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Probing temporal modulation detection in white noise using
intrinsic envelope fluctuations: A reverse-correlation study
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ABSTRACT:
Part of the detrimental effect caused by a stationary noise on sound perception results from the masking of relevant

amplitude modulations (AM) in the signal by random intrinsic envelope fluctuations arising from the filtering of

noise by cochlear channels. This study capitalizes on this phenomenon to probe AM detection strategies for human

listeners using a reverse correlation analysis. Eight normal-hearing listeners were asked to detect the presence of a

4-Hz sinusoidal AM target applied to a 1-kHz tone carrier using a yes-no task with 3000 trials/participant. All stimuli

were embedded in a white-noise masker. A reverse-correlation analysis was then carried on the data to compute

“psychophysical kernels” showing which aspects of the stimulus’ temporal envelope influenced the listener’s

responses. These results were compared to data simulated with different implementations of a modulation-filterbank

model. Psychophysical kernels revealed that human listeners were able to track the position of AM peaks in the tar-

get, similar to the models. However, they also showed a marked temporal decay and a consistent phase shift com-

pared to the ideal template. In light of the simulated data, this was interpreted as an evidence for the presence of

phase uncertainty in the processing of intrinsic envelope fluctuations. VC 2022 Acoustical Society of America.

https://doi.org/10.1121/10.0009629
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I. INTRODUCTION

Band-limited noises, in particular bandpass-filtered

Gaussian white noise, show random intrinsic envelope fluc-

tuations1 from one realization to the next—in other words,

their temporal envelopes are not perfectly flat but exhibit a

certain amount of variability, both across time and across

realizations, as illustrated in Fig. 1. For this reason, the

notion of “steady” noise has sometimes been considered as

misleading by researchers (Stone et al., 2011; Stone et al.,
2012) as steadiness must be understood here as a statistical

property, i.e., stationarity of the stochastic process, rather

than as an acoustical property. These fluctuations in inten-

sity over time have measurable perceptual consequences: in

amplitude-modulation (AM) detection tasks conducted on

human participants, for example, the use of a steady noise as

a carrier can result in modulation masking effects, because

listeners have to separate the target modulation from non-

relevant intrinsic envelope fluctuations (Dau et al., 1997;

Dau et al., 1999).

As a first approximation, the average envelope power

spectrum of a bandpass Gaussian noise falls linearly as a

function of modulation rate, with a maximum rate corre-

sponding to the width of the band [see, e.g., Rice (1944), p.

148; Lawson and Uhlenbeck (1950), p. 62; and Hartmann

(2004), p. 535]. This downward-sloping spectrum partly

determines the effects of band limited noise on AM detec-

tion thresholds for human listeners. For instance, Dau et al.
(1997) and Dau et al. (1999) reported that the bandwidth of

the noise carrier had a major influence on the shape of tem-

poral modulation transfer functions (TMTFs), with narrow-

band carriers yielding bandpass TMTFs while wideband

carriers yield lowpass TMTFs. This is because intrinsic

envelope fluctuations cover a smaller range of modulation

frequencies for narrow-band than for wideband carriers.

In the case of wideband noise carriers such as Gaussian

white noise, however, modulation masking properties are

not primarily determined by the bandwidth of noise, but by

the spectral resolution of the ear (Dau et al., 1997). Indeed,

in a normally functioning cochlea, broadband signals are

decomposed by the filtering on the basilar membrane into a

series of narrow-band signals. Therefore, the envelope

power spectrum of the noise in each cochlear channel is

directly related to the bandwidth of this channel, expressed

on the equivalent rectangular bandwidth (ERB) scale. For

example, the filtering of the white-noise stimulus repre-

sented in Fig. 1(A) into a 1-ERB-wide bandpass filter cen-

tered around 1 kHz gives rise to low-frequency intrinsic

envelope fluctuations as shown in Fig. 1(B). Therefore, as

described above, these fluctuations can elicit modulation

masking in AM detection tasks, with magnitude and tuning

directly depending on the width of cochlear filters in the

region of the cochlea spanned by the target.

Several methods have been designed to produce random

stimuli with a minimal amount of intrinsic envelope
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fluctuations, such as low-noise noise (Kohlrausch et al.,
1997) or pulse-spreading harmonic complexes (Hilkhuysen

and Macherey, 2014). At slow modulation rates, AM detec-

tion thresholds are reduced by 20 dB when using a low-

noise noise narrowband carrier compared to a Gaussian

narrowband carrier (Dau et al., 1999). A smaller but still

significant gain of �8 dB was found by Hilkhuysen and

Macherey (2014) using slightly different experimental con-

ditions. This dramatic improvement provides a first estimate

of the strong deleterious impact of these intrinsic envelope

fluctuations on modulation detection.

In this study, we explored the effects of intrinsic enve-

lope fluctuations on AM detection using a psychophysical

reverse-correlation (revcorr) method (Ahumada and Lovell,

1971; Murray, 2011). This “microscopic psychophysics”

approach [or “molecular” in the terminology of Green

(1964)] aims at revealing the relationship between trial-by-

trial random fluctuations in the stimuli and the correspond-

ing behavioral responses of the listener engaged in a simple

psychophysical task (for example, a yes/no detection task).

Within the auditory domain, it has been applied to a large

variety of tasks from loudness perception (Ponsot et al.,
2016) to speech comprehension (Varnet et al., 2015;

Venezia et al., 2016). At the core of the method is the notion

of a kernel. A psychophysical kernel is typically computed

as the correlation between the vector of random fluctuation

presented in each trial and the corresponding response of the

participant. The resulting vector of correlation weights in

the stimulus space reveals which characteristics of the

masker interfere with the ongoing task. It describes the tun-

ing properties of the overall processing chain engaged by

the listener when processing the stimuli, thus allowing for a

finer-grained and data-driven characterization of the percep-

tion mechanisms than traditional detection-threshold estima-

tion paradigms.

When applied to tone-in-noise detection tasks, the

revcorr approach has revealed that listeners are very sensi-

tive to intrinsic envelope fluctuations elicited by the masker

in the spectrotemporal region of the target (Ahumada et al.,
1975; Gilkey and Robinson, 1986; Sch€onfelder and

Wichmann, 2013; Shub and Richards, 2009). Three studies

have confirmed this view with AM detection tasks. The two

most recent attempts have relied on a revcorr approach

deployed in the modulation domain, that is, based on ran-

dom fluctuations imposed on the stimulus envelope.

Joosten et al. (2016) used stimuli composed of nine

white-noise segments, each 33-ms long. Random variations

in amplitude were independently applied to these segments

and the listeners were instructed to detect the presence of an

additional level increment (or decrement) in the central seg-

ment. The temporal kernels were obtained by taking the dif-

ference between the average of the noise vectors that

yielded a positive response of the participant (“I detected

the target level increment/decrement”) and the average of

the noise vectors that yielded a negative response (“I did not

detect the target”). This temporal kernel revealed that listen-

ers were particularly sensitive to the presence of noise in the

central segment, corresponding to the location of the target,

but also in adjacent segments, to a lesser extent. Based on

this approach, they were able to obtain an estimate of the

selectivity of the auditory system in the modulation domain

consistent with previous work based on more traditional

masking paradigms.

More recently, Ponsot et al. (2021) explored the percep-

tion of spectrotemporal modulation (STM) applied to a noise

carrier. The task consisted of the detection of an elementary

STM (temporal modulation rate¼ 7.1 Hz, spectral modula-

tion rate¼ 1 cycle/oct) embedded in a noise composed of

other STMs with various orientations. As in Joosten et al.
(2016), the authors relied on a reverse-correlation approach

to relate the content of the noise in the modulation domain,

i.e., the amplitude of each individual STM component in the

masker, to the particular response of the listener. Based on

the obtained kernel, they were able to assess the selectivity

of the participants’ listening strategy in the spectrotemporal

orientation space, compared to the optimal strategy which

would consist of taking into account only the amplitude of

the target STM. They complemented the analysis with simu-

lation data and showed that the particular shape of the human

perceptual kernel could be accounted for by a modulation fil-

terbank (MFB) model of the human auditory system (Dau

et al., 1997; King et al., 2019; Vecchi et al., 2021).

The two above-described studies of modulation percep-

tion mechanisms using revcorr both rely on the introduction

of random perturbations in the modulation domain.

Theoretically, however, the use of a modulated noise is not

required because, as discussed above, a steady noise also

induces random perturbations in the modulation domain due

to intrinsic envelope fluctuations, which interfere with the

mechanisms responsible for AM perception. As of today,

only one revcorr study by Ardoint et al. (2007) explored

modulation perception using a steady-noise masker. The

FIG. 1. (Color online) Illustration of intrinsic envelope fluctuations in a

band limited noise. The noise stimuli and the procedure for deriving the

envelopes are the same as described in Secs. II B and II D. (A) Spectrogram

of a 750-ms-long white noise sample. White lines delimit a 1-ERB-wide-

band around 1 kHz. (B) Temporal envelopes for 6 realizations of a white

noise, filtered with a 1-ERB-wide Butterworth filter around 1 kHz. The red

line corresponds to the realization displayed in (A).
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experiment consisted of a 4-Hz AM detection task in a

Gaussian white noise presented at a fixed signal-to-noise

ratio (SNR) of þ6 dB. Once the data were collected, the

authors passed each realization of the masker through a

bank of cochlear filters, and computed the temporal kernel

by averaging the resulting filtered noise envelopes condi-

tional on the corresponding behavioral response of the par-

ticipant. In 4 listeners out of 10, the psychophysical kernels

showed a prominent 4-Hz component—indicating that this

subgroup of participants was confused by the presence of a

4-Hz component in the intrinsic envelope fluctuations of the

masker similar to the target. On the contrary, the remaining

6 individuals did not show any clear pattern in their percep-

tual kernel. The authors interpreted these mixed results as

reflecting poorer envelope encoding (higher envelope-phase

uncertainty) in these listeners.

In this context, the purpose of the present study was

twofold:

(1) To explore the effects of intrinsic envelope fluctuations

on AM detection using a reverse-correlation experiment

similar to that of Ardoint et al. (2007). For this purpose,

we collected a large set of behavioral data for an AM-

detection task in white noise. Each participant was then

characterized by calculation of temporal kernels, repre-

senting the relationship between the intrinsic envelope

fluctuation pattern in each trial and the corresponding

decision of the listener. We decided to use a lower SNR

than in Ardoint et al. (2007) (�10 dB instead of þ6

dB), as we suspected that this would yield more robust

and more consistent kernels.

(2) As a second step, human perceptual kernels were com-

pared to those obtained by a computational model of the

human auditory system, an approach comparable to that

used by Ponsot et al. (2021). While the structure of the

model front-end is generally agreed upon, little is known

about the cues and statistics upon which the auditory

system bases its decision (Ewert and Dau, 2000; King

et al., 2019; Osses Vecchi and Kohlrausch, 2021;

Strickland and Viemeister, 1996). Here, we capitalized

on the perceptual effect of intrinsic envelope fluctua-

tions to compare internal representations and decision

strategies in real and in artificial listeners. This comple-

mentary modeling approach will therefore help us to

interpret the kernels measured in humans. In particular,

we will compare three simulated decision strategies dif-

fering with respect to their use of envelope phase

information.

II. MATERIALS AND METHODS

A. Listeners

Nine listeners took part in the experiment. Their pure-

tone detection thresholds were tested at 250, 500, 750, 1000,

1500, 2000, 3000, 4000, 6000, and 8000 Hz using a Madsen

Itera II (Otometrics, Taastrup, DK) audiometer. Eight listen-

ers had audiometric thresholds at or below 20 dB hearing

level for both ears at all frequencies tested up to 4000 Hz.

The last participant (S4) had only one normal-hearing ear.

Their audiograms are shown in supplementary Fig. 1.2

The data from one participant was removed from fur-

ther analysis as she was not able to perform the experiment:

she obtained very low performance level compared to the

group (see supplementary2 Fig. 22). The remaining partici-

pants were 8 listeners (4 females) aged between 26 and

35 years.

All listeners provided written consent and received

financial compensation for their participation. The study

received the approval of the local ethical committee of

University Paris Descartes (IRB 00012020–12).

B. Stimuli

All stimuli were 750-ms long. They consisted of AM

tones (target) and unmodulated tones (nontarget) embedded

in a white noise masker with a 24 kHz bandwidth. AM tones

were generated using the following formula:

AMðtÞ ¼ 1þ m cos ð2pfmtþ pÞ½ � sin ð2pfctÞ; (1)

where m is the AM depth, fm (¼ 4 Hz) is the AM rate, fc
(¼ 1 kHz) is the carrier frequency, and t is the time-sample

vector. Note that the modulation phase was fixed to p so that

the stimulus endpoints correspond to minima of the enve-

lope, with maxima at 125, 375, and 625 ms. Modulated and

unmodulated tones were added to a white noise at �10 dB

SNR, corresponding to a local SNR of þ33.8 dB at 1 kHz

(expressed as the signal level relative to the dB/Hz spectrum

level of the noise). This SNR was chosen to strike a balance

between preserving audibility of the carrier (i.e., not making

SNR too low) and making it more likely that noise fluctua-

tions could actually interfere with the modulations in the

stimulus (i.e., not making SNR too high). The resulting

stimuli were gated on and off with 75-ms raised-cosine

ramps and equalized in root mean square (rms) amplitude.

The overall sound level was fixed to 65 dB sound pres-

sure level (SPL) throughout the experiment. Stimuli were

generated digitally at a sample rate of 48 kHz using MATLAB

R2019 and sent to a Fireface RME audio interface (24-bit

resolution). They were presented diotically using Sennheiser

HD 650 headphones within an IAC sound-proof booth via a

wall patch (except for participant S4: stimuli presented only

to the best ear).

C. Procedure

Participants completed a set of 3000 trials each, consist-

ing of 1500 AM tones and 1500 unmodulated tones, embed-

ded in a white noise and presented in random order. For

each trial, they were asked to listen carefully and to indicate,

by a button press, whether the tone was modulated in ampli-

tude or not. The experiment was divided into 10 blocks of

300 trials, separated with breaks. Participants were explic-

itly informed that modulated and unmodulated tones were

equally likely, and their responses were checked for the
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presence of a bias (see Sec. III). No feedback was provided.

Before the beginning of each block, subjects were allowed

to perform a short practice session similar to the test phase

except that the correct answers were displayed after each

trial and that an additional button permitted replaying the

stimulus.

Within each block, the AM depth was adjusted on a dB

scale (20logm) using a transformed 2-down 1-up staircase

procedure (starting value: –1 dB). The initial staircase steps-

ize was 2 dB; it was decreased by 10% after each step until

it reached a minimum value of 0.5 dB, resulting in step sizes

of 2, 1.8, 1.62 dB, etc. The purpose of this adaptive proce-

dure was to continuously track the 70.7% correct perfor-

mance level, despite potential fluctuations in attention or

strategy shifts (Levitt, 1971).

D. Analysis

The objective of the present experiment was to carry a

reverse correlation analysis on the intrinsic envelope fluctu-

ations of the masker. Envelopes were extracted from the

waveform by bandpass filtering between 935 and 1068 Hz

(1000 Hz 6 0.5 ERB, Glasberg and Moore, 1990) using a

second-order Butterworth filter, in order to account for the

spectral resolution of the human ear in the region of the car-

rier frequency,3 followed by half-wave rectification and

low-pass filtering (cut-off frequency¼ 30 Hz, first-order

Butterworth filter). The obtained envelopes were then down-

sampled to 480 Hz.

In the present experiment, target and non-target trials

only differed by the presence of a sinusoidal AM. Only the

non task-relevant information in the stimuli (i.e., the tone

carrier and the noise, excluding the sinusoidal AM target)

was taken into account when extracting the envelopes, in

order to ensure that the psychophysical kernel reflects the

auditory processing of the stimulus and not the structure of

the stimulus itself.

For each participant, psychophysical kernels were

derived separately for target-present and target-absent trials.

The target-present kernel was obtained as the difference

between the average envelope in hit trials (correctly identi-

fied AM tone) and the average envelope in miss trials

(pure-tone response while an AM tone was played). A

target-absent kernel was similarly obtained as the difference

between the average envelope in false-alarm trials (AM-

tone response while a pure tone was played) and the average

envelope in correct-rejection trials (correctly identified pure

tone). Each kernel was therefore computed on 1500 trials;

however, the number of trials aggregated in the averaged

envelope can vary from one participant to the other depend-

ing on their hit and false-alarm rates. Finally, a “general ker-

nel” was obtained as the mean of the target-present and

target-absent kernels (Ahumada, 1996; Murray, 2011). For

each kernel, we derived a single summary metric attempting

to capture the temporal decay in the weights, obtained as the

ratio between the rms weights in the first and the second

half of the kernel.

Each temporal kernel was then transformed to the com-

plex Fourier domain using a zero-padded fast Fourier trans-

form. The magnitude spectrum of the temporal kernel is

hereafter called Fourier kernel. Individual complex Fourier

kernels were then characterized by the phase and amplitude

of their 4-Hz component.

A nonparametric bootstrap procedure was used to assess

the reliability of each estimate, i.e., all individual temporal

and Fourier kernels as well as metrics derived from these

kernels (Ponsot et al., 2021). For each participant, 200 new

estimates were computed from 200 random subsets of the

data (obtained by sampling with replacement), and their

distribution was used as an approximation of the sampling

variability of the estimator. The bootstrap distribution was

reported in the text as 95% confidence intervals. In addi-

tion, 95% confidence intervals under the null hypothesis of

no relationship between the noise and the listeners’ per-

cept were derived using a randomization procedure based

on 200 random permutations of each participant’s

response vector. Either bootstrap or randomization inter-

vals were used depending on whether the focus was on

assessing the robustness of the point estimate (bootstrap)

or on testing whether it significantly differed from the

chance distribution (randomization). As confidence inter-

vals under the null hypothesis were very similar across

participants, only the average intervals across participants

are reported.

E. Modeling: MFB front-end

To better understand the shape of the human kernels,

the above-described analysis was also carried out on simu-

lated data. The objective of this modeling effort was not to

reproduce details of the human kernels, but rather to identify

the mechanisms which may explain patterns observed in the

behavioral data.

For this purpose, a widely accepted MFB front-end

model of temporal-envelope processing by the human audi-

tory system was used. A block diagram of the MFB front-

end is shown in supplementary2 Fig. 42. This computational

model, which corresponds to a simplified version of the

model developed by Dau et al. (1997), has proven success-

ful in reproducing behavioral data in a wide range of modu-

lation perception tasks (Cabrera et al., 2019; King et al.,
2019; Ponsot et al., 2021; Wallaert et al., 2018). For the

sake of simplicity, and given that the target signal com-

prised a sinusoidal modulation frequency applied to a

pure-tone carrier, a mono-channel version of the model was

considered here, with a single cochlear filter tuned to the

carrier frequency (1 kHz) and a single modulation channel

tuned to the modulation frequency to be detected (4 Hz).

The implementation of the MFB front-end as used in this

study is available as the routine king2019 within the AMT

toolbox (v1.0) for MATLAB (Majdak et al., 2021; Vecchi

et al., 2021).

The model included the following stages, in sequential

order:
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(1) A linear 1-ERB-wide Gammatone filter centered at 1

kHz, corresponding to a level-independent approxima-

tion of the on-frequency cochlear filter. The MFB model

uses the all-pole implementation of the Gammatone fil-

ters described by Hohmann (2002).

(2) Amplitude compression using a broken-stick input-out-

put function. The function is linear up to a knee-point of

30 dB SPL and compressive above this kneepoint, using

a power law with an exponent of 0.3.

(3) Half-wave rectification followed by low-pass filtering

(first-order Butterworth filter, 1000-Hz cutoff). This

stage performs envelope extraction.

(4) Adaptation through high-pass filtering (first-order

Butterworth filter, 3-Hz cutoff).4 The compression,

envelope extraction and adaptation stages form a simple

model of peripheral auditory processing.

(5) The resulting envelope is further band-limited by a

modulation filter centered around the target (first-order

band-pass Butterworth filter centered at 4 Hz). A quality

factor of 1 (hence a 4-Hz bandwidth) was chosen for

that filter in accordance with Ewert and Dau (2000) [see

also Jørgensen and Dau (2011) and Wallaert et al.
(2017)].

(6) The internal representation of the stimulus is finally

down-sampled to 4 kHz. Note that envelope phase is

preserved throughout all stages of the model.

F. Modeling: MFB decision device

Relatively little is known about how exactly the audi-

tory system processes continuous, time-varying internal rep-

resentations into single binary decision statistics [see, for

example, Osses Vecchi and Kohlrausch (2021), Table I], in

contrast to the well established front-end processing

described in Sec. II E. In the following, three alternative

decision devices were considered.

The “optimal detector” (O-D) strategy for the task con-

sists of selecting one of the two responses on the basis of the

cross correlation between the internal representation of the

presented stimulus (IRstim) and those of the unmodulated

(IRnontarget) and modulated (IRtarget) tones (Dau et al., 1997),

corresponding to the image of the sounds stored in

memory—or “template.” IRtarget and IRnontarget were com-

puted in the absence of external noise maskers and normal-

ized to unit energy similar to Dau et al. (1996a). In the case

of a single-interval paradigm such as the one used here,

the model is provided with a priori information about the

relative probabilities of possible stimulus alternatives (Dau,

1999). This corresponds to setting the decision criterion c1

in the following decision rule:

response ¼
‘‘AM tone’’ if ðIRstim ? IRtargetÞ 0½ �

�ðIRstim ? IRnontargetÞ 0½ � � c1

‘‘pure tone’’ otherwise;

8>><
>>:

(2)

where ? indicates the non-normalized cross correlation

operator ðf?gÞ½n� ¼ ð1=NÞRN
k¼1 f ½k�g½k � n�. In the present

study, it was assumed that the model targets an equal rate

of “AM” and “pure tone” responses, making it similar to

real participants (see Sec. II C). For this purpose, the deci-

sion criterion c1 was determined empirically by simulation

so that the proportions of the two alternatives were approx-

imately equal.

A second decision device considered in the present

study is the envelope power-spectrum detector (EPS-D),

which has also been used in several modeling studies (Ewert

and Dau, 2000). Contrary to the optimal detector, this deci-

sion device does not involve an explicit template representa-

tion of the target and non-target stimuli. Instead, it bases its

decision on the envelope power in the modulation channel

corresponding to the target. In the present study, the model

was restricted to the target channel (see Sec. II E) and there-

fore the relevant envelope statistics could be simplified to

ð1=NÞRN
k¼1IR2

stim½k� ¼ ðIRstim ? IRstimÞ½0�. As before, the deci-

sion criterion c2 was fixed empirically to yield equal propor-

tions of target and nontarget responses,

response ¼ ‘‘AM tone’’ if ðIRstim ? IRstimÞ 0½ � � c2

‘‘pure tone’’ otherwise:

(
(3)

Note that, compared to the optimal detector, this strategy

discards the envelope phase information in the stimulus as

only the overall energy in the envelope is taken into account,

irrespective of its temporal organization within the observa-

tion interval.

The two above decision rules are based on cross-

correlations operators: cross correlation with zero lag for the

optimal detector, and auto-correlation with zero lag in the

case of the envelope power-spectrum detector. A third cross

correlation-based decision device was finally considered, as

an intermediate option between the two above. Like the

“optimal detector” it involves an explicit template represen-

tation of the target signal, but also includes some uncertainty

about envelope phase making it more similar to the enve-

lope power spectrum. Here, the cross correlation function

was not evaluated at zero lag, as before, but at all positive or

negative lags n, and the maximum cross correlation was

retained,

TABLE I. Summary of real and artificial listeners’ performance in the task.

EPS-D O-D O-Du XC-D XC-Du Participants

Percent correct 70.8 71.0 71.3 70.9 70.7 70.72 6 0.37

Average m (dB) �11.9 �30.7 �31.0 �21.6 �16.8 �16.8 6 2.5

Rate of “AM tone” response 0.49 0.49 0.50 0.51 0.49 0.43 6 0.1
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response ¼
‘‘AM tone’’ if maxnðIRstim?IRtargetÞ n½ � � c3

‘‘pure tone’’ otherwise:

(

(4)

This decision device will be referred to as XC-D in this

article. In practice, this suboptimal template-matcher scans

the internal representation of the stimulus for a pattern

resembling the target AM template. A similar “max of cross

correlation” decision statistics introducing a certain degree

of envelope phase uncertainty into the model was used by

Osses Vecchi and Kohlrausch (2021) in the context of a

three-interval forced-choice task [see also King et al. (2019)

and Wallaert et al. (2018)].

Crucially, two decision devices (O-D and XC-D) must

be provided with templates of the expected sound represen-

tation (IRtarget and/or IRnontarget), which will determine the

strategy of the artificial listener (i.e., “what to listen to” in

the input signal). For this reason templates are usually

derived in a suprathreshold condition, where the cues are

easily detectable (Dau et al., 1996a). Here, the templates for

O-D and XC-D were calculated once at the beginning of the

experiment from non-noisy stimuli at the top of the staircase

(Dau et al., 1996b; King et al., 2019; Osses Vecchi and

Kohlrausch, 2021). Nevertheless, two additional decision

device were considered (O-Du and XC-Du) in which IRtarget

was updated at each step of the staircase with the clean tar-

get stimulus at the corresponding modulation depth. These

last two models provide a coarse simulation of the influence

of contextual effects on internal template during the course

of the experiment (see the appendix in Derleth and Dau,

2000, for a similar approach).

All artificial listeners were tested on the same set of

noise and in the same trial order for better comparability

between detectors.

III. RESULTS

A. Performance in the task

Despite the long duration of the experiment (3000 trials/

participant, i.e., � 3 h including breaks), participants showed

a rather stable behavior, both in terms of performance and

bias, indicating no or little learning effect (see Table I and

supplementary2 Fig. 22). They reported no perceived effect

of excessive mental fatigue over the course of the experi-

ment, although some participants admitted experiencing

occasional and brief attention loss. The average proportion of

correct responses [6 standard deviation (SD)] for the group

was 70.72 6 0.37%, close to the 70.7% score targeted by the

adaptive staircase algorithm. The mean modulation depth

across all participants was m ¼ �16:8 6 2.5 dB. Overall, par-

ticipants showed only a slight response bias (mean rate of

“AM” answer¼ 0.43 6 0.1).

A complementary picture of the participants’ behaviour

over the experiment can be obtained by plotting their correct

response rates as a function of the depth of the modulation

to be detected—that is, the current state of the staircase—

and trial type (Fig. 2). This figure makes it apparent that

performance in target-present trials (hit rate) depended on

modulation depth, while performance in target-absent trials

(correct rejection rate) did not.

B. Psychophysical kernels

Figure 3 displays the temporal kernels for the eight par-

ticipants, calculated for all trials (general kernel) or sepa-

rately in the target-present and in the target-absent

conditions, together with the 95% confidence interval under

the null hypothesis. As explained in Sec. II, these kernels

correspond to the difference in the average envelopes

between hits and misses and between false alarms and cor-

rect rejections. Also, shown in this figure is the ideal tem-

plate for the task (dotted line), defined as the weighting of

temporal information used by an optimal detector operating

directly in the temporal envelope domain. In practice, the

ideal template was calculated as the difference between the

envelopes of the target and nontarget stimuli.

It is clear from this figure that all kernels showed a very

similar pattern across participants, with significant positive

weights in the regions corresponding to the first two peaks

of the target modulation (i.e., around 125 and 375 ms) and

significant negative weights in the region of the first trough

FIG. 2. (Color online) Proportion of

hits (solid line, circles) and correct

rejections (dotted line, crosses) for

each participant included in the study

as a function of the depth of the modu-

lation to be detected. The distribution

of trials is shown as a shaded histo-

gram. Correct response rates are shown

only for modulation depth with a suffi-

cient number of trials (N� 150).
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(250 ms). For example, within a 50-ms segment around the

first modulation trough, the estimated kernels from all eight

participants departed from the 95% confidence interval of

no effect. Importantly, this temporal structure was not an

artefactual distortion induced by the target signal, as it was

overall preserved in the target-absent condition where noise

is the only source of trial-by-trial variability. Notably, dur-

ing the first period of the target modulation, the fluctuations

of the general temporal kernels were so large that, in all par-

ticipants, they reached positive and negative amplitudes that

were very unlikely to occur by chance only—as confirmed

by the randomization 95% confidence intervals. This is a

strong evidence that intrinsic envelope fluctuations in the

white noise masker interfered with the decision of the partic-

ipant in a systematic way. In other words, it is possible to

relate the exact response of the observer to the specific con-

figuration of the noise intrinsic envelope fluctuation on a

trial-by-trial basis. In particular, all participants were signifi-

cantly more likely to respond “AM tone” (respectively “pure

tone”) when there was a large concentration of noise enve-

lope energy around t¼ 125 ms (respectively, t¼ 250 ms),

whether the target was presented or not. Note, however that

there are some slight differences between target-absent and

target-present kernels, which will be discussed later in this

section.

The alternation of positive and negative weights

observed in Fig. 3 results in a strong spectral peak when the

kernels are represented in the Fourier domain (Fig. 4). The

4-Hz component was significantly larger than chance in

each individual kernel, although the peak frequency was

slightly lower than 4 Hz in most participants (see below).

Some, but not all, Fourier kernels showed significant

weights corresponding to the harmonics of the target

modulation frequency, which could suggest an effect of non-

linearities in envelope processing (Ewert et al., 2002;

Lorenzi et al., 2001). As these weights did not appear for all

participants tested, we will not investigate this possibility

further here. As can be seen in Fig. 3, temporal kernels devi-

ated from the ideal template in several other ways, including

a temporal decay (the first period of the modulation was

weighted more heavily than the last one) and a phase shift,

particularly visible in the target-absent kernels.

A temporal decay ratio was obtained as the ratio of the

rms weights in the first vs the second half of the kernel for

each individual temporal kernel. Individual complex Fourier

kernels were characterized by their peak frequency and the

phase of their 4-Hz component. The same metrics were also

extracted from the bootstrapped kernels, allowing for the

derivation of confidence intervals for each estimate. These

results are shown in Fig. 5 and supplementary2 Fig. 32.

Although there was a certain amount of interindividual

variability, temporal decay ratios confirmed that, in all par-

ticipants, the impact of noise on the decision was signifi-

cantly stronger in the first than in the second half of the

stimulus (mean temporal decay ratio¼ 1.65 6 0.17). The

peak frequency of all general Fourier kernels was lower

than 4 Hz (mean¼ 3.38 6 0.65 Hz), although the difference

was not significant at the individual level in four partici-

pants. Finally, a clear pattern emerged from the 4-Hz-com-

ponent phase estimates: the 4-Hz component was almost

aligned with the modulation to be detected in target-present

kernels (empty circles, mean phase¼ 3.37 6 0.19 radians)

but it was significantly shifted towards a higher phase in

target-absent kernels for all participants except S2 (filled

circles, mean phase¼ 4.32 6 0.64 radians). In fact, S2

(orange symbols) showed a slightly higher response bias

FIG. 3. (Color online) Temporal ker-

nels calculated separately for the eight

participants, for the whole experiment

(top) and in the target-present (middle)

and target-absent (bottom) conditions.

The dotted line corresponds to the

ideal template for this task (see

description in text) and the shaded

region to the average 95% confidence

interval obtained by randomization

(i.e., the weight amplitudes that would

be measured under the hypothesis of

no effect of the noise, see Sec. II D).

The amplitude of the ideal template is

arbitrary.
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than the rest of the group and it is therefore likely that the

phase estimates were not sufficiently reliable for this partici-

pant because of the lesser number of trials in one response

category. At the group level, this phase-shift is clearly visi-

ble as a difference of � 40 ms between the onsets of the

condition-specific kernels in Fig. 3.

C. Model performance in the task

Five simple models of the human auditory system, all

based on the same model front-end but using different

decision devices (O-D, O-Du, EPS-D, XC-D, XC-Du, see

Secs. III E and III F), were tested on the same task as

real participants. Their performance in the task is pre-

sented in Table I. By construction, the response bias of

each model was very close to 0.5, as decision criteria

(c1, c2, and c3 in the decision rules from Sec. II F) were

fixed empirically to yield equal proportions of target and

nontarget responses. The performance level was consider-

ably higher for the optimal detector than for the subopti-

mal models, reflecting the fact that O-D is only limited by

the presence of external noise, while the other models

included other sources of uncertainty, in particular on the

target envelope phase.

Note that, in the context of the present study, perfor-

mance level should not be used as a criterion for comparing

artificial listeners to real listeners. Indeed, the MFB model

usually includes an internal source of stochasticity that fur-

ther limits its performance (Dau et al., 1996b; King et al.,
2019). As the focus on the present study was on revealing

the systematic part of the decision process using a source of

external noise, an additional source of internal noise would

obscure the results, and we therefore decided not to include

it in the models.

FIG. 4. (Color online) Fourier kernels,

obtained by Fourier transform of the

temporal kernels from Fig. 3 (same

color code). The arrows indicate the

target modulation frequency (4 Hz).

FIG. 5. (Color online) Metrics extracted from the individual kernels: temporal decay ratio of the general temporal kernel, peak frequency in the general

Fourier kernel, and phase of the 4-Hz component for the target-present and target-absent Fourier kernels. Error bars show the 95% confidence interval for

each estimate. Dotted lines show the target modulation frequency (4 Hz) and the theoretical ratio in the absence of temporal decay; the arrow indicates the

phase of the AM target (p). Stars correspond to general kernels, empty circles to target-present kernels, filled circles to target-absent kernels. Each partici-

pant is represented with a different colour.
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In contrast to the modeled performance levels, the

investigation of hit rates and correct rejection rates pro-

vides valuable insight into the decision process (Fig. 6). As

was the case for real participants (Fig. 2), EPS-D, O-D, and

XC-D showed correct rejection rates independent of the

current target modulation depth. In contrast, for O-Du and

XC-Du, the proportion of correct rejection in target-absent

trials increased with the discriminability of the target. In

other words, the salience of the target-present stimulus

affected the performance of the models in the nearby

target-absent trials. This surprising behavior results from

the fact that these decision devices relied on a template

which is constructed from a “copy” of the current target

(see Sec. II F), and that this template was updated from

trial to trial.

Given their inconsistency with human data, and the fact

that they led to psychophysical kernels very similar to the

“non-updated” versions, we did not further evaluate the O-

Du and XC-Du decision devices.

D. Model kernels

For each artificial listener, the temporal and Fourier ker-

nels were derived in the same way as for real participants

and compared to the average human kernel (Fig. 7). Similar

to the kernels derived from the perceptual data, the kernels

for O-D and XC-D decision devices showed a prominent

temporal modulation, which was expected given that their

templates were constructed from an internal representation

of the 4-Hz target. Perhaps more surprisingly, the EPS-D

FIG. 6. (Color online) Proportion of

hits (solid line, circles) and correct

rejections (dotted line, crosses) as a

function of current target modulation

depth for models O-D, O-Du, EPS-D,

XC-D and XC-Du. Same representa-

tion as in Fig. 2.

FIG. 7. (Color online) Temporal ker-

nels for the three artificial listeners

(same representation as in Fig. 3). The

thin gray lines correspond to the indi-

vidual kernels from Fig. 3 and the

black line to their average. To facilitate

comparison, weights are shown on a

standardized scale.
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model, which was not based on a template-matching pro-

cess, was also associated with a clearly defined temporal

pattern. Indeed, as explained in Sec. III B, psychophysical

kernels reveal the regions of the stimulus where the presence

of noise had a stronger impact on the decision. Although the

EPS-D did not include an explicit template, its sensitivity to

noise was not the same in every time region of the stimulus,

as revealed by the temporal kernel. As seen in Fig. 8, the

4-Hz component of the kernel was highly significant for the

three models, i.e., well above the 95% confidence threshold

obtained by randomization (corresponding to an upper limit

of 0.004 at 4 Hz). The specific shape of the simulated ker-

nels are further discussed below.

As with real participants, three metrics were extracted

from the estimated and bootstrapped kernels: temporal

decay ratio, frequency of the peak and phase of the 4-Hz

component (Fig. 9 and supplementary2 Fig. 32). Overall, the

EPS-D showed the strongest onset effects, resulting in an

unrealistic value of the temporal decay ratio (95% confi-

dence interval¼ [3.25, 4.7], compared to 1.65 for real

listeners). The XC-D decision device, for which the kernel

presented a moderate onset effect, also overestimated the

temporal decay ratio compared to the group of real listeners

(95% confidence interval¼ [2.46, 3.36]). Finally, the O-D

model showed no onset effect and a temporal decay ratio

close to one (95% confidence interval¼ [1.19, 1.51]), mean-

ing that it underestimated the true value for most of the par-

ticipants. A key aspect of the Fourier kernel measured in

real listeners is that peak frequencies were lower than 4 Hz.

The EPS-D and XC-D best reproduced this characteristic

(95% confidence interval¼ [3.04, 3.42] for EPS-D, [3.57,

3.75] for XC-D), while O-D was associated with a peak fre-

quency slightly but significantly above 4 Hz (95% confi-

dence interval¼ [4.12, 4.23]). Finally, the phase metrics

further highlighted the difference between decision devices

with (XC-D and EPS-D) or without (O-D) phase uncer-

tainty. In the latter, the temporal positions of the peaks and

troughs of the target were exactly known by the model.

Therefore, the resulting kernel was precisely aligned with

the target, similar to the phase observed in real target-

FIG. 8. (Color online) Fourier kernels

for the 3 models (same representation

as in Fig. 4). The arrows indicate the

target modulation frequency (4 Hz).

FIG. 9. (Color online) (A) Metrics extracted from the simulated (colored symbols) and real (black dots) kernels. Black symbols correspond to the average

across the eight real subjects. Same representation as in Fig. 5. (B) Pearson’s correlation coefficient between the temporal kernels of the three artificial listen-

ers and the average human kernels (i.e., black vs colored lines in Fig. 7).
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present kernels. On the contrary, for phase-uncertain deci-

sion devices, the 4-Hz component in the kernel was shifted

towards higher phase, similar to real target-absent kernels.

Importantly, only EPS-D and XC-D successfully reproduced

the effect of condition on kernel phase by showing a �p=6

phase shift between target-present and target-absent kernels.

To quantify the accuracy of the listening strategies of

the three decision devices in the task compared to the strat-

egy of real participants, we measured Pearson’s correlation

between real and simulated kernels [Fig. 9(B)]. All simu-

lated kernels were significantly correlated to the average

human kernel (i.e., q > 0:31, the 95% significance threshold

determined by randomization) except for O-D in target-

absent trials. This was expected given the strong phase dif-

ference observed in this condition. On the contrary, the

target-present condition was well accounted for by the O-D

model (95% confidence interval for qtarget�present¼ [0.80,

0.87]). Overall, XC-D was the best at reproducing human-

like kernels across conditions (95% confidence interval for

qtarget�absent¼ [0.76, 0.83]; qtarget�present¼ [0.68, 0.77]).

IV. DISCUSSION

The most recent studies of modulation perception using

a revcorr approach have relied on dimensional noise, that is,

random fluctuations deployed in the modulation domain

(Joosten et al., 2016; Ponsot et al., 2021). In their article,

Joosten et al. wrote that, when applying psychophysical

reverse correlation to AM processing.

Adding acoustic white-noise is inappropriate, partly

because the envelope fluctuations it induces are difficult to

control and exercise adequately, and partly because the

dimensionality of the space needing characterization is

impractically large to measure.

As a matter of fact, at this time the only previous

attempt at deriving psychophysical kernels on an AM detec-

tion task in white noise yielded rather mixed results with

only four participants out of ten showing a distinct pattern in

their temporal kernels (Ardoint et al., 2007). In the present

study, we showed that it is in fact possible to measure reli-

able kernels for AM detection using a white-noise masker,

provided that the SNR is sufficiently low [–10 dB SNR in

the present study vs þ6 dB SNR in Ardoint et al. (2007)].

More precisely, the clear temporal pattern shown in

each individual kernel in Fig. 3 provides strong evidence

that random intrinsic envelope fluctuations in the white

noise masker interfered with the decision of the participant

in a systematic way. This supports the idea that intrinsic

envelope fluctuations of notionally steady noise have a mea-

surable effect on auditory perception (Stone et al., 2011;

Stone et al., 2012), consistent with the results obtained by

Varnet et al. (2013) and Varnet et al. (2015) on phoneme

perception tasks using a similar revcorr approach. By exam-

ining how a specific pattern of intrinsic envelope fluctua-

tions can bias perception towards detecting a 4-Hz AM

target or not, we can obtain a fine-grained characterization

of the mechanisms underlying AM detection using a data-

driven approach. Temporal kernels are a useful tool to

explore the systematic component of categorization errors.

They can be conceived (up to a linear approximation) as the

pattern of phase-locked random fluctuation that would most

efficiently bias the participant’s decision towards detecting

the target. Conversely, the negative of the temporal kernel

corresponds to the pattern that is most likely to bias the par-

ticipant’s decision towards not detecting the target.

Therefore, the revcorr analysis can reveal the patterns of

fluctuation critical for the decision if they are phase-locked

to the onset of the stimulus.

As expected, general temporal kernels measured in the

present AM-detection task revealed that 4-Hz noise intrinsic

envelope fluctuations with phase �p are likely to be con-

fused with the AM target (Fig. 3, upper panel). This is con-

sistent with the conclusions from Ardoint et al. (2007),

although the present results were more homogeneous, prob-

ably because of the use of a lower SNR level. More surpris-

ingly, however, the contour of the average temporal kernel

did not exactly match that of the modulation to be detected.

This suggests that the most efficient masker in this 4-Hz

AM detection task would not be exactly a 4-Hz AM, con-

trary to the findings of Viemeister (1977) using the so-called

“temporal-probe” method based on the masking patterns

produced by an AM noise on a click target. More precisely,

the kernels in Fig. 3 deviate from the ideal template (thick

red line) in several ways. First, they show a clear temporal

decay, that is, an increased weighting of the first few hun-

dred milliseconds of a sound compared to later temporal

segments. Similar primacy effects have often been reported

in revcorr studies of loudness perception (Fischenich et al.,
2021; Ponsot et al., 2016), lateralization (Brown and

Stecker, 2010; Stecker, 2014), spectral processing (Richards

et al., 2021), and sample discrimination tasks (Berg, 1989),

although the underlying mechanism is still debated. Other

deviations from the ideal template include a peak frequency

below 4 Hz, and a phase shift between the target-present and

target-absent kernels. However, as for temporal decay, it is

not clear which auditory processes may explain these obser-

vations. In line with previous studies (Ponsot et al., 2021),

we relied on computational auditory modeling tools to iden-

tify the types of nonlinearities involved in the decision pro-

cess which may explain the structure of the observed

kernels. In particular, we focused our investigation on late

nonlinearities, that is, decision rules—although the MFB

front-end also includes other nonlinearities such as ampli-

tude compression.

Perceptual filters derived from human data were com-

pared with those simulated from a simplified version of the

model described by Dau et al. (1997) using five different

decision rules. Two of them (O-D and XC-D) relied on an

internal template derived from the internal representation of

the target stimulus. A recurring but untested hypothesis in

the auditory modeling literature is that such templates are

formed by the listener at the beginning of the experiment

(i.e., in a suprathreshold condition) and then remain

unchanged even when the target becomes harder to detect
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(Dau et al., 1997; Osses Vecchi and Kohlrausch, 2021).

Here, we tested this assumption by comparing the fixed-

template models O-D and XC-D to a version where the tem-

plate was updated from trial to trial (O-Du and XC-Du). The

comparison of the proportion of hits and correct rejections

as a function of current target modulation depth with that of

real listeners (Table I) revealed that the updating rule failed

to account for an important aspect of the data: the fact that

the proportion of correct responses in target-absent trials did

not depend on the difficulty in target-present trials. This sup-

ports the idea that the internal template is generated once at

a level well above threshold, as assumed from the earliest

MFB modeling studies [see Dau et al. (1997), note 5]. Note

that any other updating rule where the template at trial n
depends on the discriminability of the target, such as the one

described in Derleth and Dau (2000), is likely to yield the

same pattern of behavior. Hence, real participants used a

decision rule which was either fixed (i.e., calculated only

once at the beginning of the experiment) or at least not

directly dependent on the difficulty of the task.5

Following this macroscopic psychophysical analysis,

we compared the behavior of models and humans at a

microscopic level, that is, we explored if they were confused

by the same features in the noise envelopes at the trial level.

As for real participants, kernels were computed as the corre-

lation between the vector of intrinsic envelope fluctuation

presented in each trial and the corresponding response of the

O-D, XC-D, and EPS-D models. Overall, the three decision

devices yielded kernels with a strong 4 Hz component, simi-

lar to real participants. However, their exact time courses

reflected the type of mechanisms included in their decision

devices.

The O-D model, the typical decision device for the

model developed by Dau et al. (1997), realizes an optimal

detector acting on the internal representation of the stimuli.

All information available at this processing stage—in partic-

ular envelope phase information—is used in an optimal way

resulting in O-D kernels that are well defined and similar

across conditions and, importantly, in phase with the target

modulation (Fig. 7). On the contrary, EPS-D implements a

different decision strategy based on envelope spectrum

power cues only and therefore discarding envelope phase

information (Ewert and Dau, 2000). The most prominent

feature in its kernel is a strong weighting of the stimulus

onset. Indeed, any instance of the noise containing more

energy in the first 100 ms of the stimulus will lead to a

strong ringing effect in the modulation filter which will be

confused with the presence of a target. In contrast, the pres-

ence of additional noise energy in any other temporal region

has a smaller effect on the envelope spectrum power and

thus on the decision. This explains the particular shape of

the EPS-D temporal kernel, with an enhancement of the

onset region (� 50 ms) which slightly precedes the first peak

of the target modulation (125 ms) resulting in a strong phase

shift relative to p and a high temporal decay ratio (Fig. 9).

Finally, an interesting feature of the EPS-D is the difference

between target-present and target-absent kernels (the former

showing a 4 Hz component in phase with the target in addi-

tion to the onset effect). Indeed, the presence of a modula-

tion in the signal reinforces the effect of intrinsic envelope

fluctuations temporally aligned with the peaks of the modu-

lation. Finally, we investigated a third decision device which

lies somewhere in between O-D and EPS-D as it only par-

tially preserves information about envelope phase. More

precisely, XC-D includes a template encoding a perfect

internal representation of the target. However, unlike O-D,

the decision is based on a “max of cross correlation” corre-

sponding to an uncertainty on the starting phase of the stim-

ulus. As the template shows a strong 4-Hz component, this

decision device actually performs a 4-Hz detection, making

it in essence more similar to the EPS-D. Practically, XC-D

shows the same pattern of behavior as EPS-D, as revealed

by its kernels, although there is a difference in the strength

of the onset effect relative to the 4-Hz component.

Measuring Pearson’s correlation coefficient between

observed and simulated kernels confirmed that XC-D model

provided a close match to the human data, although the

target-present condition was best accounted for by the O-D

model. More specifically, the participants’ mean target-

absent kernel displayed an enhanced onset, as confirmed by

the 4-Hz phase metrics. This reveals that, in target-absent

trials, human listeners were likely to confuse the onset of

the noise masker with the first peak of the modulation to be

sought, similar to phase-discarding models. In target-present

trials, however, this phenomenon was considerably reduced,

indicating that the presence of a target modulation provided

a temporal landmark for the detection, resulting in no phase

confusion. A decision device based on a max of cross corre-

lation rule (XC-D model) is able to capture this phase-

locking to the target, as indicated by the high correlations in

both target-present and target-absent trials.

The present microscopic analysis highlights a weakness

of the O-D, the dominant approach for modeling low-rate

AM perception tasks. Although macroscopic analyses usu-

ally assume that a detection mechanism with no phase

uncertainty is sufficient for accounting for human behavior

in fixed-phase AM detection experiments, here we show that

its description of the processing of (random-phase) noise

envelope fluctuation is not accurate. Indeed, only noise

instances with intrinsic envelope fluctuations in phase with

the target can mislead the O-D (leading to kernels in phase

with the target in Fig. 9). In contrast, real participants and

phase-uncertain models are also confused, to a certain

extent, by intrinsic envelope fluctuations with a slight phase

shift relative to the target, as revealed by their kernels. This

stresses the importance of using accurate phase-processing

mechanisms even in fixed-phase detection tasks. The tempo-

ral decay observed in all simulated kernels can be explained

in terms of transient response characteristics of the modula-

tion filter, as confirmed by a complementary analysis

reported in supplementary saterials.2 In real participants,

damping may result from temporal asymmetry at different

levels of the auditory system, including ringing at the output

of the cochlear and modulation filters, short term adaptation
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or memory effects (Irino and Patterson, 1996; Wallaert

et al., 2018). An alternative interpretation could be that the

listeners’ strategy may be increasingly inconsistent and

noisier toward the end of the stimulus, resulting in lower

perceptual weights or more inconsistent phase-locking to

the envelope.

On a methodological side, the present study aimed at

shedding light on the functioning and operability of the

auditory revcorr approach using a steady white noise

masker. Such maskers are useful when experimenters have

no a priori information on the location of the cues to be

sought—or do not want to rely on this knowledge (Varnet

et al., 2013). However, as pointed by Joosten et al. (2016), it

is likely that the introduction of random perturbations in the

modulation domain (i.e., modulated noise) would make the

auditory kernel estimation more efficient than relying only

on intrinsic envelope fluctuations. Further work will be dedi-

cated to quantitatively assess this hypothesis.

V. CONCLUSION

In summary, the macroscopic and microscopic analysis

of the influence of a white noise masker in a 4-Hz AM

detection task allowed us to draw important conclusions

about the decision rules used by humans:

(1) Random intrinsic envelope fluctuations in the steady

noise masker have a systematic influence on the deci-

sion, namely, they can bias the participant’s response

towards one alternative or the other depending on their

trial-specific configuration.

(2) Overall, the temporal kernels measured on 8 normal-

hearing participants suggest that the pattern of intrinsic

envelope fluctuation that is most likely to mislead the

listeners in the task does not correspond exactly to a 4-

Hz AM.

(3) In an experiment with no explicit feedback such as the

present one, the proportion of correct responses in

target-absent trials does not depend on the current mod-

ulation depth, suggesting that the internal representation

of the target is not updated from trial to trial to track the

difficulty of the task.

(4) The classic optimal detector (O-D) rule is not consistent

with human data at a microscopic level because it does

not account for the effect of intrinsic envelope fluctua-

tions in the masker that are out of phase with the target

AM.

(5) The decision device based on a max of cross-correlation

rule (XC-D) implementing an intermediate form of

envelope phase uncertainty between O-D and EPS-D

gives the best (although not perfect) match with the real

listeners’ data.
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