
Y (38)
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Making use of equation (38), σθz and σzθ can be related by the following formula:

σzθ =
2σY√

3
− σθz (39)

assuming that the loading is such that σθz + σzθ ≥ 0.

Starting from the elasticity solution exhibited in the previous section, the yield

criterion will be reached at the outer boundary r = R for a critical value of the

loading al computed as

al =
σY

µR
√

3
(40)

For increasing torsion loading, the bar cross-section will be split into a central disc

of radius rl where the yield stress has not been reached yet (elastic core), and a ring

rl ≤ r ≤ R in which plastic yielding takes place (plastic zone):

rl =
σY

µa
√

3
(41)

For the yield criterion presented in equation (37), the expressions of rl and al are

the same as for a classical continuum.

Figure 6 shows the cumulative plastic strain at two different steps of the torsional

loading of the Cosserat elastoplastic bar. The elastic core is shrinking with increasing

load.

The total deformation induced by torsion is still given by equation (12). It is

now decomposed into elastic and plastic contributions:{
eeθz + epθz = ar + φ

eezθ + epzθ = −φ
(42)

The elastic strain tensor is obtained by inverting the isotropic elasticity law, equa-

tion (7). For monotonic proportional loading, the plastic strain tensor is derived

directly from equation (34):

e∼
e =

1

4µµc

(
(µ+ µc)σ∼ + (µc − µ)σ∼

T
)
, e∼

p = p
3

4σY
(σ∼ + σ∼

T ) (43)

Substituting the strains given in equation (43) into the system of equations (42)

allows to derive an analytical expression for the plastic strain p:

p =
σY

3
4 (σθz + σzθ)

(
−φ− 1

4µµc
(σzθ(µ+ µc) + σθz(µc − µ))

)
(44)

Finally, substituting this expression of p in the system of equations (42) and using

equation (38), the stress components are fully determined as{
σθz = µc(ar + 2φ) + σY√

3

σzθ = −µc(ar + 2φ) + σY√
3

(45)

Contrary to the classical case, the previous stress components are not uniform in

the plastic zone, even though no hardening is present. Moreover, this stress tensor
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is not symmetric.

Using equation (45), equation (44) simply reduces to the following expression, which

is the same as for a Cauchy continuum:

p =

{
0 for r ≤ rl
a√
3

(r − rl) else
(46)

The profile of p along a normalized radius is shown in figure 7 where it can be seen

that p vanishes for r ≤ rl and increases linearly for r > rl.

The obtained stress tensor must also satisfy the moment of momentum balance

equation:

m′rr +
mrr −mθθ

r
− (σθz − σzθ) = 0 (47)

Replacing σθz and σzθ by their expression given in equation (45), the balance equa-

tion becomes:

m′rr +
mrr −mθθ

r
−
(
µc(ar + 2φ) +

σY
2
√
a1
−
(
−µc(ar + 2φ) +

σY
2
√
a1

))
= 0 (48)

which reduces to:

m′rr +
mrr −mθθ

r
− 2µc(ar + 2φ) = 0 (49)

This equation is exactly the same as equation (16) derived in the purely elastic case.

Since the simplified criterion (37) does not involve the couple-stress tensor, m∼ keeps

its purely elastic form. The ODE governing φ therefore is necessarily the same as

for the elastic case and given by equation (17). The final expression of φ (20) is still

valid.

The stress fields can be visualized in figure 8. As expected from equation (45) σθz
has greater values than σzθ. Figure 9 shows the profiles of these stresses normalized

by the shear stress value at the outer radius for a classical continuum µaR, as

functions of the normalized radial coordinate. Just like in the elastic case presented

in section 2.3, the stresses symmetrically deviate from the classical solution and the

point at which this deviation occurs decreases with increasing internal length. For a

large characteristic length the elastic response (r ≤ rl) differs from the Cauchy one

and the stress distributions are not symmetric with respect to the classical value

any more.

3.3. Size effect

As plasticity does not occur for a ≤ al, the torque must be separated into two

parts: The torque produced for a purely elastic bar and the one corresponding to

elastoplastic deformation of the bar. For the elastoplastic part, an elastic core zone

exists for r ≤ rl. The contribution of the stress tensor to the total torque can be
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x
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z x
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z

(a) Cumulative plastic strain at 0.44amax (b) Cumulative plastic strain at amax

0 0.0103
0.0008 0.0017 0.0026 0.0034 0.0042 0.0051 0.0060 0.0068 0.0077 0.0085 0.0094

Fig. 6: Evolution of the cumulative plastic strain represented on the reference con-

figuration for an imposed maximum angle of torsion amax = 0.02 rad/mm and

`/R = 0.2. The reduced yield function (37) is used.

split into elastic (for r ≤ rl) and plastic (for r ≥ rl) parts. In the end, the moment

takes the following form:

C =

{
2π
∫ R
0
rσelastic zone
θz +mzzrdrdθ, for a ≤ al

2π
∫ rl
0
rσelastic zone
θz rdrdθ +

∫ R
rl
rσplastic zone
θz rdrdθ +

∫ R
0
mzzdrdθ, for a ≥ al

(50)

After integration, the expressions of the torque are:

C = π
µaR4

2

(
1 +

4β

µR2

(
1 +

µclRI0(R/`)− βI1(R/`)

2µclRI0(R/`)− βI1(R/`)

))
, for a ≤ al (51)

C = 2π

[
µar4l

4
+

σY

3
√

3

(
R3 − r3l

)
+ 2µcA`

3

((
R

`

)2

I0(R/`)− 2
R

`
I1(R/`)

)
+ βR2a+ αARI1(R/`)

]
, for a ≥ al. (52)

The second expression can be expanded by inserting the value (4) of the integration

constant A (the same value as in the purely elastic case as discussed earlier), for

a ≥ al:

C = 2π

[
µar4l

4
+

σY

3
√

3

(
R3 − r3l

)
+ βR2a
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Fig. 7: Profiles of cumulative plastic strain p along a radius for various internal

lengths and a = 0.02 rad/mm. Analytical solutions are in black solid lines. Symbols

denote Finite Element predictions. The reduced yield function (37) is used.

+
βaR

4µc`RI0(R/`)− 2βI1(R/`)

(
2µc`

3

((
R

`

)2

I0(R/`)− 2
R

`
I1(R/`)

)
+ αRI1(R/`)

)]
(53)

In the latter expression, the torque for a classical elastoplastic material Cpclass ap-

pears:

Cpclass = 2π

[
µar4l

4
+

σY

3
√

3

(
R3 − r3l

)]
(54)

For a Cauchy continuum the torque-twist angle curve exhibits a plateau as a→∞,

which corresponds to the case where the plastic zone invades the whole cylinder,

rl → 0. This limit value of the torque is given by:

C∞class = lim
a→∞

Cpclass =
2πσY

3
√

3
R3 (55)

However, for a Cosserat continuum with the yield criterion involving the reduced

invariant (37), such a saturation of the torque does not occur. This is illustrated

in figure 10. This figure shows the total torque as well as its different contributions

normalized by R3 as functions of the shear strain at the outer radius, as classically
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done in other works [Fleck et al., 1994; Grammenoudis and Tsakmakis, 2009] for

both analytical and FEM solutions. Although no hardening is present in the model,

an apparent hardening is visible on this curve. This is due to the last term propor-

tional to the twist angle a in the equation (53). This term has two contributions.

One is related to the fact that there is no limit for the couple stress component mzz

since it does not enter the reduced yield criterion. The second contribution stems

from the fact that the sum σθz +σzθ is bounded due to the yield condition, but not

the individual components. An excellent agreement is found between the analytical

and finite element solutions, as it should.

As for the elastic case, a size effect occurs with the elastoplastic model studied

in this section. Consider `→ +∞, combining the equivalents given in equation (27)

withe the expression of the torque in the plastic zone equation (53)one gets:

C ∼ Cclass + 2πβR2a

(
1 +

α+ β

2α+ 3β

)
(56)

and the expression of the normalized torque is then:

C
C∞class

∼ Cclass
C∞class

+
3
√

3β

σY

(
1 +

α+ β

2α+ 3β

)
a

R
(57)

Agreement between the expression of the torque (53) and its equivalent (57) has

been studied numerically and holds true for α� β. Moreover, equation (57) can be

further simplified :

C
C∞class

∼ 1 +
3
√

3β

σY

(
1 +

α+ β

2α+ 3β

)
a

R
(58)

From this expression, a size effect clearly appears. In contrast to the elastic case, the

normalized torque is proportional to R−1, instead of R−2, and depends on a. This is

due to the fact that the normalization C∞class is proportional to R3 (instead of R4 for

Ceclass) and does not depend on a, contrary to Ceclass. This size effect is illustrated

in figure 11. These figures show, in the case a ≥ al (i.e. R ≥ σY

µa
√
3
), the torque (53)

normalized by the limit torque of a classical continuum as a function of the relative

coordinate R/`, for two different values of a. The fitted curves confirm that the size

effect is indeed proportional to R−1. As mentioned above, the size effect is sensitive

to the twist angle a, leading to a straighter curve for higher values of a. Once again,

a good agreement is found between the analytical and FEM solutions.

3.4. FEM analysis in a more general case: Effect of σ∼
skw

In this section, the influence of the skew-symmetric part of the stress tensor in the

yield criterion is numerically investigated. The following equivalent stress measure

is considered:

σeq =

√
3

2

(
σ∼
′sym : σ∼

′sym + σ∼
skw : σ∼

skw
)

(59)
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which is equivalent to:

σeq(σ∼) =

√
3

2

(
σ∼
′ : σ∼

′
)

(60)

This corresponds to the following values of parameters in the general equivalent

stress measure (30):

b = 1, c1 = c2 = 0 (61)

With these parameter values, the yield function is still given by equation (31).

The nonlinear constitutive equations are integrated using an implicit Newton θ–

method or by a fourth order Runge–Kutta method with automatic time–stepping

[Forest et al., 2000]. The case θ = 1 boils down to the classical radial return algo-

rithm in plasticity.

The profiles of φ normalized by aR along a normalized radius are shown in figure

12 for several internal length values.

The stress profiles are completely different from what was obtained with the

reduced criterion (37), as illustrated in figure 13. The values are much lower and

for large internal lengths, σzθ is no longer the symmetric image of σθz with respect

to the curve obtained for a classical continuum.

Finally, the normalized profiles of mrr,mθθ and mzz are shown in figure 14.

Compared to the profiles obtained with criterion (37), the values are lower and the

curves are straighter and more spread, although it is not the case for mzz.

The normalized torque-twist angle curve is plotted in figure 15 for criterion (60).

Contrary to the curve obtained with criterion (37), the contribution due to σθz seems

to reach a plateau. The one due to mzz keeps increasing as it does not enter the

yield criterion, just like with yield function (37). The values are of the same order

of magnitude for both yield functions, although those for the contribution due to

mzz is a little bit higher.

A size effect is also predicted by criterion (60), as shown in figure 16. The

normalized torque is still proportional to R−1 and sensitive to the twist angle, just

like with criterion (37).
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(a) σθz (b) σzθ

-40 1.6e+02
-24 -7.5 8.8 25 41 58 74 90 1.1e+02 1.2e+02 1.4e+02

Fig. 8: Fields of the σθz and σzθ stress components represented on the deformed

configuration for an imposed twist angle a = 0.02 rad/mm and `/R = 0.2. The

reduced equivalent stress (37) is used in the yield function.

Fig. 9: Profiles of σθz (in blue) and σzθ (in red) along a radius for several values of

the internal length and loading a = 0.02 rad/mm. Analytical solutions are in black

solid lines. Symbols denote Finite Element predictions. The reference solution for

a classical continuum is in purple solid line. The reduced equivalent stress (37) is

used in the yield function.
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(a) Normalized torque as a function of the classical shear strain.

(b) Normalized torque as a function of the classical shear strain, zoom on the beginning of the curve.

Fig. 10: Normalized torque as a function of the classical shear strain with `/R = 0.1.

Analytical solutions are in black solid lines. The reduced equivalent stress (37) is

used in the yield function.
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(a) Normalized torque as a function of the normalized radius (b) Normalized torque as a function of the normalized radius

for ` = 0.1 mm and a = 0.02 rad/mm. for ` = 0.1 mm and a = 0.2 rad/mm.

Fig. 11: Torque normalized by the limit torque of a classical continuum as a function

of the normalized radius for ` = 0.1 mm and two values for a. Cylinder radius R is

such that R > σY

µa
√
3

thus ensuring plastic yielding. The reduced equivalent stress

(37) is used in the yield function.
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Fig. 12: Profiles of φ along a radius for various internal lengths and a =

0.02 rad/mm. The equivalent stress used in the yield function is given by equa-

tion (60).
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Fig. 13: Profiles of σθz (in red) and σzθ (in blue) along a radius for various internal

lengths and a = 0.02 rad/mm. The equivalent stress used in the yield function is

given by equation (60).
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(a) Profiles of mrr. (b) Profiles of mθθ.

(c) Profiles of mzz.

Fig. 14: Profiles of mrr, mθθ and mzz along a radius for various internal lengths

and a = 0.02 rad/mm. The equivalent stress used in the yield function is given by

equation (60).
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Fig. 15: Normalized torque as a function of the shear with `/R = 0.1. Interpolated

solutions are in black dash-dotted lines. The equivalent stress used in the yield

function is given by equation (60).
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(a) Normalized torque as a function of the normalized radius (b) Normalized torque as a function of the normalized radius

for ` = 0.1 mm and a = 0.02 rad/mm. for ` = 0.1 mm and a = 0.2 rad/mm.

Fig. 16: Torque normalized by the limit torque of a classical continuum as a function

of the normalized radius for ` = 0.1 mm and two values of a. The equivalent stress

used in the yield function is given by equation (60).
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3.5. FEM analysis in a more general case: Effect of σ∼
skw and m∼

In this section, the yield criterion considered takes into account both the couple-

stress tensor and the skew-symmetric part of the stress tensor. The chosen equivalent

stress measure is taken as

σeq(σ∼ ,m∼ ) =

√
3

2

(
σ∼
′sym : σ∼

′sym + σ∼
skw : σ∼

skw +m∼
sym : m∼

sym +m∼
skw : m∼

skw
)

(62)

which reduces to:

σeq(σ∼ ,m∼ ) =

√
3

2

(
σ∼
′ : σ∼

′ +m∼ : m∼
)

(63)

This corresponds to the following values of the parameters of the general equivalent

stress (30):

b = 1, c1 = c2 = 1 mm−2 (64)

The yield function is still defined by equation (31) using the definition (63) of the

equivalent stress.

The normalized profiles of φ for several internal length values are plotted in

figure 17. The results are fairly close to those obtained with yield function (60)

except for large length scales, for which the curves are less straight and the range

of values is smaller.

As for the stress profiles shown in figure 18, for low characteristic lengths the

results are similar to those obtained with yield function (60) in terms of order of

magnitude and shape of the curves. However, the behavior is totally different for

large internal length values, the linear elastic part of the curves becomes smaller

and the stresses become lower.

Figure 19 shows the normalized profiles of the couple stress tensor components.

Contrary to the results obtained with the previous yield functions, the yield function

(63) predicts a saturation of the size effect: The profiles for `/R = 0.2 and `/R = 0.9

do not differ much. Another difference is that the mzz component is much lower.

The normalized torque-twist angle curves obtained with yield function (63) are

shown in figure 20. It can be seen that both contributions from the couple-stress and

stress tensors display a saturation. Contrary to the curves obtained using the other

criteria, the contribution due to the couple stress is not monotonically increasing

and exhibits a decrease after an initial increase, before it reaches a plateau.

Finally, the size effect evidenced for the normalized torque in figure 21 is still

proportional to R−1 and sensitive to the the twist angle, just like the other yield

criteria studied in this work.
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Fig. 17: Profiles of φ along a radius for several internal length values and a =

0.02 rad/mm. The equivalent stress used in the yield function is given by equation

(63).

Fig. 18: Profiles of σθz (in red) and σzθ (in blue) along a radius for several internal

length values and a = 0.02 rad/mm.The equivalent stress used in the yield function

is given by equation (63).
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(a) Profiles of mrr. (b) Profiles of mθθ.

(c) Profiles of mzz.

Fig. 19: Profiles of mrr , mθθ and mzz along a radius for various internal length

values and a = 0.02 rad/mm. The equivalent stress used in the yield function is

given by equation (63).
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Fig. 20: Normalized torque as a function of the shear with `/R = 0.1. Interpolated

solutions are in black dash-dotted lines. The equivalent stress used in the yield

function is given by equation (63).

(a) Normalized torque as a function of the normalized radius (b) Normalized torque as a function of the normalized radius

for ` = 0.1 mm and a = 0.02 rad/mm. for ` = 0.1 mm and a = 0.2 rad/mm.

Fig. 21: Torque normalized by the limit torque of a classical continuum as a function

of the normalized radius for ` = 0.1 mm and two values for a. The equivalent stress

used in the yield function is given by equation (63).
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4. Conclusion and outlook

This work aimed at studying the torsion of isotropic, perfectly plastic Cosserat

bars with circular cross–section. An analytical solution was derived in the case of

a reduced form of the extended von Mises yield criterion only accounting for the

symmetric part of the deviatoric stress tensor, though the stress tensor itself is

non-symmetric in general. The torsional characteristic length given by equation

(18) and derived in the elastic case, plays a major role on the resulting profiles of

micro-rotation, stresses and couple-stresses. A size effect of the normalized torque

proportional to R−1 and dependent on the twist angle naturally arises in the tor-

sional response of this model. Comparison with solutions obtained via the Finite

Element Method by means of the software Zset shows perfect agreement.

A numerical investigation accounting for more general extended von Mises yield

criteria shows comparable size effects, though the influence of the internal length

on the resulting profiles can be very different. Depending on the yield criterion used,

the different contributions to the total torque can display a saturation with respect

to the twist angle.

Further numerical investigations of the response of Cosserat bars subjected to

torsion should be performed in more general cases, including non-cylindrical bars

[Drugan and Lakes, 2018], anisotropic elasticity [Taliercio and Veber, 2016], fi-

nite deformation as well as the incorporation of kinematic and isotropic hardening

[Grammenoudis and Tsakmakis, 2009]. The main difficulty will consist in delineating

the influence of each aspect of the model on the predicted size effects. Identification

of material parameters with respect to experimental observation of size effects in

torsion also remains to be done in the context of plasticity. The case of single crys-

talline bars will also be addressed since it combines plasticity, anisotropy and lattice

curvature that can be captured by strain gradient plasticity models, see the recent

work Scherer et al. [2020]. In the case of anisotropic materials like polycrystals, the

question of plastic spin arises and its combination with curvature effects [Lachner

et al., 1994; Bardella and Panteghini, 2015] with a significant amount of experimen-

tal results in torsion [Baczynski and Jonas, 1996]. Future work by the authors will

focus on consequences of the torsion of Cosserat single crystal cylindrical bars to

grain nucleation and application to recrystallization following the first steps by Ask

et al. [2018, 2019].
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