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Periodic geodesics for contact sub-Riemannian
3D manifolds

Yves Colin de Verdière∗

February 26, 2022

The goal of this paper is to study periodic geodesics for sub-Riemannain
metrics on a contact 3D-manifold. We develop two rather independent sub-
jects:

1. The existence of closed geodesics spiraling around periodic Reeb orbits
for a generic metric.

2. The precise study of the periodic geodesics for a right invariant metric
on a quotient Γ\PSL2(R) for which the Reeb flow is the geodesic flow
of the corresponding hyperbolic surface Γ\H.

In the first part (Section 2 to Section 7), we prove the following result which
was conjectured in [C-H-T-21]:

Theorem 0.1 Let (M,D, g) be a contact 3D sub-Riemannian manifold and
Γ a periodic orbit of the canonically associated Reeb flow with period T0 > 0.
Let us assume that Γ is non degenerate, meaning that 1 is not an eigen-
value of the linearized Poincaré map of this orbit. Then, there exists a se-
quence γk, k ≥ k0, of periodic sub-Riemannian geodesics of (M,D, g) with
limk→+∞ γk = Γ as closed sets with the Hausdorff topology and the length lk
of γk is equivalent as k → +∞ to 2

√
πkT0; more precisely, lk admits a full

asymptotic expansion in powers of k−
1
2 .
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CNRS-UGA 5582, BP 74, 38402-Saint Martin d’Hères Cedex (France);
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In fact, as we will see, the γk’s are spiraling around Γ. The assumptions are
generic for closed manifolds: it is known that there exists closed Reeb orbits
in any closed 3-manifold [Ta-07] and that they are generically non degenerate
[Bo-03]. The precise definitions of the terms in Theorem 0.1 will be given in
Section 2.

In the second part (Section 8 to Section 14), we give a description of the
closed geodesics in the case of the Liouville contact structure on the quotient
Γ\PSL2(R), the unit co-tangent bundle of an hyperbolic Riemann surface.
Roughly speaking we show the existence of continuous families of 2D-tori
on which the geodesics spiral linearly and are periodic for a dense set of
parameters. This involves the Casimir Hamiltonian and the Euler equations
in the dual of the Lie algebra of PSL2(R).

Aknowledgements.– Many thanks to Cyril Letrouit and Françoise Truc for
their remarks allowing to improve the manuscript. Thanks also to Louis Fu-
nar and Christine Lescop for answering my questions about some topological
aspects.

1 Motivations

The study of periodic geodesics is a classical part of Riemannian geometry
(see [Be-03], chap. 10). There are not many works on closed geodesics on
sub-Riemannian manifolds, see however [K-V-19, D-K-P-S-V-18] (for explicit
calculations on spheres and Lie groups) and [Sh-21] and references therein for
the Heisenberg Kepler problem. Starting from the work [C-H-T-21], it is nat-
ural to ask about closed geodesics spiraling around closed orbits of the Reeb
flow. A related motivation comes from inverse spectral problems: roughly
speaking, is the set of periods of the Reeb flow a spectral invariant of the
sub-Riemannian Laplacian? Our main theorem shows that it could be true;
indeed in [Me-84], Richard Melrose proved an extension of the Chazarain-
Duistermaat-Guillemin wave trace formula [D-G-75] (see also [CdV-07]) for
sR contact Laplacian showing that the set of lengths of closed geodesics
(called the “lengths spectrum”) is, generically, a spectral invariant. One can
then hope to recover the Reeb periods from the lengths of closed geodesics
or at least to prove a rigidity result.
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2 The setup

A nice introduction to sub-Riemannian geometry can be found in the book
[Mo-02], see also [C-H-T-18] for what follows. Let us recall a few things:
M is a smooth manifold of dimension 3, D ⊂ TM is a smooth distribution
of dimension 2 defined globally by D = kerα where α is a non vanishing
real 1-form, so that α ∧ dα is a non vanishing volume form. It follows that
M is oriented and D is orientable. We choose some orientation of D. The
metric g is a smooth metric defined on D. We define the so-called co-metric
g? : T ?M → R+ by

g?(q, p) = ‖p|Dq‖2
g(q)

where the norm is the norm on the dual of the Euclidean space Dq. The
geodesic flow is the Hamiltonian flow of 1

2
g? restricted to g? = 1. The pro-

jections of the integral curves of the geodesic flow onto M are the geodesics
of the sub-Riemannian manifold with speed 1.

To g and the orientation of D is associated a choice of a 1- form defining
D as follows: we define αg so that kerαg = D and dαg restricts to D as the
oriented volume defined by g.

To αg is associated the Reeb vector field ~R on M characterized by

αg(~R) = 1, dαg(~R, .) = 0

A periodic Reeb orbit is said to be non degenerate if the linearized Poincaré
map does not admit 1 as an eigenvalue.

The Reeb vector field has the following Hamiltonian interpretation: the
cone Σ = {(q, p) ∈ T ?M |p|Dq = 0}, generated by αg, is a symplectic sub-
manifold of T ?M . We define the function ρ(α) = α/αg on Σ. The function
ρ is homogeneous of degree 1 and hence the Hamiltonian vector field ~ρ of ρ
is homogeneous of degree 0. Let us denote Σ+ := Σ∩{ρ > 0} and by πΣ the
projection of Σ+ onto M . The projection (πΣ)?(~ρ) on M is well defined and

is the Reeb vector field ~R ([C-H-T-18], sec. 2.4).
Let us denote by π the canonical projection of T ?M onto M . If Γ is

a periodic Reeb orbit, there exist a neighbourhood Ω of Γ and a conical
neighbourhood U of π−1

Σ (Ω) in T ?M \ 0 so that a “Birkhoff normal form”
holds in U . This Birkhoff normal form is defined as follows (see Section 5.1.4
of [C-H-T-18]): let us consider the conic symplectic manifold Σσ ×R2

u,v with
the symplectic form

ωΣ + dv ∧ du
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and the positive dilations λ(σ, u, v) = (λσ,
√
λu,
√
λv). There exists an ho-

mogeneous symplectic diffeomorphism χ of U onto an open cone V ⊂ Σ+×R2

so that, ∀σ ∈ π−1
Σ (Ω), χ(σ) = (σ, 0) and

F (σ, u, v) := g? ◦ χ−1(σ, u, v) = ρI + ρ2I
2 + · · ·+O

(
I2(I/ρ)∞

)
where I = u2 + v2, the ρj’s are functions homogeneous of degree 2 − j on
π−1

Σ (Ω) and the remainder depends in general of u and v and not only of I
and σ. Note that the remainder is natural: it is the expected estimate for a
remainder which is flat along Σ and homogeneous of degree 2.

In what follows, we will always study the geodesic flow in the Birkhoff
coordinates. Note that there exists some I0 > 0 so that the energy shell
{F = 1, I < I0} is properly included in the cone V of Σ× R2. Hence, for I
small enough and q ∈ Ω, we stay in the domain of the Birkhoff normal form.

3 The “integrable” case

In this section, we will assume that the Birkhoff normal form is convergent:
it means that g? is symplectically equivalent in the cone U to some smooth
function (σ, I) → F (σ, I) where F is a smooth homogeneous function of
degree 2, defined in the cone V . Moreover, F has an asymptotic expansion
as before

F (., I) = ρI + ρ2I
2 + · · ·

but the remainder depends only of σ and I. Clearly, in this case, the function
I is a first integral of the flow. Integrable here does not imply Liouville
integrability in general, because we have only two integrals of the flow.

Note that we will consider the geodesic flow (identified to the flow of 1
2
F )

in the energy shell {F = 1, I < I0}. For an Hamiltonian H on a symplectic

manifold, we denote by ~H the associated Hamiltonian vector field.

3.1 Closed geodesics

Theorem 3.1 Let us assume that there exists a periodic non degenerate Reeb
orbit of period T0 > 0 and that the Birkhoff normal form is convergent.
Then, there exists a sequence of periodic geodesics γk, k ≥ k0, of the sub-
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Riemannian manifold (M,D, g) accumulating on Γ with lengths

lk = 2
√
πkT0 +

∞∑
j=0

ajk
−j/2 +O

(
k−∞

)
(1)

Proof.– Let us denote by HI the Hamiltonian on Σ defined by 1
2
F (., I) =

1
2
ρI +O(I2). For the Hamiltonian H = 1

2
g? of the geodesic flow expressed in

the “Birkhoff coordinates”, we have

1

2
~F =
−→
HI +

∂F

∂I
∂θ

where
(u, v) = (

√
I cos θ,

√
I sin θ). (2)

Let us start with the

Lemma 3.1 Let us consider the map πI which is the restriction of πΣ to
{σ|F (σ, I) = 1}. Then, for I small enough, πI is a diffeomorphism over a
fixed neighbourhood of Γ.

Proof.– For I small enough, there exists a smooth function λI : {ρ =
1} → R+ so that F (λI(σ)σ, I) = 1. The function λI admits an expansion
λI = 1/I+O(1). We define ΛI : {ρ = 1} → {F (., I) = 1} by ΛI(σ) = λI(σ)σ.
The map ΛI is a diffeomorphism. We can hence consider the map πI ◦ ΛI

from {ρ = 1} on M . We have πI ◦ ΛI(σ) = πI(λI(σ)σ) = πΣ(σ) which is
clearly a diffeomorphism. �

We consider then the geodesic flow. For each value of I, we project it on
Σ, i.e. we consider the flow of the Hamiltonian 1

2
F (., I) on Σ restricted to

F = 1. We have the

Lemma 3.2 The previous flow, projected by πI and with a change of time
s = 2t/I, is a smooth perturbation of the Reeb flow on M .

Proof.– The flow projected on Σ is 1
2
I~ρ + O(I2). Hence the change of times

reduces to ~ρ+O(I). This last vector field projects on M as ~R +O(I). �
From this and the fact that Γ is non degenerate (see Appendix D), we

obtain a periodic orbit of the Hamiltonian F (., I) of period T (I) with

T (I) ∼ 2T0

I
+
∑
j≥0

cjI
j (3)
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We have now to close the angular part of the dynamics given by ∂F/∂I∂θ.

θ(T (I))− θ(0) =

∫ T (I)

0

∂F

∂I
(ΓI(t), I)dt

The righthandside of this equation admits a full expansion

2T0

I2

(
1 +

∞∑
j=1

bjI
j

)
which has to be equal to 2kπ in order to close the geodesic. Hence, we get
an asymptotic expansion of I in terms of powers of k−

1
2 which gives the

asymptotic of the lengths by inserting into the Equation (3). �

3.2 Poincaré section

Let us now describe a Poincaré section S0 and the corresponding Poincaré
map P0 for the geodesic flow assuming for simplicity that F = ρI. For the
definitions and properties of the Poincaré maps, see Appendix D.

Let XR be a Poincaré section of the Reeb flow in the energy shell ρ = R
so that all XR’s project on a fixed Poincaré section of the periodic orbit of
the Reeb flow in M . Let us use polar coordinates given by Equation (2)
identifying R2

u,v \ 0 to T ?θ,I(R/2πZ). The latter manifold will be denoted by
T ? in what follows. The manifold

S0 := {(σ, θ, I)|σ ∈ XR, RI = 1, I < I0} (4)

is a Poincaré section of the geodesic flow. But the Reeb flow projects onto M ;
we can hence identify any Poincaré section XR with a Poincaré section of the
Reeb flow in M denoted by X, which can be assumed to be independent of R.
The Poincaré S0 section is then parametrized by S0 given by S0 = Xq×T ?θ,I .
The Poincaré map is given in these coordinates by

P0(q, θ, I) = (Π(q), θ + 2T (q)/I2, I)

where T (q) is the return time of the Reeb flow when starting from q and Π is
the Poincaré map of the Reeb orbit. Note that the cylinder C0 := {q0} × T ?
is invariant by P0 as well as the symplectic form dθ∧dI on it. Note also that
the latter symplectic form is the restriction of the symplectic form on Σ×T ?
to C0. We will show latter that the Poincaré map is weakly perturbed when
I is small in the non integrable case.
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4 Summary of the proof

In what follows, we will assume, for technical simplicity, that the co-metric
admits the simple normal form g? = ρI + O (I2(I/ρ)∞) in some conical
neighbourhood of π−1(Γ) ∩ Σ+. The general case would be g? = F (σ, I) +
O (I2(I/ρ)∞) with F a sum of the BNF as in the previous section. The same
strategy will work in the latter case. So we will see the flow of 1

2
g? as a

perturbation of the flow of 1
2
ρI.

The scheme of the proof is as follows.

1. Using the structural stability of the non degenerate closed Reeb orbit,
we get a symplectic cylinder C of dimension 2 close to C0 invariant by
the Poincaré map.

2. We show the existence of invariant circles ck inside that cylinder.

3. We apply the Poincaré-Birkhoff fixed point theorem to the annuli be-
tween ck−1 and ck+1.

5 The invariant cylinder C

Let us first build a Poincaré section for the geodesic flow. Let S0 ⊂ Σ× T ?
be the Poincaré section for 1

2
ρI given in Equation (4). We choose a Poincaré

section which is a dilation of S0 (respecting the fibers) of the form λS0 with
λ : Σ × T ? → R+ a germ along π−1(Γ) . We have to satisfy g? = 1 with
g? = ρI +O((λI)∞) and ρI = 1 on S0 , this gives

λ2 +O((λI)∞) = 1

and hence λ = 1+O(I∞). This is clearly a Poincaré section because it is still
transversal to the flow. Using the projection onto M , we can still identify
this Poincaré section with S0. We need the

Lemma 5.1 On the energy shell F = 1 and for times O(1/I) the geodesic
flow differs from the unperturbed one by O(I(0)∞).

Proof.– We put I0 := I(0). First, from dI/dt = O(I∞), we get I(t) =
I0 + O(I∞0 ) for times t = O(1/I). We get ρ = 1/I0 + O(I∞0 ). The Lemma
follows then by looking at

1

2

−→
g? =

I

2
~ρ+ ρ∂θ +O(I∞)
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where we can replace I by I0 and ρ by 1/I0 moduloO(I∞0 ). We use then Equa-

tion (6) in Appendix C. Recall that the flow of 1
2
~ρI is given by G0

t (σ, θ, I) =(
RIt/2(σ), θ + t

I
, I
)
. The differential of that flow is hence

DG0
t (σ, θ, I) =

DRIt/2 0 0
0 1 0
0 − t

I2
1


We get the following estimate

‖
(
DG0

t (σ, θ, I)
)−1 ‖ ≤ ‖

(
DRIt/2(σ)

)−1 ‖+ |t/I2|

Hence, for times O(1/I), we have

‖
(
DG0

t (σ, θ, I)
)−1 ‖ = O

(
I−3
)

Using Equation (6) in Appendix C and the notations there, we get ‖ d
dt

”w(t, x)”‖ =
O (I∞0 ) for times O(1/I0) and w(t, x) = x+O (I∞0 ). The result follows. �

We get

Proposition 5.1 For a > 0, let us denote T ?a := T ? ∩ {|I| < a}. There
exists a > 0 and smooth functions q : T ?a → X and T : T ?a → R so that

1.
q(θ, I) = q0 +O (I∞)

2.

T (θ, I) =
2T0

I
+O (I∞)

3. The flow Gt of 1
2
g? restricted to g? = 1 satisfies

GT (θ,I)(q(θ, I), θ, I) =

(
q(θ, I), θ +

2T0

I2
+O (I∞) , I +O (I∞)

)
Hence the cylinder

C := {(q(θ, I), θ, I)|(θ, I) ∈ T ?}

is invariant by GT (θ,I) which is the restriction of the Poincaré map to C.
Moreover the symplectic form restricts to C as a symplectic form dI ∧ dθ +
O (I∞).
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Proof.– Let us consider the return map to X of the q-component for (θ, I)
fixed with I small. It follows from Lemma 5.1 that the return map is O (I∞)
close to the unperturbed Poincaré map of the Reeb flow with a return time
O(1/I). The conclusion follows then from the non degeneracy of the Reeb
orbit. �

6 The invariant circles ck

Applying Theorem A.1 to the restriction PC of P to the cylinder C and the
circles c0

k := {(θ, I)|I =
√
T0/kπ}, we will get circles ck globally, but not

pointwise, invariant by the map PC and close to c0
k.

More precisely, the restriction PC of the Poincaré map to the cylinder C
writes

PC(θ, I) = (θ + 2T0/I
2, I) +O (I∞)

using the coordinates (θ, I) in C. Putting J = 1/I2 and θ′ = θ + 2kπ , we
get the map:

S(θ′, J) = (θ′ + (2T0J − 2kπ), J) +O
(
J−∞

)
Near J = kπ/T0, we get

S(θ′, J) = (θ′ + (2T0J − 2kπ), J) +O
(
k−∞

)
(5)

This map is a perturbation of the map (θ′, J) → (θ′ + (2T0J − 2kπ), J) to
which we can apply Appendix A with X = T ? and Y0 = {J = kπ/T0} and
get the curves ck which are O (I∞) close to c0

k.

7 Applying the Poincaré-Birkhoff theorem

We apply the Poincaré-Birkhoff Theorem B.1. to the annuli between ck−1

and ck+1 and the lift to the universal cover of the annulus moving the lift
Ck+1 of ck+1 by a map close to θ → θ+ 2π and the lift Ck−1 of ck−1 by a map
close to θ → θ − 2π. This way we get a fixed point in the annulus for the
lift. This point is O (I∞) close to c0

k, because the other points are moved at
some speed like Im for some m ≥ 0: it is because of the estimate (5) of the
map S. This finishes the proof of Theorem 0.1.
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8 Periodic geodesics on Γ\PSL2(R)

The goal of this second part, which is quite independent of the previous
ones, is to describe the periodic geodesics of a specific right invariant sub-
Riemannian contact structure on compact quotients

Γ\PSL2(R) := {Γ.g|g ∈ PSL2(R)}

We assume for simplicity that Γ has no elliptic elements, so that all elements
of Γ\ Id are hyperbolic. Because we took the quotient PSL2(R) of SL2(R) by
±Id, we can represent any hyperbolic transform by a matrix with eigenvalues
λ, 1/λ with λ > 1.

Our analysis can be extended to some Riemannian case (see [Sa-98]) or
to another sub-Riemannian structure like the magnetic one (see [Ch-20]), or
even to any right invariant Hamiltonian. Note also that the Quantum version
of this study, namely the spectral theory of the associated sub-Riemannian
Laplacian, follows some parallel path (see [C-H-W-22?]).

9 Lie-Poisson bracket

LetG be a Lie group. We identify its Lie algebra G to the space of right invari-
ant vector fields equipped with the bracket of vector fields. We consider also
the algebra of right invariant differential operators, called the envelopping
algebra, generated by the Lie algebra. The principal symbols of these right
invariant operators are determined by their values on the dual G? = T ?IdG
of the Lie algebra. This gives a Poisson bracket on G?. We need only to
compute it for coordinates functions: if X ∈ G, the symbol of X at g = Id is
σ(X)(p) = ip(X). If X, Y ∈ G, the symbol of [X, Y ] = Z is −i{σ(X), σ(Y )}.
Hence the formula

{a, b}(p) = −[da(p), db(p)](p)

can be checked for operators of the Lie algebra: if p ∈ G?,

σ([X, Y ])(p) = −i{σ(X), σ(Y )}(p) = ip([X, Y ]|)

or, if the functions ξ and η on G? are defined by ξ(p) = p(X), η(p) = p(Y ),

{ξ, η}(p) = −p([X, Y ])

10



This bracket is called the Lie-Poisson bracket. The associated Hamiltonian
dynamics are given by Euler equations.

This gives the Euler equations using for a in the previous equation a
coordinates system on G?. All of this is explained in the book [M-R-98], Sec.
13.1.

Let us compute the Poisson bracket in the case of G = PSL2(R). The Lie
algebra is the 3D space of trace free real 2× 2 matrices

M(x, y, z) :=

(
z x
y −z

)
We write M = xX + yY + zZ. We have

[X, Y ] = −Z, [X,Z] = 2X, [Y, Z] = −2Y

There is a minus sign w.r. to the matrix bracket because of the right invari-
ance!

Hence, if (ξ, η, ζ) are the coordinates on G? dual to (x, y, z), we have

{ξ, η} = ζ, {ξ, ζ} = −2ξ, {η, ζ} = 2η

The symplectic leaves of the Poisson bracket are the connected components of
the level sets of the Casimir Hamiltonian defined by Cas(ξ, η, ζ) := 1

2
ζ2+2ξη.

The Hamiltonian Cas Poisson commutes with all functions on G?.
We consider the right invariant contact distribution generated by X and

Y and the sub-Riemannian metric g for which (X, Y ) is an orthonormal basis.
The right invariant Hamiltonian of the geodesic flow is 1

2
g? with g? = ξ2 +η2.

10 Invariant 2-tori, the frequency ω and the

period τ (C)

The Hamiltonian g? Poisson commutes with Cas. Both flows are complete
because the momentum map (Cas, g?) : T ?M → R2 is proper. We get hence
an R2-action Φ on M × G? ≡ T ?M preserving the values of the momentum
map. We will see that for most values of C, there exists orbits of Φ which

are tori TC on which the action Φ is linear and such that the orbits of
−−→
Cas

are periodic of period TCas(C). The geodesic dynamics on TC induces a

Poincaré map on an orbit of the Hamiltonian vector field
−−→
Cas of Cas. This

11



map is a translation of t→ t + ω(C)/TCas(C) of the choosen Casimir orbit.
For ω = p/q modZ with p, q, q ≥ 1, which are coprime, we get periodic
geodesics. These geodesics are crossing q times the Casimir periodic orbit.

For C ∈] − 1,+∞[\{0, 1}, the geodesic Hamiltonian 1
2
g? admits two pe-

riodic orbits on the symplectic leaf Cas−1(C). These orbits are supported
by the two connected components of (g?)−1 (1) ∩ Cas−1(C). We denote by
τ(C) > 0 the period of these orbits.

Note also that the antipodal map p→ −p changes the orientation of both
dynamics.

11 Main result

To each closed sub-Riemannian geodesic c of period T > 0, we associate the
following invariants:

• The free homotopy class of the projection π(c) onto Γ\H which is given
by a conjugacy class [γ] in Γ. We denote it by FH(c).

• The spiraling integer of any horizontal smooth closed curve in M of pe-
riod T is defined as follows: the right invariant distribution D spanned
by X, Y is a trivialized bundle. We look at the map θ : R/TZ →
{ξ2+η2 = 1} which associates to t the vector (ξ, η) so that ξ(t)X(c(t))+
η(t)Y (c(t)) is the tangent vector to the curve at the point of parameter
t. The spiraling integer is the degree of that mapping. Note that this
integer is invariant by C1 homotopies of horizontal periodic curves. We
denote it by Sp(c).

• The Morse index µ(c) which is the Morse index of the energy functional
restricted to horizontal curves.

• The free homotopy class of c as a conjugacy class in π1(M) denoted by
FM(c).

We want to prove the following

Theorem 11.1 For each value of C0 ∈ [−1,+∞[\{0} there exists closed
sub-Riemannian geodesics whose momentum satisfies Cas(p) = C0, g? = 1.
More precisely:

12



• If C0 > 1, for each primitive hyperbolic γ ∈ Γ, there exists a 2D-torus
TCo
γ invariant by the geodesic flow. The dynamics of the geodesic flow

on TCo
γ is linear and periodic for the dense set of values of C0 for which

ω(C0) = p/q is rational. For such closed geodesics, we have Sp(c) = q
and the length l(c) = qτ(C0).

• If C0 = 1, for each primitive hyperbolic γ ∈ Γ, there exists one periodic
geodesic of length

√
2 log λ with FH(c) = [γ] and Sp(c) = 0.

• If 0 < C0 < 1, for each primitive hyperbolic γ ∈ Γ, there exists a 2D-
torus TCo

γ invariant by the geodesic flow. The dynamics of the geodesic
flow on TCo

γ is linear and periodic for a dense set of values of C0 with
ω(C0) = p/q. For such closed geodesics, we have Sp(c) = 0 and the
length l(c) = qτ(C0).

• If −1 < C0 < 0, there exists a 2D-torus TCo
Id invariant by the geodesic

flow. The dynamics of the geodesic flow on TC0
Id is linear and periodic

for a dense set of values of C0 for which ω(C0) = p/q is rational. We
have FH(c) = {Id}, Sp(c) = 0 and the length l(c) = qτ(C0).

• If C0 = −1, there exists one periodic orbit of length 2
√

2π with FH(c) =
{Id} and Sp(c) = 0.

It is not clear for us how to compute the other invariants...

12 Casimir periodic orbits

Recall that Γ is a co-compact lattice with no elliptic elements in G and M =
Γ\G. The compact 3-manifold M can be identified with the unit cotangent
bundle of the compact Riemann surface Γ\H where H is the Poincaré half-
plane (see Appendix E). We consider the Hamiltonian Cas on T ?M ≡M ×
G?. We have −−→

Cas = ζ~ζ + 2ξ~η + 2η~ξ

On the other hand (ξ, η, ζ) are first integrals, hence for (Γ.g, p) ∈ M × G?
with p = (ξ, η, ζ), if Cast is the Casimir flow, we have

Cast(Γ.g, p) = (Γ.getA(p), p)

13



with
A(p) := ζZ + 2ξY + 2ηX

and Cas = −1
2
det(A(p)).

We get a periodic orbit t → (Γ.getA(p), p) of period T if and only if
Γ.geTA(p) = Γ.g, i.e.

geTA(p)g−1 = γ

for some γ ∈ Γ and g ∈ G. That periodic orbit is the left translate of the
invariant line of γ by g−1.

• If γ is hyperbolic with eigenvalues λ and 1/λ with λ > 1, we need to
have that the eigenvalues of A(p) are real and non zero, hence C > 0
and then

eT
√

2C = λ

or

TCas(C) =
1√
2C

log λ

Note that this orbit is simply a translate of a lift of a periodic geodesic
of Γ\H.

• If −1 ≤ C < 0, then eTA(p) is a rotation of angle T
√
−2C and hence

periodic of period TCas(C) = 2π/
√
−2C, independently of Γ. This

orbit is homotopic to the the compact subgroup SO2(R) of G.

• If C = 0, we get no periodic orbits.

13 The geodesic flow and periodic geodesics

The sub-Riemannian geodesic flow Gt, which is the Hamiltonian flow of 1
2
g?,

acts on the set of Casimir periodic orbits of fixed period: if CasT (z) =
z, we have Gt(CasT (z)) = CasT (Gt(z)), hence CasT (Gt(z)) = Gt(z). We
consider the sub-Riemannian geodesic flow Gt in the energy shell g? = 1

giving geodesics with speed 1. Recall that the periodic orbits of
−−→
Cas are

parametrized by the value of p(0). We can hence look at the Poisson action
of 1

2
g? on G? which preserves the symplectic leaves. For each values C0 of Cas,

this Poisson action is an Hamiltonian action on the 2D symplectic manifold
Cas = C0 with Hamiltonian 1

2
(ξ2 + η2). We parametrize the cylinder {ξ2 +

14



η2 = 1} ⊂ G? by (ξ = cos θ, η = sin θ, ζ) with θ ∈ R/2πZ and ζ ∈ R. We
get Cas = 1

2
ζ2 + sin 2θ.

Each time this Poisson action on G? is periodic, the orbit of the R2-action
Φ is a torus TC on which Φ acts linearly. To each such a torus, we associate
a rotation number C → ω(C) ∈ R/Z as follows: a periodic orbit of the
Casimir flow of period T is a Poincaré section of the geodesic flow Gt on that
torus. The frequency ω is the rotation number of the Poincaré map which is
conjugated to a rotation. If ω = p/q is rational with , we get a 1-parameter
family of closed geodesics. We will sometimes consider a lift ω̃ of ω to R.
We will in particular study below the map ω̃ :] − 1,+∞[\{0, 1} → R. The
lengths of these periodic geodesics is qτ(C) because they have to spiral q
times before closing.

13.1 Level sets of Cas on ξ2 + η2 = 1

The geodesic flow preserves the level sets of Cas restricted to the unit bundle.
We have hence to look at the different types of level lines. Due to right
invariance, we have only to look at the restriction of these sets to Y :=
G? ∩{g? = 1} which is a 2D cylinder. The critical values of Cas restricted to
Y are the global minimum −1 and a saddle point +1. We have also to look
at the special value Cas = 0 separating the elliptic from the hyperbolic case
for the Casimir flow.
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We have hence many cases to consider which are the classical versions of
the irreducible representations of PSL2(R) (see [Tay-86], chap. 8).

13.1.1 The case C0 > 1: “principal series”

The action of 1
2
g? on the Poisson manifold G? restricted to g? = 1 is periodic.

This implies that the corresponding orbits of the R2-action is a 2-torus. We
get hence periodic geodesics each times ω is rational.
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13.1.2 The case where C0 = 1

In this case, the orbits of Φ are cylinders and circles. The circles corresponds
to the critical points of Cas with critical value 1. For the critical point
ζ = 0, ξ = η = 1/

√
2, we have periodic geodesics parametrized by the hy-

perbolic conjugacy classes of Γ with lengths the lengths of the corresponding
Riemannian periodic geodesics of Γ\H.

13.1.3 The case where 0 < C0 < 1: “complementary series”

Again we get tori as orbits of the R2-action and periodic geodesics each times
ω is rational.

13.1.4 The case where C0 = 0

No periodic orbit for the Casimir flow which is parabolic.

13.1.5 The case where −1 < C0 < 0: “discrete series”

Again we get tori as orbits of the R2-action and periodic geodesics each times
ω is rational.

13.1.6 The case where C0 = −1

For the critical point ζ = 0, ξ = −η = 1/
√

2, we get periodic geodesics which
are the orbits of the SO2 action, i.e. the fibers of M → Γ\H.

14 The frequency map ω

If ω(C) is rational, we get a family of periodic geodesics. We will study the
function ω̃ and show that it is rational for a dense set of values of C. We
have to study first two other functions of C the period TCas of the Casimir
flow and the period T geod of the action of the geodesic flow on the periodic
orbits of the Casimir flow.

14.1 The function TCas

We know the that TCas(C) = lγ/
√

2C for C > 0 and TCas(C) =
√

2π/
√
−C

for C < 0.
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14.2 The function T geod

The function T geod is smooth and non vanishing on ] − 1,+∞[\{1}. For
C → +∞ is T geod ∼ 1/

√
C, the limits at +1 are +∞, the limit at −1 is some

> 0 number.

14.3 The function ω

Recall that the function ω̃ is a lift to R of the rotation number of the Poincaré
map induced on the periodic Casimir orbit by the geodesic flow. If ω(C) is
rational, we get a full torus of periodic geodesics. In order to understand
ω, we look at the projection of the tori on M . The projected Hamiltonian
vector fields are respectively V Cas = 2ηX + 2ξY + ζZ and V geod = ξX + ηY .
Both are independent outside the critical points ζ = 0, ξ = ±η = ±1/

√
2.

We consider the angle α between the two vectors (in the Riemannian metric
on M whose (X, Y, Z) is an orthonormal basis). We have

| cosα| = |ξη|√
1 + ζ2/4

Hence, we get the following behaviour of ω:

• As C → +∞, both periods are of the same order 1/
√
C and the angle

tends to π/2, hence we can choose the lift so that ω̃ → 0.

• As C → 1±, the TCas tends to a finite limit, while T geod →∞ and the
angle α tends to 0 for most of the time along the closed orbit of the
geodesic. Hence ω̃ →∞. .

• As C → 0, TCas tends to ∞ while T geod is smooth. The angle α is
bounded below. Hence we can choose ω̃ → 0.

• As C → −1, TCas tends to
√

2π while T geod is smooth. The angle α
tends to 0, hence ω̃ →∞.

From all this, we see that the function ω̃ which is analytic is non constant
on any interval, hence a dense set of values of C for which we get periodic
geodesics.
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15 Appendices

A Manifolds of fixed points

Our goal is to prove the following

Theorem A.1 Let Y0 a compact submanifold of a manifold X and F0 : X →
X a smooth map satisfying, ∀y ∈ Y0, F0(y) = y and ker(F ′0(y)− Id) = TyY0.
and consider a smooth family of maps Fε. Then, for any m, there exists
ε(m) > 0 so that, for |ε| < ε(m), there exists a Cm manifold Yε depending
smoothly of ε globally invariant by Fε.

In our paper this will be used with Y0 a circle embedded into a cylinder.
For the proof, we use the simplifying assumption that the normal bundle

TX|Y0/TY0 is trivial. We can then reduce to the case where X = (Y0)y×Rn
z .

We will search Yε as a graph of a Cm map fε from Y0 into Rn. The
invariance by Fε(y, z) = (Aε(y, z), Bε(y, z)) writes

Bε(y, fε(y)) = fε(Aε(y, fε(y)))

Differentiating with respect to ε at ε = 0 gives

∀y ∈ Y0, (Id−B′0(y))δf(y) = δB(y, 0)

where the δ’s are the derivatives w.r. to ε and B′0(y) is the derivative of B0

with respect to z at the point (y, 0) . Note that there is no derivatives of
Aε appearing because f0 = 0. Hence the derivative of the righhandside w.r.
to ε is δf . This can be solved with δf ∈ Cm(Y,Rn) by the assumption of
the Theorem. Hence we can apply implicit function Theorem in the Banach
space Cm(Y,Rn) and conclude.

B Poincaré-Birkhoff for twist maps

The goal is to give a simple proof of the Poincaré-Birkhoff theorem for twist
map of the annulus (see [Go-01]). Let A = (R/Z)x × [a, b]y be an annu-
lus equipped with some area form. A smooth map F = (X, Y ) : A → A
preserving the boundaries of A is called a twist map if

1. ∂X/∂y > 0
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2. F is area preserving

3. There exists a choice F̃ = (X̃, Ỹ ) of a lift of F to R× [a, b] so that, for
all x ∈ R, X̃(x, a) < x and X̃(x, b) > x.

Then

Theorem B.1 If F is a twist map, it admits a fixed point.

The proof is as follows: for each x ∈ R/Z, the twist conditions (1) and (3)
implies that there exists a unique y(x) so that X(x, y(x)) = x. Moreover
x → y(x) is smooth. Let us consider the curves which are the graphs of
x→ y(x) and x→ Y (x, y(x)). The second curve is the image of the first one
by F . They have to cross because F is area preserving (2), otherwise the
image of the domain below the first curve will have an area smaller or larger
than the area of that domain. Any intersection point is a fix point of F .

C Perturbation of flows

Let us consider a vector field of the form ~V = ~V0 + ~R and let φ0
t (resp.

φt) the flows of
−→
V0 (resp. ~V ). We want to compare both flows. For that,

we write φt(x) as φt(x) = φ0
t (w(t, x)), with w(0, x) = x, and will write a

differential equation for w. We get the two equations for the integral curve
t→ y(t) = φt(x):

d

dt
y(t) =

−→
V0(φ0

t (w(t, x))) + ~R(φ0
t (w(t, x)))

and
d

dt
y(t) = Dφ0

t (w(t, x))
d

dt
w(t, x) +

−→
V0(φ0

t (w(t, x)))

By identification of both equations, we get

Dφ0
t (w(t, x))

d

dt
w(t, x) = ~R(φ0

t (w(t, x)))

and finally
d

dt
w(t, x) =

(
Dφ0

t (w(t, x))
)−1 ~R(φ0

t (w(t, x))) (6)

This imply that, if we have a weak control of w and moreover we know φ0
t

and the inverse of its differential, we get the closeness of both flows.
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D Poincaré maps

Let γ be a periodic orbit of a vector field ~V in a manifold M . We choose a
germ of hypersurface S transverse to γ at some point x0. Then we can define
a return map F along γ which is a germ of map from (S, x0) into itself. That
germ is independent of the choices of x0 and S up to conjugation by a germ
of diffeomorphism. The linearisation L of F at x0 is hence also well defined
up to conjugation. The orbit γ is said to be non degenerate if 1 is not an
eigenvalue of L. In this case, we have the

Proposition D.1 If γ is non degenerate and if ~V ′ is close enough to ~V ,
there is a close orbit γ′ of ~V ′ which depends smoothly of ~V ′.

The non degeneracy condition allows to apply the inverse function theorem
to the perturbation of the return map.

In case of an Hamiltonian vector field, the manifold M to be considered
is not the full phase space, but the energy shell containing γ. The germ S is
then symplectic and F is a symplectic germ of diffeomorphism.

The Hamiltonian g? is g? = ξ2 + η2. Let us show that g? is “integrable”
in the sense of Section 3

E Geodesic flow on hyperbolic surfaces and

Poincaré group of M := Γ\PSL2(R)

For this section, one can look at [Bu-92]. We consider, for Γ ⊂ G = PSL2(R)
a co-compact lattice with no elliptic elements, the compact smooth oriented
hyperbolic surface N := Γ\H, where G acts on H by g(z) = (az+b)/(cz+d)
with

g =

(
a b
c d

)
The group G acts also on the unit tangent bundle of N obtained by taking
the derivative of the previous action. The action is transitive with a trivial
isotropy group. The map g → Dg(v0) where v0 = (i, ∂y) identifies Γ\G to
the unit tangent bundle of N . The 1-parameter group exp(tZ) acting on
the right on G identifies then with the geodesic flow with speed 2. For each
hyperbolic element γ ∈ Γ, there exists an unique periodic geodesic c of length
lγ = log λ, whose lift to H is invariant by γ. We have gexp(1

2
lγZ) = γg. If

c is given, γ is determined up to conjugation in Γ.
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Given a group H, we denote by C(H) the set of conjugacy classes of H.
We have the following exact homotopy sequence associated to the fibration
Γ→ PSL2(R)→ Γ\PSL2(R):

{1} → Z→ π1 (Γ\PSL2(R))→ Γ→ {1}

The first arrow is an injective morphism whose image is the center of K :=
π1 (Γ\PSL2(R)). The second arrow is surjective so that K is an extension of
Γ by Z. Concerning conjugacy classes in K, there is an action of Z on C(K)
whose orbits are the fibers of the projection C(K)→ C( Γ). In fact there is
a canonical parametrization of C(K) by C(Γ)×Z as follows: any element of
C(Γ) can be represented by a closed geodesic γ of Γ\H which can be lifted as
a perodic curve in M by looking at the canonical lift of γ to the unit tangent
bundle. Then we look at the action of Z by composing this loop with a loop
consisting in rotating the unit vector at a fixed point of Γ\H of 2π.
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