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Cardio-oncology requires a good knowledge of the cardiotoxicity of anticancer drugs,

their mechanisms, and their diagnosis for better management. Anthracyclines, anti-

vascular endothelial growth factor (VEGF), alkylating agents, antimetabolites, anti-human

epidermal growth factor receptor (HER), and receptor tyrosine kinase inhibitors (RTKi)

are therapeutics whose cardiotoxicity involves several mechanisms at the cellular and

subcellular levels. Current guidelines for anticancer drugs cardiotoxicity are essentially

based on monitoring left ventricle ejection fraction (LVEF). However, knowledge of

microvascular and metabolic dysfunction allows for better imaging assessment before

overt LVEF impairment. Early detection of anticancer drug-related cardiotoxicity would

therefore advance the prevention and patient care. In this review, we provide a

comprehensive overview of the cardiotoxic effects of anticancer drugs and describe

myocardial perfusion, metabolic, and mitochondrial function imaging approaches to

detect them before over LVEF impairment.

Keywords: cardio-oncology, cardiotoxicity, perfusion, metabolism, mitochondria, magnetic resonance

spectroscopy or MRS, magnetic resonance imaging, nuclear imaging

INTRODUCTION

Cancer therapy significantly improves patient survival but is sometimes accompanied by
cardiotoxic effects. Cardiotoxic complications can range from myocardial abnormalities, valvular
abnormalities, pericardial diseases, coronary artery disease (CAD), and alteration in left ventricle
ejection fraction (LVEF).

Anthracyclines, one of the most used and oldest chemotherapies, are the archetypal cardiotoxic
anticancer drug, ultimately leading to the heart failure (1). In addition, the emerging field of cardio-
oncology has seen the development of new anticancer drugs such as antiangiogenics also leading
to cardiotoxicity with endothelial dysfunction, forcing a reconsideration of the stages, timing, and
levels of cardiotoxicity.

Initial evaluation of LVEF and subsequent evaluation under anticancer therapy is paramount
as the most guidelines for cardiotoxicity are based on LVEF impairment (2). To date,
echocardiography remains the most frequently used method to detect LVEF alteration, but also
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by assessment of left ventricle (LV) longitudinal strain evaluation
that might identify early LVEF dysfunction (3). Although not
considered the first-line method, cardiac magnetic resonance
imaging (CMR) can assess cardiac anatomy, structure, and tissue
properties in addition to LVEF.

These modalities have been able to detect impaired cardiac
function in the later stages of cardiac side effects (4).
Myocardial perfusion imaging and metabolic imaging are
powerful approaches providing novel biomarkers that can
improve early detection of cardiotoxicity before irreversible
cardiac damage occurs. This review summarizes the alterations
in cardiac perfusion and metabolism that occur in anticancer
drug-related cardiotoxicity and the advantage of assessing
perfusion and metabolism non-invasively in the beating heart
with cardiac imaging.

MYOCARDIAL VASCULAR AND
METABOLIC EFFECTS OF ANTICANCER
DRUGS

Overview of the Link Between Myocardial
Circulation and Metabolism
There is a close relationship between myocardial blood
circulation, which delivers oxygen and nutrients, tissue
metabolism, and oxidative stress. The heart has a very high
energy demand to sustain contractile function and synthesizes
adenosine triphosphate (ATP) through oxidative metabolism of
free fatty acids (FFA), glucose, ketones, and lactate (5).

The adult heart normally obtains 50–70% of its ATP from
fatty acid β-oxidation in the presence of oxygen. However,
it must adapt, switching from one substrate to another, to
sustain demand depending upon the metabolic state and
physical conditions at the time (5). Under well-perfused aerobic
conditions, glucose and FFA are catabolized into pyruvate or
acyl-CoA, respectively, both of which are catabolized to acetyl-
CoA to enter the tricarboxylic acid (TCA, Krebs) cycle. Most
of the energy supply is then derived from the mitochondrial
oxidative phosphorylation system. The main cardiac energy
reserve is phosphocreatine (PCr), which is maintained by the
following creatine kinase (CK) reaction:

PCr + ADP +H+
↔ ATP + Creatine

This system facilitates intracellular delivery of energy from
mitochondria to cytoplasmic sites of ATP utilization and
maintains a high level of ATP during changes in energy
demand (6).

Direct damage to the mitochondria, blood supply, and
myocardial metabolism will be responsible for abnormal
production of reactive oxygen species (ROSs). ROS are reactive
intermediates of the molecular oxygen that are essentially
generated during mitochondrial oxidative phosphorylation (7).
Cellular sources of ROSs are cardiomyocytes, endothelial cells,
stromal cells, and inflammatory cells in the heart (8). One of
the major ROSs is the proximal mitochondrial ROSs (superoxide
anion), which can be generated by a loss of ATP production or
when there is a high NADH/NAD+ ratio in the mitochondrial

matrix (9). An imbalance between ROS production and
antioxidant cell response leads to endothelial dysfunction, the
release of proinflammatory cytokines, and vasoconstriction of
epicardial and microvascular coronary arteries (10). The heart
is particularly sensitive to oxidative stress because of its low-
antioxidant resources (11–13). One of the main mechanisms
of ROS leading to endothelial dysfunction is the uncoupling
of endothelial nitric oxide (NO) synthase, which usually
facilitates NO production (14), ultimately leading to reduce NO
bioavailability. Indeed, the endothelium synthetizes the NO (15),
which acts as a vasodilator, an antithrombotic, and an anti-
atherosclerotic molecule (14). Endothelial nitric oxide synthase
(eNOS) is the type III of NO synthases (NOS) that will lead to NO
radicals synthesis from L-arginine and is expressed in endothelial
cells. But in the inflammatory situation, the other NO synthases
are neuronal NOS (type I) and inducible NOS (iNOS, type II).
The latter will be expressed in blood vessels under pathological
conditions such as inflammation or oxidative stress (16). Major
cell structure and function damages will result reaction of NO
with superoxide anion leading to peroxynitrite (17).

Interestingly, initial vascular injury also results in the
production of ROSs species derived from NAD(P)H (18).
Oxidative inflammation will ultimately cause adventitial fibrosis
and smooth muscle hypertrophy (18). The latter phenomenon
can also be observed in the media and intima through paracrine
effects of adventitial inflammation. As a result, medial layers
of vessels do not respond to NO to adapt blood flow and
assure normal myocardial perfusion (19), resulting in impaired
endothelium-dependent relaxation.

It is important to bear in mind that impaired myocardial
perfusion and/or subsequent alteration of metabolic pathways,
substrate preferences, and bioenergetics (i.e., reduced PCr/ATP
ratio) might contribute to the development of several common
cardiovascular diseases (20). For these reasons, perfusion and
metabolic imaging are preferred methods to study early vascular
and metabolic cardiotoxic effects.

Anticancer Drugs
The vascular and metabolic cardiotoxic effects of the various
anticancer drugs are given in Table 1.

Anthracyclines
Anthracyclines are a group of chemotherapy broadly used in
cancer treatment, with doxorubicin (DOX) being one of the most
widely used. Its cardiotoxicity is well-known with cumulative
toxicity ultimately leading to permanent cardiac alteration (21).
The initial alteration of this end state is thought to be at
a microvascular level through ROS production (22–24), with
mitochondrial superoxide production increasing with DOX
dose (25).

Excessive production of ROS by DOX leads to apoptosis,
cardiac function impairment, inflammation, and vascular injury
(25, 26). Both the cardiomyocytes and arterial endothelial cells
can experience mitochondrial dysfunction under anthracyclines
(27, 28). These properties suggest that, in addition to its known
direct effect on deoxyribonucleic acid through topoisomerase
II beta inhibition (29), endothelial cells injury could be one
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TABLE 1 | Myocardial vascular and metabolic effects of common anticancer

drugs.

Anticancer

drugs

Mechanisms of cardiotoxicity

Anthracyclines Microcirculation alteration

Endothelial dysfunction (NO)

Microcirculation increased thickening

Altered oxidative metabolism

Impaired energetics

ROS

Mitochondrial dysfunction

Antimetabolites Vasospasm

Vasoconstriction

Endothelial dysfunction (NO)

Smooth cell dysfunction

Altered oxidative metabolism

Impaired energetics

Mitochondrial dysfunction

ROS

RTKi Inhibits angiogenesis

Endothelial dysfunction (NO)

Vasoconstriction

Altered oxidative metabolism

Myocardial insulin resistance pattern

Impaired energetics

ROS

Mitochondrial dysfunction

Anti-VEGF Ab Inhibits angiogenesis

Capillary rarefaction

Impaired energetics

ROS

Mitochondrial dysfunction

Anti-HER2 Ab Microcirculation alteration (neuregulin 1)

Disruption of cardioprotective Neuregulin-1

pathway

ROS

Mitochondrial dysfunction

ICI Microcirculation alteration → vascular sequelae

Dysregulated myocardial metabolism

Taxanes Impaired energetics

Endothelial damage

Capillary rarefaction

Alkylating agents Endothelial dysfunction (NO)

ROS

Free fatty acids accumulation

Vasoconstriction

Mitochondrial dysfunction

Ab, antibody; NO, nitric oxide; ROS, reactive oxygen species.

cause of anthracycline cardiotoxicity. Although anthracyclines
cardiotoxicity is usually detected at a stage of altered ejection
(21), studies suggest that anthracyclines cardiotoxicity occurs in

a continuum, challenging the hypothesis of irreversible cardiac
injury (30, 31).

Current guidelines suggest monitoring of patients with
cancer undergoing chemotherapy by echocardiography since
most definitions of cardiotoxicity are based on LVEF decline
(2), but the literature reports microcirculation changes long
before any LVEF or contraction alterations occur (31, 32).
This myocardial perfusion alteration could be the result of
increased arterial walls thickening, which can occur early and
even after a single DOX injection (31, 33), but is more overt with
repeated injections (33). The increase in intima-media thickness
under anthracyclines (34) is in part secondary to oxidative
inflammation. Thus, anthracyclines cardiotoxicity appears at the
histological level and these microcirculation alterations appear to
be an early form of the well-known anthracyclines cardiotoxicity,
suggesting modalities to assess the initial endothelial cell damage
and better prevent its progression. Moreover, the combination
of radiotherapy with anthracyclines potentiates heart damage.
Radiotherapy has been reported as responsible for cardiac
perfusion defect development, however, myocardial perfusion
imaging of the combination of radiotherapy with anthracyclines
remains poorly described (32).

Antimetabolites
5-Fluorouracil (5-FU) is a part of antimetabolite agents and
is commonly used in the treatment of malignancies. One of
the major cardiotoxicities of 5-FU is coronary vasospasm that
can lead to ischemia. Its mechanism remains uncertain, with
some suggesting an endothelial-dependent mechanism through
endothelial dysfunction, but others an endothelium-independent
with vasoconstriction of dysfunctional smooth muscle cells (35).
Studies in animal models demonstrated that altered erythrocyte
metabolism decreases erythrocyte ability to bring oxygen to the
myocardium (36, 37). 5-FU reduces oxidative metabolism (38),
impairs energetics (38), and induces mitochondrial uncoupling
reducing aerobic efficiency (39). At a subcellular level, the toxicity
of 5-FU and another antimetabolite drug, the capecitabine, have
been shown to be mediated through oxidative stress with ROS
generation leading to altered mitochondrial membrane potential
in isolated rat cardiomyocytes (40).

Alkylating Agents
One of the main alkylating agents, mostly used in hematologic
cancers, is cyclophosphamide, for which dose-mediated
cardiotoxicity is one of the notable toxic effects. The metabolites
of cyclophosphamide reported to be involved in cardiotoxicity
are acrolein and 4-hydroxy-cyclophosphamide. These
metabolites are involved in ROS generation (41, 42) that damage
mitochondrial membrane by decreasing its detoxifying capacity,
but also by disrupting normal vasotone response pathway
through NO reduction or an increase in the vasoconstrictor
endothelin-1 (23). In addition, cyclophosphamide is responsible
for FFA accumulation and reduction of ATP production
resulting in the release of proinflammatory cytokines (41).
Cardiac microscopic findings of alkylating agents consist of
interstitial damages, myocardial necrosis, vacuolar changes,
and intramural changes in small coronary vessels (43). Similar
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disturbances have also been reported with cisplatin-based
chemotherapy, another alkylating agent (44).

Taxanes
Taxanes are antimicrotubules whose main cardiotoxicity
is disruption of cardiac rhythm and conduction. Heart
failure (possibly in combination with DOX), ischemia, and
microvascular rarefaction because of the endothelial damage
might also occur (45).

Receptor Tyrosine Kinase Inhibitors
Receptor tyrosine kinase inhibitors (RTKi) include sorafenib,
pazopanib, and sunitinib. As a part of antiangiogenic therapy,
RTKi inhibits the tyrosine kinase activity of the vascular
endothelial growth factor (VEGF) receptor, thereby blocking the
VEGF pathway, but also platelet-derived growth factor receptors
and c-kit (46). Oxidative stress and dysregulation of NO signaling
have been proposed to mediate RTKi-induced hypertension, as
they are known to be involved in the VEGF pathway (47, 48).
However, sunitinib-induced hypertension has been associated
with upregulation of the endothelin peptide (49–51), a potent
vasconstrictor known to induce cardiac endothelial dysfunction
(52). Experimental studies investigating the effects of VEGFR
blockade on cardiac microvasculature did not reveal any changes
in the number of capillaries (50, 53). Nevertheless, sunitinib
induces a loss of coronary microvascular pericytes in mice (53),
which might explain the impaired coronary flow reserve (CFR)
of sunitnib-induced cardiotoxicity (49, 53).

Carbohydrate metabolism is altered in the myocardium of
sunitinib-treated mice, which exhibits higher glucose uptake,
higher gene expression of pyruvate dehydrogenase kinase, and
of the pyruvate kinase isoform 2 (54), a signature of fetal
myocardium in which the metabolism is mostly anaerobic. The
sensor of cardiac energetic metabolism, AMP-activated protein
kinase, is inhibited by sunitinib (55). Energy impairment because
of the loss of mitochondrial membrane potential resulting in
reduced ATP has been reported in the early stages of sunitinib-
treated cardiomyocytes (56).

In a comparative study, only sorafenib among others
RTKi directly impaired mitochondrial function and oxidative
metabolism at clinically concentrations (57), but ROS generation
was documented in several RTKi-treated myocardium (58, 59).

Anti-vascular Endothelial Growth Factor (VEGF)

Monoclonal Antibody
Another antiangiogenic approach consists of blocking VEGF
with a humanizedmonoclonal antibody, which traps endogenous
VEGF and inhibits its binding with the receptor. Bevacizumab
was the first anti-VEGF antibody with a rate of sytemic
hypertension as high as 70%, probably because of the vascular
resistance, endothelial dysfunction, and capillary rarefection
(39). Bevacizumab induces mitochondrial dysfunction plus
ROS formation in isolated rat heart (60, 61) and in isolated
cardiomyocytes (62).

Anti-human Epidermal Growth Factor Receptor

(HER 2)
Human epidermal growth factor receptor 2 is a receptor that
promotes cell growth, proliferation, and repair in the body.
Tumors can hijack these functions to proliferate. Therefore, one
treatment option is to specifically target this receptor, with anti-
HER2 therapy, led by Trastuzumab, which has revolutionized
the treatment and prognostic of patients with HER2 positive
breast cancer (63). Trastuzumab will result in ROS production,
mitochondrial dysfunction, and proapoptotic signals release in
cardiomyocytes (64). Unlike anthracyclines, cardiotoxicity of
anti-HER2 is dose-independent and often reversible. However,
it results in greater cardiotoxicity in the presence of or after
anthracyclines (65).

Anti-HER2 might cause cardiomyocyte damage by disrupting
the neuregulin-1 axis that normally activates protective pathways
in response to stress (66), which could lead to LVEF
decrease. Neuregulin-1 is a cardioactive growth factor that
normally participates in the dimerization of HER receptors on
cardiomyocytes to provide cell protection. However, the fact
that neuregulin-1 is released from the endothelial cells in the
heart leads to the question of whether the impaired LVEF
is due to a direct impact of anti-HER2 on cardiomyocytes
or an indirect impact via endothelial cells of the altered
coronary microvasculature (67). Interestingly, a decrease in
neuregulin-1 levels has been associated with CAD (68). The
same neuregulin-1/HER pathway may also explain the increased
susceptibility to anthracyclines cardiotoxicity when the two
treatments are combined.

Immune Checkpoint Inhibitors (ICIs)
Immune checkpoint inhibitors are monoclonal antibodies that
restore antitumor immunity by targeting inhibitory receptors
on the lymphocytes surface, such as cytotoxic T-lymphocyte-
associated protein 4, programmed cell death receptor 1 (PD1),
and its ligand. By reactivating the immune response against
the tumor, ICIs can lead to immune-related cardiovascular
adverse events that, although rare, present a case-fatality rate as
high as 50% (69). The most-reported cardiac complications of
ICIs are ICI-induced myocarditis but also pericardial diseases,
cardiomyopathy, myocardial fibrosis, and acute heart failure
(70). Microvascular damage leading to vascular sequelae has also
been reported with ICI (10). Furthermore, studies are needed to
explore all the different pathways involved in the cardiotoxicity
of ICIs with possible yet unknown microcirculation damage. A
recent in vivo study in mice showed that anti-PD1 drugs cause
myocardial dysfunction and altered myocardial metabolism,
suggesting damage at a subcellular level (71).

IMAGING

Imaging modalities in cardio-oncology and their assessment of
anticancer-drug-related cardiotoxicity are given in Figure 1.

Perfusion Imaging
Perfusion imaging involves assessing the delivery of oxygen and
nutrients to tissues through blood flow. It aims to describe
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FIGURE 1 | Imaging modalities in the field of cardio-oncology and their assessment of anticancer-drug related cardiotoxicity. CMR, cardiac MRI; CMRS, cardiac

magnetic resonance sprectroscopy; FDG, fluoro-D-glucose; FFA, free fatty acid; SPECT, single-photon emission CT.

microvasculature that can be altered under the effect of
anticancer drugs. Since 1997, Hasdai et al. reported that coronary
endothelial dysfunction may be associated with myocardial
perfusion defects (72). Both radiotherapy and chemotherapy
have shown to be associated with microvascular dysfunction (2),
although the effect of non-radiation therapies on the latter is
less well-described (31). Knowing the effects of anticancer drugs
on myocardial microcirculation, myocardial perfusion imaging
appears to be an attractive modality to detect anticancer drug-
relatedmyocardial toxicity. Moreover, by the time cardiotoxicity-
associated LV dysfunction is detectable by echocardiography,
it is often too late, emphasizing the need to assess the initial
microvasculature dysfunction to better prevent it.

Symptomatic oxygen supply-demand mismatch can be
evaluated invasively by invasive coronary angiography (ICA),
but myocardial microcirculation disturbance can occur before
any visible epicardial coronary on ICA (73), requiring blood
flow measurements to assess myocardial function. Myocardial
malperfusion can be unmasked through fractional flow reserve
(FFR), which is an invasive measurement under hyperemia
to determine the significance of an epicardial coronary artery
stenosis, with an FFR ≤ 0.80 considered to be ischemia prone
(74), and defined as the ratio of maximal blood flow distal to
proximal to the stenosis. The invasive measurement of CFR is
intended to study the vascular bed and describe the myocardial
reserve capacity for vasodilatation, and is defined as the ratio of
maximal hyperemic to the resting coronary blood flow (75).

Another interesting measure to evaluate coronary
microvascular dysfunction is the index of microcirculatory

resistance (IMR) (76) which is an index of coronary
microvasculature and considered as abnormal if ≥25
independently of epicardial stenosis (77). However, these
different parameters remain invasive, which could explain their
low use in clinical practice for monitoring patients undergoing
anticancer therapy, and should be discussed with respect to
non-invasive techniques for the assessment of myocardial
perfusion, which we review here.

Nuclear Imaging
Nuclear imaging techniques include single-photon emission
computerized tomography (SPECT) and PET. These techniques
are based on the detection of radioactive gamma rays
and photons (after positrons annihilation) from an injected
radioactive compound, respectively.

Single-Photon Emission CT (SPECT)
Impairment of epicardial arteries vasodilatation, by evaluation
of change in coronary diameters under pharmacological stress,
has been reported after DOX infusions on CT angiography
suggesting dysfunction of smooth cells and the microvascular
bed (78). However, the resolution of cardiac CT is insufficient
to visually assess microvessels, underlining the need for cardiac
perfusion CT to assess myocardial microcirculation by detecting
hypoperfused territories. Coupling of metabolic information by
traditional radiotracers 201Tl-chloride, 99mTc- sestamibi, and
99mTc- tetrofosmin, is obtained by myocardial perfusion SPECT.
SPECT is performed at rest and under stress, which can be
achieved by exercise or pharmacologically with vasodilators (79).
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The added value of SPECT is that the radiotracers will be
delivered to the myocardium in proportion to flow and therefore
be able to unmask a myocardial perfusion defect secondary
to CAD. Territories with myocardial perfusion abnormalities
may not only be secondary to CAD but reflect the myocardial
cardiotoxicity at a microvascular level.

Studies have reported increased perfusion defects in DOX-
treated patients with a history of radiotherapy (32, 80). Galluci et
al., have suggested myocardial perfusion abnormalities, assessed
by SPECT, without LVEF dysfunction in patients who had
undergone chemotherapy and radiotherapy (32). However, this
observational study could not strictly conclude that the findings
were only due to the chemotherapy because of the lack of
a control group before cancer treatment, and because of the
inclusion of patients with a history of radiotherapy.

Some studies described LVEF dysfunction after the
introduction of DOX in patients with cancer (81), but there
are very little data on the incidence of SPECT perfusion defect
in patients under DOX alone. One study on 36 patients with
breast carcinoma evaluated before and after anthracyclines
found no significant perfusion defect after anthracyclines (34),
leaving the question of myocardial perfusion monitoring with
99mTc-sestamibi SPECT subject open to debate.

Positron Emission Tomography
Compared with SPECT, PET allows assessment of myocardial
blood flow with better spatial resolution and sensitivity. CFR
can be quantified as the ratio of myocardial blood flow
between stress and rest on PET (82). The most commonly used
and validated radionuclide for cardiac perfusion evaluation is
rubidium-82 (82Rb) (82). Although 82Rb PET is often used for
semiquantitative myocardial perfusion, it may assess coronary
microvascular function by absolute quantification of myocardial
perfusion andmyocardial perfusion (or flow) reserve (MPR) (83).
MPR is the ratio of stress flow to resting flow and describes the
capacity of the coronary bed to maximize flow (84).

Myocardial perfusion reserve has been reported to be
decreased after DOX exposure, representing a possible early
marker of DOX myocardial cardiotoxicity (85). Detection of
changes in mitochondrial function, estimation of myocardial
blood flow and myocardial oxygen consumption, and thus,
the ability of coronary arteries to respond to stress, can also
be assessed by 11C-acetate rest stress PET. Using the latter,
a decrease in myocardial perfusion and oxygen consumption
reserve in DOX-treated rats compared with the control animals
has been reported (86). 11C-acetate PET is not only used to
investigate DOX cardiotoxicity but has also been evaluated in
sunitinib-induced cardiotoxicity. Similarly, an in vivo study in
rats described a decrease in myocardial perfusion, evaluated by
11C-acetate PET, as early as 5 days after treatment initiation (87).

Cardiac MR
Common practices remain the assessment of cardiotoxicity by
echocardiography because of its ability and availability to detect
LVEF alteration, which is the current standard for oncologic
treatment cardiotoxicity (88). However, the gold standard in

LVEF evaluation remains CMR imaging (89). But in addition
to LVEF assessment, it is currently admitted that CMR with
vasodilator stress perfusion should be performed to non-
invasively investigate microvascular dysfunction (90). Yet, we
know that anthracyclines may be responsible for myocardial
damage at a histologic level long before any overt LVEF decrease
(91). Although most studies of anthracyclines have focused on
their effect onmyocyte damages (92), more recent studies suggest
that DOX cardiotoxicitymay present as direct vascular injury and
arterial damage with coronary arteriolar wall abnormalities (31,
33, 93, 94). Some mechanisms of microcirculation damage arise
from increased thickening of microcirculatory arterioles and loss
of smooth muscle cells, which may contribute to myocardial
perfusion defects.

Thus, the literature reports that DOX cardiotoxicity results
in microvascular dysfunction, and we know that microvascular
can technically be assessed by myocardial perfusion on CMR.We
had to wait until 2021 to finally find a study that proved in vivo
that there was a reduction in myocardial perfusion well before
any overt LVEF alteration. Indeed, to the best of our knowledge,
Galán-Arriola et al. (31) were the first to describe in large animals
the impact of DOX on coronary microcirculation, assessed
by CMR but also by invasive measurement and histology,
under different DOX protocols. In this study, the alteration of
myocardial perfusion by CMR followed a similar pattern to that
observed in the assessment of microcirculatory function by CFR.
Indeed, they showed that in the early stages of DOX treatment,
there was a decline in CMR perfusion. This decline in perfusion
was present although LVEF, cardiac motion, cardiac contractility
were not impaired; and was persistent as long-term changes with
cumulative doses of DOX.

Myocardial perfusion assessment by CMR is a validated non-
invasive assessment of microvascular CAD (95) and has been
shown to outperform SPECT in detecting obstructive CAD (96–
99). Newer CMR techniques that could quantitatively detect
epicardial and microvascular CAD have correlated well with
IMR and FFR measurements (77), and coronary sinus flow
evaluation could be a good surrogate for CFR measurements
(100). Although to the best of our knowledge, no study has yet
reported myocardial perfusion CMR findings of anthracyclines-
treated patients, it is legitimate to speculate that vasoconstriction
and increased wall thickness of the heart microvasculature may
reveal a myocardial perfusion defect and decreased myocardial
blood flow reserve. Myocardial perfusion is acquired during the
first pass of gadolinium-based contrast agents, based on an ECG-
triggered fast T1-sensitive pulse sequences that can be acquired
both at rest and with stress. The additional benefit of stress in
CMR perfusion compared with resting perfusion alone is still
debated but is theoretically used to unmask myocardial perfusion
defect that could be compensated at rest (101). Indeed, stress
could reveal insufficient coronary reserve resulting in decreased
perfusion and ischemia in territories with thickened vessels walls
and impaired ability to respond to stress-induced vasodilation.
Although the mechanisms leading to 5-FU-related cardiotoxicity
are numerous and detailed elsewhere (102), ischemia, especially
secondary to vasospasm, can be imaged by perfusion defect in the
coronary territory of the vasospasm (103, 104).
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Regarding the evaluation of anti-VEGF myocardial
cardiotoxicity with perfusion CMR, there are very sparse
data in the literature. A small study on 9 patients evaluated both
resting and stress perfusion with CMR before treatment and
at 4 and 6 weeks of treatment (105). They were able to show
a decrease in myocardial blood flow on resting perfusion after
treatment introduction but no difference under stress, and an
increase in vascular permeability. These preliminary findings
suggest that anti-VEGF cardiotoxicity leads to microvascular
constriction, which may, fortunately, be reversible, and that
microvascular endothelial dysfunction may be responsible in
part for impaired LVEF.

Metabolic Imaging
Metabolic imaging focuses and targets changes in metabolic
pathways and energetics. It includes CMRS and nuclear imaging
techniques such as SPECT and PET.

Cardiac Magnetic Resonance Spectroscopy
Cardiac magnetic resonance spectroscopy has several advantages
for metabolic imaging since it is able of measuring several
metabolic biomarkers without using ionizing radiation (106).
Metabolites containing proton (1H) such as creatine or lipids;
containing carbon (13C) such as glucose, and containing
phosphorus (31P) such as PCr or ATP can be assessed by
CMRS. In addition, the development of 31P saturation magnetic
resonance spectroscopy allows the measurement of the metabolic
rate of ATP production via the enzyme creatine kinase (= CK
flux) (106, 107).

Early studies performed on isolated animal hearts have
demonstrated several alterations in the cardiac metabolic. The
injection of [1-13C]glucose into isolated perfused hearts treated
for 10 weeks with anthracyclines highlighted altered glycolytic
metabolism (108). Similarly, abnormal cardiac bioenergetics,
as revealed by a reduced PCr/ATP ratio, was measured
with 31P-CMRS in an isolated animal hearts of acute (109)
and chronic (110–112) anthracycline-related cardiotoxicity. In
addition, Bittner et al. showed that hearts chronically exposed to
DOX failed to adapt metabolically, as evidenced by the delayed
recovery of PCr after hemodynamic stress (113). Recently,
Henderson et al. showed that acute and clinically relevant
exposure to DOX in isolated, perfused rat hearts induced a
reduction in energy reserve, as measured by a decrease in PCr,
in response to the cardiac-stimulant isoproterenol (114). These
studies demonstrated abnormal cardiac energetics production
and utilization, even in the setting of acute anthracycline
exposure. Interestingly, the myocardial PCr/ATP ratio was
reduced after 6 weeks of anthracycline treatment without
evidence of cardiac damage in an in vivo study (110). In
addition, the authors showed a strong correlation between
cardiac energetics and LV systolic and diastolic dysfunction after
8 and 10 weeks of treatment. The same group then demonstrated
that the absolute concentration of PCr was decreased in DOX-
treated mice and that 31P-CMRS also detected a reduced rate
of ATP synthesis through CK reaction (115). Importantly,
overexpression of cardiac-specific myofibrillar isoform of CK
restored impaired PCr and CK flux, which was associated

with improved LVEF and survival in DOX-treated mice (115),
opening up a new possibility for preventive therapy.

Recent research has focused on improving the signal-to-
noise ratio of conventional CMRS, with the development of
hyperpolarization CMRS: the injection of hyperpolarized [1-
13C]pyruvate and [2-13C]pyruvate enables measurement of
the flux through the pyruvate dehydrogenase (PDH) complex
and TCA flux, respectively (116). A decrease in PDH flux,
representative of reduced oxidative mitochondrial carbohydrate
metabolism, was observed in the myocardium of DOX-treated
rats for 3 weeks without impairment of cardiac function (117).
After 6 weeks of treatment, the authors showed, in addition
to reduced PDH activity, a decrease of TCA cycle flux and
impaired cardiac function. This altered carbohydrate metabolism
reflected the loss of mitochondrial integrity, which was not
because of the oxidative stress in this study, and preceded cardiac
function impairment.

The exploration of cardiac energetics in the clinic has been
recently proposed. The authors found no difference in cardiac
PCr/ATP ratio of anthracycline-treated women despite a 5%
reduction in LVEF between the start and end treatment (118).
This could be explained, at least in part, by the small number of
patients in whom CMRS was possible (11 patients).

Nuclear Imaging
Several radiopharmaceuticals can be used as biomarkers of
myocardial metabolism using nuclear imaging, the two best
known being iodine-123 betamethyl-iodophenyl-pentadecanoic
acid (BMIPP) for the assessment of myocardial FFA uptake
and 2’-deoxy-2’-[18F]fluoro-D-glucose (FDG) for the assessment
of cardiac glucose uptake. Because myocardial metabolism is
tightly regulated, the heart switches from FFA metabolism to
glycolysis in high-insulin/glucose levels and low oxygen by
increasing its glucose transporter protein translocation to the
plasma membrane (119). Hence, PET with FDG under fasting
condition is preferred for oncology study (minimize myocardial
uptake) but is performed under fasted condition or with glucose
load after an overnight fasting for cardiac study (maximize
myocardial uptake).

Early studies conducted two decades ago showed a
significantly lower myocardial BMIPP uptake in patients
treated with DOX (120) and taxanes (121), but other studies
showed that only one in four (122), and one in six (123) patients
displayed hypomyocardial BMIPP accumulation. Importantly,
modeling of kinetics, which was measured by the acquisition of
dynamic time sequences in the latter study, revealed a significant
decrease in BMIPP flux in DOX-treated patients (123). This
analysis more accurately reflects the features of fatty acid
metabolism disorders by measuring the metabolic flux of the
tracer rather than its accumulation in the myocardium. The
lower cardiac uptake of BMIPP, which is a biomarker of impaired
fatty acid beta-oxidation, was predictive of LV dysfunction (120).

An exciting exploration in cardio-oncology is ketone body
imaging. This has been proposed with cardiac 11C-acetoacetate
PET. As a ketone body, acetoacetate can be used as a substrate
by the heart and be involved in cardioprotection through
its antioxidant activity plus mitochondrial membrane repair
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(124, 125). Greater uptake and retention of 11C-acetoacetate
in the myocardium was found in non-fasted rats treated for 6
weeks with DOX, which may be associated with mitochondrial
membrane alteration (126). Although it has been studied only
once in this field, ketone body imaging may hold promise as a
theranostic approach.

In 2012, Borde et al. first described enhanced 18F-FDG
uptake in the myocardium of DOX-treated patients, highlighting
the ability of PET to early detect cardiotoxicity (127). Similar
observations have been reproduced by others attempting to
better understand the increased myocardial 18F-FDG uptake in
animals and patients treated with chemotherapy. First, DOX
dose-dependently increased myocardial metabolic flux of 18F-
FDG measured by dynamic PET in the fasted mice (128).
The same group demonstrated that a low pretreatment 18F-
FDG standardized uptake value (SUV) in Hodgkin’s disease
patients may predict the development of chemotherapy-induced
cardiotoxicity, which was subsequently detected by a higher
myocardial 18F-FDG SUV (128). Another study showed that 12%
of 121 patients with breast cancer treated with anthracycline
or trastuzumab had increased 18F-FDG uptake in the right
ventricle, which was significantly associated with cardiotoxicity
(129). Second, increased LV 18F-FDG uptake correlated with
LVEF decline after two cycles and at the end of DOX therapy
in a retrospective study including a cohort of 43 patients
(130). Another interesting study explored 18F-FDG myocardial
uptake and myocardial perfusion (through 99mTc-tetrofosmin
SPECT) in a retrospective cohort of 332 patients followed for
malignant disorders (131). As part of an oncologic PET protocol,
patients were fasted to avoid myocardial 18F-FDG uptake: 36%
of patients had no 18F-FDG uptake, 22.5% had diffuse 18F-
FDG uptake, 8% had focal 18F-FDG uptake, and 30.5% had
a focal uptake overlying the diffuse pattern 18F-FDG uptake.
Among all the patients, multivariate logistic regression identified
focal myocardial 18F-FDG uptake as a predictor of impaired
LVEF and myocardial perfusion (131). It is important to bear
in mind two interesting points. First, no direct mechanisms
that could explain the increased cardiac 18F-FDG uptake have
been explored in these reports. This could be because of the
recruitment of inflammatory cells, switch to anaerobic glycolysis,
or being associated with other pathological mechanisms. Second,
the correlation between 18F-FDG uptake and LV function was
made at the same time, which cannot directly prove the ability
of early detection of cardiotoxicity before the decline of LV
function. In terms of mechanisms and correlations, the increase
in cardiac uptake of 18F-FDG seven days after DOX treatment in
mice was directly correlated with oxidative stress and antioxidant
mechanisms assessed by biochemical measurements (132). This
is particularly interesting knowing the close relationship between
metabolic imbalance (i.e., mismatch of oxidative metabolism plus
reduced ATP production) and ROS generation in mitochondria
(133, 134).

Chemotherapy-induced cardiotoxicity is not limited to an
increase in 18F-FDG uptake. The SUV of 18F-FDG was
significantly reduced in the fasted rats treated for 6 weeks (135)
and in non-fasted rats treated for 4 weeks (136) with DOX.
18F-FDG PET could have detected a loss of cell viability and

necrosis in these experimental models, which was associated with
decreased LVEF (136). This supports the fact that dietary status is
important in the cardiac 18F-FDG PET investigation.

With respect to antiangiogenic therapies, few reports have
described the role of 18F-FDG PET. In 2011, a case report
described decreased myocardial 18F-FDG uptake in patients
treated with imatinib plus sorafenib who later developed a cardiac
event (137). Later, O’Farrell et al. also showed an increase in
18F-FDG uptake 2–3 days after the introduction of sunitinib in
mice and 5 days in rats (87). In another study, sunitnib induced
higher 18F-FDG uptake after 1 week of treatment in fasted mice
but not in non-fasted mice (138), highlighting once again a role
of the dietary status on myocardial 18F-FDG uptake for further
investigations. In both studies, this early side effect was associated
with a switch from oxidativemetabolism to glycolyticmetabolism
(138) and correlated with late myocardial hypertrophy measured
after 6 weeks of treatment (139). Moreover, the metabolic flux
of 18F-FDG from the blood to the cytoplasmatic glycolysis,
measured by dynamic time sequence acquisition and kinetic
modeling, was reduced after 3 weeks of treatment (87, 138)
with sunitinib and was associated with an insulin resistance
pattern (138).

Mitochondrial Function Imaging
In-vivo assessment of cardiotoxicity-induced ROS production
is tempting as there is a close relationship between altered
circulation, metabolism, and oxidative stress. 18F-labeled analog
of dihydroethidium (18F-DHMT) is a radioactive compound that
can assess free radicals because it is trapped in the cell when
oxidized by ROS (140, 141). In an initial in-vivo study in mice,
the authors reported a 2-fold increase in cardiac retention of
18F-DHMT after a single injection of DOX, which revealed ROS
production compared with controls (141). This observation was
later confirmed with an increased cardiac uptake of 18F-DHMT
in DOX-treated rats following 4 and 6 weeks of treatment (142).
Interestingly, no impairment of cardiac function was found after
4 weeks of treatment, but 6 weeks of DOX treatment induced a
decrease in LVEF (142). In another study, dynamic time sequence
18F-DHMT PET and kinetic modeling confirmed higher absolute
quantification of myocardial ROS production in beagle dogs
following 2 weeks of DOX treatment (143).

Similarly, new radiopharmaceuticals have been developed
to assess early DOX myocardial cardiotoxicity detection,
such as 18F-labeled lipophilic cation PET tracers (144). Its
principle is to image mitochondrial damage by 18F-labeled
lipophilic tracers, which diffuse across mitochondrial membranes
depending upon the mitochondrial membrane potential (144).
The tracers will therefore accumulate in cardiac tissue in case of
mitochondrial damage, which is one of the possible mechanisms
of myocardial cardiotoxicity of DOX, allowing early detection of
its cardiotoxicity.

In SPECT imaging, in the same perspective, the usual 99mTc-
sestamibi, which is used to assess myocardial perfusion, is also a
lipophilic cation and so its myocardial distribution depends on
the mitochondrial membrane potential additionally to regional
myocardial perfusion. Safee et al. recently demonstrated in a
rat model a correction tool to free the 99mTc-sestamibi from its
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TABLE 2 | This table summarizes early perfusion, metabolic and mitochondrial function imaging findings suggestive of DOX myocardial toxicity that subsequently revealed

impaired left ventricle ejection fraction.

Reference Early myocardial toxicity

with no overt cardiac

dysfunction

Late cardiac dysfunction Species

Saito et al. (120) Reduced 123 I-BMIPP [2 to

3 weeks]

Decreased LVEF [variable] Human

Maslov et al. (110) Decreased PCr/ATP ratio

[6 weeks]

Systolic and diastolic

dysfunction [8 and

10 weeks]

Mouse

Bauckneht et al. (128) Lower pre-treatment
18F-FDG Increased 18F-FDG

[4-6 weeks and 6 months

follow up]

Decreased LVEF [median =

27 months, range 8-96]

Human

Boutagy et al. (142) Increased 18F-DHMT

[4 weeks]

Decreased LVEF [6 weeks] Rat

Timm et al. (117) Decreased PDH flux

[3 weeks]

Decreased LVEF [6 weeks] Rat

Galán-Arriola et al. (31) Decreased

CMR-determined

myocardial perfusion

Decreased CFR [weeks 6]

Decreased LVEF [weeks 16] Pig

[time] = from the beginning of treatment to the assessment of alteration on imaging.

CFR, coronary flow reserve; CMR, cardiac MRI; 18F-DHMT, 18F-labeled analog of dihydroethidium; DOX, doxorubicin; 18F-FDG, 18F-Fluoro-D-glucose; 123 I-BMIPP, 123 I-Betamethyl-

iodophenyl-pentadecanoic acid; LVEF, left ventricle ejection fraction; PCr, phosphocreatine; PDH, pyruvate dehydrogenase.

perfusion imaging, to assess only the mitochondrial potential,
and thus, its possible perturbation by anthracyclines (145).
They proposed to correct the 99mTc-sestamibi with a lipophilic
uncharged radiotracer that would thus be a perfusion tracer
independent of the mitochondrial membrane potential [the
bis (N-ethoxy-N-ethyldithiocarbamato)nitrido 99mTc(V)]. The
latter 99mTc-NOET would, therefore, be able to detect DOX
cardiotoxicity through its mitochondrial damage.

PERSPECTIVES

We are convinced that the assessment of the mechanisms of
anticancer drug cardiotoxicity by imaging is a cornerstone
in the new era of cardio-oncology. Table 2 supports our
assertion by summarizing studies that demonstrate DOX-
induced cardiotoxicity early before overt LVEF impairment
(Table 2).

Imaging Opportunities
We have seen throughout this review that most studies have been
conducted in animal models. We are confident that this research
has been and will be of great importance for the development of a
standardized protocol to predict drug-related cardiotoxicity and
to test preventive interventions.

Early detection of metabolism and vascular alteration
is paramount to prevent DOX-induced permanent cardiac
dysfunction (Table 2) and could be extended to other anticancer
drugs since several vascular and metabolic cardiotoxic effects
have been described in this review (Table 1). The assessment
of myocardial cardiotoxicity by CMR seems to be of interest,

to seek other complications of oncologic therapies such as ICI-
induced cardiotoxicity. The major cardiotoxicity reported in
this therapeutic class is myocarditis, with CMR being of great
importance when suspected (146). Although not a commonly
used modality for myocardial inflammation (147), increased
18F-FDG uptake on PET could be found in myocarditis,
including in ICI myocarditis (148). Interestingly, 18F-FDG
uptake has also been reported as a marker of anthracyclines
cardiotoxicity, either via inflammatory response or altered
myocardial metabolism (149). Fusion between 18F-FDG and
CMR have also been reported (148) for simultaneous vascular,
metabolic, and functional imaging and may benefit from
creatine measurement with proton CMRS (150) since creatine
is decreased in both ischemic (151) and non-ischemic (152)
cardiovascular disease.

Clinical Feasibilities
Because most studies of perfusion and metabolic imaging have
been performed in animal models, their clinical relevance
in routine practice is questionable. Anyhow, further clinical
studies are required to ensure the utility of early detection of
anticancer drugs.

Cardiac magnetic resonance imaging appears to be a
non-invasive, radiation-free tool for monitoring patients with
cancer, capable of imaging microcirculation, metabolism, and
myocardial inflammation, which could be offered routinely
before and after the introduction of an anticancer drug. We
believe that CMR could be a justifiable perfusion approach
as a part of standard patient care. Indeed, we have seen that
altered myocardial perfusion in large animal models has been
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reported by resting myocardial perfusion on CMR (31). Multiple
other CMR parameters have been reported to be related to
cardiotoxicity of anticancer drugs (153–156), so the addition
of a rapid perfusion sequence to the CMR protocol would be
sufficient to obtain an argument for cardiotoxic effect. As the
gold standard, CMR would also provide an accurate evaluation
of LVEF. Unfortunately, LVEF assessment is so far performed
in daily practice by echocardiography because of the lack of
access to CMR. This would be the only limitation we see
for its routine integration into the health care of patients
with cancer.

We believe that the use of nuclear perfusion imaging in daily
practice is difficult to justify. One of the main possible obstacles is
the use of radiation and the cost of the technique that would allow
assessment of myocardial perfusion without assessing oncologic
follow-up. Nevertheless, it may be interesting to consider the
integration of 18F-FDG PET in the follow-up of patients with
cancer in order to assess tumor progression and, at the same time,
to look for possible cardiotoxic effects. Indeed, the most PET
scans for oncology monitoring use 18F-FDG, which is also, as
mentioned earlier, sensitive to myocardial metabolic imbalance
and also to myocardial inflammation. This capability of PET
for whole-body imaging would be attractive in patients with
cancer to concomitantly allow imaging of tumor progression in
addition to an assessment of myocardial toxicity, thus providing
a unique modality. We believe that further studies regarding
the place of PET imaging in the future of cardio-oncology
are required.

CONCLUSION

Early detection of cardiotoxicity is crucial and offers the
opportunity for early therapeutic intervention. In this
review, we have shown that perfusion imaging, metabolic
imaging, and mitochondrial function imaging are capable of
assessing myocardial cardiotoxic effects of cancer therapeutics
before irreversible cardiac damage occurs (Figure 1, Table 2).
Knowledge of these possible early imaging findings in anticancer
drug-related myocardial toxicity could change the paradigm of
“late-onset cardiotoxicity.” Earlier detection would allow for
better prevention, with specific therapeutics attempting in part
to reduce oxidative stress. Current guidelines on cardiotoxicity
do not include myocardial and metabolic perfusion imaging,
but in light of this review, it may be worthwhile to add these
parameters to better detect and prevent dramatic progression.
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