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Abstract. Stabilizing the state of a system relying only on the knowledge of a measured output
is a classical control theory problem. Designing a stable closed-loop based on an observer design
requires that some necessary information on the state can be accessed through the output
trajectory. For non-linear systems, this may not be true for all controls. The existence of
singular controls (from the point of view of observability) is even generic in many cases. Then,
the design of asymptotically stable closed-loops becomes a challenge that remains to be fully
answered. Using various examples, we propose to review some strategies that showed to be
efficient in tackling the difficulties posed by non-uniform observability (i.e., existence of singular
controls) in the context of dynamic output feedback stabilization.

1. Introduction

In many physical systems, only an output of the system is known, and it is usual to rely on
estimations of the state to achieve control objectives on the system. For instance, stabilizing the
state of a dynamical system to a target point from the knowledge of its output is a classical goal
in control theory [3]. However, stabilizing a system and estimating the state are two competing
processes that need to happen simultaneously in order to stabilize a partially measured system in
closed loop. For non-linear systems, it turns out that the choice of the control can influence the
observability of the system, that is our ability to adequately reconstruct the state from the output.
This can pose a major problem for closed loop systems. It has been known since the nineties that if
a non-linear system is both stabilizable by means of a state feedback and observable for any input,
i.e., uniformly observable, then it should also be stabilizable by a dynamic feedback depending
only on knowledge of the input and output [20, 33]. It is, however, much more difficult to give a
definitive answer when systems admit singular inputs for which they are unobservable.

In the present work, we propose to review and discuss some recent results by the authors and
their collaborators on this issue. Despite the generality of non-uniform observability among non-
linear systems (it is generic when the dimension of the output is less or equal to the dimension
of the input [16]), little is known. Still, early results on the problem were obtained by Coron
[12] and Shim and Teel [29], respectively on local and practical stabilization by means of periodic
time-varying output feedbacks. We focus on the design of autonomous closed-loop, preventing the
use of such switching methods. With the present text, our goal is to present the strategies we
developed based on feedback perturbations (to improve observability of the closed-loop system),
dissipative systems (that present some robustness with respect to observability singularities) and
embedding design (into dissipative systems).
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2 OUTPUT FEEDBACK STABILIZATION OF NON-UNIFORMLY OBSERVABLE SYSTEMS

2. Problem discussion

2.1. Output feedback. Let n, m and p be positive integers, f ∈ C0(Rn × Rp,Rn) be uniformly
locally Lipschitz with respect to its first variable and h : Rn → Rm. For all u ∈ C0(R+,R

p),
consider the general observation-control system

(1)

{

ẋ = f(x, u)

y = h(x)

where x is the state of the system, u is the control (or input) and y is the observation (or measured
output). We are interested in the problem of stabilizing (1) to the origin by using only knowledge
of f , h, and online measurement of y.

Definition 2.1 (Dynamic output feedback stabilizability). System (1) is said to be locally (resp.
globally) stabilizable by means of a dynamic output feedback if and only if the following holds.

There exist two continuous maps ν : Rq × Rp × Rm → Rq and λ : Rq × Rm → Rp for some
non-negative integer q such that (0, 0) ∈ Rn×Rq is a locally (resp. globally) asymptotically stable
equilibrium point of the following system:

(2)

{

ẋ = f(x, u)

y = h(x)
,

{

ẇ = ν(w, u, y)

u = λ(w, y).

Additionally, if for any compact set Kx ⊂ Rn, there exist two continuous maps ν : Rq × Rp ×
Rm → Rq and λ : Rq×Rm → Rp for some non-negative integer q, and a compact set Kw ⊂ Rq such
that (0, 0) ∈ Rn ×Rq is an asymptotically stable equilibrium point of (2) with basin of attraction
containing Kx×Kw, then (1) is said to be semi-globally stabilizable by means of a dynamic output
feedback.

We focus on autonomous stabilization strategies, while a time-varying generalization (where ν
and λ in (2) depend on time) can be considered even for autonomous f and h as shown in [12]. We
particularly investigate the case of semi-global stabilization, that is of deep interest in engineering
applications. Relying on a dynamical observer to estimate the state of the system and produce a
suitable stabilizing control is a classical strategy. Naturally, this requires the estimation problem
to be well-posed, that is, that the system is observable.

Definition 2.2 (Observability). System (1) is said to be observable in time T for an input u ∈
C0(R+,R

p) if and only if, for all initial conditions x0 6= x̃0 ∈ Rn, the set
{

t ∈ [0, T̄ ) : h(x(t)) 6= h(x̃(t))
}

has positive measure, where x and x̃ denote respectively the solutions of (2) starting from x0 and
x̃0 and T̄ denotes the minimum between T and the existence time of x and x̃. If system (1) is
observable in any time T > 0 for all inputs u, then it is said to be uniformly observable in small
time.

A notion stronger than uniform observability in small time can be defined for regular systems.

Definition 2.3 (Complete uniform observability). Assume that f and h are sufficiently regular.
System (1) is said to be completely uniformly observable if and only if there exist two non-negative
integers ny and nu and a smooth function η : Rm(ny+1)×Rp(nu+1) → Rn such that, for all smooth
inputs u : R+ → Rp and all solutions (x, y) of (1), we have for all t > 0 such that x(t) is defined,

x(t) = η((y(i)(t))06i6ny
, (u(i)(t))06i6nu

)

where (y(i)(t))06i6ny
and (u(i)(t))06i6nu

denote the ny and nu first derivatives at time t of y and
u, respectively.

This notion proved to be particularly useful in the context of output feedback stabilization, as
shown by Teel and Praly in [33, 34].

Theorem 2.4 ([33]). If system (1) is
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• semi-globally stabilizable by means of a smooth state feedback,
• completely uniformly observable,

then it is semi-globally stabilizable by means of a dynamic output feedback.

A related result can be found in [19, 20] under a strong differential observability assumption.
The main drawback of this strategy is that uniform observability is a restrictive assumption that
is generically not satisfied when the dimension of the output is less than or equal to the dimension
of the input (i.e., m 6 p), as discussed in [16, Chapter 3]. Hence, in most cases, one can not
rely on Theorem 2.4 (based on a high gain strategy) to stabilize a control systems by means of a
dynamic output feedback.

2.2. Non-uniformly observable systems. We are interested in possible extensions of these
well known output stabilization strategies to the case of systems that admits inputs for which
they are unobservable. Such systems are called non-uniformly observable. These singular inputs
pose a major issue in the simultaneous estimation and control of the systems. It falls back on
the design of the feedback law and the observer to maintain a sufficient level of observability
along trajectories of the closed-loop. Two sub-cases of non-uniformly observable systems can be
distinguished, depending on whether or not their target corresponds to an observable input. That
is, when the target is reached, whether or not the constant input generated in closed-loop makes
the system observable. Each case leads to different issues in the design of the closed-loop. If the
target is observable, then stability of the closed-loop implies that the input eventually becomes
non-singular. Hence, observability issues occur only during the transient response. If the target
is unobservable, then the observability singularity is somewhat unavoidable: if stabilization is
achieved, then the input tends towards a singular one.

As recalled in Section 2.1, efficient tried-and-tested methods for output feedback stabilization
of uniformly observable systems exist. Much less has been obtained for non-uniformly observable
ones. Nevertheless, the issue of observability singularities appears in numerous modern applica-
tions (see, e.g., [1,2,11,13,18,27,31,32]), leading to a renewal of interest in the issue in recent years.
A recurring strategy is the use of modifications of the input in closed-loop. In Theorem 2.4, the
input of the closed-loop system is chosen as u = λ(x̂) where x̂ is designed to be an observer of the
state, so that x̂−x → 0, and λ is a stabilizing state feedback law. Notable efforts in that direction
include [11,12,29]. In [12], Coron proposed a switching strategy in the design of the feedback law.
The input switches between non-singular inputs making the system observable, and potentially
singular ones ensuring the stabilization of the system. This allowed to prove local stabilizability
by means of time-varying periodic dynamic output feedback. In a similar manner, Shim and Teel
proposed in [29] a Lyapunov based strategy to achieve practical semi-global stabilization (that is,
in any neighborhood of the target). This switching method has also been investigated in [30] in
the context of output regulation and [26] for systems with positive outputs. More recently, it has
been proposed in the sequence of papers [11,31,32] to modify the input by adding small excitatory
signals improving the observability of the system: the input is chosen as u = λ(x̂) + d(t), where
d(t) is a signal of small amplitude and high frequency.

One of the drawbacks of these strategies is that they result in time-varying closed-loop systems.
In a different line, we seek autonomous strategies. We essentially rely on autonomous perturbations
of the feedback law of the form u = λ(x̂) + δ(x̂) where δ vanishes near the target point, as in the
next section.

2.3. The transversality point of view. In this section, we restrict ourselves to the analysis of
single-input single-output bilinear systems, i.e. of the form

(3)

{

ẋ = (A+ uB)x+ bu

y = Cx.

where A,B ∈ R
n×n, C ∈ R

1×n, b ∈ R
n and u ∈ C∞(R+,R). The following theorem by Fliess

and Kupka motivates this primary focus on bilinear systems. Recall that the observation space of
a control-affine system ẋ = f(x) +

∑p
i=1 uigi(x) with measured output y = h(x) is the smallest
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vector subspace of C∞(Rn,Rn) containing h and closed under the Lie derivation along elements
of {f +

∑p
i=1 uigi, u ∈ Rp}.

Theorem 2.5 ([14]). A C∞ control-affine system can be immersed into a bilinear one if and only
if its observation space is finite-dimensional.

Bilinear systems are also used to model various physical phenomena (see [25] for a review
on the subject). On such systems, observability singularities are very common. In fact, direct
analysis yields the following result on the prevalence of systems with singularities among all possible
systems.

Theorem 2.6. The set Σ of matrices (A,B,C) ∈ Rn×n × Rn×n × R1×n such that (3) is not
uniformly observable contains an open dense set.

Proof. Let U = {(A,B,C) ∈ Σ : (C,A) is observable}. First, we show that U is open by using the
usual normal observability form of bilinear systems. For (A,B,C) ∈ U , since (C,A) is observable,
there exists an invertible matrix T ∈ Rn×n, continuously depending on (C,A), such that TAT−1

is a companion matrix and CT−1 = (1, 0, . . . , 0) (see, e.g., [21, Chapter 4, Theorem 1]). According
to [15, Theorem 2], (A,B,C) ∈ Σ is equivalent to TBT−1 not being lower triangular, which then
implies that U is open in Rn×n × Rn×n × R1×n.

The same line of reasoning allows to show that Σ is dense. Indeed if (A,B,C) /∈ Σ, then (C,A)
is observable and TBT−1 is now lower triangular. Consider a sequence (Bk)k∈N converging to
B, such that TBkT

−1 is not lower triangular for any k. Then (A,Bk, C) ∈ Σ and tends towards
(A,B,C). Since the set of observable pairs (C,A) is open and dense in Rn×n×Rn (as the preimage
of zero by the determinant of the Kalman observability matrix), it follows that U is also dense as
the intersection of an open dense set with the dense set Σ. �

When a bilinear system has observability singularities, different strategies may be used to
approach this difficulty. Closed-loop feedback relying on an observer may be sufficient to avoid,
in a sense, the singularities if they are not at the target. To illustrate this idea, let us introduce
the usual Kalman observer coupling for (3) on Rn × Rn × Sn

++:

(4)











ẋ = (A+ uB)x+ bu

˙̂x = (A+ uB)x̂+ bu− PC′(Cx̂− y)

Ṗ = P (A+ uB)′ + (A+ uB)P +Q− PC′CP

with Q ∈ Sn
++ being the observer gain, and Sn

++ denoting the set of positive definite symmetric
matrices. State feedback stabilization is an important issue for SISO bilinear systems and various
strategies have been developed (see, e.g., [4]). In the context of dynamic output feedback stabi-
lization, we assume the existence of a smooth locally stabilizing state feedback λ ∈ C∞(Rn,R)
such that 0 is an asymptotically stable equilibrium point of (3) when u = λ ◦ x for some open
basin of attraction D(λ). We always assume that λ(0) = 0, which is true up to a substitution of
A with A+ λ(0)B.

Then, one may wonder if the controls actually generated through the corresponding output
feedback loop, of the form u = λ◦ x̂, actually belong to the set of singular controls. This possibility
is essential, as it partly justifies the idea of pursuing observability in order to close the feedback
loop when singularities threaten the whole strategy. A transversality approach can shed a light
on this matter in the case of observable targets.

Theorem 2.7 ([7]). Assume that the pairs (C,A) and (C,B) are observable. Let K = Kx ×Kx̂ ×
KP ⊂ Rn ×Rn × Sn

++ be a compact set. Assume that 0 is in the interior of Kx̂. Denote by Λ the
set of feedbacks λ ∈ C∞(Rn,R) such that 0 is a locally asymptotically stable equilibrium point of
(3) when u = λ◦x. Let T > 0 and ΛT ⊂ Λ be the set of feedbacks λ ∈ Λ such that (3) is observable
in time T for the control u = λ ◦ x̂, where x̂ follows (4) with initial conditions (x0, x̂0, P0) in K.
Then ΛT is a dense open subset of Λ in the Whitney C∞ topology.

The proof of Theorem 2.7 relies on deep transversality arguments on the function mapping
any initial condition to the jets of the corresponding output. More precisely, the proof requires
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chained applications of Goresky-MacPherson transversality theorems [17] on a finite increasing
sequence of subspaces of the considered initial conditions that reach the full compact set in a finite
number of iterations, and computation of arbitrarily high order derivatives of the output. This
result is a first step toward the achievement of a generic separation principle for SISO bilinear
systems, since the observability of (C,A) and (C,B) is generic. It states that if a system is state
feedback stabilizable, then generically on the feedback and on the system, the inputs produced by
the closed-loop system make it observable. Actually, one can prove the convergence to the target
of bounded trajectories when this observability is guaranteed. In order to follow the strategy
of [15] in the uniformly observable case, we change the Kalman observer for a Kalman-like one:

Ṗ = P (A + uB)′ + (A + uB)P + θP − PC′CP , where θ > 0. Theorem 2.7 easily extends to this
case, and we have the following result.

Theorem 2.8. Let λ ∈ C∞(Rn,R) be such that (3) coupled with u = λ◦x is locally asymptotically
stable at 0 with basin of attraction D(λ). Let K = Kx ×Kx̂ ×KP ⊂ Rn ×Rn × Sn

++ be a compact
set such that Kx̂ ⊂ D(λ). Assume that λ is bounded over D(λ), K is positively invariant under
(4), and (3) is observable in any positive time for the control u = λ◦ x̂. Then (0, 0, P∞) is a locally
asymptotically stable equilibrium point of (4) with basin of attraction containing K, where P∞ is
the unique solution of P∞(A+ uB)′ + (A+ uB)P∞ + θP∞ = P∞C′CP∞.

Proof. The proof is similar to the strategy used in [15] in the uniformly observable case. Let
(x, x̂, P ) be a trajectory and u = λ ◦ x̂. Set S = P−1 and ε = x̂− x. Then

Ṡ = −(A+ uB)′S − S(A+ uB)− θS + C′C.

Classically, this implies that d
dtε

′Sε 6 −θε′Sε, hence ε′Sε(t) 6 e−θt(ε′Sε)(0) for all t > 0.
Moreover, by the variation of constant formula,

S(t) = e−θt(Φ′
u(t))

−1S0(Φu(t))
−1 +Wu(t)

where Φu(t) is the resolvent matrix of d
dtΦu(t) = (A + uB)Φu(t) with Φu(0) = Id and Wu(t) is

the Gramian-like observability matrix defined by

Wu(t) :=

∫ t

0

e−θ(t−s)(Φ′
u(·+s)(t− s))−1C′C(Φu(·+s)(t− s))−1ds

> e−θτ

∫ t

t−τ

(Φ′
u(·+s)(t− s))−1C′C(Φu(·+s)(t− s))−1ds

for any τ ∈ (0, t). For all (x0, x̂0, P0) ∈ K, the corresponding input u = λ ◦ x̂ is such that
∫ τ

0

|C(Φu(τ − s))−1x|2ds > αu|x|2

for all x ∈ Rn for some positive constant αu since u makes (3) observable in any positive time.
The function (x0, x̂0, P0) 7→ αλ◦x̂ has a positive minimum α over K since it is continuous (see
[15]). Note that if u = λ ◦ x̂, then u(· + t) can also be written as λ ◦ x̂ with initial conditions
(x, x̂, P )(t) ∈ K. Hence, S(t) > Wu(t) > e−θταId, which yields

|ε(t)|2 6
1

α
e−θ(t−τ)(ε′Sε)(0).

Thus ε is exponentially converging towards zero. The rest of the proof is identical to [15, Theorem
3] and we dot not recall it here. The strategy is the following: in the ω-limit set of any trajectory,
ε ≡ 0, hence the stabilizing property of λ makes x̂ tends towards zero, and P to P∞. The local
asymptotic stability is obtained by the center manifold theorem. �

Hence, to achieve semi-global output feedback stabilization, the remaining difficulty lies in
proving that the trajectories of (3) coupled with u = λ ◦ x are bounded. In the uniformly
observable case, it is sufficient to choose θ sufficiently large. Then the exponential decrease of ε′Sε
and the uniform lower bound on the observability Gramian yields boundedness of trajectories.
However, in the non-uniformly observable case, one need to invoke Theorem 2.7 in order to find
a feedback λ making the system observable. Then λ depends on θ, and the lower bound of the
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observability Gramian depends on λ. Therefore, when increasing θ, the lower bound of S could
tend towards zero, hence nothing shows that increasing θ actually increases the rate of convergence
of ε towards 0.

Open question. In the generic case of non-uniformly observable SISO bilinear systems, there
does not exist any proof that increasing the gain of a Kalman filter can lead to an arbitrary
increase in the speed of convergence of the observer. It is a major obstacle to obtain a generic
separation principle for these systems.

This difficulty leads us to consider a more restrictive class of systems, for which at least the
observer error ε remains bounded, independently of the observability assumptions. The question
is then: for dissipative systems, are we able to use the perturbation strategy developed in this
section to set up a separation principle? We will see that for such systems, no perturbation is
needed to achieve this goal.

3. Error-dissipative approach

3.1. Eventually detectable systems. Let us temporarily remove the SISO assumption that has
prevailed up to now: consider control systems with p inputs and m outputs. Let A : Rp → Rn×n

and b : Rp → Rn be two locally Lipschitz maps, C ∈ Rm×n.
The state-affine system

(5)

{

ẋ = A(u)x+ b(u)

y = Cx

is said to be dissipative over an admissible set U ⊂ R
p if there exists a positive-definite matrix

P ∈ Rn×n such that for all u ∈ U ,
In order to address the issue of dynamic output feedback stabilization of (5), let us consider

a locally Lipschitz feedback law λ : Rn → Rp such that 0 is a locally asymptotically stable
equilibrium point of (5) when u = λ ◦ x. Let D(λ) be the corresponding basin of attraction, and
assume that (5) is dissipative over U = λ(D(λ)). Then, the dynamic output feedback stabilizability
of (5) is fully characterized by the detectability of the pair (C,A(0)). That is, when any trajectory
of ẋ = A(0)x such that Cx is constantly null is such that x → 0.

Theorem 3.1 ([28]). System (5) is globally asymptotically stabilizable by means of a dynamic
output feedback if and only if the pair (C,A(0)) detectable. In that case, the globally asymptotically
stabilizing dynamic output feedback may be designed with the following Luenberger observer with
dynamic gain:

(6)

{

ẋ = A(λ(x̂))x+B(λ(x̂))

˙̂x = A(λ(x̂))x̂+B(λ(x̂))− α(x̂, C(x̂− x))PC′C(x̂− x)

where x̂(0) lies in D(λ) and α is a positive locally Lipschitz function given by (9).

Theorem 3.1 exhibits a key feature of dissipative systems: the dynamic output feedback sta-
bilizability of the system is determined by a detectability property at the target point (namely,
of the pair (C,A(0))). Actually, the generalized condition called 0-detectability is necessary for
control systems of the form (1).

Theorem 3.2 ([8]). Let X0 ⊂ Rn be the set of initial conditions of (1) such that the corresponding
solutions have a constantly null output. If (1) is locally (resp. semi-globally, globally) stabilizable
by means of a dynamic output feedback, then 0 is a locally (resp. globally, globally) asymptotically
stable equilibrium point of the vector field X0 ∋ x 7→ f(x, 0).

Example 3.3. The following (non-dissipative) linear dynamics with quadratic output

(7)















ẋ =

(

0 1
1 0

)

x+

(

1
0

)

u

y = x′

(

1 0
0 −1

)

x
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is not 0-detectable since any solution of (7) with u ≡ 0 starting from (x1, x1) for some x1 ∈ R\{0}
is such that y ≡ 0 but x does not tend towards 0. Therefore, it is not stabilizable by means of a
dynamic output feedback.

Since system (5) is dissipative, this necessary condition also becomes sufficient, as stated in
Theorem 3.1. In particular, no observability or detectability properties of the system are required
along trajectories of the closed-loop system, namely, on (C,A(λ ◦ x̂)). Therefore, a perturbation
strategy of the feedback law as the one developed in Section 2.3 does not have to be employed.
Instead, a direct proof of global asymptotic stability can be performed, following three main steps
that exploit dissipativity, Lyapunov analysis and ω-limit arguments.

Let us specify the map α given in Theorem 3.1. According to a converse Lyapunov theorem
(see, e.g., [22, 24, 35]), there exists a proper function W ∈ C∞(D,R+) such that W (0) = 0 and

(8)
∂W

∂x
(x) (A(λ(x))x +B(λ(x))) 6 −W (x), ∀x ∈ D.

We choose the positive locally Lipschitz map α used in the closed-loop (6) as

(9) α(x̂, y) =
max{W (x̂), 1}

2
(

1 +
∣

∣

∂W
∂x

(x̂)
∣

∣

)

(1 + |PC′y|) .

Alternatively, α can be chosen as a positive constant sufficiently small with respect to a given set
of initial conditions in order to obtain semi-global asymptotic stability of (6) (see [28]).

Let us give a sketch of the proof of Theorem 3.1 given in [28]. It mainly relies on the fact that
the estimation error ε = x̂− x has the dissipative dynamics ε̇ = (A(u)− αPC′C)ε, which ensures
that ε′P−1ε is non-increasing since

(10)
d

dt
ε′P−1ε 6 −2α(x̂, Cε)|Cε|2 6 0.

• In (ε, x̂)-coordinates, linearization of (6) at the origin yields a lower triangular struc-
ture. LaSalle’s invariance principle on the Lyapunov function ε′P−1ε and detectability of
(C,A(0)) imply local asymptotic stability of the ε-subsystem. The locally stabilizing fea-
ture of the feedback law λ, implies the existence of a center manifold at the target, which
can be extended to prove local asymptotic stability of the (ε, x̂) system at the origin.

• Then, boundedness of trajectories is proved. The boundedness of ε follows from (10).
Using the definition of α and standard Lyapunov machinery, one can show that W given
in (8) is bounded along trajectories of x̂, bounding x̂.

• Finally, global attractivity of the origin is obtained by means of ω-limit arguments. By
construction of the observer, Cε → 0. As a consequence of the stabilizing feature of λ and
the 0-detectability condition, we obtain that the ω-limit set of any trajectory contains 0.
Hence, by local asymptotic stability, the origin is globally attractive.

This last point illustrates how detectability “in the limit” is the only necessary observability
condition. Instead of relying on some uniform observability assumption, the observability analysis
is carried out in the ω-limit sets of trajectories. Here, dissipativity is used at each step of this proof,
either to guarantee that ε is non-increasing or that Cε tends toward zero. The use of dissipativity
in the context of dynamic output feedback stabilization is a powerful property beyond Theorem 3.1.
This is illustrated in the following section, by applying dissipativity techniques on an example that
is not immediately state-affine dissipative.

3.2. A kinematic drone model example. In this section, we consider an example of a kinematic
drone model admitting an immersion into a bilinear system (see Theorem 2.5). It is a Dubins
model variation for a fixed wings drone (or UAV), flying at constant altitude, with constant linear
velocity:











ẋ1 = cos θ,

ẋ2 = sin θ,

θ̇ = u, −umax 6 u 6 umax.
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We are interested in the following output feedback stabilisation problem: endowed with the only
information given by y = x2

1 + x2
2, the square of the distance to the origin, we ask “is it possible

to stabilize this system on a circular trajectory of minimal radius 1/umax around the origin?”
This system admits rotational symmetry and therefore cannot be observable. This symmetry

can be reduced by introducing new coordinates in a moving frame. We set

(

x̃1

x̃2

)

=

(

cos θ sin θ
− sin θ cos θ

)(

x1

x2

)

and the system reduces to

(11)















˙̃x1 = u x̃2 + 1,

˙̃x2 = −u x̃1.

y = x̃2
1 + x̃2

2

As a consequence, the targeted set of minimal radius (traveled counter-clockwise) is reduced to
the point (0, 1/umax) in these new coordinates.

In that form, it becomes clear that with constant control u = 0, the observation is not sufficient
to disambiguate the two trajectories with initial conditions (x̃0

1, x̃
0
2) and (x̃0

1,−x̃0
2). This means

that the reduced system is not uniformly observable, and u = 0 is the only observability singularity.
To stabilize x̃ at (0, 1/umax), we propose the classical bilinear embedding τ : R2 → R3 setting

z = τ(x̃) = (x̃1, x̃2, x̃
2
1 + x̃2

2). Then we get the bilinear system with linear observation

(12)

{

ż = Az + uBz + b,

y = Cz, u ∈ [−umax, umax]

with A =





0 0 0
0 0 0
2 0 0



, B =





0 1 0
−1 0 0
0 0 0



, b =





1
0
0



 and C =
(

0 0 1
)

. Having in mind

dissipativity properties like in the previous section, we pick a Luenberger observer

(13) ˙̂z = Aẑ + uBẑ + b−K(Cẑ − y), with K ′ =
(

2 0 α
)

, α > 0.

This choice of K is fundamental, as it implies dissipative dynamics on the observer error ẑ − z,
while the parameter α offers a degree of freedom allowing to partially tune the convergence of the
observer. In particular d

dt |ẑ − z|2 = −2α|ẑ3 − z3|2, hence the observer error is bounded. Relying
on this observer, we are able to prove the following closed-loop result.

Theorem 3.4 ([2]). System (11) is semi-globally stabilizable by means of dynamic output feedback.
More precisely, for any smooth feedback globally stabilizing (11) at the target, there exists a choice
of α > 0 for which the coupled state-observer system (11)-(13) in closed loop is asymptotically
stable at the target, with an arbitrarily large basin of attraction.

The proof follows similar structure to that of Theorem 3.1. Let us emphasize the main dif-
ferences. System (12) is not a dissipative system, which prevents to apply directly Theorem 3.1.
However, thanks to the design of the observer gain K in (13), the observer error ẑ− z has a dissi-
pative dynamics. This is the key tool that allows to adapt the techniques of Section 3.1 even if the
original system is not dissipative. The system (11) to be stabilized is not a state-affine dissipative
system. However, using Theorem 2.5, it can be immersed into the bilinear system (12). Hence, ini-
tial conditions of (12) must be taken inside the submanifold τ(R2). In Theorem 3.1, the observer
gain α was chosen small enough in order to increase the basin of attraction by guaranteeing that
the correction term αPC′C(x̂−x) is small since x̂−x is bounded. On the contrary, in theorem 3.4,
α is chosen large enough to guarantee that Cẑ− y can be made small fast enough, which is useful
for Lyapunov based arguments. The constraints on the form of K leading to dissipativity result
in this alternative strategy in the choice of α.
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3.3. A quantum control unobservable target. Consider the Bloch equations

(14)

{

ẋ = A(u)x

y = Cx
, A(u) =





0 1 u1

−1 0 u2

−u1 −u2 0



 , C =
(

0 0 1
)

where x in the unit sphere S2 is the state, u in R2 is the control and y in R is the output. Since
A(u) is skew-symmetric for all u ∈ R2, trajectories of (14) are bound to the unit sphere S2. The
goal is to stabilize (14) at the target point x⋆ = (0, 0,−1). Clearly, the system is unobservable for
the control u = 0, which is the value of the stabilizing control at the target point. Although (14)
is dissipative, one can not readily apply Theorem 3.1 since the target is not detectable. A new
stabilization strategy must be devised.

It can be shown by applying LaSalle’s invariance principle on the candidate Lyapunov function
V (x) = x3 that the state feedback law λ(x) = (x1, x2) is asymptotically stabilizing system (14)
with basin of attraction S2 \ {−x⋆}. Then, by choosing a feedback perturbation of the form
δ(x̂2

3 − 1) (this choice is discussed in Section 4.1), the following result can be obtained.

Theorem 3.5 ([23]). There exists δ0 > 0 such that for all δ ∈ (0, δ0), the system

(15)

{

ẋ = A(u)x

y = Cx
,

{

˙̂x = A(u)x̂− C′(Cx̂ − y)

u = λ(x̂) + δ(x̂2
3 − 1)

is locally asymptotically stable at (x⋆, x⋆) with a basin of attraction that is open, dense, and of full
measure in S2 × R3.

The dissipativity of (14) remains crucial to design a Luenberger observer with non-increasing
error, but the observability analysis is performed along the trajectories of the system. More
precisely, it is shown in [23] that for any input u generated by the closed-loop (15), system (14) is
observable except if (15) is initialized at the target (x⋆, x⋆). As in Section 2.3, a perturbation of
the feedback law is used. However, this perturbation is explicitly designed, and does not help to
avoid observability singularities along trajectories but rather to get new observability properties
near the target point in closed-loop.

4. An embedding strategy

We have seen in the previous section how dissipativity may be used in the context of output
feedback stabilization. Inspired by examples such as the kinematic drone model (Section 3.2),
we propose embedding strategies into dissipative systems. We investigate the case of a harmonic
oscillator where the measured output is the norm of the state. This example can be seen as an
extension of the one-dimensional example ẋ = u, y = x2 investigated in [12]. First, we present a
method similar to Section 3.2, where after linearization of the output, the observer can be designed
to be error-dissipative. In this case however, the singularity at the target imposes a perturbation
of the control, chosen to depend on the distance to the target similarly to Section 3.3. In a second
part, we present a different embedding of the harmonic oscillator based on unitary representation
theory inspired by [10]. This infinite dimensional embedding is not tied to the measured output,
and allows to consider complex non-linear outputs appearing as bounded linear forms in the
embedded system.

4.1. The harmonic oscillator problem. Consider the problem of dynamic output feedback
stabilization of the following system

(16)







ẋ = Ax+ bu

y =
1

2
|x|2

, A′ = −A.

where x ∈ Rn, y ∈ R and u ∈ R. The difficulty comes from the unobservability of the target point
0. Indeed, the constant input u = 0 makes the system unobservable in any positive time, due to
the skew-symmetry of A combined with the symmetry of the output. Actually, this system is not
stabilizable by means of a dynamic output feedback when A is not invertible, as shown in [8]. In
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[12], time-varying stabilization strategies are considered to tackle this issue. In a different line, we
wish to investigate the case where A is invertible and still restrict ourselves to time-independent
strategies. Note that the invertibility of A does not influence the unobservability of the system.

As in Section 3.2, we can embed the system into a bilinear one with linear output by considering
the change of coordinates z = (x, y) ∈ Rn+1. The resulting dynamics takes the form

(17)

{

ż = A(u)z + Bu
y = Cz.

where A(u) =

(

A 0
ub′ 0

)

, B =

(

b
0

)

and C =
(

0 · · · 0 1
)

and with initial conditions in

{(x, 1
2 |x|2), x ∈ R

n}. System (17) is not dissipative. However, it is possible to define a Luen-
berger observer with dissipative error dynamics by considering the time-varying observer gain

L(u) =
(

bu
α

)

. The resulting observer ẑ satisfies

˙̂z = A(u)ẑ + Bu− L(u)(Cẑ − y),

hence the error ε = ẑ − z is dissipative since 1
2
d‖ε‖2

dt = −α ‖Cε‖2 6 0.
Then, a natural strategy to close the loop would be to apply the feedback law u = Kx̂, where

K is such that A+bK is Hurwitz and x̂ corresponds to the n firsts coordinates of ẑ. However, this
strategy fails to be applied due to the unobservability of the target point. Indeed, any trajectory of
the closed-loop system starting from (x(0), ẑ) = (x0, 0,

1
2 |x0|2) ∈ R

n×R
n×R for some x0 ∈ R

n\{0}
is such that u remains constantly equal to 0 and Cẑ remains constantly equal to 1

2 |x0|2. Therefore,
x does not tend towards 0.

This issue can be dealt with by adding a perturbation of the feedback law of the form u =
Kx̂+ δŷ, where ŷ stands for the last coordinate of ẑ. By choosing δ small enough, the stabilizing
nature of the feedback law is not affected. Yet, the perturbation term improve the observability
properties of the closed-loop, in the sense that the only trajectory that generates the constant
input u = 0 is (x, ẑ) = (0, 0). A similar result holds for the perturbation of the quantum control
system in Section 3.2. Thanks to this observation, the following semi-global dynamic output
feedback stabilization result can be obtained.

Theorem 4.1 ([8]). If A is skew-symmetric and invertible and (A, b) is stabilizable, then






ẋ = Ax+ bu

y =
1

2
|x|2

,

{

˙̂z = A(u)ẑ + Bu− L(u)(Cẑ − y),

u =
(

K δ
)

ẑ

is locally asymptotically stable with basin of attraction containing an arbitrarily large basin of
attraction by choosing δ small enough and α large enough.

With this method, we were able to deal with the singularity of this non-linear output through
embedding into a bilinear system and perturbation of the output. However this result relies on
the precise shape of the output to find an embedding that is error-dissipative. We propose an
alternative embedding that allows to linearize many more potential outputs. The price to pay is
to consider infinite-dimensional embeddings. For this presentation, we still focus on the particular
output y = |x|2/2, with some discussion of generalization at the end.

4.2. A unitary group representation point of view for error dissipative embedding.

4.2.1. Unitary embedding. In [10], the authors investigated the problem of observer design for (16)
by means of infinite-dimensional embeddings. We briefly recall their strategy, that relies on rep-
resentation theory (see, e.g., [5, 36]). The Lie group G of flows generated by the dynamical
system (16) is isomorphic to R2 ⋊R S1, where S1 ≃ {etA, t ∈ R+} is the group of rotations,
R : S1 ∋ θ 7→ eθA is an automorphism of R2 and ⋊R denotes the outer semi-direct product with
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respect to R. Hence G is the group of motions of the plane. According to [36, Section IV.2], its
unitary irreducible representations are given by a family (ρµ)µ>0, where for each µ > 0,

ρµ : G −→ L (L2(S1,C))

(x, ϑ) 7−→
(

ξ ∈ L2(S1,C) 7→
(

S1 ∋ s 7→ eiµ(1,0)e
sA′

xξ(s− ϑ)
))

.

Let X = L2(S1,C) be the set of real-valued square-integrable functions over S1. Then X is a

Hilbert space endowed with the scalar product defined by 〈ξ, ζ〉X = 1
2π

∫ 2π

0 ξ(s)ζ̄(s)ds and the

induced norm ‖ · ‖X . Since S1 is compact, the constant function 1 : s 7→ 1 lies in X . Let µ > 0 to
be fixed later. Set τ : R2 → X such that τ(x) = ρµ(x, 0)1 for all x ∈ R2 (naturally, τ depends on
µ but we omit it for readability). Since ρµ is a unitary representation, ‖τ(x)‖X = 1 for all x ∈ R

2

and τ(0) = 1. For all x = (x1, x2) = (r cos θ, r sin θ) in R2, we have

τ(x) : S1 ∋ s 7→ eiµ(x1 cos(s)+x2 sin(s)) = eiµr cos(s−θ).

Clearly, τ is injective. Let x be a solution of (16) and set z = τ(x). Then

ż = iµ (−x2 cos(s) + x1 sin(s) + u sin(s)) z = −∂z

∂s
+ iuµ sin(s)z =: A(u)z

where A(u) is defined on the dense domain D = H1(S1,C) = {f ∈ X : f ′ ∈ X} and is the
skew-adjoint generator of a strongly continuous unitary group on X for any u ∈ R.

Denote (ek)k∈Z the canonical Hilbert basis of X . Then

〈τ(x), ek〉X =
1

2π

∫ 2π

0

eiµr cos(s−θ)−iksds = ikJk(µr)e
−ikθ

where Jk denotes the k-th Bessel function of the first type. In particular, it appears that
〈τ(x), e0〉X = J0(µ|x|). Denoting j′0 the first zero of J ′

0, the knowledge of |x| is equivalent to
the knowledge of J0(µr) in the disk {x ∈ R2 : |x| < j′0/µ}. This allows to embed (16) into the
unitary bilinear infinite-dimensional system

(18)

{

ż = A(u(t))z

y = Cz,
locally around 0 (when x lies in this disk), where C = 〈·, e0〉 is a bounded linear form. By selecting
µ small enough, this domain can be made arbitrarily large, which help us to derive a semi-global
stabilization result.

4.2.2. Observer design. An infinite-dimensional Luenberger observer of (18) takes the form

˙̂z = A(u(t))ẑ − rC∗(Cẑ − y)

where r is some positive observer gain and C∗ denotes the adjoint of C. Since A(u) is a unitary
operator for any u, the error system ε = ẑ − z that satisfies ε̇ = (A(u(t)) − rC∗C)ε is such

that 1
2
d‖ε‖2

dt (t) = −α ‖Cε(t)‖2 6 0. It is well-known that, under asymptotic almost periodicity
assumption and approximate or exact observability hypotheses, one can deduce respectively the
strong or weak convergence of ε towards 0 (see, e.g., [6]). However, our goal here is to use this
infinite-dimensional observer in closed-loop to stabilize (16). To do so, we need to obtain, from
the estimation ẑ of z, an estimation x̂ of x, the state of the original system. This is obtained
thanks to a left-inverse of the embedding τ , whose existence follows from the next theorem proved
in [8]. Indeed, noetherianity of analytic maps allows to show that finitely many bounded linear
forms are sufficient to discriminate any two points of an embedded compact.

Theorem 4.2 ([8]). Let X be a separable Hilbert space, τ : Rn → X be an analytic map and
Kx ⊂ Rn be a compact set . If τ |Kx

is injective, there exists a continuous map π : X → Kx, a class
K∞ function1 ρ∗ and Q ∈ L (X,Cq) for some a positive integer q such that, for all (x, ξ) ∈ Kx×X,

|π(ξ)− x| 6 ρ∗(|Q(ξ − τ(x))|).

1A class K∞ function is a continuous function ρ∗ : R+ → R+ such that ρ∗(0) = 0, ρ∗ is strictly increasing and
tends to infinity at infinity.
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As a consequence, if (xn)n∈N and (ξn)n∈N are two sequences in Kx and X, respectively, such that

ξn − τ(xn)
w
⇀ 0, then |π(ξn)− xn| → 0. As such, π is known as a strong left-inverse of τ on Kx.

In the specific case of system (16), a left-inverse of τ can be made explicit. Indeed, x 7→
〈τ(x), e1〉X = iJ1(µ|x|)e−iθ is invertible on BR2(0,

j′
1

µ
) where j′1 denotes the first zero of J ′

1. This

allows to define π(ξ) as a continuously differentiable and globally Lipschitz map applied to 〈ξ, e1〉X :

π : X −→ R2

ξ 7−→ f(〈ξ, e1〉X)

Then π defines a strong left-inverse of τ over B̄R2(0, j
µ
), where j < j′1.

4.2.3. Feedback perturbation and sampling. To close the loop of the system, it remains to apply
a stabilizing state feedback law u = Kx (i.e., such that A + bK is Hurwitz) to the estimation of
the state obtained by x̂ = π(ẑ). However, due the unobservability of the system when u = 0, this
strategy fails to be directly applied. An additional step is required to improve the observability
properties of the resulting closed-loop system. We sample the input in order to reduce the ob-
servability issues to constant controls. That is, for a given constant time step subdivision (tk) of
[0,+∞), we assume that the control is constant and periodically updated every tk according to
some feedback law. Then, the input u = 0 remains an isolated observability singularity, in the
sense that any small non-zero constant input makes the system observable. In order to deal with
this last singularity at the target, we proceed as in Sections 3.3 and 4.1 by means of a feedback
perturbation. We add to the feedback law a term that vanishes only when ẑ(t) tends towards
the embedded target τ(0) = 1. Since the output operator C is bounded, only weak convergence
of the observer can be guaranteed (see [6]). Therefore, we choose a perturbation of the form

δN 2(ẑ − 1), where δ is a sufficiently small constant parameter and N 2(ξ) =
∑

k∈Z

|〈ξ,ek〉X |2

k2+1 , so
that N is a norm associated to the weak topology on bounded sets. Doing so, we obtain the
following semi-global dynamic output feedback stabilization result.

Theorem 4.3 ([8]). The closed-loop system







ẋ = Ax+ bu,

y =
1

2
|x|2.

,











˙̂z = A(u(t))ẑ − αC∗(Cẑ − J0(µ
√

2y)),

u(tk) = Kπ(ẑ(t−k )) + δN 2(ẑ(t−k )− 1)

u(t) = u(tk), t ∈ [tk, tk+1)

is locally stable at the equilibrium point (0, 1) in R
2 × (X, ‖ · ‖X) and attractive in R

2 × (X,N )

with basin of attraction containing B̄R2(0, j
µ
)× τ

(

B̄R2(0, j
µ
)
)

.

Although the problem of output feedback stabilization of (16) was tackled by Theorem 4.1, the
infinite-dimensional strategy of Theorem 4.3 offers new perspectives. Indeed, it actually allows to
take into account more general output maps than y = 1

2 |x|2. While the embedding obtained in
Section 4.1 was highly dependent of this choice, the framework of Section 4.2 is sufficiently general
to deal more output maps. If there exists a map h such that h(y) = Cτ(x), then the output
feedback stabilization strategy of Theorem 4.3 still holds (see [8, Theorem 4.4]) when C∗ lies in the
span of a finite number of elements of the canonical Hilbert basis of X . Due to Gelfand–Raikov
theorem, output maps satisfying this condition are dense for the uniform convergence on compact
sets of R2. In the case where y = 1

2 |x|2, one can choose h(y) = J0(µ
√
2y). This shows that

the output maps y = J0(µ|x|) or y = J2(µ|x|) cos(2θ), with θ the argument of x, both present
an observability singularity when u = 0 and are covered by Theorem 4.3, while the strategy of
Theorem 4.1 seems unapproachable.

5. Perspectives

In this work, we have reviewed various techniques for output feedback stabilization of non-
uniformly observable systems, from feedback perturbation strategies to embedding into systems
admitting observers with dissipative errors. Depending on the class of systems under consideration
and the nature of observability singularities, these strategies must be combined in different ways
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to come up with efficient solutions to the output feedback stabilization issue. Uniting these
techniques to obtain more universal results on dynamic output feedback stabilization is still an
ongoing effort. We have essentially restricted ourselves to autonomous approaches, except in the
last section where the input is sampled. Time-varying approaches such as sampling, switching
or quantification of the input are promising ways to deal with observability singularities. In [9],
we have illustrated this methodology and combined it with embeddings into dissipative systems.
In future works, we wish to develop this point of view, that takes its roots in the seminal works
[12, 29].
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