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Fatigue lifespan of a planetary roller-screw mechanism

Juliette Lepagneula, Löıc Tadrista,∗, Jean-Michel Sprauela, Jean-Marc Linaresa

aAix-Marseille Université, CNRS, ISM, Marseille, France

Abstract

Electro-mechanical actuators including planetary roller screw (PRS) support cyclic loads in
aeronautical conditions. PRS multiple thread contacts between screw, rollers and nut allow
the mechanism to support large loads. However, aeronautical accreditation requires fine
prediction of fatigue lifespan. In this paper, a fatigue design strategy for PRS mechanisms
is proposed combining Hertz contact model and a multi-axial fatigue criterion. The method
is applied on two examples, one standard and one inverted PRS.

The lifespan of PRS mechanism depends on maximal Dang Van stress. The Hertz slid-
ing angle (Hertz contact main direction / sliding velocity) was introduced to analyze PRS
performances. For both examples, the maximum stress at thread contact were located in
bulk material but not at the surface. Dang Van stress mainly depended on curvature ratio,
Hertz sliding angle and loads. Based on this analysis, Dang Van criterion was implemented
to derive the loading domain of infinite lifespan of the mechanism. Critical contact was not
always on the roller-screw side.

Keywords: Planetary roller-screw mechanism, Fatigue, lifespan prediction

1. Introduction

In industry, electro-mechanical actuators (EMA) outperform conventional linear hy-
draulic actuators in terms of maintainability, reliability, and manoeuvrability. For conven-
tional EMA, motor motions are usually reduced and converted by a gearbox and a ball-screw
mechanism. The main drawbacks of this technology are high contact pressures, a reduced
resistance to dynamical loads and the requirement of an additional reducing element.

Planetary roller-screw (PRS) mechanism was proposed for EMA as an efficient technol-
ogy combining reduction and conversion of motor motion. The main assets of the PRS
mechanism are its load capacity and its reduced weight. PRS high load capacity is permit-
ted thanks to the multiple thread contact points between screw, rollers and nut. However,
aeronautical accreditation requires fine prediction of its fatigue lifespan. In this paper, a
fatigue design strategy for PRS mechanisms is proposed combining Hertz contact model and
a multi-axial fatigue criterion. The method is applied on two examples, one standard and
one inverted PRS.
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Geometrical Parameters Contact Parameters

p Pitch (ri, θi) Polar coordinates of contact surface i
l Lead ρi, j Principal curvature of surface i, direction j

n Number of threads
−→ti j Vector of surface i and principal direction j

rC Radius of curvature φ Angle between (−→t11,
−→t21)

Dext,Dint Maximal, minimal diameters −→n Contact normal vector

rN Nominal radius (−→t1 ,
−→t2 ) Tangent vectors (Hertz contact basis)

α Normal pressure angle
β Helice angle
e Distance between parallel axis
γ Directional convention parameter

Kinematic Parameters Mechanical Parameters

V Translational velocity of the screw E Young Modulus
ω0 Rotational velocity of the screw ν Poisson ratio
ε Sliding coefficient Lt Fatigue limit in pure torsion
ε∗ Sliding coefficient (Maximal rolling) L f Fatigue limit in pure bending
v Sliding velocity of the contact

ζ Hertz sliding angle (−→vA,
−→t1 )

Contact forces, stress and fatigue Parameters
F Total loading
f Local loading
f1, f2, f3 Contact loads in the principal basis
σM Von Mises stress
τDV Dang Van criterion
z3 Depth of maximal stress location

Table 1: Notations and definition of parameters.
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We grounded our fatigue life modelling by classifying PRS literature. Special attention
was paid on geometrical models of thread contacts and on load distribution in the mechanism.
Both are key elements for fatigue design and were largely discussed in previous works. From
this literature review, the geometry and kinematics of the model were described. Then
contact and bulk stresses were determined for a set of material properties. Dang Van multi-
axial fatigue criterion was implemented. The domain of infinite fatigue life was determined
on two examples, a standard and an inverted PRS. Finally, the results are discussed regarding
PRS design specifications.

2. State-of-the-art

The first planetary roller screw mechanism was patented in 1942, by Strandgren [1]. Since
then, little attention has been paid by the scientific community to this mechanism until late
2000. The increase of machine performances renewed interest for this mechanism. Hojjat
and Agheli [2] made a study about capabilities and limitations of roller-screw mechanisms.
They measured the friction forces thanks to a piezoelectric sensor and showed that slipping
was an important aspect of roller-screw contact. They emphasized on the optimization of the
thread geometry and number of rollers for displacement accuracy. The same year, Velinsky
et al. [3], published a first paper about the efficiency of PRS mechanisms with comparisons
with standard ball screw mechanisms.

The proprieties of PRS mechanism were classified in six categories, geometry, kinematics,
dynamics, structural forces and deformations, contact forces and local deformations and
mechanical sizing (Figure 1).

2.1. General functioning of the PRS Mechanism

The PRS geometry and kinematics strongly influences the mechanism lifespan. They
represent basic knowledge of the mechanism and were largely discussed in the literature.

2.1.1. Geometry and Parametrization

Following the early works, renewed analysis was done on the parametrization and com-
prehensive analysis of the PRS mechanism geometry [3, 5–7, 11]. The main geometrical
conditions for machining a PRS mechanism were described by Ma et al. [5], instigating
concepts such as concentric specification, distribution of rollers, non-interference of threads
between roller-screw and roller-nut contacts, etc. A refined parametrization has been pro-
posed recently by Ma et al. [6] to take into account machining errors in PRS mechanisms.

The research of thread contact location were firstly discussed by Velinsky et al. [3]. The
contact location were shown not to be in the plane containing the roller and screw axes
[8, 11]. This work was finally completed by Sandu et al. [4], stating that contact condition
was given by the equality of thread normal vectors and implemented numerically with an
efficient Newton-Raphson numerical scheme. Those contact conditions are now standard
within the PRS community [10].

Contact curvatures of threaded surfaces are influential geometrical parameters since they
drive Hertz contact and the capacity of the mechanism to support high loads. Curvatures
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Figure 1: Concise view of PRS research domains with main bibliographic references.

were first modelled by Ma et al. [5] with an approximate but efficient formula. The exact
computation of contact curvatures were done by Jones et al. [13] using tools of differential
geometry. This work was further continued by Sandu et al. [9] determining the principal
directions of the surface curvatures.

2.1.2. Kinematic and the problem of sliding at thread contacts

The kinematics of roller screw mechanisms was investigated in several works [3, 9, 11]
since sliding at thread contact is a major issue of these mechanisms. The kinematic analysis
gives the transformation between the screw rotation velocity ω0 and the motion of the
different pieces in the mechanism. For the fatigue design of a PRS mechanism, sliding is
important two folds, (i) it gives the rolling velocity direction at thread contact. (ii) It also
gives the amount of rolling-to-sliding ratio ε in the mechanism. An approximate ε based on
kinematic arguments only was proposed by Velinsky et al. [3] and Ma et al. [12]. In a different
manner, Sandu et al. [9] defined the optimal rolling ratio ε∗, equation (13) for standard PRS
mechanisms and equation (14) for inverted PRS mechanisms. They emphasized on the fact
that ε is the result of a complex dynamical process.

2.1.3. Dynamical behavior of a PRS Mechanism

The problem of sliding-to-rolling ratio depends on the dynamics of the mechanism, mainly
on the lubrication conditions. Indeed the screw, may work for different values of sliding-
to-rolling ratio ε ∈ [0, ε∗] for standard PRS and ε ∈ [ε∗, 1] for inverted PRS [9]. A detailed
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dynamical analysis was done by Jones et al. [13] to model the steady state on a PRS mecha-
nism with the sliding-to-rolling ratio as an output. A refined numerical method was proposed
by Sandu [14] to model ε taking into account lubrication effects. The model prediction was
compared to actual measurements. A complete analysis of PRS mechanism dynamical be-
haviour with transient and steady states was carried out by Fu et al. [15].

The numerical computations of ε from the different models usually lead to similar values
close to ε∗, the optimal rolling.

2.2. Load distribution in a PRS mechanism

For the purpose of fatigue design, the second most influential parameter after parametriza-
tion and kinematics of the mechanism is the distribution of static loads. The distribution
of static loads may be changed by (i) the structural compliance of the mechanism, (ii) the
contact compliance and (iii) the machining errors of the mechanism.

2.2.1. Structural deformations

When loaded, the mechanism pieces may deform under the load [16–22]. Analytical and
numerical models taking into account structural stiffness of the screw and the roller as well
as thread contact stiffness were built. They showed that structural deformations lead to non-
linear distribution of loads [19–21]. Deviations from uniform load distribution on contacts
are in the order of 20% when roller stiffness is taken into account [16]. This deviation from
uniform distribution is even larger when structural compliance is not taken into account.
The combination of load distribution by mechanism compliance and the global deformations
of the PRS elements both affect the lifespan of a PRS mechanism.

2.2.2. Contacts deformations

PRS mechanism lifespan mainly depends on the deformations at thread contacts. Con-
tact deformations have been studied experimentally by Hojjat and Agheli [2] and contact
geometry cleanly described by Sandu [14]. Due to geometrical complexity, sensitivity anal-
ysis were performed using finite elements[10, 29]. Contact pressures were estimated by Du
et al. [23] for fatigue design.

2.2.3. Machining errors

Machining errors were first taken into account for PRS mechanism used for displacement
precision Ma et al. [6]. Recently, machining errors were shown to increase the unevenness
of the load distribution Du et al. [23]. This increases the maximum local loads reducing
consequently PRS lifespan.

2.3. Sizing of a PRS mechanism

The characterizations of geometry, kinematics, dynamics and load distribution of PRS
mechanisms were done in order to size its elements regarding mechanical constraints. These
ones include torque drag, tribology, thermo-mechanical coupling and fatigue design.
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2.3.1. Power dissipation

A comprehensive analysis of contact lubrication was carried out by Sandu et al. [9]. 90%
of the dissipated power are induced from sliding at thread contact. Power dissipation was
shown to be insensitive to mechanism geometry but only influenced by lubrication conditions.
A friction torque model of the PRS Mechanism in roller jamming was created by Li et al.
[24]. This study shows that the wear of the parts hastens in the case of a blocked roller
because the friction torque increases considerably.

Experiments were carried out in order to validate the effect of roughness on contact wear
[25]. It is shown that wear hastens in dry or badly lubricated conditions. For well lubricated
contacts, a small friction coefficient persists. Recently, Xie et al. [26] studied the influence
of the speed of rotation, the axial load as well as the surface roughness on the mechanism
lifespan. They deduced that a high precision machining is required to get small contact
surface roughness. This would improve the lubrication by decreasing the contact area ratio.

2.3.2. Thermo-mechanical coupling

The assembly order of PRS pieces, the magnitude and direction of the load as well as
the temperature conditions on the load distribution were analyzed by Ma et al. [28]. They
noted that the temperature difference has a strong impact on the load distribution of the
mechanism and in particular on the roller-nut contact. This phenomenon generated by the
frictional torque on the contact points was studied in more detail by Du et al. [27].

2.3.3. Fatigue design

All mechanical constraints presented before apply on the mechanical sizing of a PRS
mechanism during functioning, but their effect on the PRS mechanism lifespan remains
unknown. This question has been recently addressed by Du et al. [23] where fatigue life is
predicted depending on external loads and machining errors thanks to an analysis of maximal
contact pressure and a S-N curve.

In this paper, the question of the lifespan of a PRS mechanism in fatigue loading condi-
tions is addressed. With a different approach, a multi-axial loading criterion was applied to
determine the fatigue life of a PRS mechanism. Differently from Du et al. [23], maximum
stress is computed everywhere in the material including bulk and surface using generalized
Hertz model. With this approach, tangential forces are considered.

This analysis of PRS fatigue design starts by parametrizing thread contact geometry and
mechanism kinematics.

3. Geometry and Kinematics of thread contacts in a PRS Mechanism

In this part, PRS mechanism geometrical parametrization is presented. Then, the loca-
tion of the contact points and their curvatures as well as the definition of the sliding speed
are given depending on roller, screw and nut geometries.
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Figure 2: Standard PRS mechanism. a. Photo of each component (left) and assembled mechanism (right)
b. Kinematic diagram of a standard PRS mechanism. The nut (green) is in thread and gear contact with
the rollers (grey). The rollers and the screw (blue) are in thread contact. The carriers are in sliding pivot
link with the rollers and pivot link with the nut.

3.1. Geometry and parametrization of a PRS Mechanism

In brief, a PRS mechanism is an helical link. However its functioning is complex since it
involves moving parts (the rollers) between the screw and the nut. Standard and inverted
PRS mechanisms are compounded of four types of elements, (i) a nut, (ii) a screw, (iii)
several rollers and (iv) two carriers, see figure 2a. The PRS kinematic analysis presented
hereafter is inspired by the one of Sandu [14].

3.1.1. Components and dimensions

The first element is the internally threaded nut, see figure 2a, with a lead |l| = np where
n is the number of thread starts and p is the pitch of the thread. The nut is equipped with
internal gears at its extremities. The nut is drawn in green color in the kinematic diagram,
figure 2b.

The second element is the externally threaded screw at the center of mechanism, see
figure 2a, with a lead |l| = np and pitch p. The screw is drawn in blue color in the kinematic
diagram.

The rollers are small cylinders externally threaded with pitch p and single thread start
(l = p). Each roller is equipped with gears at both extremities, figure 2a. A pair of roller is
drawn in light and dark grey in figure 2b.

The rollers are maintained in place between the screw and the nut by two carriers, figure
2a. Those carriers ensure that the roller axes remain parallel to the nut-screw axes and
prevent roller-roller collision. Planetary carriers are drawn in red color in figure 2b.

The pitch of the rollers, screw and nut should be equal. Sandu [14] also showed that
the lead of the nut and the screw should be the same because of kinematic constraints of
non-penetration at thread contacts.

3.1.2. Global Kinematics and structural hypothesis

The nut is considered as the reference frame. The rollers have two types of contact with
the nut, (i) two gear contacts and (ii) several thread contacts which number depends on
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the ratio between threaded roller length and pitch. The gear contacts are not necessary to
understand the PRS mechanism since they only ensure that all rollers have the same rotation
velocity. The thread contact are most important because they transfer the load between the
screw and the nut. The thread contacts are modelled by punctual links in the kinematic
chain, 2. The roller are also in thread contact with the screw and in sliding pivot with the
carriers.

In a standard PRS, the carriers are in pivot link with the nut. Differently in an inverted
PRS, the carriers are in pivot link with the screw. For inverted PRS mechanisms, gears are
fixed on the screw, instead of the nut for standard ones. Thus screw, rollers and carriers
translate relative to the nut for an inverted PRS whereas only the screw translate relative to
the nut for a standard PRS. These are the main differences between standard and inverted
mechanisms.

The model developed in the present paper lies on two main assumptions:

1. The pieces of the PRS mechanism are machined without defects.

2. The solids are rigid except at the thread contact locations where elastic deformations
are expected to occur. The loads are supposed to be equi-distributed on the thread
contacts.

a.

90°

b.

Dext

Dint

p cos(β)

2rN

rc
I α

J

r f
Jmin

Jmax

Figure 3: a. Screw thread cross section obtained by optical microscopy (STIL 3D measuring station). b.
Notations and parameters of the threads. I is the centre of curvature . J is the point located on the profile
and forming an angle α =45◦ with the axis of revolution. (Jmax and Jmin are boundaries of the mathematical
profile).

3.1.3. Cases of reference

The present model is exposed to two examples of reference found in the literature, a
standard [4, 5, 11] and an inverted PRS [4, 8]. The geometrical parameters of each example
are given in table 2. The machined pieces are supposed to be made in aeronautical stainless
steel of Young modulus E =205 GPa, Poisson ratio ν = 0.3, the fatigue limit in pure bending
of infinite life L f =680 MPa and the fatigue limit in pure torsion of infinite life Lt=426 MPa
[30].
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Example 1: Standard PRS Example 2: Inverted PRS
Screw Roller Nut Screw Roller Nut

p (mm) 2 5
n 5 1 5 2 1 2
Dext (mm) 30.9944 10.9070 50.9980 32.4860 17.2954 62.7496
Dint (mm) 29.0056 8.8906 49.0020 27.5140 12.2886 57.7566
α (o) 45 45
rC (mm) ∞ 7.07 ∞ ∞ 10.6064 ∞

rN (mm) 15 5 25 15 7.5 30.1265
e (mm) 20 22.5
γ -1 1 -1 1 -1 1
β (o) 6.0664 3.6284 3.6243 6.0566 -6.0566 3.0241
l (mm) 10 2 10 10 -5 10
ε∗ 0.3739 0.3326

Table 2: Geometrical parameters of the examples of reference. Left: Example 1, standard PRS. Right:
Example 2, inverted PRS.

Example 1: Standard PRS Example 2: Inverted PRS
nroller 10 10
ncontact 500 500
E (GPa) 205 205
ν 0.3 0.3
Lt (MPa) 426 426
L f (MPa) 680 680

Table 3: Material parameters used along the paper for example 1 and 2. Left: Example 1, standard PRS.
Right: Example 2, inverted PRS.
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3.2. Contact locations and geometries

We start our analysis by finding contact points between rollers and screw, and rollers
and nut. We aim at determining the contact geometries (curvatures and main directions) to
use them as inputs for Hertz contact model.

3.2.1. Contact location

The threaded surfaces depend on thread convexity (convex or plane), their mathematical
expressions are given by [4],

z =
γ

cos(β)

(
p cos(β)

4
+ rc cos(α) −

√
r2

c − r2

)
+
θl
2π

convex,

z =
γ

cos(β)

(
p cos(β)

4
+ (r − rN) tan(α)

)
+
θl
2π

plane, (1)

with geometrical parameters defined in Table 1. In most of the configurations, the roller
is convex whether the screw and nut are plane. In the following we will consider a convex
roller and plane screw and nut. These equations describe the geometry of threaded elements
with γ=-1 for external (screw and roller) top thread and γ=+1 for external bottom thread.
Inversely, for internal thread (nut) γ=+1 for top thread and γ=-1 for bottom thread. For
each case of study, the contact may occur in two opposite configurations depending on the
direction of the load. Figure 4 exemplifies an applied load in the positive z direction leading
to roller-screw contact with top thread for the screw and bottom thread for the roller; and
roller-nut contact with top thread for the roller and bottom thread for the nut. The choice
of the force direction is conventional, following examples found in the literature, it has been
chosen positive F > 0 for example 1 and negative F < 0 for example 2. From this surface
parametrization, one may define the surface tangent vectors in the frame of reference,

−→ω(r, θ) =

r cos θ
r sin θ
z(r, θ)

 with tangent vectors −→ωr =

 cos θ
sin θ
∂z/∂r

 and −→ωθ =

−r sin θ
r cos θ
l/2π

 , (2)

and second order vector derivatives,

−−→ωrr =

 0
0

∂2z/∂r2

 , −−→ωθθ =

−r cos θ
−r sin θ

0

 and −−→ωrθ = −−→ωθr =

− sin θ
cos θ

0

 . (3)

From those tangent vectors, one finds the external unit normal vector as

−→n =
−→ωr ×

−→ωθ∣∣∣∣∣∣−→ωr ×
−→ωθ

∣∣∣∣∣∣ leading to −→n =
1√(

m
cos β

)2
+

(
l

2πr

)2
+ 1


m

cos β cos θ − γl
2πr sin θ

m
cos β sin θ − γl

2πr cos θ
−γ

 , (4)

where m is defined as mR = 1/

√(
rN

rR
1 sinα

)2
− 1 for the roller and mS ,N = tan(α) for the screw

and the nut.
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Figure 4: a. Definition of the orientation of the contact normals. b. Contact frame of reference. Definition
of sliding velocity at the contact −→vA and Hertz sliding angle ζ.
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~t2

~x
~z
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Figure 5: a. 3D view of the roller-screw contact. b. Normal view of the contact with tangency between the
dark grey and dark blue surfaces. c. Zoom on a contact with normal vector ~n and pair of tangent vectors
(~t1,~t2) given by Hertz main directions.
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The contact locations are determined by the equality of normal vectors of the two
threaded surfaces (tangent surfaces). Figure 6 shows that the contact location may be
characterized in polar coordinates with (rS

1 , θS
1 ) for the screw and (rS

2 , θS
2 ) for roller at the

roller-screw contact; and (rN
1 , θN

1 ) for the nut and (rN
2 , θN

2 ) for roller at the roller-nut con-
tact. Radii and angles are obtained by solving the non-linear system of 3 equations given
by normal vector equality, for instance for the roller-screw contact, −→n roller = −−→n screw, for
the roller-screw contact. This 3-equation system is reduced to a system of two non-linear
equations [4], (

mS ,N

cosβ1

)2

+

(
l1

2πr1

)2

−

(
mR

cosβ2

)2

−

(
l2

2πr2

)2

= 0 , (5)(
rS

1 γ1mS ,N

e cos β1
−

r2γ2mR

e cos β2

)2

+

(
l1 − l2

2πe

)2

−

(
mS ,N

cos β1

)2

−

(
l1

2πr

)2

= 0 . (6)

This system of equation is solved using Matlab non-linear solver.

a.

rS
2

rS
1

e OROS

θS
2

θS
1

A

Screw

Roller

b.

rN
2

rN
1

e ORON

θN
2θN

1

B

Nut

Roller

Figure 6: Contacts points between a. screw and roller (A) and b. nut and roller (B). OS is the center of the
screw ; ON is the center of the nut ; OR is the center of the roller.

3.2.2. Contact curvatures and directions

Contact curvatures and principal directions are determined using classical tools of surface
differential geometry.The Weingarten matrix W, which corresponds to the description of
surface curvatures, is made diagonal to find principal curvatures and eigen vectors,

W =
1

−→ωr
2−→ωθ

2 − (−→ωr.
−→ωθ)2

[ −→ωθ
2 −→ωr.

−→ωθ
−→ωr.
−→ωθ

−→ωr
2

]
·

[−−→ωrr.
−→n −−→ωrθ.

−→n
−−→ωrθ.
−→n −−→ωθθ.

−→n

]
, (7)

where −→ωr and −→ωθ are the partial derivatives of −→ω defined before and −→n the normal vector to
the surface.
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For instance, considering the screw surface, eigenvalues of Weingarten matrix, λ11,12 rep-
resent the oriented principal curvatures ρS

11,12 = γλS
11,12. To make the definition of curvatures

unambiguous, the choice |ρS
11| ≤ |ρ

S
12| is made. The transfer matrix components vS

11,v
S
12,v

S
21,v

S
22

give the principal directions of curvature,

−→
tS
11 =

vS
11
−→ωr + vS

12
−→ωθ∣∣∣∣∣∣vS

11
−→ωr + vS

12
−→ωθ

∣∣∣∣∣∣ and
−→
tS
12 =

vS
21
−→ωr + vS

22
−→ωθ∣∣∣∣∣∣vS

21
−→ωr + vS

22
−→ωθ

∣∣∣∣∣∣ . (8)

Similarly,
−→
tS
21 and

−→
tS
22 are obtained for the roller at the roller-screw contact and

−→
tN
11,
−→
tN
12,
−→
tN
21

and
−→
tN
22 for the roller-nut contact.

The angle between the principal directions of the two surfaces in contact is given by

φ = min
(
arccos

(−→t11.
−→t21

)
, π − arccos

(−→t11.
−→t21

))
(9)

The principal directions
−→t1 and

−→t2 defining Hertz frame are given by

−→t1 = cos φ1
−→t11 + sin φ1 (−→n ∧ −→t11) sign

(
(−→t11 ∧

−→t21).−→n
)

sign(−→t11.
−→t21) and −→t2 = −→n ∧ −→t1 (10)

where

φ1 =
1
2

arcsin

 |ρ22 − ρ21| sin 2φ√
(ρ12 − ρ11)2 + (ρ22 − ρ21)2 + 2 |(ρ12 − ρ11) (ρ22 − ρ21)| cos 2φ

 (11)

The values of geometrical prarameters of Example 1 and Example 2 are gathered in table
A.4. Those results are compared to those found in literature in table A.5.

3.2.3. Sliding velocity at the contact

The sliding velocity at the roller-screw contact (Point A) and roller-nut contact (Point
B) are given in [4],

−→vA =

 (ε + λ − 1)rS
1 sin θS

1
eλ − (ε + λ − 1)rS

1 cos θS
1

χ lS /2π

ω0 and −→vB =

 (ε + λ)rN
1 sin θN

1
eλ − (ε + λ)rN

1 cos θN
1

(χ − 1) lN/2π

ω0 . (12)

The set of parameters (χ,Γ, ε, λ) are given for the standard PRS as χ = 1, Γ = rN,roller/rN,nut

and λ = − (εχ + (1 − ε)(1 − χ)) /Γ = −ε/Γ. ε = ωP/N/ω0 corresponds to the sliding coefficient
of the mechanism. It depends on working conditions and varies between 0 (pure sliding) and

ε∗ =
−Γ

(
1 − Γ − e cos θS

1 /r
S
1

)
(1 − Γ)

(
1 − Γ − 2e cos θS

1 /r
S
1

)
+

(
e/rS

1

)2 (13)

which maximizes rolling. Differently, for an inverted PRS, the set of parameters reads χ = 0,
Γ = rN,roller/rN,screw and λ = − (εχ + (1 − ε)(1 − χ)) /Γ = (ε − 1)/Γ. ε = ωP/N/ω0 corresponds
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to the sliding coefficient of the mechanism. It depends on working conditions and varies
between 1 (pure sliding) and

ε∗ =
1 + Γ − (2 + Γ) e cos θN

1 /r
N
1 +

(
e/rN

1

)2

(1 + Γ)
(
1 + Γ − 2e cos θN

1 /r
N
1

)
+

(
e/rN

1

)2 (14)

3.3. Forces directions

The total force F is applied on the roller-screw mechanism on the z-axis. At each contact
point, F is distributed as f = F/Ncontact where Ncontact is the number of contact points between
the screw and all the rollers (and similarly for the nut). Firstly, the normal contact force f3,
figure 4, projected on the z-axis corresponds to the contact load f , f3 = f /−→n .−→z . The tangent
force fv of projections f1 and f2, see 4b, is considered to be proportional to the normal load
through a friction coefficient µ,

−→
fv = µ f3

−→vA∣∣∣∣∣∣−→vA

∣∣∣∣∣∣ which projects in f1 = µ f3

−→vA.
−→t1∣∣∣∣∣∣−→vA

∣∣∣∣∣∣ and f2 = µ f3

−→vA.
−→t2∣∣∣∣∣∣−→vA

∣∣∣∣∣∣ . (15)

The friction coefficient may describe a dry contact but may also be adapted to consider
lubricated contact in steady regime.

From this analysis of contact geometry and applied forces (magnitude and directions), we
may now determine the surface and bulk stresses from a generalized Hertz model of contact.

4. Contacts loads in the PRS Mechanism

In this part, Hertz contact theory is applied to determine the maximum stresses at the
contact points.

4.1. Reduction of the contact problem by dimensional analysis

The fatigue contact problem involves 8 physical parameters, the Young’s modulus E and
Poisson ratio ν, main curvatures of Hertz contact ρ1 and ρ2, the angle between the sliding

velocity and the main direction ζ = (−→t1 ,
−→vA), the friction force fv, the normal load f3, and the

Dang Van criterion limit τDV. Π theorem reduces the problem to 6 dimensionless numbers.
The chosen set of dimensionless parameters is

ρ1

ρ2
, ζ ,

fv

f3
,

f3(ρ1 + ρ2)2

E
,
τDV

E
and ν . (16)

Those dimensionless numbers may be gathered in 3 groups, (i) geometrical numbers, ρ1/ρ2

and ζ, (ii) material numbers τDV/E and ν and (iii) the loading numbers with the normalized
loading f3(ρ1 + ρ2)2/E and the friction coefficient fv/ f3.

In the following we will assume that material properties are fixed (τDV/E and ν are
treated as constants). The problem thus reduces to only 4 dimensionless numbers, ρ1/ρ2, ζ,
f3(ρ1 + ρ2)2/E and fv/ f3.
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4.2. Contact modelling using Hertz theory

The thread contact location are between two non-conforming surfaces where Hertz con-
tact theory applies [14]. The generalized Hertz contact theory is implemented with normal
and tangential loads [31, 32]. We used, in this paper, a generalized Hertz model already
validated and checked [31] which implements equation found in Sackfield’s textbook [34].

From the two surface curvatures of surface 1, ρ11, ρ12 and the two surface curvatures of

surface 2, ρ21, ρ22, and the angle between the directions of the principal axes φ = (−→t11,
−→t21), we

compute the equivalent curvatures of the Hertz contact ρ1 and ρ2 and their directions t1 and
t2. Applying normal and tangential loads f3 and fv, the contact ellipse dimensions, surface
stresses and bulk stresses are numerically computed.

4.2.1. Maximal stress scaling

Figure 7: Hertz contact scaling of maximal Von Mises Stress max(σM) as a function of normal load f3

For sanity check of our Hertz model, we consider the evolution of the maximum of Von
Mises stress in bulk material on example 1 with normal load only ( fv = 0). Von Mises stress
is defined as

σM =
1
√

2

√
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 (17)

The evolution of the maximum of Von Mises stress in bulk material max(σM) as a function
of normal force f3 is plotted in figure 7. The loglog plot shows aligned data points correctly
fitted with the expected exponent, max(σM) ∝ f 1/3

3 . This scaling law may be found easily by
balancing deformation energy in the volume of the spherical cap by the energy of indentation.

4.2.2. Effects of tangential force on the depth of the maximal stress location

We explore the effect of the tangential force on the behaviour of the bulk stresses in
the case of example 1. To simplify, we consider that the tangential force is in the direction
−→t2 . For the roller-screw contact, the maximum Von Mises stress max(σM) is constant for
f2 > 0.35 f3 and then increases linearly with f2/ f3, see figure 8. The maximum stress is
located within the bulk material until the tangential force becomes large, f2 > 0.35 f3, figure
8b, where it comes at the interface.
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a. b.

Figure 8: Standard PRS (example 1) under relative tangential loading f2/ f3. a. Maximum Von Mises stress
σM and b. depth of the maximum stress.

Figure 9: Color map of Von Mises stress σM for example 1 (standard PRS) with normal ( f3 = 100N) and

tangential (in
−→t2 , corresponding here to y-direction) loads. Left column: roller-screw contact (maximal Hertz

pressure = 1.87 GPa); Rigth column: roller-nut contact (maximal Hertz pressure = 1.56 GPa). a and d,
µ = 0; b and e, µ = 0.25, c and f, µ = 0.4. ? corresponds to the depth of the maximum stress z. Sliding
coefficient is chosen as ε = ε∗, Eq. 13.
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The color maps of Von Mises stresses in bulk material are plotted in figure 9 for the roller-
screw contact (a, b, c) and the roller-nut contact (d, e, f). The top graphs, subplot a and
d, correspond to f2/ f3 = 0; the middle graphs, subplots b and e, correspond to f2/ f3 = 0.25;
and the bottom graphs correspond to f2/ f3 = 0.4. The presence of a tangential force deforms
the map of Von Mises stress in the bulk material. The location of the maximal Von Mises
stress max(σM) initially in the bulk goes at the surface when tangential force is increased.
The only difference between left-hand side graphs (roller-screw contact) and right-hand side
graphs (roller-nut) is the contact geometry. As the curvatures are smaller in the roller-nut
contact, the contact area and the deformed volume is larger leading to lower stresses. In the
contrary, as the curvatures between the screw and the roller are larger, it leads to reduced
contact area and deformed volume and thus larger stresses.

For a lubricated contact in a PRS mechanism, and even in the case of dry contact, the
friction coefficient rarely reaches 0.3. The values of the friction coefficient usually evolve
between 0 (perfect lubrication) and 0.1 (dry contact) but our numerical code allows to test
a wider range of values to show when the maximal stress moves at the surface. Even under
harsh conditions, maximum stress occurs in bulk material.

The stress fields computed using Hertz theory may now be used for fatigue analysis.

5. Fatigue Analysis

In the following, fatigue analysis is carried out in bulk and surface considering a multi-
axial fatigue criterion, namely the Dang Van criterion [33].

5.1. Dang Van Criterion

The Dang Van criterion is based on the local shearing in every direction and hydrostatic
pressure. Dang van analysis assumes that in every mesoscopic part of steel, there exists
microscopic grains of crystallized steel oriented in every direction. There should be at least
one microscopic grain of steel which undergoes shearing in its sliding plane where the crack
may initiate. The shear in the direction −→n = (sinψ cos φ, sinψ sin φ, cosψ), where φ and ψ
are the azimuth and altitude angles is spherical coordinates, reads

τ = ||σ.−→n −
(
−→n .σ.−→n

)
−→n || . (18)

The hydrostatic pressure does not depend on orientation and reads

P =
1
3

Tr
(
σ
)

=
1
3

(σ11 + σ22 + σ33) . (19)

The Dang Van stress is computed from the fatigue limits in pure bending L f and pure
torsion Lt [34],

τDV = max{φ,ψ}

(
τ + 3

(
Lt

L f
−

1
2

)
P
)
. (20)

The infinite life limit is simply given by the Dang Van criterion

τDV < Lt . (21)
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Figure 10: Fatigue analysis of example 1 (Standard PRS) under normal loading f3 and relative tangential
loading fv/ f3. Sliding coefficient is chosen as ε = ε∗, Eq. 13. Color map of Dang Van stress τDV for a. roller-
screw contact and b. roller-nut contact. Solid line separates infinite PRS life domain (left, corresponding
to small normal loads) from finite life domain (right, corresponding to large normal loads). The solid line
is given by τDV = Lt, equation (21). Usual friction coefficient are small fv/ f3 < 0.1. Color maps of depth of
maximal Dang Van criterion zmax for c. roller-screw contact and d. roller-nut contact.
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5.2. Comparison between roller-screw and roller-nut contacts

Values and depth locations of the maximal Dang Van stress for example 1 (standard
PRS) are plotted in figure 10 as a function of normal load f3 and the friction coefficient
fv/ f3 for (a, c) the roller-screw contact and (b, d) the roller-nut contact. For the sake of
simplicity, the sliding coefficient is chosen as ε = ε∗, Eq. (13).

A solid line separates PRS life domains. On the left is the infinite life domain correspond-
ing to small normal loads. Conversely on the right is the finite life domain corresponding to
large normal loads. For roller-screw contact, figure 10a and c, this solid line observes a break
at f2/ f3 = 0.1 which corresponds to Dang Van stress reaching the interface. For roller-nut
contact, figure 10b and d, a similar line break occurs at f2/ f3 = 0.16 when Dang Van stress
reaches the interface.

Figure 11: Mechanism fatigue analysis. a. Standard PRS (example 1) and b. Inverted PRS (example
2) under normal loading f3 and relative tangential loading fv/ f3. Sliding coefficient is chosen as ε = ε∗.
Solid lines correspond to roller-screw contact and dashed lines correspond to roller-nut contact. Grey areas
correspond to infinite life domains of the mechanism.

Figure 11a. gathers infinite life domains of roller-screw and roller-nut contacts (Solid
line: roller-screw contact. Dashed line: roller-nut contact). The grey area corresponds to
infinite life domain of the mechanism when both contacts are considered at the same time.
Here, the roller-screw contact is always limiting.

Values and depth location of the maximal Dang Van stress for a inverted PRS (example
2) are plotted in figure 12 as a function of normal load f3 and the friction coefficient fv/ f3

for (a) the roller-screw contact and (b) the roller-nut contact. Similarly to figure 10, the
sliding coefficient is chosen as ε = ε∗, but now with Eq. (14).

A solid line separates PRS life domains. On the left is the infinite life domain correspond-
ing to small normal loads. Conversely on the right is the finite life domain corresponding
to large normal loads. Differently from Example 1, no line break is observed, neither for
roller-screw contact nor roller-nut contact.

Figure 11b. gathers infinite life domains of roller-screw and roller-nut contacts of the
inverted PRS, Example 2. For this example, for a classical friction coefficient of 0.05, the
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Figure 12: Fatigue analysis of example 2 (Inverted PRS) under normal loading f3 and relative tangential
loading fv/ f3. Sliding coefficient is chosen as ε = ε∗, Eq. (14). Dang Van stress τDV for a. roller-screw
contact and b. roller-nut contact. Solid line separates infinite PRS life domain (left, corresponding to small
normal loads) from finite life domain (right, corresponding to large normal loads). Classically, for steels,
friction coefficient is in the order of fv/ f3 ' 0.1. Color maps of depth of maximal Dang Van criterion zmax

for c. roller-screw contact and d. roller-nut contact.
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roller-screw contact is limiting. However, the two curves cross for a friction coefficient of
0.23 where roller-nut contact is limiting.

6. Discussion

The behaviour of the standard PRS and the inverted PRS are similar regarding fatigue.
Theorem Π analysis showed that the problem is ruled by six dimensionless parameters, Eq.
(16). In the present study, material parameters (τDV and ν) were fixed and fatigue maps
were plotted as a function of normal load f3 (which corresponds to the normalized load
f3(ρ1 + ρ2)2/E) and friction coefficient fv/ f3. Thus the change of behaviour between the
domain boundaries are the effect of the Hertz curvature ratio ρ1/ρ2 and the angle between
the Hertz main directions and the sliding velocity ζ.

The scaling effect of screw dimensions may be seen directly using the normalized load
f3(ρ1 + ρ2)2/E. For instance, considering two similar screws which only differ because the
first one has dimensions upscaled by a factor α compared to the other one, it will be able
to support a larger load by a coefficient α2 compared to the other one. This is a direct
result of theorem Π. This theorem tells us that if the dimensionless numbers of a problem
(here ρ1/ρ2, ζ, fv/ f3, f3(ρ1 + ρ2)2/E, τDV/E and ν) are kept unchanged then the problem
is unchanged. When upscaling the global geometry of the screw, the material properties
τDV/E and ν are not changed as well as the Hertz sliding angle ζ (because it does not involve
lengths). The three parameters involving lengths are ρ1/ρ2, fv/ f3, f3(ρ1 +ρ2)2/E, they maybe
changed by the upscaling. Clearly, the curvature ratio (ρ1/α)/(ρ2/α) = ρ1/ρ2 is unchanged,
and the only other dimensionless parameter that is directly changed by the scaling is the
normalized loading ( f3(ρ1/α + ρ2/α)2)/E. To keep this number unchanged, the local loading
should be upscaled by a factor α2, f3 := α2 f3. This involves that the tangential loading must
also be upscaled by a factor α2 to keep the ratio fv/ f3 constant. This means that a screw
which dimensions are upscaled by a factor α can support loads larger by a coefficient α2.

In the present examples, the roller-nut contacts have larger curvatures than roller-screw
contacts which makes them less limiting regarding the load they can support. However,
this is not the only difference between the two contacts, contact curvatures ρ1/ρ2 and Hertz
sliding angle ζ vary. For example 1 (standard PRS), ρ1/ρ2 = 0.70693 (respectively 0.75623)
for roller-screw contact (respectively roller-nut contact). Since ρ1/ρ2 is not close to 1, the
contact ellipse is not a circle. For Example 1, the ratio ρ1/ρ2 is similar for the roller-screw
and the roller-nut contacts.Thus we expect that this dimensionless number does not play
much on the different behaviour of the two contacts.

Rather, the Hertz sliding angle ζ may have a bigger role as most of the deformations
induced by the tangent force occur in the plane containing the sliding velocity vector and
the normal. For Example 1 (standard PRS), ζ ∈ [85.38◦;166.93◦] for the roller-screw contact
and it is constant ζ =22.65◦ for the roller-nut contact, see figure15. The variation of ζ
corresponds to the small variation of infinite life domain for ε > 0.3, figure 14b.

The depth of maximal stress is also a critical observable. When the friction coefficient
is large enough, both maximal Dang Van stress and Von Mises stress reach the surface as
shown on example 1 (figure 10d for Dang Van criterion and figure 8 for Von Mises stress).
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The friction coefficient value for which maximal stress occurs at the interface is different for
Dang Van criterion ( fv/ f3 ' 0.1) and Von Mises stress ( fv/ f3 ' 0.35). This is because Dang
Van stress is more sensitive since it considers all the shearing directions whereas Von Mises
criterion is independent of direction.

Particularly for Dang Van stress, when the maximum stress comes at the interface be-
tween the two solids, the contact becomes more critical (example 1). This corresponds to
the angular point in figure 10a and b. For instance in the roller-screw contact, the maximal
allowable stress is almost constant before the maximum reaches the interface. However, this
line break is not marked for example 2 in figure 13. This might be explained by the different
configuration of the two examples.

With the dimensional analysis, we can quickly comment the static load ( fv = 0) supported
at the roller screw contact for example 1 and example 2. The dimensions of example 2 are
up-scaled by a factor α ' 7.5/5 = 1.5 (nominal roller radius). We thus expect that it can
withstand load larger by a factor 1.52 ' 2.25 which is fairly close to the static load the roller-
screw contact can withstand (220 N for example 1 and 480 N for example 2 leading to a ratio
of 2.18). The little discrepancy with this rapid up-scaling is mainly due to other factors such
as ρ1/ρ2 and ζ and relative dimensions between elements which are not conserved between
the two examples.

Figure 13: Fatigue analysis of example 1 (Standard PRS) under normal loading f3 and relative tangential
loading fv/ f3. Sliding coefficient is chosen as ε = 0. Dang Van stress τDV for a. roller-screw contact and b.
roller-nut contact. Solid line separates infinite PRS life domain (left, corresponding to small normal loads)
from finite life domain (right, corresponding to large normal loads). Classically, for steels, friction coefficient
is in the order of fv/ f3 ' 0.1.

The PRS mechanism functioning is not fully fixed by its kinematics. It depends on the
sliding ratio ε for which several dynamical models have been proposed [9, 12, 13]. In the
present paper, the sliding ratio was fixed to the case of maximum rolling ε∗ = 0.3739. The
different models predict values of ε extremely close to ε∗ (εJones = 0.3740 [13] and εMa = 0.3750
[12]). To understand the dependency of infinite life domain boundary with ε, the case of
a pure friction screw (standard PRS, example 1) ε = 0 is reported in figure 13a for the
roller-screw contact and 13b the roller-nut contact. In this case, the fatigue behavior is
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slightly different with the roller-screw contact being the most critical for fv/ f3 < 0.34 and
the roller-nut contact being the most critical for fv/ f3 > 0.34.

Figure 14: Standard PRS (example 1) under sliding coefficient and normal loading per contact f3. Relative
tangential loading is chosen as a. fv/ f3 = 0 and b. fv/ f3 = 0.1. Solid line corresponds to roller-screw contact
and dashed line corresponds to roller-nut contact.

The complete dependency of the fatigue results with ε was investigated for two given
friction coefficients, fv/ f3 = 0 and fv/ f3 = 0.1, which correspond to the limits of no friction
and dry contact for steel. Results of maximum allowable loads are plotted in figure 14a for
fv/ f3 = 0 and 14b for fv/ f3 = 0.1. For frictionless contact, the maximum allowable loads are
constant for both roller-screw (solid line) and roller-nut contacts (dashed line). This was
expected since if friction coefficient is null, the tangent force is always null independently
of the sliding velocity. For fv/ f3 = 0.1, the behaviour is different. For small sliding ratio
ε < 0.3, the maximum allowable load is constant. For larger sliding ratio ε > 0.3, the
maximum allowable load increases for roller-screw contact. The variations of sliding ratio
with the different models encountered in the literature |(ε − ε∗)/ε∗| < 0.01 do not change the
fatigue results found considering ε = ε∗.

In figure 14b, a decrease in the maximal allowable normal force f3 with respect to the
sliding coefficient ε for the roller-nut case is observed for a friction coefficient fv/ f3 = 0.1.
This corresponds to a change in the orientation of the sliding speed with the sliding coefficient
ε, figure 15. The Hertz sliding angle ζ increases with sliding ratio ε for the roller-screw case
whereas no notable change for the roller-nut case is observed. ζ is constant at the roller-nut
contact of the standard PRS (15a) or at the roller-screw contact of the inverted PRS (15b)
because the sliding speed does not change direction when changing the sliding ratio ε (it
remains in the ~y direction). For instance, at the Roller-nut contact for a stadard PRS, the
sliding velocity reads (equation 12b),

−→vB =

 (ε + λ)rN
1 sin θN

1
eλ − (ε + λ)rN

1 cos θN
1

(χ − 1) lN/2π

ω0 =

 0
eλ − (ε + λ)rN

1
0

ω0

since χ = 1 for a standard PRS and θN
1 ' 0. The direction of this velocity does not change
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with the sliding ratio ε. The same reasoning may be done for an inverted PRS at the
roller-screw contact.

A strong assumption made in the present work is the uniform distribution of the load
on the threads contacts. Actually, the load does not distribute uniformly on the contacts
because of machining defects and mechanism compliance. The first contacts support up
to 20% more load than others when compliance is taken into account [16]. Machining
defects also create important differences between thread loads [23]. Several models have
been proposed to take into account mechanism compliance and may be used to determine
the maximum local load f supported by a thread. Machining defects are more difficult to
compute using Monte Carlo simulation method. Load dispersion may be considered with a
safety factor relative to the uniform distribution load assumption.

An other assumption made in the present paper is that the contact is punctual. We thus
considered that the sliding velocity is uniform and at the center of the contact. The non
uniformity of the velocity field beneath the contact creates some added shear but this was
neglected at the first order in this work. In addition, in some cases where macro sliding is
small, Kalker (1967) demonstrated that rolling induces micro sliding. This phenomenon was
studied in a roller bearing case (Bovet, 2013). This rolling-induced micro sliding creates a
compression zone and a traction zone behind the contact where the solid creeps. In this
study, the most sensitive contact regarding sliding-induced fatigue is where macro sliding
occurs (at the roller-screw contact in a standard PRS; at roller-nut contact in an inverted
PRS). Using the proposed model, one can implement a regularized Kalker (1967) linear creep
theory to consider this effect.

a. b.

Figure 15: Hertz sliding angle ζ dependence on sliding coefficient ε in a. standard PRS (example 1) and b.
inverted PRS (example 2). Solid line corresponds to Roller-Screw contact and dashed line corresponds to
Roller-Nut contact.

7. Conclusion and perspectives

A fatigue design strategy for PRS mechanisms was proposed. The thread geometry and
curvatures are computed using tools of differential geometry. Those geometrical results feed
a generalized Hertz contact model which computes the stresses in bulk material and at
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the surface. From those stresses a multi-axial fatigue criterion is computed to obtain the
boundaries of the infinite lifespan domain depending on applied load and friction.

It was shown that the critical thread contact is not always the roller-screw contact but
may be the roller-nut contact depending on ρ1/ρ2 and Hertz sliding angle ζ. The maximum
Dang Van stress is not located at the surface but always in bulk for typical friction coefficient
fv/ f3 < 0.1. Dang Van criterion also appears to be m ore sensitive (thus more restrictive)
than the Von Mises criterion to define the infinite life domain. The sliding ratio ε is an
influential parameter but is usually close to the optimal rolling value ε∗.

This work determines the maximum loads that a single contact may support as a function
of normal load and friction coefficient. This describes well dry contacts with lubricant loss
events. However, for lubricated contact, a link between the tangential force of the roller-
screw and of the roller-nut contact exists depending on mechanism kinematics. However,
the present modelling may be applied directly only by adjusting the macroscopic friction
coefficient for each contact.

The infinite-life domain is given in terms of normal and tangential loads. The prediction
of this domain only requires the asymptotic values of S-N curves in pure bending Lb and
pure torsion Lt. The fatigue lifespan prediction in the finite-life domain (number of cycles)
requires the complete knowledge of the two S-N curves in bending and torsion as a function of
the number of cycles. Number of cycles in real working conditions are obtained by summing
cyclic loads and rotational motion of the rollers.

Mechanism compliance and machining defect maybe simply implemented by leveraging
on the present theory. As a first approximation, security factor of 50% may be chosen.
The code developed in this work may be coupled with a model of load distribution taking
into account machining errors and mechanism compliance. This work offers perspectives in
the fatigue design of PRS mechanisms depending on screw geometry and materials, with a
parametrical sensitivity analysis.

Acknowledgement

Experimental devices were funded by: European Community, French Ministry of Re-
search and Education and Aix-Marseille Conurbation community.

References

[1] C. B. Strandgren, Roulement sur rouleaux pour mouvement hélicöıdal ou circulaire, 1943.
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Example 1: Standard PRS Example 2: Inverted PRS
Screw-Roller Nut-Roller Screw-Roller Nut-Roller

r1 (mm) 15.0357 24.9992 15.0001 29.8417
r2 (mm) 5.0171 4.9992 7.4999 7.468
θ1 (deg) 2.3991 1.1178 10−4 5.7988 10−5 3.0250
θ2 (deg) 172.7931 5.5896 10−4 179.9999 12.1732

ρ11 (mm−1) −2.5484 10−4 5.6635 10−5 −2.5664 10−4 3.3416 10−5

ρ12 (mm−1) 4.7545 10−2 −2.8399 10−2 4.7659 10−2 −2.3762 10−2

ρ21 (mm−1) 0.12897 0.12888 8.0494 10−2 8.0379 10−2

ρ22 (mm−1) 0.1542 0.15429 0.1086 0.10872

−→t11

 0.70182
−0.043473
−0.71103


 0.70428
−0.044566
−0.70853


 −0.69936
−0.072982
−0.71103


 −0.70216
−0.074605
−0.7081


−→t12

 −0.062398
−0.99805
−5.6738 10−4


 −0.063281
−0.998

−1.2696 10−4


 0.10437
−0.99454
−5.7138 10−4


 0.10573
−0.99439
−7.5002 10−5


−→t21

 0.56731
0.62814
−0.53253


−0.48572
−0.6944
−0.53092


0.47609
0.68502
0.55144


−0.32281
−0.7705
0.54966


−→t22

−0.41785
0.77681
0.47114


 0.51389
−0.71818
0.46918


−0.52282

0.72469
−0.44886


 0.6661
−0.59753
−0.44641


φ (deg) 41.4538 86.2713 39.1911 83.969

−→v (at ε = ε∗)

−0.9870
0.0623
1.0000


−0.9870

0.0623
1.0000


−1.9098 10−5

1.8095 10−4

0


−1.9098 10−5

1.8095 10−4

0


ρ1 (mm−1) 0.13686 0.1451 0.08813 0.094432
ρ2 (mm−1) 0.1936 0.10973 0.14836 0.070939

−→t1

 0.69771
0.18374
−0.69242


−0.32978
−0.90375
0.27291


−0.65522
−0.30475
−0.69124


−0.23921
−0.91127
−0.33522


−→t2

0.098205
−0.98195
−0.16162


 0.6255
−0.4257
−0.65386


 0.26586
−0.94951

0.1666


−0.66857

0.40494
−0.62372


Table A.4: Complete contact geometry of the two studied examples.
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Example 1
Current Paper Sandu [9] Jones [11]

SR NR SR NR SR NR
r1 (mm) 15.0357 24.9992 15.0351 25 15.005 25.0301
r2 (mm) 5.0171 4.9992 5.0177 5 5.05 5.03
θ1 (deg) 2.3991 1.1178 10−4 2.3994 0 2.42 0
θ2 (deg) 172.7931 5.5896 10−4 172.7935 0 172.78 0

ρ21 (mm−1) 0.12897 0.12888 0.1289 - 0.1289 -
ρ22 (mm−1) 0.1542 0.15429 0.1542 - 0.1542 -

Example 2
Current Paper Sandu [9]

SR NR SR NR
r1 (mm) 15.001 29.8417 15 29.8095
r2 (mm) 7.4999 7.468 7.5 7.4360
θ1 (deg) 5.7988 10−5 3.0250 0 3.0217
θ2 (deg) 179.9999 12.1732 -180 12.1996

ρ21 (mm−1) 8.0494 10−2 8.0379 10−2 - -
ρ22 (mm−1) 0.1086 0.10872 - -

Table A.5: Comparison of geometrical analysis for examples 1 and 2 with literature.
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