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Abstract. ORTHOMADS is an instantiation of the Mesh Adaptive
Direct Search (MADS) algorithm used in derivative-free and black-
box optimization. We investigate the performance of the variants of
ORTHOMADS on the bbob and bbob-mixint, respectively continuous
and mixed-integer, testbeds of the COmparing Continuous Optimizers
(COCO) platform and compare the considered best variants with heuris-
tic and non-heuristic techniques. The results show a favourable perfor-
mance of ORTHOMADS on the low-dimensional continuous problems
used and advantages on the considered mixed-integer problems. Besides,
a generally faster convergence is observed on all types of problems when
the search phase of ORTHOMADS is enabled.

Keywords: Derivative-free optimization · Blackbox optimization ·
Benchmarking · Mesh Adaptive Direct Search · Mixed-integer blackbox.

1 Introduction

Derivative-free optimization (DFO) and blackbox optimization (BBO) are
branches of numerical optimization that have known a fast growth in the past
years, especially with the growing need to solve real-world application problems
but also with the development of methods to deal with unavailable or numeri-
cally costly derivatives. DFO focuses on optimization techniques that make no
use of derivatives while BBO deals with problems where the objective function
is not analytically known, that is it is a blackbox. A regular blackbox objective
is the output of a computer simulation: for instance, at Stellantis, the crash or
acoustic outputs computed by the finite element simulation of a vehicle. The
problems addressed in this paper are of the form:

minimize
x∈X

f(x), (1)

where X is a bounded domain of either Rn or Rc × Zi with c and i respectively
the number of continuous and integer variables. n = c+ i is the dimension of the
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problem and f is a blackbox function. Heuristic and non-heuristic techniques
can tackle this kind of problems. Among the main approaches used in DFO
are direct local search methods. The latter are iterative methods that, at each
iteration, evaluate a set of points in a certain radius that can be increased if a
better solution is found or decreased if the incumbent remains the best point at
the current iteration.

The Mesh Adaptive Direct Search (MADS) [1,4,5] is a famous direct local
search method used in DFO and BBO that is an extension of the Generalized
Pattern Search (GPS) introduced in [28]. MADS evolves on a mesh by first doing
a global exploration called the search phase and then, if a better solution than
the current iterate is not found, a local poll is performed. The points evaluated
in the poll are defined by a finite set of poll directions that is updated at each
iteration. The algorithm is derived in several instantiations available in the Non-
linear Optimization with the MADS algorithm (NOMAD) software [7,19] and
its performance is evaluated in several papers. As examples, a broad compar-
ison of DFO optimizers is performed on 502 problems in [25] and NOMAD is
used in [24] with a DACE surrogate and compared with other local and global
surrogate-based approaches in the context of constrained blackbox optimization
on an automotive optimization problem and twenty two test problems.

Given the growing number of algorithms to deal with BBO problems, the
choice of the most adapted method for solving a specific problem still remains
complex. In order to help with this decision, some tools have been developed
to compare the performance of algorithms. In particular, data profiles [20] are
frequently used in DFO and BBO to benchmark algorithms: they show, given
some precision or target value, the fraction of problems solved by an algorithm
according to the number of function evaluations. There also exist suites of aca-
demic test problems: although the latter are treated as blackbox functions, they
are analytically known, which is an advantage to understand the behaviour of
an algorithm. There are also available industrial applications but they are rare.

Twenty two implementations of derivative-free algorithms for solving box-
constrained optimization problems are benchmarked in [25] and compared with
each other according to different criteria. They use a set of 502 problems that
are categorized according to their convexity (convex or nonconvex), smoothness
(smooth or non-smooth) and dimensions between 1 and 300. The algorithms
tested include local-search methods such as MADS through NOMAD version
3.3 and global-search methods such as the NEW Unconstrained Optimization
Algorithm (NEWUOA) [23] using trust regions and the Covariance Matrix Adap-
tation - Evolution Strategy (CMA-ES) [16] which is an evolutionary algorithm.

Simulation optimization deals with problems where at least some of the ob-
jective or constraints come from stochastic simulations. A review of algorithms
to solve simulation optimization is presented in [2], among which the NOMAD
software. However, this paper does not compare them due to a lack of standard
comparison tools and large-enough testbeds in this optimization branch.

In [3], the MADS algorithm is used to optimize the treatment process of
spent potliners in the production of aluminum. The problem is formalized as
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a 7−dimensional non-linear blackbox problem with 4 inequality constraints. In
particular, three strategies are compared using absolute displacements, relative
displacements and the latter with a global Latin hypercube sampling search.
They show that the use of scaling is particularly beneficial on the considered
chemical application.

The instantiation ORTHOMADS is introduced in [1] and consists in using
orthogonal directions in the poll step of MADS. It is compared to the initial
LTMADS, where the poll directions are generated from a random lower trian-
gular matrix, and to GPS algorithm on 45 problems from the literature. They
show that MADS outperforms GPS and that the instantiation ORTHOMADS

competes with LTMADS and has the advantage that its poll directions cover
better the variable space.

The ORTHOMADS algorithm, which is the default MADS instantiation used
in NOMAD, presents variants in the poll directions of the method. To our knowl-
edge, the performance of these different variants has not been discussed in the
literature. The purpose of this paper is to explore this aspect by performing
experiments with the ORTHOMADS variants. This work is part of a project
conducted with the automotive group Stellantis to develop new approaches for
solving their blackbox optimization problems. Our contributions are first the
evaluations of the ORTHOMADS variants on continuous and mixed-integer opti-
mization problems. Besides, the contribution of the search phase is studied and
shows a general deterioration of the performance when the search is turned off.
The effect however decreases with increasing dimension. Two from the best vari-
ants of ORTHOMADS are identified on each of the used testbeds and their perfor-
mance is compared with other algorithms including heuristic and non-heuristic
techniques. Our experiments exhibit particular variants of ORTHOMADS per-
forming best depending on problems features. Plots for analyses are available at
the following link: https://github.com/DahitoMA/ResultsOrthoMADS.

The paper is organized as follows. Section 2 gives an overview of the
MADS algorithm and its ORTHOMADS variants. In Section 3, the variants of
ORTHOMADS are evaluated on the bbob and bbob-mixint suites that consist
respectively of continuous and mixed-integer functions. Then, two from the best
variants of ORTHOMADS are compared with other algorithms in Section 4. Fi-
nally, Section 5 discusses the results of the paper.

2 MADS and the variants of ORTHOMADS

This section gives an overview of the MADS algorithm and explains the differ-
ences among the ORTHOMADS variants.

2.1 The MADS algorithm

MADS is an iterative direct local search method used for DFO and BBO prob-
lems. The method relies on a mesh Mk updated at each iteration and determined

https://github.com/DahitoMA/ResultsOrthoMADS
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by the current iterate xk, a mesh parameter size δk > 0 and a matrix D whose
columns consist of p positive spanning directions. The mesh is defined as follows:

Mk := {xk + δkDy : y ∈ Np}, (2)

where the columns of D form a positive spanning set {D1, D2, . . . , Dp} and N
stands for natural numbers.

The algorithm proceeds in two phases at each iteration: the search and the
poll. The search phase is optional and similar to a design of experiment: a finite
set of points Sk, stemming generally from a surrogate model prediction and a
Nelder-Mead (N-M) search [21], are evaluated anywhere on the mesh. If the
search fails at finding a better point, then a poll is performed. During the poll
phase, a finite set of points are evaluated on the mesh in the neighbourhood of
the incumbent. This neighbourhood is called the frame Fk and has a radius of
∆k > 0 that is called the poll size parameter. The frame is defined as follows:

Fk := {x ∈Mk : ‖x− xk‖∞ ≤ ∆kb}, (3)

where b = max{‖d‖∞, d ∈ D} and D ⊂ {D1, D2, . . . , Dp} is a finite set of poll
directions. The latter are such that their union over iterations grows dense on
the unit sphere.

The two size parameters are such that δk ≤ ∆k and evolve after each itera-
tion: if a better solution is found, they are increased and otherwise decreased. As
the mesh size decreases more drastically than the poll size in case of an unsuc-
cessful iteration, the choice of points to evaluate during the poll becomes greater
with unsuccessful iteration. Usually, δk = min{∆k, ∆

2
k}. The description of the

MADS algorithm is given in Algorithm 1 and inspired from [6].

Algorithm 1: Mesh Adaptive Direct Search (MADS)

Initialize k = 0, x0 ∈ Rn, D ∈ Rn×p, ∆0 > 0, τ ∈ (0, 1) ∩Q, εstop > 0
1. Update δk = min{∆k,∆

2
k}

2. Search
If f(x) < f(xk) for x ∈ Sk then xk+1 ← x, ∆k+1 ← τ−1∆k and go to 4
Else go to 3

3. Poll
Select Dk,∆k such that Pk := {xk + δkd : d ∈ Dk,∆k} ⊂ Fk
If f(x) < f(xk) for x ∈ Pk then xk+1 ← x, ∆k+1 ← τ−1∆k and go to 4
Else xk+1 ← xk and ∆k+1 ← τ∆k

4. Termination
If ∆k+1 ≥ εstop then k ← k + 1 and go to 1
Else stop

2.2 ORTHOMADS variants

MADS has two main instantiations called ORTHOMADS and LTMADS, the
latter being the first developed. Both variants are implemented in the NOMAD
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software but as ORTHOMADS is to be preferred for its coverage property in
the variable space, it was used for the experiments of this paper with NOMAD
version 3.9.1.

The NOMAD implementation of ORTHOMADS provides 6 variants of the
algorithm according to the number of directions used in the poll or according to
the way that the last poll direction is computed. They are listed below.

ORTHO N + 1 NEG computes n + 1 directions among which n are orthogonal
and the (n+ 1)th direction is the opposite sum of the n first ones.

ORTHO N + 1 UNI computes n + 1 directions among which n are orthogonal
and the (n+ 1)th direction is generated from a uniform distribution.

ORTHO N + 1 QUAD computes n + 1 directions among which n are orthogonal
and the (n+1)th direction is generated from the minimization of a local quadratic
model of the objective.

ORTHO 2N computes 2n directions that are orthogonal. More precisely each
direction is orthogonal to 2n−2 directions and collinear with the remaining one.

ORTHO 1 uses only one direction in the poll.
ORTHO 2 uses two opposite directions in the poll.
In the plots, the variants will respectively be denoted using Neg, Uni, Quad,

2N, 1 and 2.

3 Test of the variants of ORTHOMADS

In this section, we try to identify potentially better direction types of
ORTHOMADS and investigate the contribution of the search phase.

3.1 The COCO platform and the used testbeds

The COmparing Continuous Optimizers (COCO) platform [17] is a benchmark-
ing framework for blackbox optimization. In this respect, several suites of stan-
dard test problems are provided and are declined in variants, also called in-
stances. The latter are obtained from transformations in variable and objective
space in order to make the functions less regular.

In particular, the bbob testbed [13] provides 24 continuous problems for
blackbox optimization, each of them available in 15 instances and in dimensions
2, 3, 5, 10, 20 and 40. The problems are categorized in five subgroups: separable
functions, functions with low or moderate conditioning, ill-conditioned functions,
multi-modal functions with global structure and multi-modal weakly structured
functions. All problems are known to have their global optima in [−5, 5]n, where
n is the size of a problem.

The mixed-integer suite of problems bbob-mixint [29] derives the bbob and
bbob-largescale [30] problems by imposing integer constraints on some vari-
ables. It consists of the 24 functions of bbob available in 15 instances and in
dimensions 5, 10, 20, 40, 80 and 160.

COCO also provides various tools for algorithm comparison, notably Empir-
ical Cumulative Distribution Function (ECDF) plots (or data profiles) that are
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used in this paper. They show the empirical runtimes, computed as the number
of function evaluations to reach given function target values, divided by the di-
mension. A function target value is defined as ft = f∗ + ∆ft, where f∗ is the
minimum value of a function f and ∆ft is a target precision.

For the bbob and bbob-mixint testbeds, the target precisions are 51 values
between 10−8 and 102. Thus, if a method reaches 1 in the ordinate axis of an
ECDF plot, it means 100% of function target values have been reached, including
the smallest one f∗+ 10−8. The presence of a cross on an ECDF curve indicates
when the maximal budget of function evaluations is reached. After the cross,
COCO estimates the runtimes: it is called simulated restarts.

For bbob, an artificial solver called best 2009 is present on the plots and is
used as reference solver. Its data comes from the BBOB-2009 workshop3 com-
paring 31 solvers.

The statistical significance of the results is evaluated in COCO using the
rank-sum test.

3.2 Parameter setting

In order to test the performance of the different variants of ORTHOMADS, the
bbob and bbob-mixint suites of COCO were used, in particular the problems
that have a dimension lower than or equal to 20. This limit in the dimensions
has two main reasons: the first one is the computational cost required for the ex-
periments and, with the perspective of solving real-world problems, 20 is already
a high dimension in this expensive blackbox context. Only the first 5 instances
of each function were used, that is a total of respectively 600 and 360 problems
used from bbob and bbob-mixint. A maximal function evaluation budget of
2× 103 × n was set, with n being the dimension of the considered problem.

To see the contribution of the search phase, the experiments on the vari-
ants were divided in two subgroups: the first one using the default search
of ORTHOMADS and the second one where the search phase is disabled.
The latter is obtained by setting the four parameters NM SEARCH, VNS SEARCH,
SPECULATIVE SEARCH and MODEL SEARCH of NOMAD to the value no. In the
plots, the label NoSrch is used when the search is turned off. The search no-
tably includes the use of a quadratic model and of the N-M method. The minimal
mesh size was set to 10−11.

Experiments were run with restarts allowed for unsolved problems when the
evaluation budget is not reached. This may happen due to internal stopping
criteria of the solvers. The initial points used are suggested by COCO through
the method initial solution proposal().

3.3 Results

Continuous problems As said previously, the contribution of the search phase
was studied. The results aggregated on all functions in dimensions 5, 10 and

3 https://coco.gforge.inria.fr/doku.php?id=bbob-2009-results

https://coco.gforge.inria.fr/doku.php?id=bbob-2009-results
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20 on the bbob suite are depicted on Figure 1. They show that enabling the
search step in NOMAD generally leads to an equivalent or higher performance
of the variants and this improvement can be important. Besides, using one or
two directions with or without search is often far from being competitive with
the other variants. In particular, 1 NoSrch is often the worst or among the
worsts, except on Discus which is an ill-conditioned quadratic function, where it
competes with the variants that do not use the search. As mentioned in Section 1,
the plots depicting the results described in the paper are available online.

Looking at the results aggregated on all functions for ORTHO 2N, ORTHO N + 1

NEG, ORTHO N + 1 QUAD and ORTHO N + 1 UNI, the search increases the success
rate from nearly 70%, 55% and 40% up to 90%, 80% and 65% respectively in
dimensions 2, 3 and 5, as shown in Figure 1a for dimension 5. From dimension
10, the advantage of the search decreases and the performance of ORTHO N + 1

UNI visibly stands out from the other three variants mentioned above since it
decreases with or without the search, as illustrated in Figures 1b and 1c.

Focusing on some families of functions, Neg NoSrch seems slightly less im-
pacted than the other NoSrch variants by the increase of the dimension.

On ill-conditioned problems, the variants using search are more sensitive to
the increase of the dimension.

Considering multi-modal functions with adequate global structure, 2N NoSrch
solves 15% more problems than the other NoSrch variants in 2D. In this dimen-
sion, the variants using search have a better success rate than the best 2009 up
to a budget of 200 function evaluations. From 10D, all curves are rather flat: all
ORTHOMADS variants tend to a local optimum.

With increasing dimension, Neg is competitive or better than the others on
multi-modal problems without global structure, followed by 2N. In particular,
in dimension 20 both variants are competitive and outperform the remaining
variants that use search on the Gallagher’s Gaussian 101−me peaks function,
and Neg outperforms them with a gap of more than 20% in their success rate on
the Gallagher’s Gaussian 21−hi peaks function which is also ill-conditioned.

Since Neg and 2N are often among the best variants on the considered prob-
lems and have an advantage on some multi-modal weakly structured functions,
they are chosen for comparison with other solvers.

Mixed-integer problems The experiments performed on the mixed-integer
problems also show a similar or improved performance of the ORTHOMADS

variants when the search step is enabled in NOMAD, as illustrated in Figure 2
in dimensions 5, 10 and 20. Looking at Figure 2a for instance, in the given budget
of 2× 103×n, the variant denoted as 2 solves 75% of the problems in dimension
5 against 42% for 2 NoSrch.

However, it is not always the case: the only use of the poll directions is some-
times favourable. It is notably the case on the Schwefel function in dimension 20
where the curve Neg NoSrch solves 43% of the problems, which is the highest
success rate when the search and non-search settings are compared together.
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Fig. 1: ECDF plots: the variants of ORTHOMADS with and without the search
step on the bbob problems. Results aggregated on all functions in dimensions 5,
10 and 20.

When the search is disabled, ORTHO 2N seems preferable in small dimension,
namely here in 5D as presented in Figure 2a. In this dimension, it is sometimes
the only variant that solves all the instances of a function in the given budget:
it is the case for the step-ellipsoidal function, the two Rosenbrock functions
(original and rotated), the Schaffer functions, and the Schwefel function. It also
solves all the separable functions in 5D and can therefore solve the different
types of problems. Although the difference is less noticeable with the search step
enabled, this variant is still a good choice, especially on multi-modal problems
with adequate global structure.

On the whole, looking at Figure 2, ORTHO 1 and ORTHO 2 solve less problems
than the other variants and the gap in performance with the other direction types
increases with the dimension, whether using the search phase or not. Although
the use of the search helps solving some functions in low dimension such as the
sphere or linear slope functions in 5D, both variants perform poorly in dimension
20 on second-order separable functions, even if the search enables the solution
of linear slope which is a linear function. Among these two variants, using 2
poll directions also seems better than only one, especially in dimension 10 where
ORTHO 2 solves more than 23% and 40% of problems respectively without and
with use of search, against 16% and 31% for ORTHO 1 as presented in Figure 2b.

Among the four remaining variants, ORTHO N + 1 UNI reaches equivalent or
less targets than the others whether considering the setting where the search is
available or when only the poll directions are used, as depicted in Figure 2. In
particular, in dimension 5, the four variants using more than n+1 poll directions
solve more than 85% of the separable problems with or without search. But when
the dimension increases, ORTHO N + 1 UNI has a disadvantage on the Rastrigin
functions where the use of the search does not noticeably help the convergence
of the algorithm.

Focusing on the different function types, no algorithm among the variants
ORTHO 2N, ORTHO N + 1 NEG and ORTHO N + 1 QUAD seem to particularly outperform
the others in dimensions 10 and 20. A higher success rate is however noticeable
on multimodal weakly structured problems with search available for ORTHO N + 1
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NEG in comparison with ORTHO N + 1 QUAD and for the latter in comparison with
ORTHO 2N. Besides, Neg reaches more targets on problems with low or moderate
conditioning. For these reasons, ORTHO N + 1 NEG was chosen for comparison with
other solvers. Besides, the mentioned slight advantage of ORTHO N + 1 QUAD over
ORTHO 2N, its equivalent or better performance on separable and ill-conditioned
functions compared with the latter variant, makes it a good second choice to
represent ORTHOMADS.
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Fig. 2: ECDF plots: the variants of ORTHOMADS with and without the search
step on the bbob-mixint problems. Results aggregated on all functions in di-
mensions 5, 10 and 20.

4 Comparison of ORTHOMADS with other solvers

The previous experiments showed the advantage of using the search step in
ORTHOMADS to speed up convergence. They also revealed the effectiveness of
some variants that are used here for comparisons with other algorithms on the
continuous and mixed-integer suites.

4.1 Compared algorithms

Apart from ORTHOMADS, the other algorithms used for comparison on bbob

are first, three deterministic algorithms: the quasi-Newton Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method [22], the quadratic model-based NEWUOA
and the adaptive N-M [14] that is a simplicial search. Stochastic methods are also
used among which a Random Search (RS) algorithm [10] and three population-
based algorithms: a surrogate-assisted CMA-ES, Differential Evolution (DE) [27]
and Particle Swarm Optimization (PSO) [18,11].

In order to perform algorithm comparisons on bbob-mixint, data from four
stochastic methods were collected: RS, the mixed-integer variant of CMA-ES,
DE and the Tree-structured Parzen Estimator (TPE) [8] that is a stochastic
model-based technique.

BFGS is an iterative quasi-Newton linesearch method that uses approxima-
tions of the Hessian matrix of the objective. At iteration k, the search direction



10 M.A. Dahito et al.

pk solves a linear system Bkpk = −∇f(xk), where xk is the iterate, f the objec-
tive function and Bk ≈ ∇2f(xk). The matrix Bk is then updated according to
a formula. In the context of BBO, the derivatives are approximated with finite
differences.

NEWUOA is the Powell’s model-based algorithm for DFO. It is a trust-
region method that uses sequential quadratic interpolation models to solve un-
constrained derivative-free problems.

The N-M method is a heuristic DFO method that uses simplices. It begins
with a non degenerated simplex. The algorithm identifies the worst point among
the vertices of the simplex and tries to replace it by reflection, expansion or
contraction. If none of these geometric transformations of the worst point enables
to find a better point, a contraction preserving the best point is done. The
adaptive N-M method uses the N-M technique with adaptation of parameters
to the dimension, which is notably useful in high dimensions.

RS is a stochastic iterative method that performs a random selection of
candidates: at each iteration, a random point is sampled and the best between
this trial point and the incumbent is kept.

CMA-ES is a state-of-the art evolutionary algorithm used in DFO. Let
N (m,C) denote a normal distribution of mean m and covariance matrix C.
It can be represented by the ellipsoid x>C−1x = 1. The main axes of the ellip-
soid are the eigenvectors of C and the square roots of their lengths correspond
to the associated eigenvalues. CMA-ES iteratively samples its populations from
multivariate normal distributions. The method uses updates of the covariance
matrices to learn a quadratic model of the objective.

DE is a meta-heuristic that creates a trial vector by combining the incumbent
with randomly chosen individuals from a population. The trial vector is then
sequentially filled with parameters from itself or the incumbent. Finally the best
vector between the incumbent and the created vector is chosen.

PSO is an archive-based evolutionary algorithm where candidate solutions
are called particles and the population is a swarm. The particles evolve according
to the global best solution encountered but also according to their local best
points.

TPE is an iterative model-based method for hyperparameter optimization.
It sequentially builds a probabilistic model from already evaluated hyperparam-
eters sets in order to suggest a new set of hyperparameters to evaluate on a score
function that is to be minimized.

4.2 Parameter setting

To compare the considered best variants of ORTHOMADS with other methods,
the 15 instances of each function were used and the maximal function evaluation
budget was increased to 105 × n, with n being the dimension.

For the bbob problems, the data used for BFGS, DE and the adaptive N-
M method comes from the experiments of [31]. CMA-ES was tested in [15],
the data of NEWUOA is from [26], the one of PSO is from [12] and RS re-
sults come from [9]. The comparison data of CMA-ES, DE, RS and TPE used
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on the bbob-mixint suite comes from the experiments of [29]. All are acces-
sible from the data archives of COCO with the cocopp.archives.bbob and
cocopp.archives.bbob mixint methods.

4.3 Results

Continuous problems Figures 3 and 4 show the ECDF plots comparing the
methods on the different function types and on all functions, respectively in
dimensions 5 and 20 on the continuous suite. Compared with BFGS, CMA-ES,
DE, the adaptive N-M method, NEWUOA, PSO and RS, ORTHOMADS often
performs in the average for medium and high dimensions. For small dimensions
2 and 3, it is however among the most competitive.

Considering the results aggregated on all functions and splitting them over all
targets according to the function evaluations, they can be divided in three parts.
The first one consists of very limited budgets (about 20 × n) where NEWUOA
competes with or outperforms the others. After that, BFGS becomes the best
for an average budget and CMA-ES outperforms the latter for high evaluation
budgets (above the order of 102×n), as shown in Figures 3f and 4f. The obtained
performance restricted to a low budget is an important feature relevant to many
applications for which each function evaluation may last hours or even days.

On multi-modal problems with adequate structure, there is a noticeable
gap between the performance of CMA-ES, which is the best algorithm on this
kind of problems, and the other algorithms as shown by Figures 3d and 4d.
ORTHOMADS performs the best in the remaining methods and competes with
CMA-ES for low budgets. It is even the best method up to a budget of 103 × n
in 2D and 3D while it competes with CMA-ES in higher dimensions for budgets
lower than the order of 102 × n.

RS is often the worse algorithm to use on the considered problems.

Mixed-integer problems Figures 5 and 6 show the ECDF plots comparing
the methods on the different function types and on all functions, respectively
in dimensions 5 and 20 on the mixed-integer suite. The comparisons of NEG

and QUAD with CMA-ES, DE, RS and TPE show an overall advantage of these
ORTHOMADS variants over the other methods. A gap is especially visible on sep-
arable and ill-conditioned problems, respectively depicted in Figures 5a and 6a
and Figures 5c and 6c in dimensions 5 and 20, but also on moderately conditioned
problems as shown in Figures 5b and 6b in 5D and 20D. On multi-modal prob-
lems with global structure, ORTHOMADS is to prefer only in small dimensions:
from 10D its performance highly deteriorates and CMA-ES and DE seem to be
better choices. On multi-modal weakly structured functions, the advantages of
ORTHOMADS compared to the others emerge when the dimension increases.

Besides, although the performance of all algorithms decreases with increasing
dimensions, ORTHOMADS seems less sensitive to that. For instance, for a budget
of 102 × n, ORTHOMADS reaches 15% more targets than CMA-ES and TPE
that are the second best algorithms until this budget, and in dimension 20 this
gap increases to 18% for CMA-ES and 25% for TPE.



12 M.A. Dahito et al.

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RS-5-init
BFGS-scip
adapt-Nel
NEWUOA
CMA-ES  2
Neg
PSO
2N
DE-scipy-
best 2009bbob f1-f5, 5-D

51 targets: 100..1e-08
15 instances

v2.4

(a) Separable

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RS-5-init
BFGS-scip
NEWUOA
adapt-Nel
DE-scipy-
PSO
Neg
2N
CMA-ES  2
best 2009bbob f6-f9, 5-D

51 targets: 100..1e-08
15 instances

v2.4

(b) Moderately conditioned

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RS-5-init
PSO
DE-scipy-
2N
NEWUOA
Neg
BFGS-scip
adapt-Nel
CMA-ES  2
best 2009bbob f10-f14, 5-D

51 targets: 100..1e-08
15 instances

v2.4

(c) Ill-conditioned

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RS-5-init
BFGS-scip
adapt-Nel
NEWUOA
DE-scipy-
Neg
2N
PSO
CMA-ES  2
best 2009bbob f15-f19, 5-D

51 targets: 100..1e-08
15 instances

v2.4

(d) Multi-modal

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RS-5-init
NEWUOA
BFGS-scip
PSO
DE-scipy-
adapt-Nel
2N
Neg
CMA-ES  2
best 2009bbob f20-f24, 5-D

51 targets: 100..1e-08
15 instances

v2.4

(e) Weakly structured

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RS-5-init
NEWUOA
BFGS-scip
adapt-Nel
PSO
Neg
DE-scipy-
2N
CMA-ES  2
best 2009bbob f1-f24, 5-D

51 targets: 100..1e-08
15 instances

v2.4

(f) All functions

Fig. 3: ECDF plots: comparison of the two variants ORTHO 2N and ORTHO N + 1

NEG of ORTHOMADS with BFGS, NEWUOA, adaptive N-M, RS, CMA-ES, DE
and PSO on the bbob problems. Results aggregated on the function types and
on all functions in dimension 5.
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Fig. 4: ECDF plots: comparison of the two variants ORTHO 2N and ORTHO N + 1

NEG of ORTHOMADS with BFGS, NEWUOA, adaptive N-M, RS, CMA-ES, DE
and PSO on the bbob problems. Results aggregated on the function types and
on all functions in dimension 20.
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On the overall picture, presented in Figures 5f and 6f, RS performs poorly.
The budget allocated to TPE, which is only 102 × n, is way smaller than the
ones allocated to the other methods. In this limited budget, TPE competes with
CMA-ES in 5D and is better or competitive with DE in 10D and 20D. The latter
competes with ORTHOMADS after a budget in the order of 103×n. Thus, after
5×103 function evaluations, only DE competes with ORTHOMADS in 5D where
both methods reach 70% of function-target pairs. Finally, CMA-ES competes
with ORTHOMADS when the budget approaches 104 × n function evaluations.
Hence, restricted budgets seem to favour the direct local search method while
expensive budgets favour the evolutionary algorithms CMA-ES and DE.
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Fig. 5: ECDF plots: comparison of the two variants ORTHO N + 1 NEG and
ORTHO N + 1 QUAD of ORTHOMADS with RS, CMA-ES, DE and TPE on the
bbob-mixint problems. Results aggregated on the function types and on all
functions in dimension 5.

5 Conclusion

This paper investigates the performance of the different poll direction types
available in ORTHOMADS on continuous and mixed-integer problems from the
literature in a blackbox context. On these two types of problems, ORTHO N + 1

NEG competes with or outperforms the other variants of the algorithm whereas
using only 1 or 2 directions is often far from being competitive.

On the continuous functions considered, the best poll direction types identi-
fied are ORTHO N + 1 NEG and ORTHO 2N, especially on multi-modal weakly struc-
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Fig. 6: ECDF plots: comparison of the two variants ORTHO N + 1 NEG and
ORTHO N + 1 QUAD of ORTHOMADS with RS, CMA-ES, DE and TPE on the
bbob-mixint problems. Results aggregated on the function types and on all
functions in dimension 20.

tured problems. ORTHOMADS is advantageous in small dimensions and achieves
mean results for medium and high dimensions compared to the other algorithms.
It also performs well on multi-modal problems with global structure where it
competes with CMA-ES for limited budgets.

For very limited budgets, the trust-region method NEWUOA is favourable
on continuous problems, followed by the linesearch method BFGS for a medium
budget and finally the evolutionary algorithm CMA-ES for a high budget.

The results on the mixed-integer suite show that, among the poll direction
types, ORTHO 2N is preferable in small dimension. Otherwise, ORTHO N + 1 NEG and
ORTHO N + 1 QUAD are among the best direction types. Comparing them to other
methods show that ORTHOMADS often outperforms the compared algorithms
and seems more resilient to the increase of the dimension. For limited budgets,
ORTHOMADS seems a good choice among the other considered algorithms to
solve unconstrained mixed-integer blackbox problems. This is notably interesting
regarding real-world application problems and, in particular, the mixed-integer
optimization problems of Stellantis, where the number of allowed blackbox eval-
uations is often limited to a few hundreds. In the latter case, the variables are
typically the thicknesses of the sheet metals, considered as continuous, and the
materials that are categorical variables encoded as integers.

Finally, studying the contribution of the search step of ORTHOMADS shows
that disabling it generally leads to a deteriorated performance of the algorithm.
Indeed, the default search sequentially executes a N-M search and a quadratic
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model search that enable a global exploration and accelerate the convergence.
However, this effect softens when the dimension increases.
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20. Moré, J.J., Wild, S.M.: Benchmarking derivative-free optimization al-
gorithms. SIAM Journal on Optimization 20(1), 172–191 (2009).
https://doi.org/10.1137/080724083

21. Nelder, J.A., Mead, R.: A simplex method for function minimization. The computer
journal 7(4), 308–313 (1965)

22. Nocedal, J., Wright, S.: Numerical optimization. Springer Science & Business Me-
dia (2006)

23. Powell, M.J.D.: The NEWUOA software for unconstrained optimization without
derivatives. In: Large-scale nonlinear optimization, pp. 255–297. Springer (2006)

24. Regis, R.: Constrained optimization by radial basis function interpo-
lation for high-dimensional expensive black-box problems with infea-
sible initial points. Engineering Optimization 46(2), 218–243 (2014).
https://doi.org/10.1080/0305215X.2013.765000

25. Rios, L., Sahinidis, N.: Derivative-free optimization: a review of algorithms and
comparison of software implementations. Journal of Global Optimization 56(3),
1247–1293 (2013). https://doi.org/10.1007/s10898-012-9951-y

26. Ros, R.: Benchmarking the NEWUOA on the bbob-2009 function testbed.
In: Proceedings of the 11th Annual Conference Companion on Genetic and
Evolutionary Computation Conference: Late Breaking Papers. p. 2421–2428.
GECCO ’09, Association for Computing Machinery, New York, NY, USA (2009).
https://doi.org/10.1145/1570256.1570338

27. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. Journal of global optimization 11(4), 341–359
(1997). https://doi.org/10.1023/A:1008202821328

28. Torczon, V.: On the convergence of pattern search algorithms. SIAM Journal on
Optimization 7(1), 1–25 (1997). https://doi.org/10.1137/S1052623493250780
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