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Abstract. In [2], the authors study the stabilization of a class of delayed neural fields through
output proportional feedback. They provide a condition under which the resulting closed-loop
system is input-to-state stable (ISS). However, a key assumption in that paper is the existence of
an equilibrium for the closed-loop system. We show here that such an equilibrium does exist if
the activation functions are bounded.

1 Introduction

In [2, Section 4], the following delayed neural fields are considered:
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where Ω ⊂ R
q is a compact set, zi(r, t) is the neural activity at position r ∈ Ω and time t ∈ R+ of

population i ∈ {1, 2}, τi : Ω → R>0 is a time constant distribution, Si : R → R is a non-decreasing
continuous function, wij ∈ L2(Ω2;R), dj : Ω2 → [0, d̄] for some d̄ > 0, u : Ω × R+ → R is the
controlled input, α : Ω → R+ is a bounded function reflecting the in-homogeneity of the received
input, and I⋆i ∈ L2(Ω;R) is a constant uncontrolled input. The system is controlled in closed loop
with a partial proportional feedback:

u(r, t) = −k(z1(r, t)− zref(r)). (2)

where k ∈ R+ denotes the proportional gain and zref : Ω → R is a target distribution. In order
to investigate the robust stability of the closed-loop system, the authors assume1 a priori the

1More precisely, on page 266 of [2]: “ For now on, we simply assumed that such an equilibrium exists. ”
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existence of an equilibrium point (z⋆1 , z
⋆
2) ∈ L2(Ω;R)2 for (1)-(2), at which they aim to stabilize

the system. A similar assumption was made in [3].
The existence of such an equilibrium in the absence of proportional control can be established

by invoking [4, Theorem 3.6], which exploits compactness arguments. As stressed in [2], this result
cannot readily be invoked for (1)-(2). As a matter of fact, the control law (2) does not define a
compact operator, thus making the use of Schaefer’s fixed point theorem more delicate.

In this note, we provide mild conditions under which such an equilibrium exists. We show in
particular that boundedness of the activation functions Si are enough to guarantee the existence
of an equilibrium.

2 Main result

Our main result is the following.

Theorem 2.1 Let Ω be a compact set of Rq, q ∈ N. Given any i, j ∈ {1, 2}, let I⋆i ∈ L2(Ω,R),
τi : Ω → R>0, di : Ω2 → [0, d̄] for some d̄ > 0, wij ∈ L2(Ω2,R), α : Ω → R+ be a bounded

function, and zref ∈ L2(Ω,R). If k > 0 and Si : R → R is a continuous bounded function for each

i ∈ {1, 2}, then the closed-loop system (1)-(2) admits at least one an equilibrium in L2(Ω;R)2.

In order to establish this result, we first observe that (z⋆1 , z
⋆
2) is an equilibrium point of (1)-

(2) if and only if it is a fixed point of the nonlinear map T : L2(Ω;R)2 → L2(Ω;R)2 defined by
T (z1, z2) := (T1(z1, z2), T2(z1, z2)), where

T1(z1, z2) := S1

(

I⋆1 (r) − kα(r)(z1(r)− zref(r)) +

2
∑
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′)dr′

)

,
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2
∑

j=1

∫

Ω

w2j(r, r
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.

We rely on the change of coordinates zi(r) = Si(xi(r)) for each i ∈ {1, 2}. More precisely,
we consider the map T : L2(Ω;R)2 → L2(Ω;R)2 defined by T (x1, x2) := (T1(x1, x2), T2(x1, x2)),
where

T1(x1, x2) := I⋆1 (r) − kα(r)
(

S1(x1(r)) − zref(r)
)

+

2
∑

j=1

∫
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′)S1(xj(r

′))dr′,

T2(x1, x2) := I⋆2 (r) +
2
∑

j=1

∫
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w2j(r, r
′)S2(xj(r

′))dr′.

Then (z∗1 , z
∗

2) is a fixed point of T if and only if there exists a fixed point (x⋆
1, x

⋆
2) of T such that

(z∗1 , z
∗

2) = (S1(x
⋆
1), S2(x

⋆
2)). Hence, it is sufficient to find a fixed point of T in L2(Ω,R)2 in order

to prove Theorem 2.1. The existence of (x⋆
1, x

⋆
2) follows from the next lemma.

Lemma 2.2 Let X be a Hilbert space, f ∈ X, W : X → X be a continuous nonlinear compact

operator, ρ : X → X be a continuous nonlinear uniformly bounded operator and σ : X → X be a

continuous nonlinear monotone operator that maps bounded sets to bounded sets. Then the map

G : X → X defined by

G(x) := W (ρ(x)) − σ(x) + f

admits at least one fixed point in X.

Proof . The proof is an adaptation of [4, Theorem 3.6], that dealt with the uncontrolled case
(i.e., k = 0). It is based on Schaefer’s fixed point theorem. Since σ is continuous, monotone, and
maps bounded sets to bounded sets, the map x 7→ x/2 + σ(x) is a maximal monotone operator
on X according to [1, Chapter 2, Corollary 1.1]. Hence the nonlinear map H : X → X defined
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by H(x) := x + σ(x) has a continuous inverse H−1 on X . Consider the map π : X → X defined
by π(x) := H−1(W (ρ(x)) + f). Then π is continuous and compact, since H−1, ρ and W are
continuous and W is compact. Set E := {x ∈ X | ∃λ ∈ (0, 1), x = λπ(x)}. Since ρ is uniformly
bounded, there exists a bounded set B ⊂ X such that ρ(E) ⊂ B. Since W is compact and H−1

is continuous, H−1(W (B) + f) is a relatively compact set, hence π(E) is bounded and so is E.
Thus, according to Schaefer’s fixed point theorem, π admits at least one fixed point x⋆ in X . Then
H(x⋆) = W (x⋆) + f , i.e. x⋆ is a fixed point of G. �

Proof of Theorem 2.1. To prove Theorem 2.1 from Lemma 2.2, we set X = L2(Ω;R)2, f = (I⋆1 +

kαzref , I
⋆
2 ), W (x1, x2)(r) =

∑2

j=1
(〈w1j(r, ·), xj〉L2 , 〈w2j(r, ·), xj〉), ρ(x1, x2) = (S1(x1), S2(x2)),

σ(x1, x2) = (kαS1(x1), 0). Then T = G. The operatorW is compact as a Hilbert–Schmidt integral
operator (since the maps wij are in L2(Ω2,R)). Moreover, ρ is continuous and uniformly bounded
since each Si is continuous and bounded by assumption. Finally, σ is continuous, monotone and
maps bounded sets to bounded sets since S1 is continuous, non-decreasing, and bounded, and
kα > 0. Therefore, all the assumptions of Lemma 2.2 are satisfied, which ends the proof of
Theorem 2.1. �

3 Remarks

In [2], the maps Si are not assumed to be bounded. However, in most neural fields models, these
activation functions are supposed bounded (as in [4] for example). This boundedness reflects the
fact that the activity of a given neuronal population cannot exceed a certain value due to biological
considerations. Consequently, the boundedness of the activation functions does not induce a too
demanding additional requirement in practice. In particular, this boundedness requirement holds
naturally for the modeling of the neuronal populations involved in the generation of pathological
oscillations related to Parkinson’s disease, which is the main scope of [2].

We stress that this boundedness requirement can be removed in the case when the maps Si

are linear. In that case, σ, W and ρ in Lemma 2.2 are also linear. Hence T admits a fixed point
if and only if f lies in the range of the linear operator x 7→ x+ σ(x) −W (ρ(x)).

Sufficient conditions are given in [2] for the ISS of (1)-(2) at some equilibrium point under
the assumption of the existence of an equilibrium. Naturally, this implies the uniqueness of the
equilibrium point, hence of the fixed point of T .

Under the additional assumption that Ii, Si, α and zref are continuous maps, it can be proved
that T defines a mapping from C(Ω;R)2 into itself, and admits a fixed point in C(Ω;R)2. Indeed,
following the proof of Lemma 2.2, the only missing assumptions are that X = C(Ω;R)2 is not a
Hilbert space but a Banach space, and σ is not monotone. However, the map H : C(Ω;R)2 →
C(Ω;R)2 defined by H(x) := x+ σ(x) still admits a continuous inverse. Therefore, the conclusion
of Lemma 2.2 remains valid. In particular, if the fixed point given in Theorem 2.1 (a priori lying
in L2(Ω;R)2) is unique due to the ISS property shown in [2], then it actually lies C(Ω;R)2.

Note that Lemma 2.2 allows to take into account more general neural fields than (1) and more
general feedback laws than (2). In particular, higher dimensional models (with state (zi)16i6N ,
N ∈ N) as well as nonlinear feedback laws can be considered. The only assumption to check is
that σ remains a continuous monotone operator, mapping bounded sets to bounded sets, or more
generally that H : x 7→ x+ σ(x) has a continuous inverse.
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