
HAL Id: hal-03589580
https://hal.science/hal-03589580v1

Preprint submitted on 25 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

UNITEX 3.3 User Manual
Sébastien Paumier, Wolfgang Flury, Franz Guenthner, Eric Laporte,
Friederike Malchok, Clemens Marschner, Claude Martineau, Cristian

Martínez, Denis Maurel, Sebastian Nagel, et al.

To cite this version:
Sébastien Paumier, Wolfgang Flury, Franz Guenthner, Eric Laporte, Friederike Malchok, et al.. UNI-
TEX 3.3 User Manual. 2021. �hal-03589580�

https://hal.science/hal-03589580v1
https://hal.archives-ouvertes.fr

UNITEX 3.3

USER MANUAL

Université Paris-Est Marne-la-Vallée
http://unitexgramlab.org
unitex-devel@univ-mlv.fr

Sébastien Paumier

with the collaboration of Wolfgang Flury, Franz Guenthner, Eric Laporte,
Friederike Malchok, Clemens Marschner, Claude Martineau, Cristian Martínez,
Denis Maurel, Sebastian Nagel, Alexis Neme, Maxime Petit, Johannes Stiehler,

Gilles Vollant

Date of this version: September 09, 2021

http://unitexgramlab.org

2

Contents

Introduction 13
What’s new from version 3.2? . 14
Content . 14
Unitex contributors . 15
If you use Unitex in research projects... 16

1 Installation of Unitex 17
1.1 Licenses . 17
1.2 Java runtime environment . 18
1.3 Installers . 18

1.3.1 Installer for Windows . 18
1.3.2 Installer for GNU/Linux and OS X . 19

1.4 Manual installation . 21
1.5 First use . 21
1.6 Adding new languages . 22
1.7 Uninstalling Unitex . 23
1.8 Unitex for developers . 23

2 Loading a text 25
2.1 Selecting a language . 25
2.2 Text formats . 25
2.3 Editing text files . 28
2.4 Opening a text . 28
2.5 Preprocessing a text . 29

2.5.1 Normalization of separators . 31
2.5.2 Splitting into sentences . 31
2.5.3 Normalization of non-ambiguous forms 33
2.5.4 Splitting a text into tokens . 34
2.5.5 Applying dictionaries . 37
2.5.6 Analysis of compound words in Dutch, German, Norwegian and Rus-

sian . 39
2.6 Opening a tagged text . 40

3

4 CONTENTS

3 Dictionaries 41
3.1 The DELA dictionaries . 41

3.1.1 The DELAF format . 41
3.1.2 The DELAS Format . 44
3.1.3 Dictionary Contents . 45

3.2 Looking up a word in a dictionary . 47
3.3 Checking dictionary format . 48
3.4 Sorting . 49
3.5 Automatic inflection . 51

3.5.1 Inflection of simple words . 51
3.5.2 Advanced inflection operators . 55
3.5.3 Inflection of compound words . 59
3.5.4 Inflection of Semitic languages . 59

3.6 Transliterating Arabic dictionaries . 61
3.7 Compression . 62
3.8 Applying dictionaries . 66

3.8.1 Priorities . 66
3.8.2 Application rules for dictionaries . 67
3.8.3 Dictionary graphs . 67
3.8.4 Morphological dictionary-graphs . 71
3.8.5 Allowing for omission, substitution or insertion of letters 72

3.9 Bibliography . 73

4 Searching with regular expressions 75
4.1 Definition . 75
4.2 Tokens . 75
4.3 Lexical masks . 76

4.3.1 Special symbols . 76
4.3.2 References to information in the dictionaries 77
4.3.3 Grammatical and semantic constraints 77
4.3.4 Inflectional constraints . 78
4.3.5 Negation of a lexical mask . 79

4.4 Concatenation . 80
4.5 Union . 81
4.6 Kleene star . 82
4.7 Morphological filters . 82
4.8 Search . 84

4.8.1 Search configuration . 84
4.8.2 Presentation of the results . 85
4.8.3 Statistics . 90

5 Local grammars 93
5.1 The local grammar formalism . 93

5.1.1 Algebraic grammars . 93
5.1.2 Extended algebraic grammars . 94

CONTENTS 5

5.2 Editing graphs . 94
5.2.1 Creating a graph . 94
5.2.2 Sub-Graphs . 99
5.2.3 Manipulating boxes . 102
5.2.4 Transducers . 103
5.2.5 Input Variables . 107
5.2.6 Copying lists . 108
5.2.7 Special Symbols . 109
5.2.8 Toolbar Commands . 109
5.2.9 Find and replace in graphs . 112

5.3 Display options . 114
5.3.1 Sorting the lines of a box . 114
5.3.2 Zoom . 114
5.3.3 Antialiasing . 116
5.3.4 Box alignment . 117
5.3.5 Display options, fonts and colors . 118

5.4 Exporting graphs . 120
5.4.1 Inserting a graph into a document . 120
5.4.2 Printing a Graph . 122

6 Advanced use of graphs 123
6.1 Types of graphs . 123

6.1.1 Inflection transducers . 123
6.1.2 Preprocessing graphs . 124
6.1.3 Graphs for normalizing the text automaton 125
6.1.4 Syntactic graphs . 126
6.1.5 ELAG grammars . 126
6.1.6 Parameterized graphs . 127

6.2 Compilation of a grammar . 127
6.2.1 Compilation of a graph . 127
6.2.2 Approximation with a finite state transducer 127
6.2.3 Constraints on grammars . 128
6.2.4 Interval for number of repetitions . 131
6.2.5 Error detection . 132

6.3 Contexts . 132
6.3.1 Right contexts . 132
6.3.2 Left contexts . 135

6.4 The morphological mode . 139
6.4.1 Why ? . 139
6.4.2 The rules . 139
6.4.3 Morphological-mode dictionaries . 140
6.4.4 Dictionary-entry variables . 141

6.5 Exploring grammar paths . 143
6.6 Graph collections . 144
6.7 Rules for applying transducers . 146

6 CONTENTS

6.7.1 Insertion to the left of the matched pattern 146
6.7.2 Application while advancing through the text 146
6.7.3 Priority of the leftmost match . 147
6.7.4 Priority of the longest match . 148
6.7.5 Transducer outputs with variables . 148

6.8 Output variables . 151
6.9 Operations on variables . 152

6.9.1 Testing variables . 152
6.9.2 Comparing variables . 153
6.9.3 Querying variables . 153

6.10 Applying graphs to texts . 154
6.10.1 Configuration of the search . 154
6.10.2 Advanced search options . 156
6.10.3 Concordance . 159
6.10.4 Modification of the text . 160
6.10.5 Extracting occurrences . 161
6.10.6 Comparing concordances . 161
6.10.7 Debug mode . 162

7 Text automaton 165
7.1 Displaying text automaton . 165
7.2 Construction . 167

7.2.1 Construction rules for text automata . 167
7.2.2 Normalization of ambiguous forms . 168
7.2.3 Normalization of clitic pronouns in Portuguese 169
7.2.4 Keeping the best paths . 171

7.3 Resolving Lexical Ambiguities with ELAG . 175
7.3.1 Grammars For Resolving Ambiguities 175
7.3.2 Compiling ELAG Grammars . 176
7.3.3 Resolving Ambiguities . 178
7.3.4 Grammar collections . 180
7.3.5 Window For ELAG Processing . 180
7.3.6 Description of the tag sets . 181
7.3.7 Grammar Optimization . 187

7.4 Linearizing text automaton with the tagger . 188
7.4.1 Compatibility of the tagset . 189
7.4.2 Use of the Tagger . 190
7.4.3 Creation of a new tagger . 190

7.5 Manipulation of text automata . 191
7.5.1 Displaying sentence automata . 191
7.5.2 Modifying the text automaton . 192
7.5.3 Display configuration . 194

7.6 Converting the text automaton into linear text 194
7.7 Searching patterns in the text automaton . 195
7.8 Table display . 197

CONTENTS 7

7.9 The special case of Korean . 198

8 Sequence Automaton 203
8.1 Sequences Corpus . 203
8.2 Usage . 204
8.3 Search by approximation . 206

9 Lexicon-grammar 209
9.1 Lexicon-grammar tables . 209
9.2 Conversion of a table into graphs . 210

9.2.1 Principle of parameterized graphs . 210
9.2.2 Format of the table . 210
9.2.3 Parameterized graphs . 211
9.2.4 Automatic generation of graphs . 212

10 Text alignment 217
10.1 Loading texts . 217
10.2 Aligning texts . 219
10.3 Pattern matching . 221

11 Compound word inflection 225
11.1 Multi-Word Units . 225

11.1.1 Formal Description of the Inflectional Behavior of Multi-word Units . 226
11.1.2 Lexicalized vs. Grammar-Based Approach to Morphological Descrip-

tion . 227
11.2 Formalism for the Computational Morphology of MWUs 228

11.2.1 Morphological Features of the Language 228
11.2.2 Decomposition of a MWU into Units . 230
11.2.3 Inflection paradigm of a MWU . 231

11.3 Integration in Unitex . 236
11.3.1 Complete Example in English . 237
11.3.2 Complete Example in French . 240
11.3.3 Complete Example in Serbian . 243

12 Cascades of Transducers 253
12.1 Applying a cascade of transducers with CasSys 254

12.1.1 Creating the list of transducers . 254
12.1.2 Editing the list of transducers . 254
12.1.3 Applying a cascade . 256

12.2 Details on the behavior of CasSys . 258
12.2.1 Type of graphs used . 258
12.2.2 Repeat until fix point behaviour . 258
12.2.3 The Unitex rules used for the cascade 259
12.2.4 A special way to mark up patterns with CasSys 259

12.3 Tagging generalization graphs . 261
12.3.1 Declaration . 261

8 CONTENTS

12.3.2 Simple graphs . 261
12.3.3 Graphs with restrictions . 262
12.3.4 Substitution of a category . 264

12.4 The results of a cascade . 265
12.4.1 Displaying the concordance of a cascade 265
12.4.2 The different resulting files of a cascade 266
12.4.3 An xml-like output text for lexical tags 266

12.5 Creating an inventory of tag occurrences . 267

13 Using Unitex/GramLab with scripts 271
13.1 Translating into a script a processing launched via the graphical interface . . 271
13.2 Shell or batch scripts . 271
13.3 Unitex/GramLab-interpreted scripts . 272

13.3.1 Implementing a linguistic package . 273
13.3.2 Launching with RunScript . 274
13.3.3 Launching with BatchRunScript . 275
13.3.4 Developing a script for RunScript . 275

14 Use of external programs 279
14.1 Creating log files . 280
14.2 The console . 280
14.3 Unitex JNI . 281
14.4 Text file encoding parameters . 281
14.5 BuildKrMwuDic . 282
14.6 CasSys . 282
14.7 CheckDic . 284
14.8 Compress . 284
14.9 Concord . 285
14.10ConcorDiff . 287
14.11Convert . 288
14.12Dico . 290
14.13DumpOffsets . 291
14.14Elag . 293
14.15ElagComp . 294
14.16Evamb . 294
14.17Extract . 294
14.18Flatten . 295
14.19Fst2Check . 295
14.20Fst2List . 296
14.21Fst2Txt . 297
14.22Grf2Fst2 . 298
14.23GrfDiff . 299
14.24GrfDiff3 . 299
14.25ImplodeTfst . 300
14.26Locate . 300

CONTENTS 9

14.27LocateTfst . 302
14.28MultiFlex . 304
14.29Normalize . 304
14.30PolyLex . 305
14.31RebuildTfst . 306
14.32Reconstrucao . 306
14.33Reg2Grf . 307
14.34Seq2Grf . 307
14.35SortTxt . 308
14.36Stats . 308
14.37Table2Grf . 309
14.38Tagger . 309
14.39TagsetNormTfst . 310
14.40TEI2Txt . 310
14.41Tfst2Grf . 310
14.42Tfst2Unambig . 311
14.43Tokenize . 311
14.44TrainingTagger . 312
14.45Txt2Tfst . 313
14.46Uncompress . 313
14.47Untokenize . 314
14.48UnitexTool . 314
14.49UnitexToolLogger . 315
14.50Unxmlize . 317
14.51XMLizer . 318

15 File formats 319
15.1 Unicode encoding . 319
15.2 Alphabet files . 320

15.2.1 Alphabet . 320
15.2.2 Sorted alphabet . 321

15.3 Graphs . 322
15.3.1 Format .grf . 322
15.3.2 Format .fst2 . 325

15.4 Texts . 326
15.4.1 .txt files . 327
15.4.2 .snt files . 327
15.4.3 File text.cod . 327
15.4.4 The tokens.txt file . 327
15.4.5 The tok_by_alph.txt and tok_by_freq.txt files 327
15.4.6 The enter.pos file . 327

15.5 Text Automaton . 328
15.5.1 The text.tfst file . 328
15.5.2 The text.tind file . 330
15.5.3 The cursentence.grf file . 331

10 CONTENTS

15.5.4 The sentenceN.grf file . 331
15.5.5 The cursentence.txt file . 331
15.5.6 The cursentence.tok file . 331
15.5.7 The tfst_tags_by_freq.txt and tfst_tags_by_alph.txt files 332

15.6 Concordances . 332
15.6.1 The concord.ind file . 332
15.6.2 The concord.txt file . 333
15.6.3 The concord.html file . 333
15.6.4 The diff.html file . 334

15.7 Text dictionaries . 335
15.7.1 dlf and dlc . 335
15.7.2 err . 335
15.7.3 tags_err . 335
15.7.4 tags.ind . 335

15.8 Dictionaries . 336
15.8.1 The .bin files . 336
15.8.2 The .inf files . 336
15.8.3 Dictionary information file . 338
15.8.4 The CHECK_DIC.TXT file . 338

15.9 ELAG files . 340
15.9.1 tagset.def file . 340
15.9.2 .lst files . 340
15.9.3 .elg files . 340
15.9.4 .rul files . 341

15.10Tagger files . 341
15.10.1 The corpus.txt file . 341
15.10.2 The tagger data file . 342

15.11Configuration files . 343
15.11.1 The Config file . 343
15.11.2 The system_dic.def file . 346
15.11.3 The user_dic.def file . 346
15.11.4 The (user login).cfg and .unitex.cfg files 346

15.12CasSys files . 347
15.12.1 CasSys configuration files csc . 347

15.13Various other files . 347
15.13.1 The dlf.n, dlc.n, err.n et tags_err.n files 347
15.13.2 The stat_dic.n file . 347
15.13.3 The stats.n file . 347
15.13.4 The concord.n file . 348
15.13.5 The concord_tfst.n file . 348
15.13.6 Normalization rule file . 348
15.13.7 Forbidden word file . 348
15.13.8 Log file . 348
15.13.9 Arabic typographic rules: arabic_typo_rules.txt 349
15.13.10Offsets file of difference . 349

CONTENTS 11

Appendix A - GNU Lesser General Public License 351

Appendix B - 2-clause BSD-style Licenses 361

Appendix C - Xerces2’s Apache License 363

Appendix D - LibYAML’s MIT License 367

Appendix E - SVNKit’s TMate Open Source License 369

Appendix F - Lesser General Public License For Linguistic Resources 371

Bibliography 377

Index 385

12 CONTENTS

Introduction

Unitex is a collection of programs developed for the analysis of texts in natural language
by using linguistic resources and tools. These resources consist of electronic dictionaries,
grammars and lexicon-grammar tables, initially developed for French by Maurice Gross
and his students at the Laboratoire d’Automatique Documentaire et Linguistique (LADL).
Similar resources have been developed for other languages in the context of the RELEX
laboratory network.

The electronic dictionaries specify the simple and compound words of a language together
with their lemmas and a set of grammatical (semantic and inflectional) codes. The avail-
ability of these dictionaries is a major advantage compared to the usual utilities for pattern
searching as the information they contain can be used for searching and matching, thus de-
scribing large classes of words using very simple patterns. The dictionaries are presented
in the DELA formalism and were constructed by teams of linguists for several languages
(French, English, Greek, Italian, Spanish, German, Thai, Korean, Polish, Norwegian, Por-
tuguese, etc.)

The grammars used here are representations of linguistic phenomena on the basis of recur-
sive transition networks (RTN), a formalism closely related to finite state automata. Nu-
merous studies have shown the adequacy of automata for linguistic problems at all descrip-
tive levels from morphology and syntax to phonetic issues. Grammars created with Unitex
carry this approach further by using a formalism even more powerful than automata. These
grammars are represented as graphs that the user can easily create and update.

Lexicon-grammar tables are matrices describing properties of some words. Many such ta-
bles have been constructed for all simple verbs in French as a way of describing their rele-
vant syntactic properties. Experience has shown that every word has a quasi-unique behav-
ior, and these tables are a way to present the grammar of every element in the lexicon, hence
the name lexicon-grammar for this linguistic theory. Unitex offers a way to automatically
build grammars from lexicon-grammar tables.

Unitex can be viewed as a tool in which one can put linguistic resources and use them. Its
technical characteristics are its portability, modularity, the possibility of dealing with lan-
guages that use special writing systems (e.g. many Asian languages), and its openness,
thanks to its open source distribution. Its linguistic characteristics are the ones that have
motivated the elaboration of these resources: precision, completeness, and the taking into

13

14 CONTENTS

account of frozen expressions, most notably those which concern the enumeration of com-
pound words.

What’s new from version 3.2?

Here are the main new features:

• The unxmlizer (Section 14.50) has additional options.

• The exploration of grammar paths (Section 6.5) has additional options.

• A few bugs have been fixed and the quality of some parts of the code has been im-
proved.

Thanks to Cristian Martínez, Gilles Vollant, Denis Biguenet, Jean-Manuel Erialc and Fabien
Lambert-Delavaquerie for their contribution.

Content

Chapter 1 describes how to install and run Unitex.

Chapter 2 presents the different steps in the analysis of a text.

Chapter 3 describes the formalism of the DELA electronic dictionaries and the different
operations that can be applied to them.

Chapters 4 and 5 present different means for making text searches more effective. Chapter
5 describes in detail how to use the graph editor.

Chapter 6 is concerned with the different possible applications of grammars. The particu-
larities of each type of grammar are presented.

Chapter 7 introduces the concept of text automaton and describes the properties of this no-
tion. This chapter also describes operations on this object, in particular, how to disambiguate
lexical items with the ELAG program.

Chapter 8 describes the sequence automaton module, the file formats that are accepted as
input, the user interface and introduces the search by approximation.

Chapter 9 contains an introduction to lexicon-grammar tables, followed by a description of
the method of constructing grammars based on these tables.

Chapter 10 describes the text alignment module, based on the XAlign tool.

Chapter 11 describes the compound word inflection module, as a complement of the simple
word inflection mechanism presented in chapter 3.

CONTENTS 15

Chapter 12 describes the CasSys cascade of transducer system.

Chapter 13 documents the use of Unitex/GramLab with scripts launching external pro-
grams.

Chapter 14 contains a detailed description of the external programs that make up the Unitex
system.

Chapter 15 contains descriptions of all file formats used in the system.

The reader will find in appendix the LGPL license under which the Unitex source code is
released, as well as the LGPLLR license which applies for the linguistic data distributed with
Unitex. There is also the 2-clause BSD licence that applies to the TRE library, used by Unitex
for morphological filters.

Unitex contributors

Unitex was born as a bet on the power of Open Source philosophy in the academic world
(see http://unitexgramlab.org/why-unitex), relying on the assumption that people
would be interested in sharing their knowledge and skill into such an open project. The
following list sounds like Open Source is good for science:

• Olivier Blanc: has integrated the ELAG system into Unitex, originally designed by Eric
Laporte, Anne Monceaux and some of their students, has also written RebuildTfst
(previously known as MergeTextAutomaton)

• Matthieu Constant: author of Grf2Fst2

• Julien Decreton: author of the text editor integrated in Unitex, has also designed the
undo functionality in the graph editor

• Marwin Damis: enhancement of the interface of the text automaton

• Claude Devis: introduction of morphological filters, based on the TRE library

• Nathalie Friburger: author of CasSys

• Anubhav Gupta: has enhanced CasSys

• Hyun-Gue Huh: author of the tools used to generate Korean dictionaries

• Claude Martineau: had worked on the simple word inflection part of MultiFlex

• Cristian Martínez: has set up the continuous-integration framework and fixed major
bugs

• Renaud Mouronval: has enhanced the exploration of grammar paths

• Sebastian Nagel: has optimized many parts of the code, has also adapted PolyLex for
German and Russian

http://unitexgramlab.org/why-unitex

16 CONTENTS

• Alexis Neme: has optimized Dico and Tokenize, has also merged Locate into Dico
in order to allow dictionary graphs

• Aljosa Obuljen: author of Stats

• Sébastien Paumier: main developer

• Maxime Petit: has enhanced the ’find and replace’ service for graphs

• Agata Savary: author of MultiFlex

• Anthony Sigogne: author of Tagger and TrainingTagger

• Gilles Vollant: author of UnitexTool, has optimized many aspects of Unitex code
(memory, speed, multi-compiler compliance, etc.) and fixed countless bugs

• Patrick Watrin: author of XMLizer, has worked on the integration of XAlign

Moreover, Unitex would be useless without all the precious linguistic resources it contains.
All those resources are the result of hard work done by people that shall not be forgotten.
Some are mentionned in disclaimers that come with dictionaries, and complete information
is available on:

http://unitexgramlab.org/language-resources

If you use Unitex in research projects...

Unitex has been used in several research projects. Some are listed in the “Related works”
section of Unitex home page. If you did some work with Unitex (resources, project, pa-
per, thesis, ...) and if you want it to be referenced in the web site, just send a mail to
unitex-devel@univ-mlv.fr. The more visible, the more cited!

http://unitexgramlab.org/language-resources
unitex-devel@univ-mlv.fr

Chapter 1

Installation of Unitex

Unitex is a multi-platform system that runs on Windows as well as on Linux or OS X. This
chapter describes how to install and how to launch Unitex on any of these systems. It also
presents the procedures used to add new languages and to uninstall Unitex.

1.1 Licenses

Unitex is free software. This means that the source of the programs is distributed with the
software, and that anyone can modify and redistribute it. The code of the Unitex programs
is under the LGPL licence ([36]), except for:

1. the TRE library for dealing with regular expressions by Ville Laurikari ([65]), which is
under a 2-clause BSD-style license;

2. the wingetopt library, by Todd Miller and the NetBSD Foundation, also under a 2-
clause BSD-style license, more permissive than the LGPL;

3. the pstdin library, a cross platform source code header for precisely sized integers on
all platforms, by Paul Hsieh, which is under a 3-clause BSD-style license;

4. the Xerces2-j XML Parser, by the Apache Software Foundation, which is under the
Apache Software License version 2.0;

5. the LibYAML library by Kirill Simonov, under MIT license, which is also more permis-
sive than LGPL;

6. the SVNKit library by TMate Software, which is under TMate license.

The LGPL license is more permissive than the GPL, because it makes it possible to use LGPL
code in nonfree software. In both cases, the software can be freely used and distributed.

All the language resources that go with Unitex are distributed under the LGPLLR license
([54]).

Full text versions of LGPL, 2-clause BSD, Apache, MIT, TMate and LGPLLR can be found in
the appendices of this manual.

17

18 CHAPTER 1. INSTALLATION OF UNITEX

1.2 Java runtime environment

Unitex consists of a graphical interface written in Java and external programs written in
C/C++. This mixture of programming languages is responsible for a fast and portable appli-
cation that runs on different operating systems.

Before you can use the graphical interface, you first have to install the runtime environment,
usually called Java virtual machine or JRE (Java Runtime Environment).

For the graphical mode, Unitex needs Java version 1.7 (or newer). If you have an older
version of Java, Unitex will stop after you have chosen the working language.

You can download the virtual machine for your operating system for free from the Sun
Microsystems web site ([70]) at the following address: http://java.sun.com.

If you are working under Linux or OS X, or if you are using a Windows version with per-
sonal user accounts, you have to ask your system administrator to install Java.

1.3 Installers

The Unitex/GramLab installers can be downloaded from:

http://releases.unitexgramlab.org/latest-stable

1.3.1 Installer for Windows

The downloaded file will be named something like:

Unitex-GramLab-3.3_win32-setup.exe
Unitex-GramLab-3.3_win64-setup.exe

Then, double-click on this file and follow the instructions (Fig. 1.1). It is recommended
to uninstall any existing versions before installing a new one. Unitex/GramLab will be
installed in a directory (folder) which should preferably be located in the Program Files
directory, and which will be called in this manual the Unitex system directory.

When the installation is finished, a Unitex icon and a GramLab icon should appear on the
desktop: double-click on them to start Unitex or GramLab (see 1.5). (If the installer did
not create these icons, open the Unitex system directory: it contains several subdirectories,
one of which is named App. This directory contains two files named Unitex.jar and
GramLab.jar. They are the Java files that launch the graphical interfaces. Double-click on
one of them to start Unitex or GramLab (see 1.5). To facilitate launching the interface, you
may want to add shortcuts to these files on the desktop.)

If Unitex is to be installed on a multi-user Windows machine, it is recommended that the
system administrator performs the installation. If you are the only user on your machine,
you can perform the installation yourself.

http://java.sun.com
http://releases.unitexgramlab.org/latest-stable

1.3. INSTALLERS 19

Figure 1.1: The Windows installer

The Windows installer can also be launched in command line and accepts several optional
command line parameters. Some of them are:

/AllUsers Sets default to a per-machine install
/CurrentUser Sets default to a per-user install
/D C:\path\without quotes\ Sets the default installation directory
/NCRC Skip the cyclic redundancy check
/S Runs the installer silently

If you run Unitex under Windows 7, you may experience trouble with your Unitex configu-
ration file, because Unitex tries to write it in the Users subdirectory, and Windows 7 forbids
it.

1.3.2 Installer for GNU/Linux and OS X

The downloaded file will be named something like:

Unitex-GramLab-3.3-linux-i686.run
Unitex-GramLab-3.3-linux-x86_64.run

Then, give it executable permissions, by typing, for example (Fig. 1.2):

20 CHAPTER 1. INSTALLATION OF UNITEX

chmod a+x Unitex-GramLab-3.3-linux-i686.run

The .run file is a self-extracting archive. Execute it with:

./Unitex-GramLab-3.3-linux-i686.run

Figure 1.2: The GNU/Linux and OS X installer

The GNU/Linux and OS X installer accepts several optional command line parameters.
Some of them are:

--confirm Ask before running the embedded installation script
--quiet Do not print anything except error messages
--noexec Do not run the embedded installation script
--target dir Sets the default installation directory

1.4. MANUAL INSTALLATION 21

1.4 Manual installation

You can also install Unitex/GramLab manually from the source distribution package. Down-
load it from:

http://releases.unitexgramlab.org/latest-stable/source

The downloaded file will be named something like:

Unitex-GramLab-3.3-source-distribution.zip

Decompress it into a directory called for example Unitex3.3, which should preferably be
created in the Program Files directory, and which will be the Unitex system directory.

If your computer runs one of the following operating systems, the installation is finished:
Windows (32-bit, 64-bit), GNU/Linux (i686, x86_64) and OS X (10.7+). (If it runs another
Unix-like OS, like FreeBSD, or has another processor architecture, like ARM, go into the
App/install directory and type:

sh setup

This script checks if Java is installed, compiles the C++ core sources, sets up the Unitex and
GramLab personal working directories and creates some desktop shortcuts.1)

When the installation is finished, the Unitex system directory contains several subdirecto-
ries, one of which is called App.

• On Windows: the App directory contains files named Unitex.jar and GramLab.jar.
They are the Java files that launch the graphical interfaces. Double-click on one of them
to start Unitex or GramLab (see 1.5). To facilitate launching the interfaces, you may
want to add shortcuts to these files on the desktop.

• On Linux or OS X: the App directory contains two shell scripts named Unitex and
GramLab. Launch one of them to start Unitex or GramLab (see 1.5). If you have run
the setup script, it should have added shortcuts to these files on the desktop.

1.5 First use

If you work on Windows, the program will ask you to choose a personal working directory,
which you can change later in "Info>Preferences...>Directories". To create a directory, click
on the icon showing a file (see figure 1.5).

If you are using Linux or OS X, the program will automatically create a personal working
directory called /unitex in your $HOME directory.

1If you want to compile only the C++ core sources, extract the files from the source distribution package, go
into the Src/C++/build directory and type make install.

http://releases.unitexgramlab.org/latest-stable/source

22 CHAPTER 1. INSTALLATION OF UNITEX

The personal working directory, or user’s directory, allows you to save your personal Unitex
data. For each language that you will be using, the program will copy the root directory of
that language to your working directory, except the dictionaries. You can then modify your
copy of the files without risking to damage the system files stored in the Unitex system
directory.

Figure 1.3: First use under Windows

Figure 1.4: First use under Linux

You can change the size and font of menu characters through "Info > Preferences > General".
Your setting is saved in the Config file for the next time you launch Unitex.

1.6 Adding new languages

There are two different ways to add languages. If you want to add a language that is to be
accessible by all users, you have to copy the corresponding directory to the Unitex system
directory, for which you will need to have the access rights (this might mean that you need to
ask your system administrator to do it). On the other hand, if you are the only user working

1.7. UNINSTALLING UNITEX 23

Figure 1.5: Creating the personal working directory

with the language, you can also copy the directory to your working directory. You can work
with this language without it being shown to other users.

1.7 Uninstalling Unitex

No matter which operating system you are working with, it is sufficient to delete the Unitex
system directory to completely delete all the program files. Under Windows you may have
to delete the shortcut to Unitex.jar if you have created one on your desktop. The same
has to be done on Linux, if you have created an alias.

1.8 Unitex for developers

If you are a programmer, you may be interested in linking your code to the C++ core of Uni-
tex. To facilitate such operation, you can compile Unitex as a dynamic library that contains
all Unitex functions, except mains, of course. The page http://docs.unitexgramlab.
org/projects/unitex-library/en/latest/ contains documentation about the li-
brary. The C++ core of Unitex contains source code for Java JNI, Ruby and Microsoft .NET
bindings. The page https://github.com/patwat/python-unitex contains Python
bindings.

Under Linux/OS X, type:

http://docs.unitexgramlab.org/projects/unitex-library/en/latest/
http://docs.unitexgramlab.org/projects/unitex-library/en/latest/
https://github.com/patwat/python-unitex

24 CHAPTER 1. INSTALLATION OF UNITEX

make LIBRARY=yes

and you will obtain a library named libunitex.so. If you want to produce a Windows
DLL named unitex.dll, use the following commands:

Windows: make SYSTEM=windows LIBRARY=yes
Cross-compiling with mingw32: make SYSTEM=mingw32 LIBRARY=yes

In all cases, you will also obtain a program named Test_lib(.exe). If everything worked
fine, this program should display the following:

Expression converted.
Reg2Grf exit code: 0

#Unigraph
SIZE 1313 950
FONT Times New Roman: 12
OFONT Times New Roman:B 12
BCOLOR 16777215
FCOLOR 0
ACOLOR 12632256
SCOLOR 16711680
CCOLOR 255
DBOXES y
DFRAME y
DDATE y
DFILE y
DDIR y
DRIG n
DRST n
FITS 100
PORIENT L
#
7
"<E>" 100 100 1 5
"" 100 100 0
"a" 100 100 1 6
"b" 100 100 1 4
"c" 100 100 1 6
"<E>" 100 100 2 2 3
"<E>" 100 100 1 1

Chapter 2

Loading a text

One of the main functionalities of Unitex is to search a text for expressions. To do that, texts
have to undergo a set of preprocessing steps that normalize non-ambiguous forms and split
the text in sentences. Once these operations are performed, the electronic dictionaries are
applied to the texts. Then one can search more effectively in the texts by using grammars.

This chapter describes the different steps for text preprocessing.

2.1 Selecting a language

When starting Unitex, the program asks you to choose the language in which you want to
work (see figure 2.1). The languages displayed are the ones that are present in the Unitex
system directory and those that are installed in your personal working directory. If you use
a language for the first time, Unitex copies the system directory for this language to your
working directory, except for the dictionaries in order to save disk space.

WARNING: If you already have a working directory for a given language, Unitex won’t
try to copy system data into it. So, if an update has modified a resource file other than a
dictionary, you will have to copy by yourself this file, or to delete your working directory
for this language, and let Unitex rebuild it properly.

Choosing the language allows Unitex to find certain files, for example the alphabet file. You
can change the language at any time by choosing "Change Language..." in the "Text" menu.
If you change the language, the program will close all windows related to the current text,
if there are any. The active language is indicated in the title bar of the graphical interface.

2.2 Text formats

Unitex works with Unicode texts. Unicode is a standard that describes a universal character
code. Each character is given a unique number, which allows for representing texts without
having to take into account the proprietary codes on different machines and/or operating

25

26 CHAPTER 2. LOADING A TEXT

Figure 2.1: Language selection when starting Unitex

systems. Unitex uses a two-byte representation of the Unicode 3.0 standard, called Unicode
Little-Endian (for more details, see [16]).

Texts that come with Unitex are already in Unicode format. If you try to open a text that is
not in Unicode, the program proposes to convert it (see figure 2.2). This conversion is based
on the current language: if you are working in French, Unitex proposes to convert your text 1

assuming that it is coded using a French code page. By default, Unitex proposes to either
replace the original text or to rename the original file by inserting .old at the beginning
of its extension. For example, if one has an ASCII file named biniou.txt, the conversion
process will create a copy of this ASCII file named biniou.old.txt, and will replace the
contents of biniou.txt with its equivalent in Unicode.

Figure 2.2: Automatic conversion of a non-Unicode text

If the encoding suggested by default is not correct or if you want to rename the file differ-
ently than with the suffix .old, you must use the "More options..." button. This allows you
to choose source and target encodings of the documents to be converted (see figure 2.3). By
default, the selected source encoding is that which corresponds to the current language and
the destination encoding is Unicode Little-Endian. You can modify these choices by select-
ing any source and target encodings. Thus, if you wish, you can convert your data into other

1Unitex also proposes to automatically convert graphs and dictionaries that are not in Unicode Little-Endian.

2.2. TEXT FORMATS 27

encodings, as for example UTF-8 in order for instance to create web pages. The button "Add
Files" enables you to select the files to be converted. The button "Remove Files" makes it
possible to remove a list of files erroneously selected. The button "Transcode" will start the
conversion of all the selected files. If an error occurs with a file is processed (for example, a
file which is already in Unicode), the conversion continues with the next file.

Figure 2.3: Transcoding files

To obtain a text in the right format, you can also use a text processor like the free software
from OpenOffice.org ([75]) or Microsoft Word, and save your document with the format
"Unicode text". In OpenOffice Writer, you have to choose the "Coded Text (*.txt)" format
and then select the "Unicode" encoding in the configuration window as shown on figure 2.5.

Figure 2.4: Saving in Unicode with OpenOffice Writer

By default, the encoding proposed on a PC is always Unicode Little-Endian. The texts thus
obtained do not contain any formatting information anymore (fonts, colors , etc.) and are
ready to be used with Unitex.

28 CHAPTER 2. LOADING A TEXT

You can change the default encoding to UTF16LE, UTF16BE or UTF8 in the ’Encoding’ tab
via the Preference command in the Info menu. This encoding is valid for the current lan-
guage only.

Figure 2.5: Setting the default encoding for current language

2.3 Editing text files

For small texts, you also have the possibility of using the text editor integrated into Unitex,
accessible via the "Open..." command in the "File Edition" menu. This editor offers search
and replace functionalities for the texts and dictionaries handled by Unitex. To use it, click
on the "Find" icon. You will then see a window divided into three parts. The "Find" part
corresponds to the usual search operations. If you open a text split into sentences, you
can base your search on sentence numbers in the "Find Sentence" part. Lastly, the "Search
Dictionary" part, visible in figure 2.6, enables you to carry out operations concerning the
electronic dictionaries. In particular, you can search by specifying if it concerns inflected
forms, lemmas, grammatical and semantic and/or inflectional codes. Thus, if you want
to search for all the verbs which have the semantic feature t, which indicates transitivity,
you just have to search for t by clicking on "Grammatical code". You will get the matching
entries without confusion with all the other occurrences of the letter t.

2.4 Opening a text

Unitex deals with several types of documents. The files with the extension .snt are text
files preprocessed by Unitex which are ready to be manipulated by the different system
functions. You can also load raw files ending with .txt, or XML and HTML files. To open
any of these files, click on "Open..." in the "Text" menu. You can there choose the file type
("Raw Unicode Texts", "XML files", "HTML files", "Unitex Texts"). If you open XML or HTML
files, foo.xml for example, it will be preprocessed in order to remove non textual content.
This will produce a foo.xml.txt file containing only the textual content of the original file.
The resulting .txt file will be processed to produce a .snt file

2.5. PREPROCESSING A TEXT 29

Figure 2.6: Searching an electronic dictionary for the semantic feature t

Figure 2.7: Text Menu

2.5 Preprocessing a text

After a text is selected, Unitex offers to preprocess it. Text preprocessing consists of perform-
ing the following operations: normalization of separators, splitting into sentences, normal-
ization of non-ambiguous forms, tokenization and application of dictionaries. If you choose
not to preprocess the text, it will nevertheless be normalized and tokenized, since these op-
erations are necessary for all further Unitex operations. It is always possible to carry out the
preprocessing later by clicking on "Preprocess Text..." in the "Text" menu.

30 CHAPTER 2. LOADING A TEXT

Figure 2.8: Opening a Unicode text

Figure 2.9: Preprocessing Window

If you choose to preprocess the text, Unitex proposes to parameterize it as in the window
shown in figure 2.9. The option "Apply FST2 in MERGE mode" is used to split the text into

2.5. PREPROCESSING A TEXT 31

sentences. The option "Apply FST2 in REPLACE mode" is used to make replacements in
the text, especially for the normalization of non-ambiguous forms. With the option "Ap-
ply All default Dictionaries" you can apply dictionaries in the DELA format (Dictionnaires
Electroniques du LADL). The option "Analyze unknown words as free compound words" is
used in Norwegian for correctly analyzing compound words constructed via concatenation
of simple forms. Finally, the option "Construct Text Automaton" is used to build the text
automaton. This option is deactivated by default, because it consumes a large amount of
memory and disk space if the text is too large. The construction of the text automaton is
described in chapter 7.

NOTE: If you click on "Cancel but tokenize text", the program will carry out the normaliza-
tion of separators and split the text into tokens. Click on "Cancel and close text" to cancel
the operation.

2.5.1 Normalization of separators

The standard separators are the space, the tab and the newline characters. There can be
several separators following each other, but since this isn’t useful for linguistic analyses,
separators are normalized according to the following rules:

• a sequence of separators that contains at least one newline is replaced by a single new-
line

• all other sequences of separators are replaced by a single space.

The distinction between space and newline is maintained at this point because the presence
of newlines may have an effect on the process of splitting the text into sentences. The result
of the normalization of a text named my_text.txt is a file in the same directory as the
.txt file and is named my_text.snt.

NOTE: When the text is preprocessed using the graphical interface, a directory named
my_text_snt is created immediately after normalization. This directory, called text direc-
tory, contains all the data associated with this text.

2.5.2 Splitting into sentences

Splitting texts into sentences is an important preprocessing step since this helps in determin-
ing the units for linguistic processing. The splitting is used by the text automaton construc-
tion program. In contrast to what one might think, detecting sentence boundaries is not a
trivial problem. Consider the following text:

The family has urgently called Dr. Martin.

The full stop that follows Dr is followed by a word beginning with a capital letter. Thus it
may be considered as the end of the sentence, which would be wrong. To avoid the kind
of problems caused by the ambiguous use of punctuation, grammars are used to describe

32 CHAPTER 2. LOADING A TEXT

Figure 2.10: Sentence splitting grammar for French

the different contexts for the end of a sentence. Figure 2.10 shows an example grammar for
sentence splitting (for French sentences).

When a path of the grammar recognizes a sequence in the text and when this path produces
the sentence delimiter symbol {S} , this symbol is inserted into the text. For example, one of
the paths shown in figure 2.10 recognizes the sequence consisting of a question mark and a
word beginning with a capital letter and inserts the symbol {S} between the question mark
and the following word. The following text:

What time is it? Eight o’ clock.

will be converted to:

What time is it ?{S} Eight o’ clock.

A grammar for end-of-sentence detection may use the following special symbols, or meta-
symbols:

• <E>: empty word, or epsilon. Recognizes the empty sequence;

• <WORD>: recognizes any sequence of letters;

2.5. PREPROCESSING A TEXT 33

• <LOWER>: recognizes any sequence of letters in lower case;

• <UPPER>: recognizes any sequence of letters in upper case;

• <FIRST>: recognizes any sequence of letters that begins with an upper case letter;

• <NB>: recognizes any sequence of digits (1234 is recognized but not 1 234);

• <PNC>: recognizes the punctuation symbols ; , ! ? : and the inverted exclama-
tion points and question marks in Spanish and some Asian punctuation letters;

• <^>: recognizes a newline;

• #: prohibits the presence of a space.

Earlier codes for <WORD>, <LOWER>, <UPPER> and <FIRST> were respectively <MOT>,
<MIN>, <MAJ> and <PRE>. They can still be used for backward compatibility of the sys-
tem with existing graphs. Though there are no current plans to remove this codes, it is
recommended to avoid them in graphs designed to be used with more recent versions,2 so
that the number of lexical masks in use does not increase uselessly.

By default, the space is optional between two boxes. If you want to prohibit the presence
of the space you have to use the special character #. At the opposite, if you want to force
the presence of the space, you must use the sequence " ". Lower and upper case letters are
defined by an alphabet file (see chapter 15). For more details on grammars, see chapter 5.
For more information about sentence boundary detection, see [21]. The grammar used here
is named Sentence.fst2 and can be found in the following directory:

/(working directory)/(language)/Graphs/Preprocessing/Sentence

This grammar is applied to a text with the Fst2Txt program in MERGE mode. This has
the effect that the output produced by the grammar, in this case the symbol {S}, is inserted
into the text. This program takes a .snt file and modifies it.

2.5.3 Normalization of non-ambiguous forms

Certain forms present in texts can be normalized (for example, the English sequence "I’m"
is equivalent to "I am"). You may want to replace these forms according to your own needs.
However, you have to be careful that the forms normalized are unambiguous or that the
removal of ambiguity has no undesirable consequences.

For instance, if you want to normalize "O’clock" to "on the clock", it would be a bad idea to
replace "O’" by "on the ", because a sentence like:

John O’Connor said: "it’s 8 O’clock"

would be replaced by the following incorrect sentence:

2From version 3.1beta, revision 4072, October 2, 2015.

34 CHAPTER 2. LOADING A TEXT

John on the Connor said: "it’s 8 on the clock"

Thus, one needs to be very careful when using the normalization grammar. One needs to
pay attention to spaces as well. For example, if one replaces "’re" by "are", the sentence:

You’re stronger than him.

will be replaced by:

Youare stronger than him.

To avoid this problem, one should explicitly insert a space, i.e. replace "’re" by " are".

The accepted symbols for the normalization grammar are the same as the ones allowed for
the sentence splitting grammar. The normalization grammar is called Replace.fst2 and
can be found in the following directory:

/(working directory)/(language)/Graphs/Preprocessing/Replace

As in the case of sentence splitting, this grammar is applied using the Fst2Txt program,
but in REPLACE mode, which means that input sequences recognized by the grammar are
replaced by the output sequences that are produced. Figure 2.11 shows a grammar that
normalizes verbal contractions in English.

2.5.4 Splitting a text into tokens

Some languages, in particular Asian languages, use separators that are different from the
ones used in western languages. Spaces can be forbidden, optional, or mandatory. In order
to better cope with these particularities, Unitex splits texts in a language dependent way.
Thus, languages like English are treated as follows:

A token can be:

• the sentence delimiter {S};

• the stop marker {STOP}. This token is a special one that can NEVER be matched in
any way by a grammar. It can be used to bound elements in a corpus. For instance, if
a corpus is made of news separated by {STOP}, it will be impossible that a grammar
matches a sequence that overlaps the end of a news and the beginning of the following
news;

• a lexical tag {aujourd’hui,.ADV};

• a contiguous sequence of letters (the letters are defined in the language alphabet file);

• one (and only one) non-letter character, i.e. all characters not defined in the alphabet
file of the current language; if it is a newline, it is replaced by a space.

2.5. PREPROCESSING A TEXT 35

I I "y
ou

"

yo
u

're ar
e

'v
e ha
ve

'm am

Y
ou Y
ou

"w
e"

w
e

W
e

W
e

"t
he

y"

th
ey

T
he

y

T
he

y

"i
t"

it

's is

It It "w
ha

t"

w
ha

t
W

ha
t

W
ha

t

T
ha

t

T
ha

t

"t
ha

t"

th
at

'd w
ou

ld
'll w

il
l

"h
e"

he "s
he

"

sh
e

H
e

H
e

S
he S
he

W
ho

W
ho

"w
ho

"

w
ho

"i
sn

't"

is
 n

ot

"a
re

n'
t"

ar
e

no
t

"d
on

't"

do
 n

ot

"d
oe

sn
't"

do
es

 n
ot

"d
id

n'
t"

di
d

no
t

"c
an

't"

ca
n

no
t

"c
ou

ld
n'

t"

co
ul

d
no

t

"s
ho

ul
dn

't"

sh
ou

ld
no

t

"w
ou

ld
n'

t"

w
ou

ld
 n

ot

"w
on

't"

w
il

l n
ot

"w
er

en
't"

w
er

e
no

t

"l
et

's
"

le
t u

s

D
oe

sn
't

D
oe

s
no

t

Is
n'

t

Is
 n

ot

A
re

n'
t

A
re

 n
ot

D
on

't

D
o

no
t

C
an

't

C
an

no
t

C
ou

ld
n'

t

C
ou

ld
 n

ot

S
ho

ul
dn

't

S
ho

ul
d

no
t

L
et

's

L
et

us

W
er

en
't

W
er

e
no

t

W
ou

ld
n'

t

W
ou

ld
 n

ot

W
on

't

W
il

l n
ot

"w
he

re
"

w
he

re
W

he
re

W
he

re

H
er

e

H
er

e

"h
er

e"

he
re

D
id

n'
t

D
id

 n
ot

Figure 2.11: Normalization of English verbal contractions

36 CHAPTER 2. LOADING A TEXT

For other languages, tokenization is done on a character by character basis, except for the
sentence delimiter {S}, the {STOP} marker and lexical tags. This simple tokenization is
fundamental for the use of Unitex, but limits the optimization of search operations for pat-
terns. For instance, a box with the sequence aujourd’hui doesn’t recognize the lexical tag
{aujourd’hui,.ADV}. To recognize it, one must use the lexical mask: <aujourd’hui>.

Regardless of the tokenization mode, newlines in a text are replaced by spaces. Tokenization
is done by the Tokenize program. This program creates several files that are saved in the
text directory:

• tokens.txt contains the list of tokens in the order in which they are found in the
text;

• text.cod contains an integer array; every integer corresponds to the index of a token
in the file tokens.txt;

• tok_by_freq.txt contains the list of tokens sorted by frequency;

• tok_by_alph.txt contains the list of tokens in alphabetical order;

• stats.n contains some statistics about the text.

Tokenizing the text:

A cat is a cat.

returns the following list of tokens: A SPACE cat is a .

You will observe that tokenization is case sensitive (A and a are two distinct tokens), and
that each token is listed only once. Numbering these tokens from 0 to 5, the text can be
represented by a sequence of numbers (integers) as described in the following table:

Token number 0 1 2 1 3 1 4 1 2 5
Corresponding
token

A cat is a cat .

Table 2.1: Representation of the text A cat is a cat.

For more details, see chapter 15.

2.5. PREPROCESSING A TEXT 37

Figure 2.12: Tokens of an English text sorted by frequency

2.5.5 Applying dictionaries

Applying dictionaries consists of building the subset of dictionaries consisting only of forms
that are present in the text. Thus, the result of applying a English dictionary to the text Igor’s
father in law is ill produces a dictionary of the following simple words:

father,.N+Hum:s
father,.V:W:P1s:P2s:P1p:P2p:P3p
ill,.A
ill,.ADV
ill,.N:s
in,.A
in,.N:s
in,.PART
in,.PREP
is,be.V:P3s
is,i.N:p
law,.N:s
law,.V:W:P1s:P2s:P1p:P2p:P3p
s,.N:s

38 CHAPTER 2. LOADING A TEXT

as well as a dictionary of compound words consisting of a single entry:

father in law,.N+NPN+Hum+z1:s

Since the sequence Igor is neither a simple English word nor a part of a compound word, it
is treated as an unknown word. The application of dictionaries is done through the program
Dico. The three files produced (dlf for simple words, dlc for compound words and err
for unknown words) are placed in the text directory. The dlf and dlc files are called text
dictionaries.

As soon as the dictionary look-up is finished, Unitex displays the sorted lists of simple,
compound and unknown words found in a new window. Figure 2.13 shows the result for
an English text.

Figure 2.13: Result after applying dictionaries to an English text

It is also possible to apply dictionaries without preprocessing the text. In order to do this,
click on "Apply Lexical Resources..." in the "Text" menu. Unitex then opens a window (see
figure 2.14) in which you can select the list of dictionaries to apply.

2.5. PREPROCESSING A TEXT 39

Figure 2.14: Parameterizing the application of dictionaries

The list "User resources" lists all dictionaries present in the directory
(current language)/Dela of the user. The dictionaries installed in the system are listed
in the scroll list named "System resources". Use the <Ctrl+click> combination to select sev-
eral dictionaries. System dictionaries will be applied prior to user dictionaries. Within the
system or user list, you can fix the order of dictionaries using the up and down arrows, as
shown on figure 2.14. The button "Set Default" allows you to define the current selection
of dictionaries as the default. This default selection will then be used during preprocessing
if you activate the option "Apply All default Dictionaries". If you right-click on a dictio-
nary name, the associated documentation, if any, will be displayed in the lower frame of the
window.

2.5.6 Analysis of compound words in Dutch, German, Norwegian and Russian

In certain languages like Norwegian, German and others, it is possible to form new com-
pound words by concatenating together other words. For example, the word aftenblad mean-

40 CHAPTER 2. LOADING A TEXT

ing evening journal is obtained by combining the words aften (evening) et blad (journal). The
PolyLex program parses the list of unknown words after the application of dictionaries
and tries to analyze each of these words as a compound word. If a word has at least one
analysis as a compound word, it is removed from the list of unknown words and the lines
produced for this word are appended to the simple word text dictionary.

2.6 Opening a tagged text

A tagged text is a text containing words with lexical tags enclosed in braces:

I do not like the {square bracket,.N} sign! {S}

Such tags can be used to avoid ambiguities. In the previous example, it will be impossible
to match square bracket as the combination of two simple words.

However, the presence of these tags can alter the application of preprocessing graphs. To
avoid complications, you can use the "Open Tagged Text..." command in the "Text" menu.
With it, you can open a tagged text and skip the application of preprocessing graphs, as
shown on Figure 2.15.

Figure 2.15: Preprocessing a tagged text

Chapter 3

Dictionaries

3.1 The DELA dictionaries

The electronic dictionaries distributed with Unitex use the DELA syntax (Dictionnaires Elec-
troniques du LADL, LADL electronic dictionaries). This syntax describes the simple and
compound lexical entries of a language with their grammatical, semantic and inflectional
information. We distinguish two kinds of electronic dictionaries. The one that is used
most often is the dictionary of inflected forms DELAF (DELA de formes Fléchies, DELA
of inflected forms) or DELACF (DELA de formes Composées Fléchies, DELA of compound
inflected forms) in the case of compound forms. The second type is a dictionary of non-
inflected forms called DELAS (DELA de formes simples, simple forms DELA) or DELAC
(DELA de formes composées, compound forms DELA).

Unitex programs make no distinction between simple and compound form dictionaries.
We will use the terms DELAF and DELAS to distinguish the inflected and non-inflected
dictionaries, no matter they contain simple word, compound words or both.

3.1.1 The DELAF format

Entry syntax

An entry of a DELAF is a line of text terminated by a newline that conforms to the following
syntax:

apples,apple.N+conc:p/this is an example

The different elements of this line are:

• apples is the inflected form of the entry; it is mandatory;

41

42 CHAPTER 3. DICTIONARIES

• apple is the canonical form (lemma) of the entry. For nouns and adjectives (in French),
it is usually the masculine singular form; for verbs, it is the infinitive. This information
may be left out as in the following example:

apple,.N+Conc:s

This means that the canonical form is the same as the inflected form. The canonical
form is separated from the inflected form by a comma.

• N+Conc is the sequence of grammatical and semantic information. In our example, N
designates a noun, and Conc indicates that this noun designates a concrete object (see
table 3.2).

Each entry must have at least one grammatical or semantic code, separated from the
canonical form by a period. If there are more codes, these are separated by the +
character.

• :p is an inflectional code which indicates that the noun is plural. Inflectional codes
are used to describe gender, number, declension, and conjugation. This information
is optional. An inflectional code is made up of one or more characters that represent
one information each. Inflectional codes have to be separated by the ":” character, for
instance in an entry like the following:

hang,.V:W:P1s:P2s:P1p:P2p:P3p

The : character is interpreted in OR semantics. Thus, :W:P1s:P2s:P1p:P2p:P3p
means "infinitive", or "1st person singular present", or "2nd person singular present",
etc. (see table 3.3) Since each character represents one information, you must not use
the same character more than once. In this way, encoding the past participle using the
code :PP would be exactly equivalent to using :P alone;

• /this is an example is a comment. Comments are optional and are introduced
by the / character. These comments are left out when the dictionaries are compressed.

IMPORTANT REMARK: It is possible to use the full stop and the comma within a dictionary
entry. In order to do this they have to be escaped using the \ character:

1\,000,one thousand.NUMBER
United Nations,U\.N\..ACRONYM

WARNING: Each character is taken into account within a dictionary line. For example, if
you insert spaces, they are considered to be a part of the information. In the following line:

3.1. THE DELA DICTIONARIES 43

hath,have.V:P3s /old form of ’has’

The space that precedes the / character will be considered to be part of a 4-character inflec-
tional code.

It is possible to insert comments into a DELAF or DELAS dictionary by starting the line with
a / character. Example:

/ ’English’ designates a pool spin
English,.N+z3:s

Compound words with spaces or dashes

Certain compound words like acorn-shell can be written using spaces or dashes. In order
to avoid duplicating the entries, it is possible to use the = character. At the time when the
dictionary is compressed, the Compress program checks for each line if the inflected or
canonical form contains a non-escaped = character. If this is the case, the program replaces
this by two entries: one where the = character is replaced by a space, and one where it is
replaced by a dash. Thus, the following entry:

acorn=shells,acorn=shell.N:p

is replaced by the following entries:

acorn shells,acorn shell.N:p
acorn-shells,acorn-shell.N:p

NOTE: If you want to keep an entry that includes the = character, escape it using \ as in the
following example:

E\=mc2,.FORMULA

This replacement is done when the dictionary is compressed. In the compressed dictionary,
the escaped = characters are replaced by simple =. As such, if a dictionary containing the
following lines is compressed:

E\=mc2,.FORMULA

acorn=shell,.N:s

and if the dictionary is applied to the following text:

Formulas like E=mc2 have nothing to do with acorn-shells.

you will get the following lines in the dictionary of compound words of the text:

E=mc2,.FORMULA

acorn-shells,.N:p

44 CHAPTER 3. DICTIONARIES

Entry Factorization

Several entries containing the same inflected and canonical forms can be combined into a
single one if they also share the same grammatical and semantic codes. Among other things
this allows us to combine identical conjugations for a verb:

bottle,.V:W:P1s:P2s:P1p:P2p:P3p

If the grammatical and semantic information differ, one has to create distinct entries:

bottle,.N+Conc:s
bottle,.V:W:P1s:P2s:P1p:P2p:P3p

Some entries that have the same grammatical and semantic entries can have different mean-
ings, as it is the case for the French word poêle that describes a stove or a type of sheet in the
masculine sense and a kitchen instrument in the feminine sense. You can thus distinguish
the entries in this case:

poêle,.N+z1:fs/ poêle à frire
poêle,.N+z1:ms/ voile, linceul; appareil de chauffage

NOTE: In practice, this distinction has the only consequence that the number of entries in
the dictionary increases.

For the different programs that make up Unitex these entries are equivalent to:

poêle,.N+z1:fs:ms

Whether this distinction is made is thus left to the maintainers of the dictionaries.

3.1.2 The DELAS Format

The DELAS format is very similar to the one used in the DELAF. The only difference is
that there is only a canonical form followed by grammatical and/or semantic codes. The
canonical form is separated from the different codes by a comma. There is an example:

horse,N4+Anl

The first grammatical or semantic code will be interpreted by the inflection program as the
name of the grammar used to inflect the entry. The entry of the example above indicates that
the word horse has to be inflected using the grammar named N4. It is possible to add inflec-
tional codes to the entries, but the nature of the inflection operation limits the usefulness of
this possibility. For more details see below in section 3.5.

3.1. THE DELA DICTIONARIES 45

3.1.3 Dictionary Contents

The dictionaries provided with Unitex contain descriptions of simple and compound words.
These descriptions indicate the grammatical category of each entry, optionally their inflec-
tional codes, and various semantic information. The following tables give an overview of
some of the different codes used in the Unitex dictionaries. These codes are the same for
almost all languages, though some of them are special for certain languages (i.e. code for
neuter nouns, etc.).

Code Description Examples
A adjective fabulous, broken-down
ADV adverb actually, years ago

CONJC coordinating conjunction but
CONJS subordinating conjunction because
DET determiner each
INTJ interjection eureka
N noun evidence, group theory

PREP preposition without
PRO pronoun you
V verb overeat, plug-and-play

Table 3.1: Frequent grammatical codes

Code Description Example
z1 general language joke
z2 specialized language floppy disk
z3 very specialized language serialization
Abst abstract patricide
Anl animal horse

AnlColl collective animal flock
Conc concrete chair

ConcColl collective concrete rubble
Hum human teacher

HumColl collective human parliament
t transitive verb kill
i intransitive verb agree

Table 3.2: Some semantic codes

NOTE: The descriptions of tense in table 3.3 correspond to French. Nonetheless, the majority
of these definitions can be found in other languages (infinitive, present, past participle, etc.).

In spite of a common base in the majority of languages, the dictionaries contain encoding

46 CHAPTER 3. DICTIONARIES

particularities that are specific for each language. Thus, as inflectional codes vary a lot be-
tween different languages, they are not described here. For a complete description of all
codes used within a dictionary, we recommend that you contact the author of the dictionary
directly.

Code Description
m masculine
f feminin
n neuter
s singular
p plural

1, 2, 3 1st, 2nd, 3rd person
P present indicative
I imperfect indicative
S present subjunctive
T imperfect subjunctive
Y present imperative
C present conditional
J simple past indicative
W infinitive
G present participle
K past participle
F future indicative

Table 3.3: Common inflectional codes

However, these codes are not exclusive. A user can introduce his own codes and create his
own dictionaries. For example, for educational purposes one could use a marker "faux-ami"
(false friend) in a French dictionary:

blesser,.V+faux-ami/injure

casque,.N+faux-ami/helmet

journée,.N+faux-ami/day

It is equally possible to use dictionaries to add extra information. Thus, you can use the
inflected form of an entry to describe an abbreviation and the canonical form to provide the
complete form:

DNA,DeoxyriboNucleic Acid.ACRONYM
LADL,Laboratoire d’Automatique Documentaire et Linguistique.ACRONYM
UN,United Nations.ACRONYM

3.2. LOOKING UP A WORD IN A DICTIONARY 47

3.2 Looking up a word in a dictionary

You can look up a word in one or several dictionaries by two means :

Figure 3.1: "DELA" Menu

If you have opened a dictionary, the displayed window contains a field where you can enter
a word to search. If the word appears in the dictionary, the Find Button will highlight the
first entry that matches it. If there is several entries for this word, you can browse all matches
by clicking on the two arrow buttons.

Figure 3.2: Looking up for a word in a dictionary

You can also look up a word in several dictionaries by clicking on the Lookup button of the

48 CHAPTER 3. DICTIONARIES

DELA menu. You can then select the dictionaries in which you want to look up the word
you have entered.

Figure 3.3: Looking up for a word in several dictionaries

3.3 Checking dictionary format

When dictionaries become large, it becomes tiresome to check them by hand. Unitex con-
tains the program CheckDic that automatically checks the format of DELAF and DELAS
dictionaries.

This program verifies the syntax of the entries. For each malformed entry the program out-
puts the line number, the content of the line and an error message. Results are saved in
the file CHECK_DIC.TXT which is displayed when the verification is finished. In addition
to eventual error messages, the file also contains the list of all characters used in the in-
flectional and canonical forms, the list of grammatical and semantic codes, and the list of
inflectional codes that appear in the dictionary. The character list makes it possible to verify
that the characters used in the dictionary are consistent with those in the alphabet file of the
language. Each character is followed by its value in hexadecimal notation.

The code lists can be used to check that there are no typing errors in the codes of the dictio-
nary.

The CheckDic program works with non-compressed dictionaries, i.e. the files in text for-
mat. The general convention is to use the .dic extension for these dictionaries. In order to
check the format of a dictionary, you first open it by choosing "Open..." in the "DELA" menu.
Let’s load the dictionary as in figure 3.4. Then, click on "Check Format..." in the "DELA"
menu. A window like in figure 3.5 is opened. You must select the type of dictionary you
want to check. After checking the dictionary in Figure 3.4, results are presented as shown in
Figure 3.6.

3.4. SORTING 49

Figure 3.4: Dictionary example

Figure 3.5: Checking a dictionary

The first error is caused by a missing period. The second, by the fact that no comma was
found after the end of an inflected form. The third error indicates that the program didn’t
find any grammatical or semantic codes.

3.4 Sorting

Unitex uses the dictionaries without having to worry about the order of the entries. When
displaying them it is sometimes preferable to sort the dictionaries. The sorting depends on
a number of criteria, first of all on the language of the text. Therefore the sorting of a Thai
dictionary is done according to an order different from the alphabetical order. So different
in fact that Unitex uses a sorting procedure developed specifically for Thai (see chapter 14).

For European languages the sorting is usually done according to the lexicographical order,
although there are some variants. Certain languages like French treat some characters as
equivalent. For example, the difference between the characters e and é is ignored if one
wants to compare the words manger et mangés because the contexts r and s allow to
decide the order. The difference is only taken into account when the contexts are identical,
as they are when comparing pêche and pèche.

To allow for such effect, the SortTxt program uses a file which defines the equivalence of
characters. This file is named Alphabet_sort.txt and can be found in the user directory
for the current language. By default the first lines of this file for French look like this:

50 CHAPTER 3. DICTIONARIES

Figure 3.6: Results of checking

3.5. AUTOMATIC INFLECTION 51

AÀÂÄaàâä
Bb
CÇcç
Dd
EÉÈÊËeéèêë

Characters in the same line are considered equivalent if the context permits. If two equiv-
alent characters must be compared, they are sorted in the order they appear in from left to
right. As can be seen from the extract above, there is no difference between lower and upper
case. Accents and the cédille character are ignored as well.

To sort a dictionary, open it and then click on "Sort Dictionary" in the "DELA" menu. By
default, the program always looks for the file Alphabet_sort.txt. If that file doesn’t
exist, the sorting is done according to the character indices in the Unicode encoding. By
modifying that file, you can define your own sorting order.

NOTE: After applying the dictionaries to a text, the files dlf, dlc and err are automatically
sorted using this program.

3.5 Automatic inflection

3.5.1 Inflection of simple words

As described in section 3.1.2, a line in a DELAS consists of a canonical form and a sequence
of grammatical or semantic codes:

aviatrix,N4+Hum
matrix,N4+Math
radix,N4

The first code is used to determine the grammatical code of the entry as well as the name of
the grammar used to inflect the canonical form. There are two possible forms:

• N4: grammar name=N4.fst2, grammatical code=N (longest letter prefix)

• N(NC_XXX): grammar name=NC_XXX.fst2, grammatical code=N

These inflectional grammars will automatically be compiled if needed. In the example
above, all entries will be inflected by a grammar named N4.

In order to inflect a dictionary, click on "Inflect..." in the "DELA" menu. The window in
figure 3.7 allows you to specify the directory in which inflectional grammars are found. By
default, the subdirectory Inflection of the directory for the current language is used. You
can also specify the kind of words your DELAS is supposed to contain. If an entry is found
that does not correspond to your choice, an error message will be displayed.

52 CHAPTER 3. DICTIONARIES

Figure 3.7: Configuration of automatic inflection

Figure 3.8: Inflectional grammar N4

Figure 3.8 shows an example of an inflectional grammar. The paths describe the suffixes to
add or to remove to get to an inflected form from a canonical form, and the outputs (text in
bold under the boxes) are the inflectional codes to add to a dictionary entry.

In our example, two paths are possible. The first does not modify the canonical form and
adds the inflectional code :s. The second deletes a letter with the L operator, then adds the
ces suffix and adds the inflectional code :mp. Here are the operators that can be used:

• L (left) removes a letter from the entry.

• R (right) restores a letter to the entry. In French, many verbs of the first group are
conjugated in the present singular of the third person form by removing the r of the
infinitive and changing the 4th letter from the end to è: peler→ pèle, acheter→
achète, gérer→ gère, etc. Instead of describing an inflectional suffix for each verb
(LLLLèle, LLLLète and LLLLère), the R operator can be used to describe it in one
way: LLLLèRR.

• C (copy) duplicates a letter in the entry and moves everything on its right by one posi-
tion. In cases like permitted or hopped, we see a duplication of the final consonant
of the verb. To avoid writing an inflectional graph for every possible final consonant,
one can use the C operator to duplicate any final consonant.

3.5. AUTOMATIC INFLECTION 53

• D (delete) deletes a letter, shifting anything located on the right of this letter. For in-
stance, if you want to inflect the Romanian word european into europeni, you must
use the sequence LDRi. L will move the cursor on the a, D will delete the a, shifting
the n on the left, and then Ri will restore the n and add an i.

• U (unaccent) removes the accent of the current character, if any. For instance the se-
quence LLUx applied to the word mangés produces the inflected form mangex, since
U has turn the é into a e.

• P (uppercase) uppercases the initial letter of the stack. For instance, the sequence Px
will turn foo into Foox.

• W (lowercase) lowercases the initial letter of the stack.

• <R=?> replaces the initial letter of the stack by the letter ?.

• <I=?> inserts the letter ? before the initial letter of the stack.

• <X=n> removes the first n letters of the stack.

There are also two operators dedicated to Korean:

• J removes a Jamo letter. If the current character is a Hangul syllab character, this
character is first replaced by the equivalent Jamo sequence, and then, the last Jamo
letter is removed. If the current character is neither a Jamo nor a Hangul, and error is
raised.

• . (latin dot) inserts a syllab bound. As a side effect, if the top of the stack contains
Jamo letters, they are first recombined into a Hangul character.

In the example below, the inflection of choose is shown. The sequence LLDRRn describes
the form chosen:

• Step 0: the canonical form is copied on the stack, and the cursor is set behind the last
letter:

↓
c h o o s e

• Step 1: the cursor is moved one position to the left:

LLDRRn
↓

c h o o s e

54 CHAPTER 3. DICTIONARIES

• Step 2: the cursor is moved one position to the left again:

LLDRRn
↓

c h o o s e

• Step 3: one character is deleted; everything to the right of the cursor is shifted one
position to the left:

LLDRRn
↓

c h o s e

• Step 4: the cursor is moved to the right:

LLDRRn
↓

c h o s e

• Step 5: and to the right again:

LLDRRn
↓

c h o s e

• Step 6: the character n is pushed on the stack:

LLDRRn
↓

c h o s e n

When all operations have been fulfilled, the inflected form consists of all letters before the
cursor (here chosen).

The inflection program explores all paths of the inflectional grammar and tries all possible
forms. In order to avoid having to replace the names of inflectional grammars by the actual
grammatical codes to be used in the dictionary, the program replaces these names by the
longest prefixes made of letters. Thus, N4 is replaced by N. By choosing the inflectional
grammar names carefully, one can construct a ready-to-use dictionary.

Figure 3.9 shows the dictionary we get after the inflection of our DELAS example.

3.5. AUTOMATIC INFLECTION 55

Figure 3.9: Result of automatic inflection

3.5.2 Advanced inflection operators

In some languages the inflection process can modify the root of the word. Several operators
have been developed in order to facilitate this type of treatment. They allow to find and
remove a suffix of the word W to be inflected. It is also possible to store a factor of this suffix
by using a special variable ($ or £). These operators can take the following forms:

• <X$Y>: Starting from the end of the word W we are looking for the suffix Y. Then,
we search for the rightmost occurrence of X which strictly precedes that of Y . The
$ variable then contains the shortest factor ($hortest) of W strictly between X and Y
(W = U.X.$.Y)1. The <X$Y> operator strips X.$.Y from W and sets $. After it has
been applied, the string left in the stack is U, and the $ variable can be used in the rest
of the path.

• <X£Y>: Starting from the end of the word W we are looking for the suffix Y. Then,
we search for the leftmost occurrence of X which strictly precedes that of Y. The
£ variable then contains the longest factor (£ongest) of W strictly between X and Y
(W = U.X.£.Y).

• <X>: If there is no variable, we search for X as a suffix of W (W = U.X).

• <$Y>: If the X factor is absent, the shortest factor $ is the first letter which strictly
precedes Y .

• <£Y>: If the X factor is absent, the longest factor £ is the prefix of W so that W = £ .Y.

To illustrate the use of these operators, let us consider the French verb reprendre:

1The point represents here the concatenation operation.

56 CHAPTER 3. DICTIONARIES

Word Operator Variable Result
reprendre <re> reprend
reprendre <$> $ = e reprendr
reprendre <£> £= reprendre ε
reprendre <re$re> $ = nd rep
reprendre <re£re> £ = prend
reprendre <$re> $ = d repren
reprendre <re$> $ = ε reprendre
reprendre <£re> £ = reprend ε
reprendre <re£> £ = prendre re

The MultiFlex program allows you to use ten variables of type $ whose names are $,$1,...,$9
and ten variables of type £ whose names are £,£1,...,£9. Moreover, both types of variables
can be mixed in a same operator. Thus the operator <£3re$7re> applied to the french verb
reprendre gives back : £3 = rep et $7 = nd.

In the verbs accélérer, sécher, the second person of the present tense can be generated
by the operation <é$er>è$es :

accélérer <é$er> → accél $ = r + è$es → accélères
sécher <é$er> → s $ = ch + è$es → sèches

Note that the factor $ which remains in the inflected form is of variable length (r, ch).
The inflection of the verbs accélérer and sécher cannot be done with classical stack
operators within the same operation. Two different operations (-4RèCes, -5RèCes) are
needed. The graph shown in figure 3.10 inflects verbs like accélérer and sécher in the
present tense.

Figure 3.10: Inflection graph for verbs like accélérer, sécher

3.5. AUTOMATIC INFLECTION 57

The inflected forms of the verbs accélérer and sécher are :

The doubling of some letters during the inflection process can be done with the operator $.
For example the adjective tranquil has two forms in the comparative and two in the superla-
tive. The graph in figure 3.11 can produce these forms.

Figure 3.11: Inflection graph for adjectives like tranquil

Below are the inflected forms for the adjective tranquil :

In some languages, some inflected forms have a prefix added before the root like the forma-
tion of the past participle in German. The joint use of operators £ et $ allows to inflect the
german verb sprechen (to speak) in the present tense and the past participle as shown in
the graph in figure 3.12.

58 CHAPTER 3. DICTIONARIES

Figure 3.12: Inflection graph for verbs like sprechen

The inflection forms of the verb sprechen :

In order to inflect the phrasal verb aussprechen two variables of type $ should be used.
Figure 3.13 shows a graph with two variables $1 and $2.

Figure 3.13: Inflection graph for verbs like aussprechen

Here are the inflection forms of the verb aussprechen :

3.5. AUTOMATIC INFLECTION 59

Semantic codes
In some languages, there are inflectional features that actually correspond to semantic ones,
like for instance markers for the passive form. Such codes may not appear as inflectional
ones, but rather as semantic ones. To do that and produce semantic codes, you have to
insert a plus sign at the beginning of the output of a box. The box must only contain the
semantic code preceded by a plus, as shown on Figure 3.14.

Figure 3.14: An inflection grammar with a semantic code

3.5.3 Inflection of compound words

See chapter 11.

3.5.4 Inflection of Semitic languages

Semitic languages like Arabic or Hebrew are inflected in a way not easily representable with
the inflection operators described above. Their morphology obeys a different logic: words
are inflected according to consonant skeletons. The inflection process combines this skeleton
with vowels. Specific operators have been implemented for Semitic languages, and some of
them may be useful also for languages outside the Semitic family, such as Tagalog.

First, let us see a case where we encode only the consonants in the lemma field of the DELAS
entry:

ktb,$V31-123

60 CHAPTER 3. DICTIONARIES

The $ sign before the grammatical code indicates that the inflection grammar is in the
Semitic mode, and the form ktb in the lemma field is the consonant skeleton. Figure 3.15
shows the toy grammar V31-123.grf that illustrates how the Semitic mode works. The in-
flection grammars use the Buckwalter++ transliteration of the Arabic script (cf. Section 3.6).

Figure 3.15: A toy inflection grammar in the Semitic mode

The Semitic mode obeys the following rules:

1. All standard inflection operators can be used (L, R, etc.).

2. A digit stands for a letter in the lemma field (1 for the first, 2 for the second, etc.). In
our example, 1, 2 and 3 will respectively stand for k, t and b. If you want to access to
a letter after the ninth one, you must protect its index with angles like <10>.

The DELAF output for this grammar is:
yakotubu,ktb.V:aI3ms

If we encode only the consonants in the lemma field and two entries have the same conso-
nants but differ in the vowels, we must encode the vowels in the inflection grammars:

Hsb,$V3au // to count, Hasaba, yaHosubu
Hsb,$V3ii // to think, Hasiba, yaHosibu

In order to copy the complete lemma field, use the <LEMMA> operator. A box with this
operator retrieves the complete lemma field but does not depend on the number of letters
in the field. This operator is useful for Arabic nouns and adjectives where masculine forms
are generated by inserting vowels in the consonantal skeleton, whereas feminine forms are
obtained by appending suffixes (Figure 3.16). In this example, both consonants and vowels
are encoded in the lemma field.

The <n.LEMMA> operator copies the lemma from the nth position to the end. For example,
in some Arabic nouns, the short vowel of the first syllable alternates: a/u, a/i or u/i,
as in nufaAyap/nifaAyap ”rubbish”. The inflection grammar of Fig. 3.17 produces both
variants with u and with i as inflected forms of nufaAyap.

In Tagalog, an Austronesian language spoken in the Philippines and that uses commonly
infixes and reduplication for inflection, <LEMMA> and <n.LEMMA> may be used to pro-
duce verb tenses. The toy inflection grammar of Fig. 3.18 produces the perfect kumain,
future kakain and imperfect kumakain of the verb kain ”eat”.

3.6. TRANSLITERATING ARABIC DICTIONARIES 61

Figure 3.16: An inflection grammar in the Semitic mode with the <LEMMA> operator

Figure 3.17: An inflection grammar in the Semitic mode with the <n.LEMMA> operator

3.6 Transliterating Arabic dictionaries

When Arabic linguists analyse dictionaries in order to spot errors, reading in the Arabic
script is simple and efficient. However, when they create inflectional grammars (Section 3.5),
parts of Arabic words occur in the same box as morphosyntactic information encoded in the
Latin alphabet, and in this context, switching from right-to-left Arabic script to left-to-right
Latin alphabet is a real hassle. With Unitex, you can encode your inflectional grammars
entirely in the Latin alphabet, by using the Buckwalter++ transliteration, a one-to-one map-
ping between a Unicode encoding of Arabic script and Latin letters (cf. [74], Section 3.2,
pages 4–6). The Buckwalter++ transliteration is defined by the table of Fig. 3.19 and 3.20.
Unitex provides a tool to internally transliterate DELAS and DELAF Arabic dictionaries
to and from Buckwalter++ encoding (Fig. 3.21). This tool is accessible through the DELA

62 CHAPTER 3. DICTIONARIES

Figure 3.18: A toy inflection grammar for Tagalog in the Semitic mode

menu.

3.7 Compression

Unitex applies compressed dictionaries to the text. The compression reduces the size of the
dictionaries and speeds up the lookup. This operation is done by the Compress program.
This program takes a dictionary in text form as input (for example my_dico.dic) and
produces two files:

• my_dico.bin contains the minimal automaton of the inflected forms of the dictio-
naries;

• my_dico.inf contains the codes extracted from the original dictionary.

The minimal automaton in the my_dico.bin file is a representation of inflected forms in
which all common prefixes and suffixes are factorized. For example, the minimal automaton
of the words me, te, se, ma, ta et sa can be represented by the graph shown in Figure 3.22.

To compress a dictionary, open it and click on "Compress into FST" in the "DELA" menu.
The compression is independent from the language and from the content of the dictionary.
The messages produced by the program are displayed in a window that is not closed auto-
matically. You can see the size of the resulting .bin file, the number of lines read and the
number of inflectional codes created. Figure 3.23 shows the result of the compression of a
dictionary of simple words.

The resulting files are compressed to about 95% for dictionaries containing simple words
and 50% for those with compound words.

3.7. COMPRESSION 63

Unicode Letter name Arabic Buckwalter Buckwalter++

0621 HAMZA ON THE LINE ' c

0622 ALEF WITH MADDA ABOVE | C

0623 ALEF WITH HAMZA ABOVE > O

0624 WAW WITH HAMZA ABOVE & W

0625 ALEF WITH HAMZA BELOW < I

0626 YEH WITH HAMZA ABOVE } e

0627 ALEF A

0628 BEH b

0629 TEH MARBUTA p

062A TEH t

062B THEH v

062C JEEM j

062D HAH H

062E KHAH x

062F DAL d

0630 THAL * J

0631 REH r

0632 ZAIN z

0633 SEEN s

0634 SHEEN $ M

0635 SAD S

0636 DAD D

0637 TAH T

Figure 3.19: Buckwalter++ transliteration table, first half

64 CHAPTER 3. DICTIONARIES

Unicode Letter name Arabic Buckwalter Buckwalter++

0638 ZAH Z

0639 AIN E

063A GHAIN g

0641 FEH f

0642 QAF q

0643 KAF k

0644 LAM l

0645 MEEM m

0646 NOON n

0647 HEH h

0648 WAW w

064A ALEF MAKSURA Y

0649 YEH y

064B FATHATAN F

064C DAMMATAN N

064D KASRATAN K

064E FATHA a

064F DAMMA u

0650 KASRA i

0651 SHADDA ~ G

0652 SUKUN o

0670 SUPERSCRIPT ALEF ` R

0671 ALEF WASLA { L

Figure 3.20: Buckwalter++ transliteration table, second half

3.7. COMPRESSION 65

Figure 3.21: Transliteration of a DELAF dictionary from Buckwalter++ (left) to the Arabic
script (right)

Figure 3.22: Representation of a minimal automaton

When the Semitic mode (3.5.4) has been heavily used to inflect a dictionary, a specific variant
of the compression algorithm may reduce the size of the resulting .bin and .inf files. In
order to use it, either declare the language as being a Semitic one in the global preferences

66 CHAPTER 3. DICTIONARIES

Figure 3.23: Results of a compression

by checking the ”Semitic language” option in ”Preferences > Language and Presentation”,
or use the Compress program in command line with the --semitic option.

3.8 Applying dictionaries

Dictionaries can be applied (1) after pre-processing or (2) by explicitly clicking on "Apply
Lexical Resources" in the "Text" menu (see section 2.5.5).

Unitex can manipulate compressed dictionaries (.bin) and dictionary graphs (.fst2). We
will now describe the rules for applying dictionaries in detail. Dictionary graphs will be
described in section 3.8.3.

3.8.1 Priorities

The priority rule says that if a word in a text is found in a dictionary, this word will not be
taken into account by dictionaries with lower priority.

This allows for eliminating a part of ambiguity when applying dictionaries. For example,
the French word par has a nominal interpretation in the golf domain. If you don’t want to use
this meaning, it is sufficient to create a filter dictionary containing only the entry par,.PREP
and to apply this with highest priority. This way, even if simple word dictionaries contain
different entries, they will be ignored given the priority rule.

There are three priority levels. The dictionaries whose names without extension end with -
have the highest priority; those that end with + have the lowest one. All other dictionaries

are applied with medium priority. The order in which dictionaries with the same priority
are applied does not matter. On the command line, the command:

3.8. APPLYING DICTIONARIES 67

Dico ex.snt alph.txt ctr+.bin cities-.bin rivers.bin regions-.bin

will apply the dictionaries in the following order (ex.snt is the text to which the dictionar-
ies are applied, and alph.txt is the alphabet file used):

1. cities-.bin

2. regions-.bin

3. rivers.bin

4. ctr+.bin

3.8.2 Application rules for dictionaries

Besides the priority rule, the application of dictionaries respects upper case letters and
spaces. The upper case rule is as follows:

• if there is an upper case letter in the dictionary, then an upper case letter has to be in
the text;

• if a lower case letter is in the dictionary, there can be either an upper or lower case
letter in the text.

Thus, the entry peter,.N:fs will match the words peter, Peter et PETER, while
Peter,.N+firstName only recognizes Peter and PETER. Lower and upper case letters
are defined in the alphabet file passed to the Dico program as a parameter.

Respecting white space is a very simple rule: For each sequence in the text to be recognized
by a dictionary entry, it has to have exactly the same number of spaces. For example, if the
dictionary contains aujourd’hui,.ADV, the sequence Aujourd’ hui will not be recog-
nized because of the space that follows the apostrophe.

3.8.3 Dictionary graphs

The Dico program can also apply dictionary graphs. A dictionary graph is a graph used
as a dictionary. Dictionary graphs, by default,2 conform to the following rule: if applied by
Locate in MERGE mode, they must produce output sequences that are valid DELAF lines.
When they are applied to a text, they attach the DELAF lexical labels to the sequences.

Figure 3.24 shows a graph that recognizes chemical elements. We can observe a first ad-
vantage of graphs over usual dictionaries: we can force case with double quotes. Thus,
this graph will correctly match Fe but not FE, while this restriction cannot be specified in a
normal DELAF.

2Morphological dictionary-graphs are an exception (section 3.8.4) .

68 CHAPTER 3. DICTIONARIES

Figure 3.24: Dictionary graph of chemical elements

3.8. APPLYING DICTIONARIES 69

To make a dictionary graph, use the graph tools (FSGraph menu, section 5.2) but save and
compile it preferably in the directory for dictionaries (Dela directory). To apply a dictionary
graph to a text, use a dictionary tool: "Text > Apply lexical resources" (section 2.5.5).

Another advantage of dictionary graphs is that they can use results given by previous dic-
tionaries. Thus, it is possible to apply the standard dictionary, and then tag as proper names
all the unknown words that begin with an uppercase letter, thanks to graph NPr+ shown
in figure 3.25. The + in the graph name gives to it a low priority, so that it will be applied
after the standard dictionary. This graph works with words that are still unknown after the
application of the standard dictionary. Square brackets stand for a context definition. For
more information about contexts, see section 6.3.

Figure 3.25: Dictionary graph that tags unknown words beginning with an uppercase letter
as proper names

Since dictionary graphs are applied using the engine of Locate, they have exactly the same
properties than syntactic graphs. So, you can use morphological filters (section 4.7) and/or
the morphological mode (section 6.4). For instance, the graph shown on Figure 3.26 uses
morphological filters to recognize roman numerals. Note that it also uses contexts in order
to avoid recognizing uppercase letters in some contexts.

By default, dictionary graphs are applied in MERGE mode. If you want to apply them in
REPLACE mode, you must suffix graph names with -r. This can be combined with the +
and - priority marks:

bagpipe-r.fst2 McAdam-r-.fst2 phtirius-r+.fst2

Exporting produced entries as a morphological-mode dictionary

Dictionary entries produced by dictionary graphs are looked up by the Locate program
when it comes across lexical masks involving dictionary lookup.

However, this functionality is restricted when the lexical mask is in morphological mode
(section 6.4). Dictionary graphs cannot be declared as being morphological-mode dictionar-
ies in the usual way (section 6.4.3), because they are not .bin files. When in morphological
mode, lexical masks involving dictionary lookup do not trigger lookup of dictionary graphs.
To compensate for this, there are several solutions.

• Consider invoking the dictionary graph from the part of the graph which is in mor-
phological mode.

70 CHAPTER 3. DICTIONARIES

Figure 3.26: Dictionary graph of roman numerals

3.8. APPLYING DICTIONARIES 71

• Unitex internally generates a dictionary of the forms recognized in the text by a dictio-
nary graph. If the name of the dictionary graph contains the b switch (see Naming con-
ventions below), Unitex includes this internal dictionary among morphological-mode
dictionaries, so that it is looked up when the Locate program comes across lexical
masks in morphological mode. But this solution works only for forms recognised in
the text by the dictionary graph during initial application of dictionaries (section 3.8),
and not for forms that appear in the text only as token parts.

If you add z instead of b, then the dictionary internally generated for the text is compressed
immediately, and can be looked up when other dictionary graphs are applied later.

Naming conventions

The whole naming scheme for dictionary graphs is as follows:
name(-XYZ)([-+]).fst2

where:

• X is in [rRmM]: r means REPLACE mode; M means MERGE mode (default);

• Y is in [bBzZ]: option that rules the production of a morphological-mode dictionary
(see above Exporting produced entries as a morphological-mode dictionary);

• Z is in [aAlLsS]: a means that the graph will be applied in "All matches" mode; l
means "Longest matches" mode (default); s means "Shortest matches" mode.

3.8.4 Morphological dictionary-graphs

In a dictionary graph, by default, each path must output a lexical entry to be added in the
text dictionaries. In a morphological dictionary-graph, each path must output a sequence
of one or more tags enclosed in braces and conforming to the syntax of a DELAF line (sec-
tion 3.1.1). The output of such graphs will be used as special input for the construction of the
text automaton. We call them ‘morphological dictionary-graphs’ because their main utility
is to introduce new morphological analyses in the text automaton, using the morphological
mode (see section 6.4). This functionality is helpful for agglutinative languages like Korean.
To allow the use of a graph as a morphological dictionary-graph, declare it with a slash (/)
as the first character of its output, as in Figure 3.27.

Figure 3.27: Example of a morphological dictionary-graph

The rule is simple: any output of a dictionary graph that begins with a slash will be added to
the file tags.ind, located in the text directory. This file is used by the Txt2Fst2 program
in order to add interpretations into the text automaton. The grammar of Figure 3.27 matches

72 CHAPTER 3. DICTIONARIES

words made of the prefix un followed by an adjective. If we apply it as a dictionary graph,
we obtain new paths in the text automaton, as shown on Figure 3.28. Note that when two
tags correspond to analyses within the same token, the link between them is displayed with
a dashed line.

Figure 3.28: Path added by a morphological dictionary-graph

3.8.5 Allowing for omission, substitution or insertion of letters

For Arabic and other languages, the recognition of words may allow for some differences
between dictionary entries and sequences in the text. In Arabic, some letters, mostly short
vowels, are generally omitted in written text.3 These typographical variations are optional
but follow specific rules.

If the Arabic dictionary is fully vowelled, Unitex is able to deal with unvowelled, partially
vowelled and fully vowelled words for Arabic. If a word includes one or several explicit
vowels, the lookup procedure retains only the word candidates with those same vowel(s) at
the same position(s) from the dictionary.

Unitex allows for parameterizing dictionary lookup with a configuration file that specifies
which typographic variations are allowed (Section 15.13.9). This file is made of lines like the
following:

fatha omission=YES

3 Other letters may be substituted, e.g. a letter that denotes a glottal stop (hamza) and a long a (alif) may be
replaced by the letter that denotes a long a. A transposition of adjacent letters and an insertion are also allowed.

3.9. BIBLIOGRAPHY 73

where fatha omission is the name of a rule. The data distributed with Unitex contains
this file with 26 predefined rules, but you can change them by substituting NO for YES.
The predefined rules are designed to be used with a fully vowelled dictionary. Here are
examples, with Buckwalter++ transliteration (cf. Fig. 3.19 and 3.20):

• Omission of one letter

Rule name Meaning Example
(dictionary form→ allowed form)

fatha omission a→ <E> kitaAbN→ kitAbN
dammatan omission at end final N→ <E> kitaAbN→ kitaAb

• Omission of two adjacent letters

shadda fatha omission Ga→ <E> katGaba→ katba
shadda dammatan omission at end final GN→ <E> ruwsiyGN→ ruwsiy

• Transposition of two adjacent letters

fathatan alef equiv alef fathatan final FA→ AF kitabFA→ kitabAF

• Substitution

alef hamza above O initial O→ A Oakala→ Aakala

• Insertion

solar assimilation Alt→ AltG AltaAniy→ AltGaAniy

and the same for 14 other consonants besides t.

3.9 Bibliography

Table 3.9 gives some references for electronic dictionaries with simple and compound words.
For more details, see the references page on the Unitex website:
http://unitexgramlab.org/language-resources

http://unitexgramlab.org/language-resources

74 CHAPTER 3. DICTIONARIES

Language Simple words Compound words
English [58], [72] [15], [88]
French [19], [20], [63] [20], [38], [90], [46]
Modern Greek [2], [17], [60] [61], [62]
Italian [28], [29] [94]
Spanish [8] [7]
Portuguese [25], [86], [83], [73] [82], [83]

Table 3.9: Some bibliographical references for electronic dictionaries

Chapter 4

Searching with regular expressions

This chapter describes how to search a text for simple patterns by using regular expressions.

4.1 Definition

The goal of this chapter is not to give an introduction on formal languages but to show how
to use regular expressions in Unitex in order to search for simple patterns. Readers who are
interested in a more formal presentation can consult the many works that discuss regular
expression patterns.

A regular expression can be:

• a token (book) or a lexical mask (<smoke.V>);

• a particular position in the text : the beginning {^} or the end {$}

• the concatenation of two regular expressions (he smokes);

• the union of two regular expressions (Pierre+Paul);

• the Kleene star of a regular expression (bye*).

4.2 Tokens

In a regular expression, a token is defined as in 2.5.4 (page 34). Note that the symbols
dot, plus, star, less than, opening and closing parentheses and double quotes have a special
meaning. It is therefore necessary to precede them with an escape character \ if you want
to search for them. Here are some examples of valid tokens:

cat
\.
<N:ms>
{S}

75

76 CHAPTER 4. SEARCHING WITH REGULAR EXPRESSIONS

By default, Unitex is set up to let lower case patterns also find upper-case matches. It is pos-
sibe to enforce case-sensitive matching using quotation marks. Thus, "peter" recognizes
only the form peter and not Peter or PETER.

NOTE: in order to make a space obligatory, it needs to be enclosed in quotation marks.

4.3 Lexical masks

A lexical mask is a search query that matches tokens or sequences of tokens.

4.3.1 Special symbols

There are two kinds of lexical masks. The first category contains the special symbols or
meta-symbols introduced in section 2.5.2 except for <PNC> and <^>. (The symbol <PNC>,
which matches punctuation signs, is valid only during preprocessing; <^> matches a line
feed, but since all line feeds have been replaced by spaces, this symbol cannot be useful
anymore when searching for lexical masks.) The meta-symbols that can be used to search a
text for patterns are the following:

• <E>: the empty word or epsilon. Matches the empty string;

• <TOKEN>: matches any token, except the space; used by default for morphological
filters

• <WORD>: matches any token that consists of letters;

• <LOWER>: matches any lower-case token;

• <UPPER>: matches any upper-case token;

• <FIRST>: matches any token that consists of letters and starts with a capital lette;

• <DIC>: matches any word that is present in the dictionaries of the text;

• <SDIC>: matches any simple word in the text dictionaries;

• <CDIC>: matches any composed word in the dictionaries of the text;

• <TDIC>: matches any tagged token like {XXX,XXX.XXX};

• <NB>: matches any contiguous sequence of digit (1234 is matched but not 1 234);

• #: prohibits the presence of space.

Earlier codes for <WORD>, <LOWER>, <UPPER> and <FIRST> were respectively <MOT>,
<MIN>, <MAJ> and <PRE>. They can still be used for backward compatibility of the sys-
tem with existing graphs. Though there are no current plans to remove this codes, it is

4.3. LEXICAL MASKS 77

recommended to avoid them in graphs designed to be used with more recent versions,1 so
that the number of lexical masks in use does not increase uselessly.

NOTE: as described in section 2.5.4, NO meta can be used to match the {STOP} marker, not
even <TOKEN>.

4.3.2 References to information in the dictionaries

The second kind of lexical masks refers to the information in the text dictionaries. The four
possible forms are:

• <be>: matches all the entries that have be as canonical form. Note that this pattern is
ambiguous if be is also a grammatical or semantic code;

• <be.>: matches all the entries that have be as canonical form. This pattern is not
ambiguous as the previous one;

• <be.V>: matches all entries having be as canonical form and the grammatical code V;

• <V>: matches all entries having the grammatical code V. This pattern is as ambiguous
as the first one. To remove the ambiguity, you can use either <.V> or <+V>;

• {am,be.V} or <am,be.V>: matches all the entries having am as inflected form, be
as canonical form and the grammatical code V. This kind of lexical mask is only of in-
terest if applied to the text automaton where all the ambiguity of the words is explicit.
While executing a search on the text, that lexical mask matches the same as the simple

token am.

4.3.3 Grammatical and semantic constraints

The references to dictionary information (be, V) in these examples are basic. It is possible to
express more complex lexical masks by using several grammatical or semantic codes sepa-
rated by the character +. If several codes are present, the character + means ‘’and”: an entry
of the dictionary is only found if it has all the codes that are present in the mask. The mask
<N+z1> thus recognizes the entries:

broderies,broderie.N+z1:fp
capitales européennes,capitale européenne.N+NA+Conc+HumColl+z1:fp

but not:

Descartes,René Descartes.N+Hum+NPropre:ms
habitué,.A+z1:ms

It is possible to exclude codes by preceding them with the character ~ instead of +. In order
to be recognized, an entry has to contain all the codes required by the lexical mask and

1From version 3.1beta, revision 4072, October 2, 2015.

78 CHAPTER 4. SEARCHING WITH REGULAR EXPRESSIONS

none of the prohibited ones. For instance, <A~z3> matches the entries that have the code A
without the code z3 (cf. table 3.2).2 If you want to refer to a code containing the character ~
you have to escape this character by preceding it with a \.

CHANGE NOTE: before version 2.1, the negation operator was the minus. If you want to
preserve backward compatibility without modifying your graphs, you have to call Locate
by hand with the -g minus option.

The syntax of lexical masks does not make any difference between grammatical codes (ta-
ble 3.1) and semantic codes (table 3.2). In the DELAF dictionary format, grammatical codes
are those that appear first and encode the part of speech, but in Unitex lexical masks, the or-
der in which grammatical and semantic codes appear does not matter. The three following
patterns are equivalent:

<N~Hum+z1>
<z1+N~Hum>
<~Hum+z1+N>

A lexical mask can contain a semantic code without a part-of-speech code.

NOTE: it is not possible to use a lexical mask that only has prohibited codes. <~N> and
<~A~z1> are thus incorrect masks. However, you can express such constraints using con-
texts (see section 6.3).

4.3.4 Inflectional constraints

It is also possible to specify constraints about inflectional codes. These constraints have to
be preceded by at least one grammatical or semantic code. They are represented in the same
format as the inflectional codes in the dictionaries. Here are some French examples of lexical
masks using inflectional constraints:

• <A:m> recognizes a adjective in the masculine;

• <A:mp> recognizes an adjective in the masculine plural.

An inflectional code is introduced by the : character and is made up of one or more charac-
ters, each of which represents one piece of information. Let us consider first the simple case
of dictionary entries and masks which have exactly one inflectional code. In order to let a
dictionary entry E be recognized by a mask M , it is necessary that the inflectional code of E
contains all the characters of the inflectional code of M :

E=pretext,.V:P3p
M=<V:P3>

2If a word is described in the dictionaries by an entry with A+z3 and another with only A, the word is
matched by <A+z3> because of the former entry and by <A~z3> because of the latter.

4.3. LEXICAL MASKS 79

The inflectional code P3p of E contains both characters P and 3. The code P3 is included in
the code of E. Therefore, mask M recognizes entry E.

The order of the characters inside an inflectional code is without importance. All the gram-
matical and semantic codes must precede the inflectional codes.

If several inflectional codes are present in a lexical mask, the : character means ‘’or”:

• <A:mp:f> matches both <A:mp> and <A:f>; it recognizes adjectives in the masculine
plural or in the feminine;

• <V:2:3> recognizes a verb in the 2nd or 3rd person; that excludes all tenses that have
neither a 2nd or 3rd person (infinitive, past participle and present participle) as well
as the tenses that are conjugated in the first person.

In order to let a dictionary entry E be recognized by a mask M , it is necessary that at least
one inflectional code of E contains all the characters of at least one inflectional code of M .
Consider the following example:

E=pretext,.V:W:P1s:P2s:P1p:P2p:P3p
M=<V:P3s:P3>

No inflectional code of E contains the characters P, 3 and s at the same time. However, the
code P3p of E does contain both characters P and 3. The code P3 is included in at least one
code of E. Therefore, mask M recognizes entry E.

4.3.5 Negation of a lexical mask

It is possible to negate a lexical mask by placing the character ! immediately after the char-
acter <. Negation is possible with the masks <WORD>, <LOWER>, <UPPER>, <FIRST>,3

<DIC> as well as with the masks that carry grammatical, semantic of inflectional codes (i.e.
<!V~z3:P3>). The masks # and " " are the negation of each other. The mask <!WORD>
recognizes all tokens that do not consist of letters except for the sentence delimiter {S}
and the {STOP} marker. Negation has no effect on <NB>, <SDIC>, <CDIC>, <TDIC> and
<TOKEN>.

The negation is interpreted in a special way in the masks <!DIC>, <!LOWER>, <!UPPER>
and <!FIRST>.4 Instead of recognizing all forms that are not recognized by the mask
without negation, these masks find only forms that are sequences of letters. Thus, the mask
<!DIC> allows you to find all unknown words in a text. These unknown forms are mostly
proper names, neologisms and spelling errors (cf. Figure 4.1).

The negation of a dictionary mask like <V:G> will match any word, except for those that are
matched by this mask. For instance, <!V:G> will not match the word being, even if there
are homonymic non-verbal entries in the dictionaries:

3And with their legacy counterparts <MOT>,<MIN>, <MAJ>, <PRE>. See Section 4.3.1.
4And with their legacy counterparts <!MIN>, <!MAJ>, <!PRE>. See Section 4.3.1.

80 CHAPTER 4. SEARCHING WITH REGULAR EXPRESSIONS

Figure 4.1: Result of the search for <!DIC>

being,.A
being,.N+Abst:s
being,.N+Hum:s

Here are some examples of lexical masks with the different types of constraints:

• <A~Hum:fs>: a non-human adjective in the feminine singular;

• <lire.V:P:F>: the verb lire in the present or future tense;

• <suis,suivre.V>: the word suis as inflected form of the verb suivre (as opposed to
the form of the verb être);

• <facteur.N~Hum>: all nominal entries that have facteur as canonical form and that
do not have the semantic code Hum;

• <!ADV>: all words that are not adverbs;

• <!WORD>: all tokens that are not made of letters (cf. figure 4.2). This mask does not
recognize the sentence delimiter {S} and the special tag {STOP}.

4.4 Concatenation

There are three ways to concatenate regular expressions. The first consists in using the
concatenation operator which is represented by the dot. Thus, the expression:

4.5. UNION 81

Figure 4.2: Result of a search for the pattern <!WORD>

<DET>.<N>

recognizes a determiner followed by a noun. The space can also be used for concatenation,
as well as the empty string. The following expressions:

the <A> cat
the<A>cat

recognizes the token the, followed by an adjective and the token cat. The parenthesis are
used as delimiters of a regular expression. All of the following expressions are equivalent:

the <A> cat
(the <A>)cat
the.<A>cat
(the).<A> cat
(the.(<A>)) (cat)

4.5 Union

The union of regular expressions is expressed by typing the character + between them. The
expression

(I+you+he+she+it+we+they)<V>

recognizes a pronoun followed by a verb. If an element in an expression is optional, it is
sufficient to use the union of this element and the empty word epsilon. Examples:

the (little+<E>) cat recognizes the sequences the cat and the little cat
(<E>+Anglo-).(French+Indian) recognizes French, Indian, Anglo-French and Anglo-
Indian

82 CHAPTER 4. SEARCHING WITH REGULAR EXPRESSIONS

4.6 Kleene star

The Kleene star, represented by the character *, allows you to recognize zero, one or several
occurrences of an expression. The star must be placed on the right hand side of the element
in question. The expression:

this is very* cold

recognizes this is cold, this is very cold, this is very very cold, etc. The star has a higher priority
than the other operators. You have to use brackets in order to apply the star to a complex
expression. The expression:

0,(0+1+2+3+4+5+6+7+8+9)*

recognizes a zero followed by a comma and by a possibly empty sequence of digits.

WARNING: It is prohibited to search for the empty word with a regular expression. If you
try to search for (0+1+2+3+4+5+6+7+8+9)*, the program will raise an error as shown in
figure 4.3.

Figure 4.3: Error message when searching for the empty string

4.7 Morphological filters

It is possible to apply morphological filters to the lexemes found. For that, it is necessary to
immediately follow the lexeme found by a filter in double angle brackets:

lexical mask<<morphological pattern>>

4.7. MORPHOLOGICAL FILTERS 83

The morphological filters are expressed as regular expressions in POSIX format (see [65] for
the detailed syntax). Here are some examples of elementary filters:

• <<ss>>: contains ss

• <<^a>>: begins with a

• <<ez$>>: ends with ez

• <<a.s>>: contains a followed by any character, followed by s

• <<a.*s>>: contains a followed by a sequence of any character, followed by s

• <<ss|tt>>: contains ss or tt

• <<[aeiouy]>>: contains a non accentuated vowel

• <<[aeiouy]{3,5}>>: contains a sequence of non-accentuated vowels whose length
is between 3 and 5

• <<es?>>: contains e followed by an optional s

• <<ss[^e]?>>: contains ss followed by an optional character which is not e

It is possible to combine these elementary filters to form more complex filters:

• <<[ai]ble$>>: ends with able or ible

• <<^(anti|pro)-?>>: begins with anti or pro, followed by an optional dash

• <<^([rst][aeiouy]){2,}$>>: a word formed by 2 or more sequences beginning
with r, s or t followed by a non-accentuated vowel

• <<^([^l]|l[^e])>>: does not begin with l unless the second letter is an e, in other
words, any word except the ones starting with le. Such constraints are better de-
scribed using contexts (see section 6.3).

By default, a morphological filter alone is regarded as applying it to the lexical mask <TOKEN>,
that means any token except space and {STOP}. On the other hand, when a filter follows a
lexical mask immediately, it applies to what was recognized by the lexical mask. Here are
some examples of such combinations:

• <V:K><<i$>>: Past participle ending with i

• <CDIC><<->>: A compound word containing a dash

• <CDIC><< .* >>: a compound word containing at least two spaces

• <A:fs><<^pro>>: a feminine singular adjective beginning with pro

• <DET><<^([^u]|(u[^n])|(un.+))>>: a (French) determiner different from un

84 CHAPTER 4. SEARCHING WITH REGULAR EXPRESSIONS

• <!DIC><<es$>>: a word which is not in the dictionary and which ends with es

• <V:S:T><<uiss>>: a verb in the past or present subjunctive, and containing uiss

NOTE: By default, morphological filters are subject to the same variations of case as lexical
masks. Thus, the filter <<^b>> will recognize all the words starting with b, but also those
which start with B. To force the matcher to respect case, add _f_ immediately after the filter,
e.g.: <<^b>>_f_.

4.8 Search

4.8.1 Search configuration

In order to search for an expression, first open a text (cf. chapter 2). Then click on "Locate
Pattern..." in the "Text" menu. The window of figure 4.4 appears.

Figure 4.4: “Locate pattern” window

The "Locate pattern in the form of" box allows you to select regular expression or grammar.
Click on "Regular expression".

The "Index" box allows you to select the recognition mode:

4.8. SEARCH 85

• "Shortest matches" : prefers shortest matches in case of nested sequences. For instance,
if your grammar can recognize the sequences a very hot chili and very hot, the first one
will be discarded;

• "Longest matches" : prefers longest matches (a very hot chili in our example). This is
the default;

• "All matches" : outputs all recognized sequences.

The "Search limitation" box is used to limit the number of results to a certain number of
occurrences. By default, the search is limited to the first 200 occurrences.

The options of the "Grammar outputs" box do not concern regular expressions. They are de-
scribed in section 6.10. The same for options of tab "Advanced options" (see section 6.10.2).

In the "Search algorithm" frame, you can specify wether you want to perform the locate op-
eration on the text using the Locate program or on the text automaton with LocateTfst.
By default, search is done with the Locate program, as Unitex always did until now. If you
want to use LocateTfst, please read dedicated section 7.7.

Enter an expression and click on "Search" in order to start the search. Unitex will transform
the expression into a grammar in the .grf format. This grammar will then be compiled into
a grammar of the .fst2 format that will be used for the search.

4.8.2 Presentation of the results

When the search is finished, the window of figure 4.5 appears showing the number of
matched occurrences, the number of recognized tokens and the ratio between this number
and the total number of tokens in the text.

Figure 4.5: Search results

After clicking on "OK" you will see window 4.6 appear, which allows you to configure the
presentation of the matched occurrences. You can also open this window by clicking on
"Located Sequences..." in the "Text" menu. The list of occurrences is called a concordance.

86 CHAPTER 4. SEARCHING WITH REGULAR EXPRESSIONS

Figure 4.6: Result display configuration

The "Modify text" box offers the possibility to replace the matched occurrences with the
generated outputs. This possibility will be examined in chapter 6.

The "Extract units" box allows you to create a text file with all the sentences that do or do
not contain matched units. With the button "Set File", you can select the output file. Then
click on "Extract matching units" or "Extract unmatching units" depending on whether you
are interested in sentences with or without matching units.

In the "Show matching sequences in context" box, you can select the length in characters of
the left and right contexts of the occurrences that will be presented in the concordance. If
an occurrence has less characters than its right context, the line will be completed with the
necessary number of characters. If an occurrence has a length greater than that of the right
context, it will be displayed completely.

4.8. SEARCH 87

NOTE: in Thai, the size of the contexts is measured in displayable characters and not in real
characters. This makes it possible to keep the line alignment in the concordance despite the
presence of diacritics that combine with other letters instead of being displayed as normal
characters.

You can choose the sort order in the list "Sort According to". The mode "Text Order" displays
the occurrences in the order of their appearance in the text. The other six modes allow you
to sort in columns. The three zones of a line are the left context, the occurrence and the right
context. The occurrences and the right contexts are sorted from left to right. The left contexts
are sorted from right to left. The default mode is "Center, Left Col.". The concordance is
generated in the form of an HTML file.

If a concordance reaches several thousands of occurrences, it is advisable to display it in a
web browser (Firefox [11], Netscape [12], Internet Explorer, etc.) instead. Check "Use a web
browser to view the concordance" (cf. figure 4.6). This option is activated by default if the
number of occurrences is greater than 2000. You can configure which web browser to use by
clicking on "Preferences..." in the menu "Info". Click on the tab "Language & Presentation"
and select the program to use in the field "Html Viewer" (cf. figure 4.7).

If you choose to open the concordance in Unitex, you will see a window as shown on Figure
4.8. Occurrences react as hyperlinks. If you click on an occurrence, the text frame is opened
and the corresponding sequence is highlighted. Moreover, if the text automaton is available
and if this window is not iconified, the sentence automaton that contains the occurrence will
be shown.

88 CHAPTER 4. SEARCHING WITH REGULAR EXPRESSIONS

Figure 4.7: Selection of a web browser for displaying concordances

4.8. SEARCH 89

Figure 4.8: Example concordance

90 CHAPTER 4. SEARCHING WITH REGULAR EXPRESSIONS

4.8.3 Statistics

If you select the “Statistics” tab in the “Located sequences..” frame, you will see the panel
shown on figure 4.9. This panel allows you to get some statistics from the previously in-
dexed sequences.

Figure 4.9: Statistics panel

In the “Mode” panel, you can select the kind of statistics you want:

• collocates by z-score: the previous one, plus some additionnal information (number of
occurrences of the collocate in the match context and in the whole corpus, z-score of
the collocate)

• collocates by frequency: shows the tokens that cooccur in the match context

4.8. SEARCH 91

• contexts by frequency: shows matches with left and right contexts (see below). “count”
is the number of occurrences of a given match+context

In the second panel, you can set the lenght of left and right contexts to be used, in non space
tokens. NOTE: this notion of context has nothing to do with contexts in grammars.

In the last panel, you can allow or not case variations. If you allow case variations, the and
THE will be considered as a same token, and the count will be the sum of the counts of the
and THE.

The following figures show the statistics computed in each mode for the query <have> on
ivanhoe.snt.

Figure 4.10: left+match+right count

92 CHAPTER 4. SEARCHING WITH REGULAR EXPRESSIONS

Figure 4.11: collocate count

Figure 4.12: collocate, count and other information

Chapter 5

Local grammars

Local grammars are a powerful tool to represent the majority of linguistic phenomena. The
first section presents the formalism in which these grammars are represented. Then we will
see how to construct and present grammars using Unitex.

5.1 The local grammar formalism

5.1.1 Algebraic grammars

Unitex grammars are variants of algebraic grammars, also known as context-free grammars.
An algebraic grammar consists of rewriting rules. Below you see a grammar that matches
any number of a characters:

S → aS

S → ε

The symbols to the left of the rules are called non-terminal symbols since they can be replaced.
Symbols that cannot be replaced by other rules are called terminal symbols. The items at
the right side are sequences of non-terminal and terminal symbols. The epsilon symbol
ε designates the empty word. In the grammar above, S is a non-terminal symbol and a a
terminal (symbol). S can be rewritten as either an a followed by a S or as the empty word.
The operation of rewriting by applying a rule is called derivation. We say that a grammar
generates a word if there exists a sequence of derivations that produces that word. The
non-terminal that is the starting point of the first derivation is called an axiom.

The grammar above also generates the word aa, since we can derive this word according to
the axiom S by applying the following derivations:

Derivation 1: rewriting the axiom to aS
S → aS

Derivation 2: rewriting S at the right side of aS
S → aS → aaS

93

94 CHAPTER 5. LOCAL GRAMMARS

Derivation 3: rewriting S to ε
S → aS → aaS → aa

We call the set of words generated by a grammar the language generated by the grammar.
The languages generated by algebraic grammars are called algebraic languages or context-free
languages.

5.1.2 Extended algebraic grammars

Extended algebraic grammars are algebraic grammars where the members on the right side
of the rule are not just sequences of symbols but regular expressions. Thus, the grammar that
generates a sequence of an arbitrary number of a’s can be written as a grammar consisting
of one rule:

S → a∗

These grammars, also called recursive transition networks (RTN) or syntax diagrams, are suited
for a user-friendly graphical representation. Indeed, the right member of a rule can be rep-
resented as a graph whose name is the left member of the rule.

However, Unitex grammars are not exactly extended algebraic grammars, since they con-
tain the notion of transduction. This notion, which is derived from the field of finite state
automata, enables a grammar to produce some output. With an eye towards clarity, we
will use the terms grammar or graph. When a grammar produces outputs, we will use the
term transducer, as an extension of the definition of a transducer in the area of finite state
automata.

5.2 Editing graphs

5.2.1 Creating a graph

In order to create a graph, click on "New" in the "FSGraph" menu (5.1).

You will then see the window coming up as in figure 5.2.

In order to import Intex graphs into Unitex, you have to convert them into Unicode. The
process is the same as for texts (see section 2.2).

The symbol in arrow form is the initial state of the graph. The round symbol with a square
is the final state of the graph. The grammar only recognizes expressions that are described
along the paths between initial and final states.

In order to create a box, click inside the window while pressing the Ctrl key. A blue rectangle
will appear that symbolizes the empty box that was created (see figure 5.3).

When the box is created, it is automatically selected.

5.2. EDITING GRAPHS 95

Figure 5.1: FSGraph menu

Figure 5.2: Empty graph

If you use Unitex on a Macintosh device, you must press the "Command key" instead of Ctrl
in every action involving the Ctrl key.

You see the contents of the box in the text field at the top of the window (figure 5.3). The
newly created box contains the <E> symbol that represents the empty word epsilon. Replace
this symbol by the text I+you+he+she+it+we+they and press the Enter key. You see that
the box now contains seven lines (see figure 5.4).

96 CHAPTER 5. LOCAL GRAMMARS

Figure 5.3: Creating a box

Figure 5.4: Box containing I+you+he+she+it+we+they

The + character serves as a separator. The box is displayed in the form of red text lines since
it is not connected to another one at the moment. We often use this type of boxes to insert
comments into a graph.

If you intend to insert comments into a graph, you can create a box starting with /. The text
in this box will be displayed in green, and may contain empty lines. This box can’t have any
incoming nor outgoing transitions (see figure 5.5).

To connect a box to another one, first click on the source box, then click on the target box. If

5.2. EDITING GRAPHS 97

Figure 5.5: Box containing comments

there already exists a transition between two boxes, it is deleted. It is also possible to do that
by clicking first on the target box and then on the source box while pressing Shift. In our
example, after connecting the box to the initial and final states of the graph, we get a graph
as in figure 5.6:

Figure 5.6: Graph that recognizes English pronouns

NOTE: If you double-click a box, you connect this box to itself (see figure 5.7). To undo this
double-click on the same box a second time, or use the "Undo" button.

Click on "Save as..." in the "FSGraph" menu to save the graph. By default, Unitex pro-
poses to save the graph in the sub-directory Graphs in your working directory. You can

98 CHAPTER 5. LOCAL GRAMMARS

Figure 5.7: Box connected to itself

see if the graph was modified after the last saving by checking if the title contains the text
(Unsaved).

Loops are allowed in graphs. They can be around a single box, as in fig. 5.7, or around
several boxes, as in fig. 5.17. The content of the loop will be recognized any number of times
in sequence. You can set limits to the number of times, but only for a loop around a single
box: see section 6.2.4.

When editing a graph you can bring up a specific contextual menu (fig. 5.8) to perform
standard graph edition operations by right clicking in the background of the graph window.

Figure 5.8: contextual menu

This menu will offer several operations that are frequently used when editing a graph.

• create a new box

• save, print the current graph or set up the page parameters

• the usual "Tools", "Format" and "Zoom" menu also accessible in the FSGraph menu

If one or several boxes are currently selected, the following menus will be accessible, al-
lowing you to apply specific operations to these sets of boxes. Otherwise, these menus are
useless and therefore non accessible.

5.2. EDITING GRAPHS 99

• surround selected boxes with an input or output variable definition, with contexts,
or with Morphological mode delimiters. These operations are also accessible via the
Toolbar of the graph edition window (see section 5.2.8).

• merge selected boxes

• export as a new graph

5.2.2 Sub-Graphs

In order to call a sub-graph, its name is inserted into a box and preceded by the : character.
If you enter the text:

alpha+:beta+gamma+:E:\greek\delta.grf

into a box, you get a box similar to the one in figure 5.9:

Figure 5.9: Graph that calls sub-graphs beta and delta

You can indicate the full name of the graph (E:\greek\delta.grf) or simply the base
name without the path (beta); in this case, the sub-graph is expected to be in the same
directory as the graph that references it. References to absolute path names should as a rule
be avoided, since such calls are not portable. If you use such an absolute path name, the
graph compiler will emit a warning (see figure 5.10).

For portability you should not use \ or / as separator in graph path names. Use instead :
which is understood as a system-independent separator. In figure 5.10 \ and / are internally
converted by the graph compiler to : (E::greek:delta.grf).

Graph repository

When you need to call a grammar X inside a grammar Y , a simple method is to copy all
the graphs of X into the directory that contains the graphs of Y . This method raises two
problems:

• the number of graphs in the directory grows quickly;

• two graphs cannot share the same name.

100 CHAPTER 5. LOCAL GRAMMARS

Figure 5.10: Warning about a non portable graph name

To avoid that, you can store the grammar X in a special directory, called the graph repository.
This directory is a kind of library where you can store graphs, and then call them using ::
instead of :. To use this mechanism, you first need to set the path to the graph repository.
Go into the "Info>Preferences...>Directories" menu, and select your directory in the "Graph
repository" frame (see Figure 5.11). There is one graph repository per language, so feel free
to share or not the same directory for all the languages you work with.

Let us assume that we have a repository tree as on Figure 5.12. If we want to call the graph
named DET that is located in sub-directory Johnson, we must use the call
::Det:Johnson:DET (see Figure 5.13 1).

TRICK: If you want to avoid long path names like ::Det:Johnson:DET, you can create
a graph named DET and put it the repository root (here D:\repository\DET.grf). In
this graph, just put a call to ::Det:Johnson:DET. Then, you can just call ::DET in your
own graphs. This has two advantages: 1) you do not have long path names; 2) you can
modify the graphs in your repository with no constraint on your own graphs, because the
only graph that will have to be modified is the one located at the repository root.

Calls to sub-graphs are represented in the boxes by grey lines, as in Fig. 5.14, or brown lines
in the case of graphs located in the repository, as in Fig. 5.13. If the .GRF File of the sub-
graph is not found at the path you indicated, Unitex will try to find a fst2 file of the same
name. If Unitex can’t find any of the .grf and .fst2 files, the call to the missing sub-graph

1To avoid confusion, graph calls that refer to the repository are displayed in brown instead of grey.

5.2. EDITING GRAPHS 101

Figure 5.11: Setting the path to the graph repository

Figure 5.12: Graph repository example

Figure 5.13: Call to a graph located in the repository

will be displayed on a red line. On Windows, you can open a sub-graph by clicking on the
grey line while pressing the Alt key. On Linux, the <Alt+Click> combination is intercepted
by the system:2 in order to open a sub-graph, middle-click on its name, or click on its name
by pressing the left and the right mouse buttons simultaneously.

2If you are working on KDE, you can deactivate <Alt+Click> in kcontrol.

102 CHAPTER 5. LOCAL GRAMMARS

Figure 5.14: Missing called sub-graphs appear in red

The list of sub-graphs called from the current graph and the graphs in which the current
graph is called can be displayed by clicking on the second and third button of the fourth set
of buttons in the toolbar command (see Figure 5.15 and Figure 5.29 in section 5.2.8). In these
Lists of sub-graphs :

• sub-graphs directly called from the current graph appear with their simple filename

• sub-graphs indirectly called from one of the graphs called by the current graph appear
with an arrow before their filename.

• sub-graphs that appear in one of the graphs that are called from the current one but
that are unplugged and never processed appear in orange

• sub-graphs that are not found (neither .grf nor .fst2) appear in red

5.2.3 Manipulating boxes

You can select several boxes using the mouse. In order to do so, click and drag the mouse
without releasing the button. When you release the button, all boxes touched by the selec-
tion rectangle will be selected and are displayed in white on a blue background, as shown
on Figure 5.17.
You can select several boxes by keeping simultaneously the <CTRL> and <SHIFT> keys
pressed and by clicking on every box you want to add to your current selection. This way
you can select several boxes without selecting all the boxes located in their area.

When boxes are selected, you can move them by clicking and dragging the cursor without
releasing the button. In order to cancel the selection, click on an empty area of the graph. If
you click on a box, all the boxes of the selection will be connected to it.

You can perform a copy-paste with several boxes, as in Figure 5.18. Select them and press
<Ctrl+C> or click on "Copy" in the "Edit" menu. The selection is now in the Unitex clipboard.
You can then paste this selection by pressing <Ctrl+V> or by selecting "Paste" in the "Edit"
menu.

NOTE: You can paste a multiple selection into a different graph from the one where you
copied it from.

5.2. EDITING GRAPHS 103

Figure 5.15: Display the list of all called graphs

Figure 5.16: Selecting several boxes

Figure 5.17: Selecting distant boxes

In order to delete boxes, select them, delete the text that they contain (i.e. the text presented
in the text field above the window) and press the Enter key.

The initial and final states cannot be deleted.

5.2.4 Transducers

A transducer is a graph in which outputs can be associated with boxes. To insert an output,
use the special character /. All characters to the right of it will be part of the output. Thus,

104 CHAPTER 5. LOCAL GRAMMARS

Figure 5.18: Copy-Paste of a multiple selection

the text one+two+three/number results in a box like in figure 5.19. The output associated
with a box is represented in bold text below it.

Figure 5.19: Example of a transducer

Graphs with outputs are often used to produce a modified version of a corpus (see Sec-
tion 6.10.4). Outputs will either be inserted in the corpus, or replace the text that matches
the box, depending on whether you launch the search (Section 6.10) in MERGE or REPLACE
mode (Section 6.7).

However, you may not associate an output to a box that calls a sub-graph. Instead of that,
you must create an empty box before the box that calls the sub-graph, and associate the
output to the empty box, as in Fig. 5.20.

5.2. EDITING GRAPHS 105

Figure 5.20: Box before call to sub-graph is empty and has output

Empty boxes with an output

To create an empty box with an output consisting of number, type <E>/number. When you
use a graph to produce a modified version of a corpus, the output of empty boxes will be
inserted in the corpus, no matter whether you launch the search in MERGE or REPLACE
mode (Section 6.7): an empty box does not match any text anyway. For example, the graph
in Fig. 5.21, used in MERGE mode, inserts <number> before the numbers.

Figure 5.21: Empty boxes with outputs

The output is inserted between the text produced by the preceding box (here the preposition)
and the text produced by the next box (here the number).

In the modified version of the corpus, the output is stuck to the left: with the graph of
Fig. 5.21, <number> is stuck to the preposition. This results, for instance, in:

(...) with<number> two</number> of (...)

If you want to stick the output to the right instead, you can use the special character #
(Section 4.3.1) as in Fig. 5.22.

Figure 5.22: An empty box with an output that will stick to the next word

Now the result is:

(...) with <number>two</number> of (...)

Similarly, to insert a curly brace and make sure it will stick to the following text in the
modified version of the corpus, you can call the graph B of Figure 5.23.

106 CHAPTER 5. LOCAL GRAMMARS

Figure 5.23: Graph B

Checking braces

Unitex can check if all the curly braces of a grammar are balanced in all paths. (This com-
mand is useful, for example, in the case of a grammar that creates lexical tags enclosed in
braces.) To invoke this command, choose in the FSGraph menu the Tools/Verify braces item.
It also checks the called sub-graphs, and compiles the graphs at the same time.3 Both the
braces inside the boxes (including despecialized braces) and the braces in the box outputs
count. The tool does not check if the grammar opens braces before or after closing them.

The verification assumes that the braces opened in a graph are closed in the same graph,
except that a call to a graph named B, no matter its content, automatically counts for one
opening brace.4 This exception is designed to be used with the graph of Figure 5.23.5

Weights

You can assign integer weights to the boxes of a transducer. Thus, when a sequence of tokens
is matched by several paths with different outputs (ambiguous transducer), only a path with
the highest weight will produce an output. After a locate, this will affect the concordance, in
which the matched sequences of words will appear only once with the appropriate output
(Figure 5.24).

In order to assign weight 1 to a box, insert ${1}$ in the output of the box, e.g. as in
<E>/${1}$.

The weight of a path is the latest weight found while traversing the path. A weight can be
zero, but cannot be less than zero. A path with a weight (even zero) has higher precedence
than a path without weight.

With weights, you can define a priority among paths that match the same sequence. You
cannot define a priority among embedded matching sequences (cf. section 4.8.1) or among
overlapping matching sequences (cf. section 6.7.3).

Weights are valid only within a graph, not in sub-graphs or in calling graphs.
3 The tool generates a file named <graph name>autolst.txt, which you can delete after the analysis.
4 A call to graph BB counts for two, and BBB for three.
5 The tool checks braces in sub-graphs with the special names B, BB and BBB too, but in any graph, it ignores

every path where the string of box contents ends with # and the string of box outputs begins with {, which is the
case of all the paths in graph B.

5.2. EDITING GRAPHS 107

Figure 5.24: weights in graphs

5.2.5 Input Variables

It is possible to select parts of a text sequence recognized by a grammar using input vari-
ables. To associate an input variable var1 with parts of a grammar, use either the button
with red parentheses in the toolbar above the graph (Section 5.2.8) or the special symbols
$var1(and $var1). (These symbols define the beginning and the end of the part to be
stored. Create two boxes, one containing $var1(and the other $var1). These boxes must
not contain anything but the variable name preceded by $ and followed by a parenthesis.
Then link these boxes to the zone of the grammar to be stored.) The graph in figure 5.25
recognises a sequence of digits before dollar or dollars. This sequence will be stored in
a variable named var1.

Figure 5.25: Using the input variable var1

Variable names may contain latin letters (without accents), upper or lower case, numbers,
or the _ (underscore) character. Unitex distinguishes between uppercase and lowercase
characters.

108 CHAPTER 5. LOCAL GRAMMARS

Once a variable is defined, you can use it in transducer outputs by surrounding its name
with $. The grammar in figure 5.26 recognizes a date formed by a month and a year, and
produces the same date as an output, but in the order year-month.

Figure 5.26: Inverting month and year in a date

If you want to use the character $ in the output of a box, you have to double it, as shown on
figure 5.25.

When a box redefines a variable that had already been defined, the new value overrides the
previous one. Thus, if the variable is defined in a loop, the value of the variable just after
the loop depends on the last iteration of the loop.

By default, Locate and LocateTfst consider that variables that have not been defined are
empty. You can modify this behavior as shown in section 6.10.2. Moreover, it is possible to
test whether a variable has been defined or not, as shown in section 6.7.5.

5.2.6 Copying lists

It can be practical to perform a copy-paste operation on a list of words or expressions from a
text editor to a box in a graph. In order to avoid having to copy every term manually, Unitex
provides a mean to copy lists. To use this, select the list in your text editor and copy it using
<Ctrl+C> or the copy function integrated in your editor. Then create a box in your graph,
and press <Ctrl+V> or use the "Paste" command in the "Edit" menu to paste it into the box.
A window as in Figure 5.27 opens:

This window allows you to define the left and right contexts that will automatically be used
for each term of the list. By default, these contexts are empty. If you use the contexts < and
.V> with the following list:

eat

5.2. EDITING GRAPHS 109

Figure 5.27: Selecting a context for copying a list

sleep
drink
play
read

you will get the box in figure 5.28:

Figure 5.28: Box resulting from copying a list and applying contexts

5.2.7 Special Symbols

The Unitex graph editor interprets the following symbol in a special manner:

" + : / < > # \

Table 5.1 summarizes the meaning of these symbols for Unitex, as well as the ways to rec-
ognize these characters in texts.

5.2.8 Toolbar Commands

The toolbar above a graph contains shortcuts for certain commands and allows you to ma-
nipulate boxes of a graph by using some "tools". This toolbar may be moved by clicking
on the "rough" zone. It may also be dissociated from the graph and appear in an separate

110 CHAPTER 5. LOCAL GRAMMARS

Caracter Meaning Escape
" quotation marks mark sequences that must not be in-

terpreted by Unitex, and whose case must be taken
verbatim

\"

+ + separates different lines within the boxes "+" or \+
: : introduces a call to a sub-graph ":" or \:
/ / indicates the start of a transduction within a box \/
< < indicates the start of a pattern or a meta "<" or \<
> > indicates the end of a pattern or a meta ">" or \>
prohibits the presence of a space "#" or \#
\ \ escapes most of the special characters \\

Table 5.1: Encoding of special characters in the graph editor

Figure 5.29: Toolbar

window (see figure 5.29). In this case, closing this window puts the toolbar back at its initial
position. Each graph has its own toolbar.

The first two icons are shortcuts for saving and compiling the graph. The following five
correspond to the Copy, Cut, Paste, Redo and Undo operations.

The following six icons correspond to edit commands for boxes. The first one, a white arrow,
corresponds to the boxes’ normal edit mode. The next 5 icons correspond to specific tools.
In order to use a tool, click on the corresponding icon: the mouse cursor changes its form
and mouse clicks are then interpreted in a particular fashion. What follows is a description
of these tools, from left to right:

• creating boxes: creates a box at the empty place where the mouse was clicked;

• deleting boxes: deletes the box that you click on;

• connect boxes to another box: using this utility you select one or more boxes and
connect it or them to another one. In contrast to the normal mode, the connections are
inserted to the box where the mouse button was released on;

• connect boxes to another box in the opposite direction: this utility performs the same
operation as the one described above, but connects the boxes to the one clicked on in
opposite direction;

• open a sub-graph: opens a sub-graph when you click on a grey line within a box.

In order to change the cursor back to its normal form, the white arrow, right-click on the
background of the graph: then, mouse clicks will be interpreted in the normal way again.

5.2. EDITING GRAPHS 111

The next icon (showing a wrench) is a shortcut to open the window with the graph display
options. The following two icons allow you to view lists of graphs that are related to the
current graph by a "graph/sub-graph" relation :

• The first displays a list of graphs called by the current graph

• The second button shows the list of all the graphs calling the current graph as a sub-
graph.

The two green arrows button will refresh the current graph to load the latest version of the
current graph. If any graph has its .grf file changed by any operation while displayed in a
Unitex window, a window will pop up to warn you and invite you to refresh its window.

The balance button allows you to compare the current graph to another graph or another
version of the same graph. This will display a new window (as in Figure 5.30) contain-
ing both graphs with colours pointing out the different types of changes between the two
graphs: insertion, removal, moves of each state of the graph and change of the content of a
state (respectively in green, red, purple and yellow).

Figure 5.30: DIFF

The last seven buttons are shortcuts to define variables, use the morphological mode,
declare as a context one or several selected states, or define a generalizing box in a tagging
generalization graph. These buttons will be clickable only when one or several states are
currently selected :

112 CHAPTER 5. LOCAL GRAMMARS

• () : input variable (see Section 5.2.5)

• () : output variable (see Section 6.8)

• <> : morphological mode (see Section 6.4)

• $* : left context (see Section 6.3)

• $[: right context (see Section 6.3)

• $![: negative right context (see Section 6.3)

• $G : tagging generalization (see Section 12.3)

5.2.9 Find and replace in graphs

In order to search graphs for an expression or for a sequence of boxes, open one of the graphs
and click either on "Find and replace" in the "FSGraph" menu, or on the magnifying glass in
the graph toolbar. This will display a window as in Figure 5.31.

Figure 5.31: Window for finding and replacing inside one box

The "Inside one box" tab allows you to search boxes for an expression contained in one
of them. You can find every occurrence of a word, expression or character string, in a box,
below a box (cf. 5.2.4) or both. Type what you are looking for in "Find what", then click either

5.2. EDITING GRAPHS 113

"Find Previous" or "Find Next" to move to each box that contains one or several occurrences
of the query. The frame of the box will be highlighted in colour. If a box contains the name of
a sub-graph or of a variable (cf. 5.2.5) or any special-purpose codes, the program considers
that as part of the normal content of the box.

The list in "Graphs" allows you to find and replace either on a specific graph or on all open
graphs.

You can replace the occurrence(s) in a single box with the content of "Replace with": first
select the box you wish to modify, then click "Replace". This will replace the content of
"Find what" with the content of "Replace with".

If you want to replace every occurrence in the graph(s), click "Replace All".

You can narrow or extend the search by checking or unchecking the following options:

• Case sensitive: the search is sensitive to capitalization of letters.

• Use regular expressions: the search interprets the query as a regular expression accord-
ing to POSIX rules, i.e. un.*able for a sequence of characters containing un some-
where and able somewhere after.

• Match only a whole line: the search matches complete lines instead. In a box with an
output, the program considers the output belongs to the last line.

• Ignore comment boxes (default): the search ignores boxes not linked to any box at all.

To search graphs for a sequence of boxes, select the "Complete boxes" tab (Figure 5.32).

You can find every occurrence of a sequence of boxes. To express your query easily, first find
some existing graph(s) containing an occurrence of the first boxes of the sequence (or you
can make a graph just for that, and you don’t need save that graph), select a graph either by
clicking on it or by using the "Graphs" drop-down list, click an occurrence of the first box
and then click the Add button. Do the same to add other boxes to the query. The query
is displayed in the field next to the Add button, with each box separated from the next by
a I character. To add several boxes at once, check the "All boxes at once" option, select a
sequence of boxes (cf. 5.2.3) and add them.

Once your query is ready, make sure the "Graphs" drop-down list specifies the graph(s) you
want to search and click "Find Next" or "Find Previous". The system finds the box sequences
that match the query. A box with various lines matches only a box with the same lines in
the same order.

Only the sequences which do not contain any incoming or outgoing transitions are found,
except for incoming transitions to the first box or outgoing transitions from the last box. This
restriction ensures the Replace operation is clearly defined.

"Replace" and "Replace All" replace the sequence in "Find what" with the sequence in "Re-
place with". The incoming transitions to the first box and the outgoing transitions from the
last box are maintained.

114 CHAPTER 5. LOCAL GRAMMARS

Figure 5.32: Window for finding and replacing complete boxes

5.3 Display options

5.3.1 Sorting the lines of a box

You can sort the content of a box by selecting it and clicking on "Sort Node Label" in the
"Tools" submenu of the "FSGraph" menu. This sort operation does not use the SortTxt
program. It uses a basic sort mechanism that sorts the lines of the box according to the order
of the characters in the Unicode encoding.

5.3.2 Zoom

The "Zoom" submenu allows you to choose the zoom scale that is applied to display the
graph. The "Fit in screen" option stretches or shrinks the graph in order to fit it into the
screen. The "Fit in window" option adjusts the graph so that it is displayed entirely in the
window.

5.3. DISPLAY OPTIONS 115

Figure 5.33: Zoom sub-menu

116 CHAPTER 5. LOCAL GRAMMARS

5.3.3 Antialiasing

Antialiasing is a shading effect that avoids pixelization effects. You can activate this effect
by clicking on "Antialiasing..." in the "Format" sub-menu. Figure 5.34 shows one graph
displayed normally (the graph on top) and with antialiasing (the graph at the bottom).

Figure 5.34: Antialiasing example

This effect slows Unitex down. We recommend not to use it if your machine is not powerful
enough.

5.3. DISPLAY OPTIONS 117

5.3.4 Box alignment

In order to get nice-looking graphs, it is useful to align the boxes, both horizontally and
vertically. To do this, select the boxes to align and click on "Alignment..." in the "Format"
sub-menu of the "FSGraph" menu or press <Ctrl+M>. You will then see the window in
Figure 5.35.

The possibilities for horizontal alignment are:

• Top: boxes are aligned with the top-most box;

• Center: boxes are centered on the same axis;

• Bottom: boxes are aligned with the bottom-most box.

Figure 5.35: Alignment window

The possibilities for vertical alignment are:

• Left: boxes are aligned with the left-most box;

• Center: boxes are centered on the same axis;

• Right: boxes are aligned with the right-most box.

Figure 5.36 shows an example of alignment. The group of boxes to the right is (quite) a copy
of the ones to the left that was aligned.

The option "Use Grid" in the alignment window shows a grid as the background of the
graph. This allows you to approximately align the boxes.

118 CHAPTER 5. LOCAL GRAMMARS

Figure 5.36: Example of box alignment

Figure 5.37: Example of using the grid

5.3.5 Display options, fonts and colors

You can configure the display style of a graph by pressing <Ctrl+R> or by clicking on "Pre-
sentation..." in the "Format" sub-menu of the "FSGraph" menu, which opens the window as
in figure 5.38.

The font parameters are:

• Input: font used within the boxes and in the text area where the contents of the boxes
is edited;

• Output: font used for the attached transducer outputs.

5.3. DISPLAY OPTIONS 119

Figure 5.38: Configuring the display options of a graph

The color parameters are:

• Background: the background color;

• Foreground: the color used for the text and for the box display;

• Auxiliary Nodes: the color used for calls to sub-graphs;

• Selected Nodes: the color used for selected boxes;

• Comment Nodes: the color used for boxes that are not connected to others.

The other parameters are:

• Date: display of the current date in the lower left corner of the graph;

• File Name: display of the graph name in the lower left corner of the graph;

• Pathname: display of the graph name along with its complete path in the lower left
corner of the graph. This option only has an effect if the option "File Name" is selected;

• Frame: draw a frame around the graph;

• Right to Left: invert the reading direction of the graph (see an example in figure 5.39).

You can reset the parameters to the default ones by clicking on "Default". If you click on
"OK", only the current graph will be modified. In order to modify the preferences for a
language as a default, click on "Preferences..." in the "Info" menu and click on the "Graph
configuration" button in the "Language & Presentation" tab.

120 CHAPTER 5. LOCAL GRAMMARS

Figure 5.39: Graph with reading direction set to right to left

5.4 Exporting graphs

5.4.1 Inserting a graph into a document

In order to include a graph into a document, you have to convert it to an image. To do this,
export your graph to an image format: PNG, JPEG or SVG. Click on "Export as image" in
the "FSGraph" menu, and select a file format. You will get an image ready to be inserted into
a document, or to be edited with an image editor. You should activate antialiasing for the
graph that interests you (this is not obligatory but results in a better image quality). Unlike
JPEG, PNG uses lossless compression, so PNG always look better than JPEG. Unlike PNG
and JPEG, SVG format is not a bitmap format and often look better. Using Inkscape, SVG
file can be converted to EPS or PDF with command like:

Inkscape -z -E graph.eps graph.svg

Inkscape -z -A graph.pdf graph.svg

Another solution consists of making a screenshot:

On Windows:

Press "Print Screen" on your keyboard. This key should be next to the F12 key. Start the
Paint program in the Windows "Utilities" menu. Press <Ctrl+V>. Paint will tell you that
the image in the clipboard is too large and asks if you want to enlarge the image. Click on
"Yes". You can now edit the screen image. Select the area that interests you. To do so, switch
to the select mode by clicking on the dashed rectangle symbol in the upper left corner of

5.4. EXPORTING GRAPHS 121

the window. You can now select the area of the image using the mouse. When you have
selected the zone, press <Ctrl+C>. Your selection is now in the clipboard, you can now just
go to your document and press <Ctrl+V> to paste your image.

On Linux:

Take a screen capture (for example using the program xv). Edit your image at once using a
graphic editor (for example TheGimp), and paste your image in your document in the same
way as in Windows.

122 CHAPTER 5. LOCAL GRAMMARS

Vector graphics

If you prefer vector graphics, you can export your graph under the SVG file format, which
is editable with softwares like the Open Source one Inkscape ([24]). With this software, you
can obtain PostScript exports ready to use in pretty LATEX documents.

5.4.2 Printing a Graph

You can print a graph by clicking on "Print..." in the "FSGraph" menu or by pressing <Ctrl+P>.

WARNING: You should make sure that the page orientation parameter (portrait or land-
scape) corresponds to the orientation of your graph.

You can setup the printing preferences by clicking on "Page Setup" in the "FSGraph" menu.
You can also print all open graphs by clicking on "Print All...".

Chapter 6

Advanced use of graphs

6.1 Types of graphs

Unitex can handle several types of graphs that correspond to the following uses: automatic
inflection of dictionaries, preprocessing of texts, normalization of text automata, dictionary
graphs, search for patterns, disambiguation and automatic graph generation. These differ-
ent types of graphs are not interpreted in the same way by Unitex. Certain operations, like
transduction, are allowed for some types and forbidden for others. In addition, special sym-
bols are not the same depending on the type of graph. This section presents each type of
graph and shows their peculiarities.

6.1.1 Inflection transducers

An inflection transducer describes the morphological variation that is associated with a
word class by assigning inflectional codes to each variant. The paths of such a transducer
describe the modifications that have to be applied to the canonical forms and the corre-
sponding outputs contain the inflectional information that will be produced.

Figure 6.1: Example of an inflectional grammar

The paths may contain operators and letters. The possible operators are represented by the
characters L, R, C, D, U,P and W. All letters that are not operators are characters. The only

123

124 CHAPTER 6. ADVANCED USE OF GRAPHS

allowed special symbol is the empty word <E>. It is not possible to refer to information in
dictionaries in an inflection transducer, but it is possible to reference subgraphs.

Transducer outputs are concatenated in order to produce a string of characters. This string is
then appended to the produced dictionary entry. Outputs with variables do not make sense
in an inflection transducer.

Case of letters is respected: lowercase letters stay lowercase, the same for uppercase let-
ters. Besides, the connection of two boxes is exactly equivalent to the concatenation of their
contents together with the concatenation of their outputs. (cf. figure 6.2).

Figure 6.2: Two equivalent paths in an inflection grammar

Inflection transducers may be compiled before being used by the inflection program. If not,
the inflection program will compile them on the fly.

For more details, see section 3.5.

6.1.2 Preprocessing graphs

Preprocessing graphs are meant to be applied to texts before they are tokenized into lexical
units. These graphs can be used for inserting or replacing sequences in the texts. The two
customary uses of these graphs are normalization of non-ambiguous forms and sentence
boundary recognition.

The interpretation of these graphs in Unitex is very close to that of syntactic graphs used by
the search for patterns. The differences are the following:

• you can use the special symbol <^> that recognizes a newline;

• if you work in character by character mode, you can use the special symbol <L> that
recognizes one letter, as defined in the alphabet file;

• it is impossible to refer to information in dictionaries;

• it is impossible to use morphological filters;

• it is impossible to use morphological mode;

6.1. TYPES OF GRAPHS 125

• it is impossible to use contexts.

The figures 2.10 (page 32) and 2.11 (page 35) show examples of preprocessing graphs.

6.1.3 Graphs for normalizing the text automaton

Graphs for normalizing the text automaton allow you to normalize ambiguous forms. They
can describe several labels for the same form. These labels are then inserted into the text
automaton thus making the ambiguity explicit. Figure 6.3 shows an extract of the normal-
ization graph used by default for French.

Figure 6.3: Extract of the normalization graph used for French

The paths describe the forms that have to be normalized. Lower case and upper case vari-
ants are taken into account according to the following principle: uppercase letters in the
graph only recognize uppercase letters in the text automaton; lowercase letters can recog-
nize both lowercase and uppercase letters.

The transducer outputs represent the sequences of labels that will be inserted into the text
automaton. These labels can be dictionary entries or strings of characters. The labels that

126 CHAPTER 6. ADVANCED USE OF GRAPHS

represent dictionary entries have to respect the DELAF format and must be enclosed by the
{ and } symbols. Outputs with variables do not make sense in this kind of graph. You
cannot use morphological filters, morphological mode or contexts.

It is possible to reference subgraphs. It is not possible to reference information in dictionaries
in order to describe the forms to normalize. The only special symbol that is recognized in
this type of graph is the empty word <E>. The graphs for normalizing ambiguous forms
need to be compiled before using them.

6.1.4 Syntactic graphs

Syntactic graphs, often called local grammars, allow you to describe syntactic patterns that
can then be searched in the texts. Of all kinds of graphs these have the greatest expressive
power because they allow you to refer to information in dictionaries.

Lower case/upper case variants may be used according to the principle described above. It
is still possible to enforce respect of case by enclosing an expression in double quotes. The
use of double quotes also allows you to enforce the respect of spaces. In fact, Unitex by
default assumes that a space is possible between two boxes. In order to enforce the presence
of a space you have to enclose it in double quotes. For prohibiting the presence of a space
you have to use the special symbol #.

Syntactic graphs can reference subgraphs (cf. section 5.2.2). They also have outputs includ-
ing outputs with variables. The produced sequences are interpreted as strings of characters
that will be inserted in the concordances or in the text if you want to modify it (cf. sec-
tion 6.10.4).

Syntactic graphs can use contexts (see section 6.3).

Syntactic graphs can use morphological filters (see section 4.7).

Syntactic graphs can use morphological mode (see section 6.4).

The special symbols that are supported by the syntactic graphs are the same as those that
are usable in regular expressions (cf. section 4.3.1).

It is not obligatory to compile syntactic graphs before using them for pattern matching. If a
graph is not compiled the system will compile it automatically.

6.1.5 ELAG grammars

ELAG grammars for disambiguation between lexical symbols in text automata are described
in section 7.3.1, page 175.

6.2. COMPILATION OF A GRAMMAR 127

6.1.6 Parameterized graphs

Parameterized graphs are meta-graphs that allow you to generate a family of graphs using a
lexicon-grammar table. It is possible to construct parameterized graphs for all possible kinds
of graphs. The construction and use of parameterized graphs are explained in chapter 9.

6.2 Compilation of a grammar

6.2.1 Compilation of a graph

Compilation is the operation that converts the .grf format to a format that can be ma-
nipulated more easily by Unitex programs. In order to compile a graph, you must open it
and then click on "Compile FST2" in the "Tools" submenu of the menu "FSGraph". Unitex
then launches the Grf2Fst2 program. You can keep track of its execution in a window (cf.
Figure 6.4).

Figure 6.4: Compilation window

If the graph references subgraphs, those are automatically compiled. The result is a .fst2
file that contains all the graphs that make up a grammar. The grammar is then ready to be
used by Unitex programs.

6.2.2 Approximation with a finite state transducer

The FST2 format conserves the architecture in subgraphs of the grammars, which is what
makes them different from strict finite state transducers. The Flatten program allows

128 CHAPTER 6. ADVANCED USE OF GRAPHS

you to turn a FST2 grammar into a finite state transducer whenever this is possible, and
to construct an approximation if not. This function thus permits to obtain objects that are
easier to manipulate and to which all classical algorithms on automata can be applied.

In order to compile and thus transform a grammar, select the command "Compile & Flatten
FST2" in the "Tools" submenu of the "FSGraph" menu. The window of Figure 6.5 allows you
to configure the approximation process.

Figure 6.5: Configuration of approximation of a grammar

The box "Flattening depth" lets you specify the level of embedding of subgraphs. This value
represents the maximum depth up to which the callings of subgraphs will be replaced by
the subgraphs themselves.

The "Expected result grammar format" box allows you to determine the behavior of the pro-
gram beyond the selected limit. If you select the "Finite State Transducer" option, the calls
to subgraphs will be replaced by <E> beyond the maximum depth. This option guaran-
tees that we obtain a finite state transducer, however possibly not equivalent to the original
grammar. On the contrary, the "equivalent FST2" option indicates that the program should
allow for subgraph calls beyond the limited depth. This option guarantees the strict equiva-
lence of the result with the original grammar but does not necessarily produce a finite state
transducer. This option can be used for optimizing certain grammars.

A message indicates at the end of the approximation process if the result is a finite state
transducer or an FST2 grammar and in the case of a transducer if it is equivalent to the
original grammar (cf. Figure 6.6).

6.2.3 Constraints on grammars

With the exception of inflection grammars, a grammar can never have an empty path. This
means that the paths of a main graph must not recognize the empty word but this does not
prevent a subgraph of that grammar from recognizing epsilon.

6.2. COMPILATION OF A GRAMMAR 129

Figure 6.6: Resultat of the approximation of a grammar

It is not possible to associate a transducer output with a call to a subgraph. Such outputs are
ignored by Unitex. It is therefore necessary to use an empty box that is situated to the left of
the call to the subgraph in order to specify the output (cf. Figure 6.7).

Figure 6.7: How to associate an output with a call to a subgraph

The grammars must not contain void loops because the Unitex programs cannot terminate
the exploration of such a grammar. A void loop is a configuration that causes the Locate

130 CHAPTER 6. ADVANCED USE OF GRAPHS

program to enter an infinite loop. Void loops can originate from transitions that are labeled
by the empty word or from recursive calls to subgraphs.

Void loops due to transitions with the empty word can have two origins of which the first
is illustrated by the Figure 6.8. This type of loops is due to the fact that a transition with the
empty word cannot be eliminated automatically by Unitex because it is associated with an
output. Thus, the transition with the empty word of Figure 6.8 will not be suppressed and
will cause a void loop.

Figure 6.8: Void loop due to a transition by the empty word with a transduction

The second category of loop by epsilon concerns the call to subgraphs that can recognize the
empty word. This case is illustrated in Figure 6.9: if the subgraph Adj recognizes epsilon,
there is a void loop that Unitex cannot detect.

Figure 6.9: Void loop due to a call to a subgraph that recognizes epsilon

The third possibility of void loops is related to recursive calls to subgraphs. Look at the
graphs Det and DetCompose in figure 6.10.

Figure 6.10: Void loop caused by two graphs calling each other

6.2. COMPILATION OF A GRAMMAR 131

Each of these graphs can call the other without reading any text. The fact that none of these
two graphs has labels between the initial state and the call to the subgraph is crucial. In fact,
if there were at least one label different from epsilon between the beginning of the graph
Det and the call to DetCompose, this would mean that the Unitex programs exploring
the graph Det would have to read the pattern described by that label in the text before
calling DetCompose recursively. In this case the programs would loop infinitely only if
they recognized the pattern an infinite number of times in the text, which is impossible.

6.2.4 Interval for number of repetitions

In order to recognize token sequences in which one pattern appears once, several times in
sequence or never, you can attach an integer interval to a box. This sets limits to the number
of times the pattern occurs. The pattern must be described in a single box. If you attach the
interval [m,M] to a box containing <A> (figure 6.11), the path will match sequences with at
least m consecutive adjectives and no more than M .

Figure 6.11: Use of an interval to match several consecutive tokens

Intervals are attached by inserting $[m,M]$ into the output of the box, just after the charac-
ter “/”, and according to the following rules :

• [m,M] = at least m consecutive terms and no more than M

• [,M] = 0 to M

• [m,] = at least m

The box must not be connected to itself with a direct loop. An interval is compatible with an
output in the usual sense. For example, to insert <ADJ position=’anteposed’> as an
output under the box of figure 6.11, type <A>/$[1,4]$/<ADJ position=’anteposed’>
in the text field.

132 CHAPTER 6. ADVANCED USE OF GRAPHS

6.2.5 Error detection

In order to keep the programs from blocking or crashing, Unitex automatically detects er-
rors during graph compilation. The graph compiler checks that the main graph does not
recognize the empty word and searches for all possible forms of void loops. When an error
is encountered, an error message is displayed in the compilation window. Figure 6.12 shows
the message that appears if one tries to compile the graph Det of Figure 6.10.

Figure 6.12: Error message when trying to compile Det

When you start a pattern search with a .grf graph , if Unitex detects an error at the graph
compilation, the locate operation is automatically interrupted.

6.3 Contexts

Unitex graphs as we described them up to here are equivalent to algebraic grammars. These
are also known as context-free grammars, because if you want to match a sequence A, the
context ofA is irrelevant. Thus, you cannot use a contex-free graph for matching occurences
of president not followed by of the republic.

However, you can draw graphs with positive or negative contexts. In that case, graphs are
no more equivalent to algebraic grammars, but to context-sensitive grammars that do not
have the same theoretical properties.

6.3.1 Right contexts

To define a right context, you must bound a zone of the graph with boxes containing $[and
$], which indicate the start and the end of the right context. These bounds appear in the

6.3. CONTEXTS 133

graph as green square brackets. Both bounds of a right context must be located in the same
graph.

Figure 6.13: Using a right context

Figure 6.13 shows a simple right context. The graph matches numbers followed by a cur-
rency symbol, but this symbol will not appear in matched sequences, i.e. in the concordance.

Right contexts are interpreted as follows. During the application of a grammar on a text, let
us assume that a right context start is found. Let pos be the current position in the text at
this time. Now, the Locate program tries to match the expression described inside the right
context. If it fails, then there will be no match. If it matches the whole right context (that
is to say if Locate reaches the right context end), then the program will rewind at position
pos and go on exploring the grammar after the right context end.

Weights (section 5.2.4) are ignored in right contexts.

You can also define negative right contexts, using $![to indicate the right context start.
Figure 6.14 shows a graph that matches numbers that are not followed by th. The difference
with positive right contexts is that when Locate tries to match the expression described
inside the context, reaching the context stop will be considered as a failure, because it would
have matched a forbidden sequence. At the opposite, if the context stop cannot be reached,
then Locate will rewind at the position pos and go on exploring the grammar after the
context end.

Figure 6.14: Using a negative right context

Right contexts can appear anywhere in the graph, including the beginning of the graph.
Figure 6.15 shows a graph that matches an adjective in the right context of something that is
not a past participle. In other words, this graph matches adjectives that are not ambiguous
with past participles.

134 CHAPTER 6. ADVANCED USE OF GRAPHS

Figure 6.15: Matching an adjective that is not ambiguous with a past participle

Figure 6.16: A context that does not check the same number of words as the box after it

In graphs like that of Figure 6.15, the negative right context does not need to match the same
number of tokens as the box after it. For example, before the graph of Figure 6.16 recognizes
too, the negative right context checks if it occurs in a phrase like too early or too many.

Negative right contexts allow you to formulate complex patterns. For instance, the graph
of figure 6.17 matches a sequence of two simple nouns that is not ambiguous with a com-
pound word. In fact, the pattern <CDIC><<^([^]+ [^]+)$>> matches a compound
word with exactly one space, and the pattern <N><<^([^]+)$>> matches a noun with-
out space, that is to say a simple noun. Thus, in the sentence Black cats should like the town
hall, this graph will match Black cats, but not town hall, which is a compound word.

Figure 6.17: Advanced use of right contexts

You can use nested contexts. For instance, the graph shown in figure 6.18 matches a number
that is not followed by a dot, except for a dot followed by a number. Thus, in the sequence
5.0+7.=12, this graph will match 5, 0 and 12.

If a right context contains boxes with transducer outputs, the outputs are ignored. However,
it is possible to use a variable that was defined inside a right context (cf. figure 6.19). If you
apply this graph in MERGE mode to the text the cat is white, you will obtain:

the <pet name="cat" color="white"/> is white

6.3. CONTEXTS 135

Figure 6.18: Nested contexts

Figure 6.19: Variable defined inside a right context

6.3.2 Left contexts

It is also possible to look for an expression X only if it occurs after an expression Y . Of
course, it was already possible to do that with a grammar like the one shown on Figure 6.20.
However, with such a grammar, the context part on the left will be included in the match, as
shown on Figure 6.21.

Figure 6.20: Matching a noun that occurs after a numeral determiner

To avoid that, you can use the special symbol $* to indicate the end of the left context of the
expression you want to match. This symbol will be represented by a green star in the graph,
as shown on Figure 6.22. The effect of such a context is to use this part of the grammar for
computing matches, but to ignore it in the results, as shown on Figure 6.23.

136 CHAPTER 6. ADVANCED USE OF GRAPHS

Figure 6.21: Results of the application of the grammar shown on Figure 6.20

Figure 6.22: Matching a noun after a left context

Figure 6.23: Results of the application of the grammar shown on Figure 6.22

6.3. CONTEXTS 137

All the outputs produced in the left context are ignored, as you can see in the concordance
of Figure 6.25, showing the results obtained with the grammar of Figure 6.24.

Figure 6.24: Ignored output in a left context

Figure 6.25: Results of the application of the grammar shown on Figure 6.24

However, you can store information in variables (see section 6.7.5) and use it outside the left
context, as shown on the grammar of Figure 6.26 which produces the concordance of Figure
6.27.

A graph with left contexts may be invoked in a grammar, but this requires caution. When the
left context part is excluded from the match, any sequences that had been matched before
by any of the calling graphs are excluded from the match too, because the eventual matched
sequence must be contiguous. Any outputs in excluded sequences are ignored too.

Thus, with left and right contexts, you can make a distinction between patterns used to
match spots in texts, and the delimitation of the sequences to be extracted into your results.
For instance, the grammar shown on Figure 6.28 looks for expressions like the animal’s,
but only extracts nouns, as you can see on Figure 6.29.

Weights (section 5.2.4) work normally in left contexts.

138 CHAPTER 6. ADVANCED USE OF GRAPHS

Figure 6.26: Using a variable in a left context

Figure 6.27: Results of the application of the grammar shown on Figure 6.26

Figure 6.28: A grammar with both left and right contexts

Figure 6.29: Results of the application of the grammar shown on Figure 6.28

6.4. THE MORPHOLOGICAL MODE 139

6.4 The morphological mode

6.4.1 Why ?

As Unitex works on a tokenized version of the text, it is not possible to perform queries that
need to enter inside tokens, except with morphological filters (see section 4.7), as shown on
Figure 6.30.

Figure 6.30: Matching morphological elements

However, even morphological filters cannot allow any query, since they cannot refer to in-
formation stored in dictionaries. Thus, it is impossible to formulate this way a query like “a
word made of the prefix un followed by an adjective suffixed with able”.

To overcome this difficulty, we introduced a morphological mode in the Locate program.
It consists of bounding a part of your grammar with the special symbols $< and $>. Within
this zone, sequences are matched letter by letter, as shown on Figure 6.31.

Figure 6.31: Example of morphological zone in a grammar

6.4.2 The rules

In this mode, the content of the graph is not interpreted as it is in the normal way.

1. There is no implicit space between boxes. So, if you want to match a space, you have
to make it explicit with " " (a space between double quotes).

2. You can still use subgraphs, but the end of the morphological zone must occur in the
same graph as its beginning.

3. You can use lexical masks involving dictionary lookup—such as <DIC>, <be> or <N:ms>,
which refer to information stored in a dictionary—, provided that the dictionary has
been previously declared as a morphological-mode dictionary (section 6.4.3).

140 CHAPTER 6. ADVANCED USE OF GRAPHS

4. You can use lexical masks involving a lookup in a dictionary graph (section 3.8.3),
provided that the name of the dictionary graph contains the b switch. However, this
feature works only for forms recognized by the dictionary graph in the text during
initial application of dictionaries (section 3.8), and not for forms that occur in the text
only as token parts.

5. You can use morphological filters (section 4.7). However, morphological filters used
alone or on <TOKEN> will only apply to the current character. As a consequence, filters
like <<[1-9][0-9]>> that are meant to match more than one character will never
match anything. In fact, in morphological mode, morphological filters should only be
used to express negations like <<[^aeiouy]>> (any character that is not a vowel).

6. Left and right contexts are forbidden.

7. You can use outputs.

8. <LETTER> will match any letter, as defined in the alphabet file.

9. <LOWER> will match any lowercase letter, as defined in the alphabet file.

10. <UPPER> will match any uppercase letter, as defined in the alphabet file.

11. <DIC> will match any word present in a morphological-mode dictionary, but the
meta-symbols #, <FIRST>, <NB>, <SDIC> and <CDIC> are forbidden.

12. If you reach the end of the morphological zone and if you are not at the end of a
token, the match will fail. For instance, if the text contains enabled, you cannot match
enable only.

Earlier codes for <LETTER>, <LOWER> and <UPPER> were respectively <MOT>, <MIN> and
<MAJ> . They can still be used for backward compatibility of the system with existing
graphs. Though there are no current plans to remove this codes, it is recommended to avoid
them in graphs designed to be used with more recent versions,1 so that the number of lexical
masks in use does not increase uselessly.

6.4.3 Morphological-mode dictionaries

In morphological mode, you can perform queries using dictionaries. For instance, the gram-
mar of Figure 6.32 searches for every word made of the prefix un followed by an adjective.

Figure 6.32: Matching words made of ’un’+adjective ending with ’able’

1From version 3.1beta, revision 4072, October 2, 2015.

6.4. THE MORPHOLOGICAL MODE 141

Figure 6.33: Configuration of morphological-mode dictionaries

To be able to match with this grammar the word unaware, the system must know that
aware is an adjective. The lexical mask <A> involves a dictionary lookup. But aware may
not be present in the text, so that we cannot rely on the text dictionaries.2 This is the reason
why we must define a list of dictionaries to be looked up in the morphological mode. To do
that, go in “Info>Preferences>Morphological-mode dictionaries”, as shown on Figure 6.33.
You can select as many dictionaries as you want, but they MUST be .bin ones. Once this
is done, you can apply your grammar and get results. In order to specify that a dictionary-
graph should be looked up in the morphological mode, use option b or z (section 3.8.3,
Exporting produced entries as a morphological-mode dictionary).

6.4.4 Dictionary-entry variables

You can set variables to information stored in morphological-mode dictionaries. The initial-
ization of such a variable must be associated to a box that contains a pattern referring to
information stored in a morphological-mode dictionary, except for the pattern <DIC>. Set
the output of the box with xxx where xxx is a valid variable name (cf. section 5.2.5). That
sets a special variable named xxx to the dictionary entry that matches with your pattern. In
the rest of the paths that contain the box, you can get the inflected form, lemma and codes of
the entry with $xxx.INFLECTED$, $xxx.LEMMA$ and $xxx.CODE$, as shown on Figure
6.34. You can also use the following patterns:

• $xxx.CODE.GRAM$: provides only the first grammatical code, supposed to be the
POS category

• $xxx.CODE.SEM$: provides all remaining grammatical codes, if any, separated with
+

2The text dictionaries are compiled during initial application of dictionaries (section 3.8), not during search
for patterns.

142 CHAPTER 6. ADVANCED USE OF GRAPHS

• $xxx.CODE.FLEX$: provides all inflectional codes, if any, separated with :

• $xxx.CODE.ATTR=yyy$: provides the value of an attribute-value pair contained in
the semantic codes, i.e. the value zzz of the yyy attribute if there is a code of the form
yyy=zzz.

Dictionary-entry variables can be used even after the end of the morphological mode, as
shown on Figure 6.36. They can also be tested as explained in section 6.7.5.

Figure 6.34: Using a dictionary-entry variable

Figure 6.35: Results of grammar of Figure 6.34 applied in MERGE mode

Figure 6.36: Using a dictionary-entry variable in normal mode

Dictionary-entry variables in LocateTfst
In grammars to be applied with LocateTfst (cf. section 7.7), you have an extra feature. If
you are not in morphological mode, your grammar can extract information from a lexical
tag contained in the text automaton, and capture it into a dictionary-entry variable. In your
grammar, you have to set the output of a box with $:xxx$, where xxx is a valid variable
name. In the rest of the paths that contain the box, you can use xxx as a dictionary-entry
variable, in the same way as described above for the morphological mode: you can get
from this variable the inflected form, lemma and codes of the entry, its POS code, semantic

6.5. EXPLORING GRAMMAR PATHS 143

codes, inflectional codes and the value zzz of the yyy attribute if there is a code of the form
yyy=zzz.

6.5 Exploring grammar paths

It is possible to generate the paths recognized by a grammar, if they are in finite number,
for example to check that it correctly generates the expected forms. For that, open the main
graph of your grammar, and ensure that the graph window is the active window (the active
window has a blue title bar, while the inactive windows have a gray title bar). Now go to
the "FSGraph" menu and then to the "Tools" menu, and click on "Explore graph paths". The
Window of figure 6.37 appears.

Figure 6.37: Exploring the paths of a grammar

The top field contains the name of the main graph of the grammar to be explored. The
second field shows the name of the file where the paths will be listed. The following options
are connected to the outputs of the grammar boxes and to subgraph calls:

• "Outputs": if "Ignore" is checked, box outputs are ignored; with "Split inputs and out-
puts", all the box outputs of a path are displayed after all the box inputs of the same
path (a b c / A B C); with "Merge inputs and outputs", the output of a box is emit-
ted immediately after its input (a/A b/B c/C);

144 CHAPTER 6. ADVANCED USE OF GRAPHS

• "Explore subgraphs": with "Recursively", calls to subgraphs are explored recursively;
with "Independently, printing names of called subgraphs", calls to subgraphs are re-
placed by the name of the subgraph, and the paths recognized by the subgraph are
explored separately later.

If the option "Max sequences" is checked, the specified number will be the maximum num-
ber of generated paths. If the option is not checked, all paths will be generated if they are in
finite number.

With "Flatten graphs", the program flattens the grammar (see Section 6.2.2) before exploring.

Here you see the output for the graph shown on Figure 6.38 with the default settings (ignor-
ing outputs, no limit on the number of paths):

<NB> <boule> de glace à la pistache
<NB> <boule> de glace à la fraise
<NB> <boule> de glace à la vanille
<NB> <boule> de glace vanille
<NB> <boule> de glace fraise
<NB> <boule> de glace pistache
<NB> <boule> de pistache
<NB> <boule> de fraise
<NB> <boule> de vanille
glace à la pistache
glace à la fraise
glace à la vanille
glace vanille
glace fraise
glace pistache

Figure 6.38: Sample graph

6.6 Graph collections

It can happen that one wants to apply several grammars located in the same directory. For
that, it is possible to automatically build a grammar starting from a file tree structure. Let us
suppose for example that one has the following tree structure:

6.6. GRAPH COLLECTIONS 145

• Dicos:

– Banque:

∗ carte.grf

– Nourriture:

∗ eau.grf
∗ pain.grf

– truc.grf

If one wants to gather all these grammars in only one, one can do it with the "Build Graph
Collection" command in the "FSGraph Tools" sub-menu. One configures this operation by
means of the window seen in figure 6.39.

Figure 6.39: Building a graph collection

In the "Source Directory" field, select the root directory which you want to explore (in our
example, the directory Dicos). In the field "Resulting GRF grammar", enter the name of the
produced grammar.

WARNING: Do not place the output grammar in the tree structure which you want to ex-
plore, because in this case the program will try to read and to write simultaneously in this
file, which will cause a crash.

When you click on "OK", the program will copy the graphs to the directory of the output
grammar, and will create subgraphs corresponding to the various sub-directories, as one
can see in figure 6.40, which shows the output graph generated for our example.

One can observe that one box contains the calls with subgraphs corresponding to sub-
directories (here directories Banque and Nourriture), and that the other box calls all the graphs
which were in the directory (here the graph truc.grf).

146 CHAPTER 6. ADVANCED USE OF GRAPHS

Figure 6.40: Main graph of a graph collection

6.7 Rules for applying transducers

This section describes the rules for the application of transducers along with the operations
of preprocessing and the search for patterns. The following does not apply to inflection
graphs and normalization graphs for ambiguous forms.

6.7.1 Insertion to the left of the matched pattern

When a transducer is applied in REPLACE mode, the output replaces the sequences that
have been read in the text. When a box in a transducer has no output, it is processed as if
it had an <E> output. In MERGE mode, the output is inserted to the left of the recognized
sequences.

Figure 6.41: Example of a transducer

Look at the transducer in Figure 6.41. If this transducer is applied to the novel Ivanhoe by Sir
Walter Scott in MERGE mode, the following concordance is obtained.

6.7.2 Application while advancing through the text

During the preprocessing operations, the text is modified as it is being read. In order to
avoid the risk of infinite loops, it is necessary that the sequences that are produced by a
transducer will not be re-analyzed by the same one. Therefore, whenever a sequence is
inserted into the text, the application of the transducer is continued after that sequence. This

6.7. RULES FOR APPLYING TRANSDUCERS 147

Figure 6.42: Concordance obtained in MERGE mode with the transducer of figure 6.41

rule only applies to preprocessing transducers, because during the application of syntactic
graphs, the transductions do not modify the processed text but a concordance file which is
distinct from the text.

6.7.3 Priority of the leftmost match

During the application of a local grammar, overlapping occurrences are all indexed. Note
that we talk about real overlapping occurrences like abc and bcd, not nested occurrences
like abc and bc. During the construction of the concordance all these overlapping occur-
rences are presented (cf. Figure 6.43).

Figure 6.43: Overlapping occurrences in concordance

On the other hand, if you modify a text instead of constructing a concordance, it is necessary
to choose among these occurrences the one that will be taken into account. Unitex applies
the following priority rule for that purpose: the leftmost sequence is used.

If this rule is applied to the three occurrrences of the preceding concordance, the occurrence
[in ancient] overlaps with [ancient times]. The first is retained because this is the
leftmost occurrence and [ancient times] is eliminated. The following occurrence of
[times a] is no longer in conflict with [ancient times] and can therefore appear in
the result:

...Don, there extended [in ancient] [times a] large forest...

148 CHAPTER 6. ADVANCED USE OF GRAPHS

The rule of priority of the leftmost match is applied only when the text is modified, be it
during preprocessing or after the application of a syntactic graph (cf. section 6.10.4).

6.7.4 Priority of the longest match

During the application of a syntactic graph it is possible to choose if the priority should be
given to the shortest or the longest sequences or if all sequences should be retained. During
preprocessing, the priority is always given to the longest sequences.

6.7.5 Transducer outputs with variables

As we have seen in Section 5.2.5, it is possible to use input variables to store some text that
has been analyzed by a grammar. Such variables can be used in preprocessing graphs and
in syntactic graphs.

Figure 6.44: Definition of an input variable in a subgraph

6.7. RULES FOR APPLYING TRANSDUCERS 149

You have to give names to the variables you use. These names can contain non-accented
lower-case and upper-case letters between A and Z, digits and the character _ (underscore).

In order to delimit the zone to be stored in an input variable, either use the button with red
parentheses in the toolbar above the graph (Section 5.2.8) or create two boxes, one containing
the name of the variable enclosed in the characters $ and (for the beginning of the zone and
the other in $ and) for the end. In order to use a variable in a transducer output, its name
must be surrounded by the character $ (cf. Figure 6.44).

Variables are global. This means that you can define a variable in a graph and reference it in
another as is illustrated in the graphs of Figure 6.44. If the graph TitleName is applied in
MERGE mode to the text Ivanhoe, the concordance in Figure 6.45 is obtained.

Figure 6.45: Concordance obtained by application of graph TitleName of Fig. 6.44

Outputs with variables can be used to move phrases. In fact, the application of a transducer
in REPLACE mode inserts only the produced sequences into the text. In order to swap
two phrases, you just have to store them into variables and produce an output with these
variables in the desired order. Thus, the application of the transducer in Figure 6.46 in
REPLACE mode to the text Ivanhoe results in the concordance of Figure 6.47.

Figure 6.46: Swapping words using two input variables

If the beginning or the end of variable does not conform to the syntax above (end of a vari-
able before its beginning, or absence of the beginning or end of a variable), by default, it
will be ignored during the emission of outputs. See section 6.10.2 for other variable error
policies.

150 CHAPTER 6. ADVANCED USE OF GRAPHS

Figure 6.47: Result of the application of the transducer in figure 6.46

There is no limit to the number of possible variables.

Input variables can be nested and even overlap as is shown in figure 6.48.

Figure 6.48: Overlapping input variables

6.8. OUTPUT VARIABLES 151

6.8 Output variables

Input variables declared either with the red-parentheses button or with $xxx(and $xxx)
capture portions of the input text. It is also possible to capture portions of the outputs
produced by your grammar. This is done with output variables. Such variables are declared
either with the button with blue parentheses in the toolbar above the graph (Section 5.2.8)
or with $|xxx(and $|xxx). The resulting boxes appear in blue as shown on Figure 6.49.
This example grammar applied to Ivanhoe will produce in MERGE mode the concordance
shown on Figure 6.50.

Figure 6.49: Output variables

Figure 6.50: Concordance obtained with grammar of Figure 6.49

When an output variable is being initialized, the output sequences of the transducer are
not emitted into the output for the current occurrence; they are just stored into the pending
output variable(s). For instance, the outputs ADJ and NOUN of Figure 6.49 have not been
inserted to the left of the input text on Figure 6.50. Outputs are processed before being
stored, so that if an output string contains something like $A.LEMMA$, the output variable
will actually not contain this raw string but the lemma associated to variable A.

Output variables only capture explicit outputs produced by your grammar. Thus, even in
MERGE mode, output variables never capture the input text (Figures 6.49 and 6.50).

When a box redefines a variable that had already been defined, the new value overrides the

152 CHAPTER 6. ADVANCED USE OF GRAPHS

previous one. Thus, if the variable is defined in a loop, the value of the variable just after
the loop depends on the last iteration of the loop.

6.9 Operations on variables

6.9.1 Testing variables

It is possible to test whether a variable has been defined or not, in order to block the current
matching operation if the condition is not verified. This is done by inserting the sequence
$xxx.SET$ in the output of a graph box. Then, if a variable named xxx has been defined,
this sequence will be ignored in the output and the matching process will go on; other-
wise, matching will be stopped and the program will backtrack. This operates on input
variables as well as on output variables and dictionary-entry variables defined in morpho-
logical mode. You can check out if a variable has not been defined in the same way using
$xxx.UNSET$. Figure 6.51 shows a graph that use a such a variable test. Figure 6.52 shows
results obtained with this graph in MERGE mode.

Figure 6.51: Testing a variable

Figure 6.52: Results of a variable test

6.9. OPERATIONS ON VARIABLES 153

6.9.2 Comparing variables

Another kind of test you can perform consists of variable comparison. You can compare a
variable of any kind (whether an input variable, an output variable or a dictionary-entry
variable) against a constant string or another variable. To do that, insert in the output of a
graph box a sequence with the following syntax:

$abc.EQUAL=xyz$

This test acts like a switch that will block the grammar exploration if the value of variable
abc is different from the value of variable xyz. Note that for dictionary-entry variables,
what is used in the test is the inflected form as found in the dictionary (beware of case
variations!). If you want to compare variable abc against the constant string JKL, use the
following test:

$abc.EQUAL=#JKL$

You can also test if contents differ with UNEQUAL.

If you want to compare variables so that case variations are ignored, you can use the follow-
ing tests:

$abc.EQUALcC=xyz$
or
$abc.UNEQUALcC=xyz$

6.9.3 Querying variables

You can search a dictionary-entry variable (section 6.4.4) for a ‘semantic code’ (in the sense
of section 3.1.1). To do that, insert in the output of a graph box a sequence with the following
syntax:

$abc.EQ=Conc$

This test acts like a switch that will block the grammar exploration if Conc is not found
among the ‘semantic codes’ of the dictionary-entry variable abc. You can search a variable
for one code at a time. To check several codes, chain several boxes.

This feature is used in large sets of morphological dictionary-graphs in order to dissociate
in distinct boxes a check for a grammatical code and subsequent checks for semantic codes,
as in [79], page 486. The grammatical code is checked with the aid of a lexical mask, and the
semantic codes are checked by searching the corresponding dictionary-entry variable. Such
dissociation may speed up the application of the graphs if:

• all the graphs are directly or indirectly invoked from a single main graph,

• the main graph is compiled and flattened (see section 6.2.2),

154 CHAPTER 6. ADVANCED USE OF GRAPHS

• the box with the lexical mask is common to more paths than the boxes searching the
dictionary-entry variable for the semantic codes.3

6.10 Applying graphs to texts

This section only applies to syntactic graphs.

6.10.1 Configuration of the search

In order to apply a graph to a text, you open the text, then click on "Locate Pattern..." in the
"Text" menu, or press <Ctrl+L>. You can then configure your search in the window shown
in figure 6.53.

In the "Locate pattern in the form of" field, choose "Graph" and select your graph by clicking
on the "Set" button. You can choose a graph in .grf format (Unicode Graphs) or a com-
piled graph in .fst2 format (Unicode Compiled Graphs). If your graph is a .grf one,
Unitex will compile it automatically before starting the search. If you click on "Activate de-
bug mode", the concordance will be displayed in a window in which you will also find the
automaton and, for each match, the list of states of the path that matches it. This window is
described with more details in section 6.10.7.

The "Index" field allows to select the recognition mode.

• "Shortest matches" : give precedence to the shortest matches;

• "Longest matches" : give precedence to the longest sequences. This is the default
mode;

• "All matches" : give out all recognized sequences.

The "Search limitation" field allows you to limit the search to a certain number of occur-
rences. By default, the search is limited to the 200 first occurrences.

The "Grammar outputs" field concerns transducers. The "Merge with input text" mode
allows you to insert the output sequences in input sequences. The "Replace recognized
sequences" mode allows you to replace the recognized sequences with the produced se-
quences. The third mode ignores all outputs. This latter mode is used by default.

In the "Search algorithm" frame, you can specify wether you want to perform the locate
operation on the text using the Locate program or on the text automaton with LocateTfst.
By default, search is done with the Locate program, as Unitex always did until now. If

3Thus, the lexical mask provokes a search in morphological-mode dictionaries which is performed once
before several searches for semantic codes. If you check the grammatical code and a semantic code by the same
lexical mask, these masks are more numerous in the complete grammar and they provoke more searches in
morphological-mode dictionaries.

6.10. APPLYING GRAPHS TO TEXTS 155

Figure 6.53: Locate pattern Window

you want to use LocateTfst, please read dedicated section 7.7. After you have selected the

parameters, click on "SEARCH" to start the search.

156 CHAPTER 6. ADVANCED USE OF GRAPHS

6.10.2 Advanced search options

If you select the "Advanced options" tab, you will see the frame shown on Figure 6.54.

Figure 6.54: Advanced search options

The "Ambiguous output policy" option can be illustrated with the graph shown on Figure
6.55.

Figure 6.55: A graph with ambiguous outputs

When a determiner is followed by a word that can be either adjective or noun, it can produce

6.10. APPLYING GRAPHS TO TEXTS 157

two distinct outputs for the same text input sequence (the transducer is said to be ambigu-
ous). If we apply this graph on Ivanhoe with the "Allow ambiguous outputs" option (the
default one), we will obtain the text order concordance shown of Figure 6.56. As you can
see, two outputs have been produced for the input sequence the noble.

Figure 6.56: Ambiguous outputs for the noble

At the opposite, with the "Forbid ambiguous outputs" option, we will obtain the text order
concordance shown of Figure 6.57, with only one arbitrarily chosen output for the input
sequence the noble.

Figure 6.57: Single output for the noble

158 CHAPTER 6. ADVANCED USE OF GRAPHS

The "Variable error policy" option allows you to specify what Locate/LocateTfst is sup-
posed to do when an output is found that contains a reference to a variable that has not been
correctly defined. Note that this parameter has no effect if outputs are to be ignored. For
instance, let us consider the graph shown on Figure 6.58.

Figure 6.58: A variable A that may be undefined

With the "Ignore variable errors" option, A will just be ignored, as if it had an empty content,
as shown on Figure 6.59.

Figure 6.59: variable A that may be undefined

With the "Exit on variable error" option, Locate/LocateTfst will exit with an error mes-
sage, as shown on Figure 6.60.

With the "Backtrack on variable error" option, Locate/LocateTfstwill stop exploring the
current path in the grammar. Thus, variables play the role of switches that cut paths when
variables are undefined. For instance, the application of grammar 6.58 will only produce
matches containing an adjective, as shown on Figure 6.61.

6.10. APPLYING GRAPHS TO TEXTS 159

Figure 6.60: Exiting on variable error

Figure 6.61: Backtracking on variable error

6.10.3 Concordance

The result of a search is an index file that contains the positions of all encountered occur-
rences. The window of Figure 6.62 lets you choose whether to construct a concordance or
modify the text.

In order to display a concordance, you have to click on the "Build concordance" button. You
can parameterize the size of left and right contexts in characters. You can also choose the
sorting mode that will be applied to the lines of the concordance in the "Sort According
to" menu. For further details on the parameters of concordance construction, refer to sec-
tion 4.8.2. The concordance is produced in the form of an HTML file. You can parameterize
Unitex so that concordance files can be read using a web browser (cf. section 4.8.2).

If you display concordances with the window provided by Unitex, you can access a recog-
nized sequence in the text by clicking on the occurrence. If the text window is not iconified
and the text is not too long to be displayed, you see the selected sequence appear (cf. Fig-
ure 6.63).
Furthermore, if the text automaton has been constructed, and if the corresponding window

160 CHAPTER 6. ADVANCED USE OF GRAPHS

Figure 6.62: Configuration for displaying the encountered occurrences

is not iconified, clicking on an occurrence selects the automaton of the sentence that contains
this occurrence.

6.10.4 Modification of the text

You can choose to modify the text instead of constructing a concordance. In order to do that,
type a file name in the "Modify text" field in the window of Figure 6.62. This file has to have
the extension .txt.

If you want to modify the current text, you have to choose the corresponding .txt file. If
you choose another file name, the current text will not be affected. Click on the "GO" button
to start the modification of the text. The precedence rules that are applied during these
operations are described in section 6.7.

After this operation, the resulting file is a copy of the text in which transducer outputs have
been taken into account. Normalization operations and splitting into lexical units are auto-

6.10. APPLYING GRAPHS TO TEXTS 161

Figure 6.63: Selection of an occurrence in the text

matically applied to this text file. The existing text dictionaries are not modified. Thus, if
you have chosen to modify the current text, the modifications will be effective immediately.
You can then start new searches on the text.

WARNING: if you have chosen to apply your graph ignoring the transducer outputs, all
occurrences will be erased from the text.

6.10.5 Extracting occurrences

To extract from a text all sentences containing matches, set the name of your output text file
using the "Set File" button in the "Extract units" frame (Figure 6.62). Then, click on "Extract
matching units". At the opposite, if you click on "Extract unmatching units", all sentences
that do not contain any match will be extracted.

6.10.6 Comparing concordances

With the "Show differences with previous concordance" option, you can compare the current
concordance with the previous one. The ConcorDiff program builds both concordances
according to text order and compares them line by line. The result is an HTML page that
presents alternatively lines from both concordances, leaving an empty line when a match
appears in only one concordance. Lines are greyed for the previous concordance and left
with a white background for the current one. In each line, only matched tokens are coloured.
You can click on each match to open the text at its position. Figure 6.64 gives an example.

Blue indicates that an occurrence is common to the two concordances. Red indicates that
a match is common but with a different range, i.e. the two matches only overlap partially.
Green indicates an occurrence that appears in only one concordance.

162 CHAPTER 6. ADVANCED USE OF GRAPHS

Figure 6.64: Example of a concordance comparison

If you have no previous concordance the button is deactivated.

6.10.7 Debug mode

When you apply a graph to a text with the Locate menu in the window shown in figure 6.53,
if you activate the debug mode in the "Locate pattern in the form of" field, the concordance
will be displayed in a special window such as in figure 6.65, divided into three parts :

In the top right part of the window is the concordance. It is identical to the classical
concordance in which the sequences matched by the graph appear in blue.

In the bottom right you will find the graph used for the search.

In the left side of the window is a table of 3 columns : "Tag", "output" and "matched".
Each token of the matched sequence appear in the "matched" column, the Tag column con-
tains what is in the box of the automaton that matched it, and if this box has any output, it
will appear in the "output" column.

For each matched sequence in the concordance, if you click on its line in the concordance,
the table on the left will be actualized and clicking on a row of the table will colour the
corresponding box in the graph. This will help you to see, for each occurrence of a matched

6.10. APPLYING GRAPHS TO TEXTS 163

Figure 6.65: The Concordance window in debug mode

sequence in the text, which path in the automaton recognized it. A red number above each
box indicates the number of sequences in the text in which that box matched a token.

When you apply a graph in debug mode through the Text > Locate Patternmenu, the
system compiles it into a fst2 file in a special debug-mode format, which is not supported
by CasSys. See section 12.2.1 to solve this problem.

164 CHAPTER 6. ADVANCED USE OF GRAPHS

Chapter 7

Text automaton

Natural languages contain much lexical ambiguity. The text automaton is an effective and
visual way of representing such ambiguity. Each sentence of a text is represented by an
automaton whose paths represent all possible interpretations.

This chapter presents the concept of text automaton, the details of their construction and
the operations that can be applied, in particular ambiguity removal and linearization. Since
version 2.1, it is possible to search the text automaton for patterns (see section 7.7).

7.1 Displaying text automaton

The text automaton explicit all possible lexical interpretations of the words. These different
interpretations are the different entries presented in the dictionary of the text. Figure 7.1
shows the automaton of the fourth sentence of the text Ivanhoe.

You can see in Figure 7.1 that the word Here has three interpretations here (adjective, ad-
verb and noun), haunted two (adjective and verb), etc. All the possible combinations are
expressed because each interpretation of each word is connected to all the interpretations of
the following and preceding words.

In case of an overlap between a compound word and a sequence of simple words, the au-
tomaton contains a path that is labeled by the compound word, parallel to the paths that
express the combinations of simple words. This is illustrated in Figure 7.2, where the com-
pound word courts of law overlaps with a combination of simple words.

By construction, the text automaton does not contain any loop. One says that the text au-
tomaton is acyclic.

NOTE: The term “text automaton” is an abuse of language. In fact, there is an automaton for
each sentence of the text. Therefore, the combination of all these automata corresponds to
the automaton of the text. This is why we use the term “text automaton” even if this object
is not manipulated as a global automaton for practical reasons.

165

166 CHAPTER 7. TEXT AUTOMATON

Figure 7.1: Sentence automaton example

Figure 7.2: Overlap between a compound word and a combination of simple words.

7.2. CONSTRUCTION 167

7.2 Construction

In order to construct the text automaton, open the text, then click on "Construct FST-Text..."
in the menu "Text". One should first split the text into sentences and apply dictionaries. If
sentence boundary detection is not applied, the construction program will arbitrarily split
the text in sequences of 2000 lexical units instead of constructing one automaton per sen-
tence. If no dictionaries are applied, the text automaton that you obtain will consist of only
one path made up of unknown words per sentence.

7.2.1 Construction rules for text automata

Sentence automata are constructed from text dictionaries. The resulting degree of ambiguity
is therefore directly linked to the granularity of the descriptions of dictionaries. From the
sentence automaton in figure 7.3, you can conclude that the word which has been coded
twice as a determiner in two subcategories of the category DET. This granularity of descrip-
tions will not be of any use if you are only interested in the grammatical category of this
word. It is therefore necessary to adapt the granularity of the dictionaries to the intended
use.

Figure 7.3: Double entry for which as a determiner

For each lexical unit of the sentence, Unitex searches the dictionary of the simple words of
the text for all possible interpretations. Afterwards, all combination of lexical units that have
an interpretation in the dictionary of the compound words of the text are taken into account.
All the combinations of these information constitute the sentence automaton.

NOTE: If the text contains lexical labels (e.g. {out of date,.A+z1}), these labels are
reproduced identically in the automaton without trying to decompose them.

168 CHAPTER 7. TEXT AUTOMATON

In each box, the first line contains the inflected form found in the text, and the second line
contains the canonical form if it is different. The other information is coded below the box.
(cf. section 7.5.1).

The spaces that separate the lexical units are not copied into the automaton except for the
spaces inside compound words.

The case of lexical units is retained. For example, if the word Here is encountered, the
capital letter is preserved (cf. figure 7.1). This choice allows you to keep this information
during the transition to the text automaton, which could be useful for applications where
case is important as for recognition of proper names.

7.2.2 Normalization of ambiguous forms

During the construction of the automaton, it is possible to normalize ambiguous forms by
applying a normalization grammar. This grammar has to be called Norm.fst2 and must
be placed in your working directory, in the subdirectory /Graphs/Normalization of the
language. Normalization grammars for ambiguous forms are described in section 6.1.3.

If a sequence of the text is recognized by the normalization grammar, all the interpretations
that are described by the grammar are inserted into the text automaton. Figure 7.4 shows
the part of the grammar used for the ambiguity of the sequence l’ in French.

Figure 7.4: Normalization of the sequence l’

If this grammar is applied to a French sentence containing the sequence l’, a sentence au-
tomaton that is similar to the one in figure 7.5 is obtained.

You can see that the four rules for rewriting the sequence l’ have been applied, which has
added four labels to the automaton. These labels are not concurrent with the two preexisting
paths for the sequence l’, because of the "keep best paths" heuristic (see section 7.2.4). The
normalization at the time of the construction of the automaton allows you to add paths to the
automaton but not to remove ones. Removing paths will be partially done by the "keep best

7.2. CONSTRUCTION 169

Figure 7.5: Automaton that has been normalized with the grammar of figure 7.4

paths" heuristic, if enabled. To go further, you will need to use the ELAG disambiguation
functionality.

7.2.3 Normalization of clitic pronouns in Portuguese

In Portuguese, verbs in the future tense and in the conditional can be modified by the inser-
tion of one or two clitic pronouns between the root and the suffix of the verb. For example,
the sequence dir-me-ão (they will tell me), corresponds to the complete verbal form dirão, as-
sociated with the pronoun me. In order to be able to manipulate this underlying form, it
is necessary to introduce it into the text automaton in parallel to the original form. Thus,
the user can search one or the other form. The figures 7.6 and 7.7 show the automaton of a
sentence after normalization of the clitics.

170 CHAPTER 7. TEXT AUTOMATON

Figure 7.6: Text automaton without normalization

Figure 7.7: Normalized text automaton

7.2. CONSTRUCTION 171

The Reconstrucao program allows you to construct a normalization grammar for these
forms for each text dynamically. The grammar thus produced can then be used for normal-
izing the text automaton. The configuration window of the automaton construction suggests
an option "Build clitic normalization grammar" (cf. figure 7.10). This option automatically
starts the construction of the normalization grammar, which is then used to construct the
text automaton, if you have selected the option "Apply the Normalization grammar".

7.2.4 Keeping the best paths

An unknown word can perturb the text automaton by overlapping with a completely la-
beled sequence. Thus, in the automaton of figure 7.8, it can be seen that the adverb
aujourd’hui overlaps with the unknown word aujourd, followed by an apostrophe and
the past participle of the verb huir.

Figure 7.8: Ambiguity due to a sentence containing an unknown word

This phenomenon can also take place in the treatment of certain Asian languages like Thai.
When words are not delimited, there is no other solution than to consider all possible com-
binations, which causes the creation of numerous paths carrying unknown words that are
mixed with the labeled paths. Figure 7.9 shows an example of such an automaton of a Thai
sentence.

172 CHAPTER 7. TEXT AUTOMATON

Figure 7.9: Automaton of a Thai sentence

It is possible to suppress parasite paths. You have to select the option "Clean Text FST"
in the configuration window for the construction of the text automaton (cf. figure 7.10).
This option indicates to the automaton construction program that it should clean up each
sentence automaton.

This cleaning is carried out according to the following principle: if several paths are concur-
rent in the automaton, the program keeps those that contain the fewest unlabeled tokens.
For instance, the compound adverb aujourd’hui is preferred to the sequence made of
aujourd followed by a quote and hui, because aujourd and the quote are both unlabeled

7.2. CONSTRUCTION 173

Figure 7.10: Configuration of the construction of the text automaton

tokens, while the compound adverb path does not contain any unknown word. Figure 7.11
shows the automaton of figure 7.9 after cleaning.

174 CHAPTER 7. TEXT AUTOMATON

Figure 7.11: Automaton of figure 7.9 after cleaning

7.3. RESOLVING LEXICAL AMBIGUITIES WITH ELAG 175

7.3 Resolving Lexical Ambiguities with ELAG

The ELAG program allows for applying grammars for ambiguity removal to the text au-
tomaton. This powerful mechanism makes it possible to write rules on independently from
already existing rules. This chapter briefly presents the grammar formalism used by ELAG
and describes how the program works. For more details, the reader may refer to [6] and
[64].

7.3.1 Grammars For Resolving Ambiguities

The grammars used by ELAG have a special syntax. They consist of two parts which we
call the if and then parts. The if part of an ELAG grammar is divided in two parts which are
divided by a box containing the <!> symbol. The then part is divided the same way using
the <=> symbol. The meaning of a grammar is the following: In the text automaton, if a path
of the if part is recognized, then it must also be recognized by the then part of the grammar,
or it will be withdrawn from the text automaton.

Figure 7.12: ELAG grammar elag-tu.grf

Figure 7.12 shows an example of a grammar. The if part recognizes a verb in the 2nd person
singular followed by a dash and tu, either as a pronoun, or as a past participle of the verb
taire. The then part imposes that tu is then regarded as a pronoun. Figure 7.13 shows the
result of the application of this grammar on the sentence "Feras-tu cela bientôt ?". One can
see in the automaton at the bottom that the path corresponding to tu past participle was
eliminated.

Synchronization point

The if and then parts of an ELAG grammar are divided into two parts by <!> in the if part,
and <=> in the then part. These symbols form a synchronization point. This makes it possible
to write rules in which the if and then constraints are not necessarily aligned, as it is the
case for example in figure 7.14. This grammar is interpreted in the following way: if a dash
is found followed by il, elle or on, then this dash must be preceded by a verb, possibly

176 CHAPTER 7. TEXT AUTOMATON

Figure 7.13: Result of applying the grammar in figure 7.12

followed by -t. So, if one considers the sentence of the figure 7.15 beginning with Est-il, one
can see that all non-verb interpretations of Est were removed.

7.3.2 Compiling ELAG Grammars

Before an ELAG grammar can be applied to a text automaton, the grammar must be com-
piled in a .rul file. This operation is carried out via the "Elag Rules" command in the "Text"
menu, which opens the windows shown in figure 7.16.

If the frame on the right already contains grammars which you don’t wish to use, you can
withdraw them with the "«" button. Then select your grammar(s) in the file explorer located

7.3. RESOLVING LEXICAL AMBIGUITIES WITH ELAG 177

Figure 7.14: Use of the synchronization point

Figure 7.15: Result of the application of the grammar in figure 7.14

178 CHAPTER 7. TEXT AUTOMATON

Figure 7.16: ELAG grammars compilation frame

in the left frame, and click on the "»" button to add them to the list in the right frame. Then
click on the "Compile" button. This will launch the ElagComp program which will compile
the selected grammars and create a file named elag.rul by default.

If you have selected grammars in the right frame, you can search patterns whith them by
clicking on the "Locate" button. This opens the window "Locate Pattern" and automatically
enters a graph name ending with -conc.fst2. This graphs corresponds to the if part of
the grammar. You can thus obtain the occurrences of the text to which the grammar will
apply.

NOTE: The -conc.fst2 file used to locate the if part of a grammar is automatically gen-
erated when ELAG grammars are compiled by means of the "Compile" button. It is thus
necessary to have your grammar compiled before searching using the "Locate" button.

7.3.3 Resolving Ambiguities

Once you have compiled your grammar into an elag.rul file, you can apply it to a text
automaton. In the text automaton window, click on the "Apply Elag Rule" button. A dialog
box will appear which asks for the .rul file to be used (see figure 7.17). The default file is
elag.rul. This will launch the Elag program which will try to resolve the ambiguity.

Once the program has finished you can view the resulting automaton by clicking on the
"Open Elag Frame" button. As you can see in figure 7.18, the windows is separated into two
parts: The original text automaton can be seen on the top, and the result at the bottom.

7.3. RESOLVING LEXICAL AMBIGUITIES WITH ELAG 179

Figure 7.17: Text automaton frame

Figure 7.18: Splitted text automaton frame

180 CHAPTER 7. TEXT AUTOMATON

Don’t be surprised if the automaton shown at the bottom seems more complicated. This re-
sults from the fact that factorized lexical entries1 were exploded in order to treat each inflec-
tional interpretation separately. To refactorize these entries, click on the "Implode" button.
Clicking on the "Explode" button shows you an exploded view of the text automaton.

If you click on the "Replace" button, the resulting automaton will become the new text au-
tomaton. Thus, if you use other grammars, they will apply to the already partially disam-
biguated automaton, which makes it possible to accumulate the effects of several grammars.

7.3.4 Grammar collections

It is possible to gather several ELAG grammars into a grammar collection in order to compile
and apply them in one step. The sets of ELAG grammars are described in .lst files. They
are managed through the window for compiling ELAG grammars (figure 7.16). The label on
the top left indicates the name of the current collection, by default elag.lst. The contents
of this collection are displayed in the right part of the window.

To modify the name of the collection, click on the "Browse" button. In the dialog box that
appears, enter the .lst file name for the collection.

To add a grammar to the collection, select it in the file explorer in the left frame, and click
on the "»" button. Once you have selected all your grammars, compile them by clicking on
the "Compile" button. This will create a .rul file bearing the name indicated at the bottom
right (the name of the file is obtained by replacing .lst by .rul).

You can now apply your grammar collection. As explained above, click on the "Apply Elag
Rule" button in the text automaton window. When the dialog asks for the .rul file to use,
click on the "Browse" button and select your collection. The resulting automaton is identical
to that which would have been obtained by applying each grammar successively.

7.3.5 Window For ELAG Processing

At the time of disambiguation, the Elag program is launched in a processing window which
displays the messages printed by the program during its execution.

For example, when the text automaton contains symbols which do not correspond to the set
of ELAG labels (see the following section), a message indicates the nature of the error. In the
same way, when a sentence is rejected (all possible analyses were eliminated by grammars),
a message indicates the number of the sentence. That makes it possible to locate the source
of the problems quickly.

1Entries which gather several different inflectional interpretations, such as for example:
{se,.PRO+PpvLE:3ms:3fs:3mp:3fp}.

7.3. RESOLVING LEXICAL AMBIGUITIES WITH ELAG 181

Evaluation of ambiguity removal

The assessment of the ambiguity rate is not based solely on the average number of interpre-
tations per word. In order to get a more representative measure, the system also takes into
account the various combinations of words. While instances of ambiguities are resolved,
the Elag program calculates the number of possible analyses in the text automaton before
and after the modification (which corresponds to the number of possible paths through the
automaton). On the basis of this value, the program computes the average ambiguity by
sentence and word. It is this last measure which is used to represent the ambiguity rate
of the text, because it does not vary with the size of the corpus, nor with the number of
sentences within. The formula applied is:

lexical ambiguity rate= exp
log(number−of−paths)

text−length

The relationship between the ambiguity rate before and after applying the grammars gives
a measure of their efficiency. All this information is displayed in the ELAG processing win-
dow.

7.3.6 Description of the tag sets

The Elag and ElagComp programs require a formal description of the tag set to be used in
dictionaries. This description consists essentially of an enumeration of all the parts of speech
present in the dictionaries, with, for each of them, the list of syntactic and inflectional codes
compatible with it, and a description of their possible combinations. This description must
be contained in a file called tagset.def and placed in your working directory, in the Elag
subdirectory of the language.

tagset.def file

Here is an extract of the tagset.def file used for French.

NAME french

POS ADV
.

POS PRO
flex:
pers = 1 2 3
genre = m f
nombre = s p
discr:

182 CHAPTER 7. TEXT AUTOMATON

subcat = Pind Pdem PpvIL PpvLUI PpvLE Ton PpvPR PronQ Dnom Pposs1s...
complete:
Pind <genre> <nombre>
Pdem <genre> <nombre>
Pposs1s <genre> <nombre>
Pposs1p <genre> <nombre>
Pposs2s <genre> <nombre>
Pposs2p <genre> <nombre>
Pposs3s <genre> <nombre>
Pposs3p <genre> <nombre>
PpvIL <genre> <nombre> <pers>
PpvLE <genre> <nombre> <pers>
PpvLUI <genre> <nombre> <pers> #
Ton <genre> <nombre> <pers> # lui, elle, moi
PpvPR # en y
PronQ # ou qui que quoi
Dnom # rien
.

POS A ## adjectifs
flex:
genre = m f
nombre = s p
cat:
gauche = g
droite = d
complete:
<genre> <nombre>
_ # pour {de bonne humeur,.A}, {au bord des larmes,.A} par exemple
.

POS V
flex:
temps = C F I J K P S T W Y G X
pers = 1 2 3
genre = m f
nombre = s p
complete:
W
G
C <pers> <nombre>
F <pers> <nombre>
I <pers> <nombre>
J <pers> <nombre>

7.3. RESOLVING LEXICAL AMBIGUITIES WITH ELAG 183

P <pers> <nombre>
S <pers> <nombre>
T <pers> <nombre>
X 1 s # eusse dusse puisse fusse (-je)
Y 1 p
Y 2 <nombre>
K <genre> <nombre>
.

The # symbol indicates that the remainder of the line is a comment. A comment can appear
at any place in the file. The file always starts with the word NAME, followed by an identifier
(french, for example). This is followed by the POS sections for each part of speech. Each
section describes the structure of the lexical tags of the lexical entries belonging to the part
of speech concerned. Each section is composed of 4 parts which are all optional:

• flex: this part enumerates the inflectional codes belonging to the grammatical cate-
gory. For example, the codes 1,2,3which indicate the person of the entry are relevant
for pronouns but not for adjectives. Each line describes an inflectional attribute (gen-
der, time, etc.) and is made up of the attribute name, followed by the = character and
the values which it can take. For example, the following line declares an attribute pers
being able to taking the values 1, 2 or 3:

pers = 1 2 3

• cat: this part declares the syntactic and semantic attributes which can be assigned to
the entries belonging to the part of speech concerned. Each line describes an attribute
and the values which it can take. The codes declared for the same attribute must be
exclusive. In other words, an entry cannot take more than one value for the same
attribute.

On the other hand, all the tags in a given part of speech don’t necessarily take val-
ues for all the attribute of the part of speech. For example, to define the attribute
niveau_de_langue which can take the values z1, z2 and z3, the following line can
be written:

niveau_de_langue = z1 z2 z3

but this attribute is not necessarily present in all words.

• discr: this part consists of a declaration of a unique attribute. The syntax is the
same as in the cat part and the attribute described here must not be repeated there.
This part allows for dividing the grammatical category in discriminating sub categories
in which the entries have similar inflectional attributes. For pronouns for example, a
person feature is assigned to entries that are part of the personal pronoun sub category
but not to relative pronouns. These dependencies are described in the complete part;

184 CHAPTER 7. TEXT AUTOMATON

• complete: this part describes the inflectional part of the tags of the words in the
current part of speech. Each line describes a valid combination of inflectional codes
by their discriminating sub category (if such a category was declared). If an attribute
name is specified in angle brackets (< and >), this signifies that any value of this at-
tribute may occur. It is possible as well to declare that an entry does not take any
inflectional feature by means of a line containing only the _ character (underscore). So
for example, if we consider that the following lines extracted from the section describ-
ing the verbs:

W
K <genre> <nombre>

They make it possible to declare that verbs in the infinitive (indicated by the W code)
do not have other inflectional features while the forms in the past participle (K code)
are also assigned a gender and a number.

Description of the inflectional codes

The principal function of the discr part is to divide a part of speech into subcategories
having similar inflectional behavior. These subcategories are then used to facilitate writing
the complete part.

For the legibility of the ELAG grammars, it is desirable that the elements of the same sub-
category all have the same inflectional behavior; in this case the complete part is made up
of only one line per subcategory. Let us consider for example the following lines from the
pronoun description:

Pdem <genre> <nombre>
PpvIl <genre> <nombre> <pers>
PpvPr

These lines mean:

• all the demonstrative pronouns (PRO+Pdem>) have only a gender and a number;

• clitic pronouns in the nominative (<PRO+PpvIl>) are labelled grammatically in per-
son, gender and number;

• the prepositional pronouns (en, y) do not have any inflectional feature.

All combinations of inflectional features and discriminant subcategories which appear in
the dictionaries must be described in the tagset.def file; otherwise, the information in
the corresponding entries will be discarded by ELAG.

7.3. RESOLVING LEXICAL AMBIGUITIES WITH ELAG 185

If words of the same subcategory differ by their inflectional profile, it is necessary to write
several lines into the complete part. The disadvantage of this method of description is that
it becomes difficult to make the distinction between such words in an ELAG grammar.

If one considers the description given by the previous example of a tagset.def file, certain
adjectives of French take a gender and a number, whereas others to not have any inflectional
feature. This allows for coding fixed sequences like de bonne humeur as adjective, on the basis
of their syntactic behavior.

Consider a French dictionary with such sequences as invariable adjectives without inflec-
tional features. The problem is that if one wants to refer exclusively to this type of adjectives
in a disambiguation grammar, the <A> symbol is not appropriate, since it will recognize all
adjectives. To circumvent this difficulty, it is possible to deny an inflectional attribute by
writing the @ character right before one of the possible values for this attribute. Thus, the
<A:@m@p> symbol recognizes all the adjectives which have neither a gender nor a number.
Using this operator, it is possible to write grammars like those in figure 7.19, which imposes
agreement in gender and number between a name and an adjective which suits 2. This
grammar will preserve the correct analysis of sentences like: Les personnes de bonne humeur
m’insupportent.

Is is however recommended to limit the use of the @ operator, because it harms the legibility
of the grammars. It is preferable to distinguish the labels which accept various inflectional
combinations by means of discriminating subcategories defined in the discr part.

Figure 7.19: ELAG grammar that verifies gender and number agreement

Optional Codes

The optional syntactic and semantic codes are declared in the cat part. They can be used
in ELAG grammars like other codes. The difference is that these codes do not intervene to

2This grammar is not completely correct, because it eliminates for example the correct analysis of the sen-
tence: J’ai reçu des coups de fil de ma mère hallucinants.

186 CHAPTER 7. TEXT AUTOMATON

decide if a label must be rejected as an invalid one while loading of the text autmaton.

In fact optional codes are independent of other codes, such as for example the attribute of
the language level (z1, z2 or z3). In the same manner as for inflectional codes, it is possible
to deny an inflectional attribute by writing the ! character right before the name of the
attribute. Thus, with our example file, the <A!gauche:f> symbol recognizes all adjectives
in the feminine which do not have the gauche code 3.

All codes which are not declared in the tagset.def file are discarded by ELAG. If a dictio-
nary entry contains such a code, ELAG will produce a warning and will withdraw the code
from the entry.

Consequently, if two concurrent entries differ in the original text automaton only by unde-
clared codes, these entries will become indistinguishable by the programs and will thus be
unified into only one entry in the resulting automaton.

Thus, the set of labels described in the file tagset.def file is compatible with the dictio-
naries distributed with Unitex, by factorizing words which differ only by undeclared codes,
and this independently of the applied grammars.

For example, in the most complete version of the French dictionary, each individual use of a
verb is characterized by a reference to the lexicon grammar table which contains it. We have
considered until now that this information is more relevant to syntax than to lexical analysis
and we thus don’t have integrated them into the description of the tagset. They are thus
automatically eliminated at the time when the text automaton is loaded, which reduces the
rate of ambiguity.

In order to distinguish the effects bound to the tagset from those of the ELAG grammars, it
is advised to proceed to a preliminary stage of normalization of the text automaton before
applying disambiguation grammars to it. This normalization is carried out by applying to
the text automaton a grammar not imposing any constraint, like that of figure 7.20. Note
that this grammar is normally present in the Unitex distribution and precompiled in the file
norm.rul.

Figure 7.20: ELAG grammar without any constraint

3This code indicates that the adjective must appear on the left of the nound to which it refers to, as is the case
for bel.

7.3. RESOLVING LEXICAL AMBIGUITIES WITH ELAG 187

The result of applying such a grammar is that the original is cleaned of all the codes which
either are not described in the tagset.def file, or do not conform to this description (be-
cause of unknown grammatical categories or invalid combinations of inflectional features).
By then replacing the text automaton by this normalized automaton, one can be sure that
later modifications of the automaton will only be effects of ELAG grammars.

7.3.7 Grammar Optimization

Compilation of ELAG grammars by the ElagComp program consists in building an au-
tomaton whose language is the set of the sequences of lexical tags (or lexical analyses of a
sentence) which are not accepted by the grammars. This task is complex and can take a lot
of time. It is however possible to appreciably speed it up by observing certain principles at
the time of writing gramars.

Limiting the number of branches in the then part

It is recommended to limit the number of then parts of a grammar to a minimum. This can
reduce considerably the compile time of a grammar. Generally, a grammar having many
then parts can be rewritten with one or two then parts, without a loss of legibility. It is for
example the case of the grammar in figure 7.21, which imposes a constraint between a verb
and the pronoun which follows it.

Figure 7.21: ELAG grammar checking verb-pronoun agreement

As one can see in figure 7.22, one can write an equivalent grammar by factorizing all the

188 CHAPTER 7. TEXT AUTOMATON

then parts into only one. The two grammars will have exactly the same effect on the text
automaton, but the second one will be compiled much more quickly.

Figure 7.22: Optimized ELAG grammar checking verb-pronoun agreement

Using lexical masks

It is better to use lemmas only when it is necessary. That is particularly true for some
grammatical words, when their subcategories carry almost as much information as the lem-
mas themselves. In any case, it is recommended to specify its syntactic, semantic and in-
flectional features as much as possible. For example, with the dictionaries provided for
French, it is preferable to replace lexical masks like <je.PRO:1s>, <je.PRO+PpvIL:1s>
and <je.PRO>with the mask <PRO+PpvI1:1s>. Indeed, all these masks are identical inso-
far as they can recognize only the single entry of the dictionary {je,PRO+PpvIL:1ms:1fs}.
However, as the program does not deduce this information automatically, if all these fea-
tures are not specified, the program will consider nonexisting labels such as <je.PRO:3p>,
<je.PRO+PronQ> etc. in vain.

7.4 Linearizing text automaton with the tagger

By default, the text automaton contains many paths of tags because of lexical ambiguity.
The linearization process consists in selecting a single path, a sequence of tags with one tag
per token, and remove the others. The output of the process is a text automaton with a

7.4. LINEARIZING TEXT AUTOMATON WITH THE TAGGER 189

single path (see section 7.6 for converting a linear automaton into linear text). The selection
of a path depends on its score. The path with the best score is chosen and the others are
removed. The score of a path is calculated using a statistical model trained on an annotated
corpus. This model uses tagger data files generated by the TrainingTagger program (see
section 14.44). For instance, you can see on Figure 7.23, the original text automaton of the
French sentence Les insectes nuisibles envahissent la maison. The corresponding text automaton
after linearization is shown on Figure 7.24.

Figure 7.23: Text automaton of Les insectes nuisibles envahissent la maison.

Figure 7.24: Text automaton linearized

7.4.1 Compatibility of the tagset

The tagset of the tagger is identical to that of the training corpus or is a variant (see below).
However, in order to use the tagger on a text automaton, one should pay attention to tagset
and morphology. The tagset of the model must be identical to that of the text automaton.
For example, if the statistical model has been computed with the tag DET for the word the,
the corresponding tag in the text automaton must be DET. Unitex provides functionality to
modify word forms in the text, for example to normalize doesn’t into does not. Apply-
ing replacing or normalization graphs could cause some morphological modifications on
words. If such processing is applied to the text, it must have been applied to the training
corpus as well. If these rules are not respected, the tagger might not be able to keep the good
path from the text automaton.

The TrainingTagger program produces two variants of the tagger. The first one prunes tran-
sitions on the basis of grammatical, semantic, syntactic and inflectional codes (for example,
the.DET+Ddef:s versus the.DET+Ddef:p). The second one prunes transitions on the

190 CHAPTER 7. TEXT AUTOMATON

basis of grammatical, semantic and syntactic codes (that.DET+Ddem versus
that.PRO+Pdem). This option makes the training quicker and inflectional features are not
needed for all applications.

7.4.2 Use of the Tagger

In order to linearize the text automaton, you have to select the option "Linearize with the
Tagger" in the configuration window for the construction of the text automaton (cf. figure
7.25). With this option, the program will linearize each sentence automaton. You must also
select the tagger data file (with ".bin" extension) by clicking on the "Set" button. Tagger data
file suffixed by "morph" is the first variant of the tagger (with inflectional codes) and the one
suffixed by "cat" is the second variant (without inflectional codes). If you want to use the
"morph" data, you also need to click on "Normalize according to Elag tagset.def" (for more
details, see section 14.38 about Tagger program).

Figure 7.25: Configuration of the linearization of the text automaton

For instance, the text automaton, shown on Figure 7.24, is the output of linearization of the
text automaton shown on Figure 7.23 with "cat" tagger data. Linearization of the automaton
with "morph" tagger data is shown on Figure 7.26.

7.4.3 Creation of a new tagger

In order to create a new tagger for your language, you need to launch the TrainingTagger
program on your own annotated corpus. The format of the annotated corpus is described in

7.5. MANIPULATION OF TEXT AUTOMATA 191

Figure 7.26: Text automaton linearized with "morph" tagger data

15.10.1. As we discuss in Section 7.4.1, you need to pay attention on tagset and morphology.
Before computing a statistical model, you have to decide which dictionaries and normaliza-
tion graphs you will use to construct the text automaton. And then, you will have to do
modifications on the annotated corpus if word forms or tagset do not match completely. For
example, if the normalization graph transforms the word jusqu’ into jusque, the corre-
sponding word into the annotated corpus must be jusque.

A French tagger is distributed with Unitex. It has been created with an annotated corpus
composed of tags without semantic and syntactic codes.

7.5 Manipulation of text automata

7.5.1 Displaying sentence automata

As we have seen above, the text automaton is in fact the collection of the sentence automata
of a text. This structure can be represented using the format .fst2, also used for represent-
ing the compiled grammars. This format does not allow the system to directly display the
sentence automata. Instead, the system uses the Fst2Grf program to convert the sentence
automaton into a graph that can be displayed. This program is called automatically when
you select a sentence in order to generate the corresponding .grf file.

The generated .grf files are not interpreted in the same manner as the .grf files that rep-
resent graphs constructed by the user. In fact, in a normal graph, the lines of a box are
separated by the + symbol. In the graph of a sentence, each box represents either a lexical
unit without a tag or a dictionary entry enclosed by curly brackets. If the box only repre-
sents an unlabeled lexical unit, this unit appears alone in the box. If the box represents a
dictionary entry, the inflected form is displayed, followed in another line by the canonical
form if it is different. The grammatical and inflectional information is displayed below the
box as a transducer output.

Figure 7.27 shows the graph obtained for the first sentence of Ivanhoe. The words Ivanhoe,
Walter and Scott are considered unknown words. The word by corresponds to two en-
tries in the dictionary. The word Sir corresponds to two dictionary entries as well, but since
the canonical form of these entries is sir, it is displayed because it differs from the inflected
form by a lower case letter.

192 CHAPTER 7. TEXT AUTOMATON

Figure 7.27: Automaton of the first sentence of Ivanhoe

7.5.2 Modifying the text automaton

It is possible to manually modify sentence automata, except those in the ELAG frame (lower
frame). You can edit or erase boxes or transitions (cf. figure 7.28).

Figure 7.28: Modified sentence automaton

When a graph is modified, it is saved to the text file sentenceN.grf, where N represents
the number of the sentence, but this operation does not modify the global text automaton.
Thus, you can discard the manually modified graph and reset the automaton of that sentence
from the global text automaton by clicking on the "Reset Sentence Graph" button.

When you select a sentence, if a modified graph exists for this sentence, Unitex displays it.

7.5. MANIPULATION OF TEXT AUTOMATA 193

After you edited sentence automata, you can save your manual modifications to the global
text automaton. In order to do that, click on the "Rebuild FST-Text" button. All sentences that
have been modified are then replaced by their modified versions. The new text automaton
is then automatically reloaded.

During the construction of the text automaton (7.2), all the modified sentence graphs in the
text file are erased.

Manually resolving ambiguities

The text automaton may contain many paths of tags because of lexical ambiguity. You can
either resolve ambiguities with ELAG Grammars or manually select the right paths for one
or each graph of the sentence automaton. To do so, you can perform a right click on the
box you want to keep when several boxes with different tags are proposed. The edges of the
selected box will become more bold and the other boxes will appear grayed (see Figure 7.29).

Figure 7.29: Manually resolve ambiguities in sentence automaton

You can then click on the "Remove greyed states" button to keep only the selected boxes as
in Figure 7.30.

194 CHAPTER 7. TEXT AUTOMATON

Figure 7.30: Ambiguous boxes removed in sentence automaton

7.5.3 Display configuration

Sentence automata are subject to the same presentation options as the graphs. They use
the same colors and fonts as well as the antialiasing effect. In order to configure the ap-
pearance of the sentence automata, you modify the general configuration by clicking on
"Preferences..." in the "Info" menu. For further details, refer to section 5.3.5.

You can also print a sentence automaton by clicking on "Print..." in the "FSGraph" menu
or by pressing <Ctrl+P>. Make sure that the printer’s page orientation is set to landscape
mode. To configure this parameter, click on "Page Setup" in the "FSGraph" menu.

7.6 Converting the text automaton into linear text

If the text automaton does not contain any lexical ambiguity, it is possible to build a text file
corresponding to the unique path of the automaton. Go into the "Text" menu and click on
"Convert FST-Text to Text...". You can set the output text file in the window as shown on
Figure 7.31.

Figure 7.31: Setting output file for linearization of the text automaton

If the automaton is not linear, an error message will give you the number of the first sentence
that contain ambiguity. Otherwise, the Tfst2Unambig program will build the output file
according to the following rules:

• the output file contains one line per sentence;

• every line but the last is ended by {S};

7.7. SEARCHING PATTERNS IN THE TEXT AUTOMATON 195

• for each box, the program writes its content followed by a space.

Figure 7.32: Example of a linear text automaton

NOTE: correcting spaces in the output text can only be done manually. If the original text is
the one of the text automaton shown on Figure 7.32, the output text will be:

2 3 {cats,cat.N+Anl:p} {are,be.V:P2s:P1p:P2p:P3p} {white,white.A} .

7.7 Searching patterns in the text automaton

With the LocateTfst program, Unitex can perform search operations on the text automa-
ton. The main advantages are that you can:

• benefit from ambiguity removal;

• benefit from the application of normalization grammar (see below);

• work at several morphological levels (multi-word units, simple words, morphemes).
This is particularly interesting since you can now easily manipulate agglutinative lan-
guages like Korean (for Korean, see section 7.9).

The rules are very similar to the ones that apply to classical searches with Locate. Here are
the differences:

196 CHAPTER 7. TEXT AUTOMATON

• you cannot capture sequences with variables inside right contexts, as it is possible with
Locate (see Figure 6.19, page 135)

• you cannot match things that are not in the text automaton: if the text automaton only
contains a compound word tag and not its concurrent simple word tags, you won’t be
able to match simple words. For instance, in the sentence automaton shown on Figure
7.33, it is not possible to match soixante or huit, since there are no such paths.

Figure 7.33: Sentence automaton that cannot match with pattern huit

• matched sequences can differ from sequences that will appear in concordances. In
fact, the text automaton may contain tags that do not correspond to the raw input
text, in particular when a normalization grammar has been applied. For instance, if
you look for the pattern <le.DET> in 80jours’s text automaton, you will obtain 7703
matches, while Locate only finds 5763 matches. This is because some words have
been normalized, like au→ à le or du→ de le. So, when you look for <le.DET>,
LocateTfst matches those tags that were added to the text automaton by the nor-
malization grammar, and Concord uses the original sequence in the text to produce
the concordance file, as shown on Figure 7.34.

Figure 7.34: A surprising concordance for pattern <le.DET>

7.8. TABLE DISPLAY 197

• <TOKEN> does not match tokens as defined in tokens.txt. It matches any tag of
the text automaton. Matched tags can be either longer than text tokens if they are
compound word tags, or even shorter, if the text automaton contains morphological
analysis like un as shown on Figure 3.28, page 72.

• even if you are not in morphological mode, you can define dictionary-entry variables
(cf. section 6.4.4). Then, you can get from such variables the inflected form, lemma
and codes of lexical entries, their POS code, semantic codes, inflectional codes and the
value zzz of the yyy attribute if there is a code of the form yyy=zzz.

7.8 Table display

Sentence automata can be displayed in a table format. To do that, you just have to select the
"Table" tab in the text automaton frame. You will then see a table as shown on Figure 7.35.

Figure 7.35: Table display

This table is not fully equivalent to the sentence automaton, since it only displays all possi-
ble POS for each simple or multiple word unit. It should be considered as an approximate
compact view of information contained in the automaton. You can also filter grammati-
cal/semantic codes to be displayed. Select "All" and you will see all codes. Select "Only POS
category" and only first codes (supposed to represent the POS category) will be displayed.
If you select "Use filter" and set a regular expression X , codes that do not contain something
matched by X will be discarded. Any POSIX regular expression is accepted as filter. Check
"Always show POS category", and as said, the POS category will be kept even if not matched
by the filter, if any. For instance, Figure 7.36 shows a filtering result, obtained with the filter

198 CHAPTER 7. TEXT AUTOMATON

^[A-Z] that matches any code starting with an uppercase letter, thus discarding codes like
z1.

Figure 7.36: Filtered table display

The "Export all text as POS list" button can be used to export this table display of the whole
text automaton as a text file following a special format. Currently, it is only an experimental
feature that may change in the future. Here is an example of output:

(Je/N:ms:mp)|(Je/PRO/PpvIL:1fs:1ms) (suis/V:P1s)|(suis/V:Y2s:P2s:P1s)
M/N:mp:ms . Mdiba (de/DET/Dind:fp:mp:fs:ms)|(de/PREP)|(de/PREP/z1
+de la/DET/Dind/z1:fs)|(de/PREP/z1+des/DET/Dind/z1:mp:fp)|(de/PREP/z1
+du/DET/Dind/z1:ms)|(de la/DET/Dind/z1:fs)|(des/DET/Dind/z1:mp:fp)|
(du/DET/Dind/z1:ms) LG - ville/N:fs . {S}

7.9 The special case of Korean

Korean is an agglutinative language with a unique writing system: words are made of
Hangul syllabic characters, but one Hangul character corresponds to several Jamo alpha-
betic characters. For instance, you can see on Figure 7.37 two examples of Hangul characters
followed by their equivalent Jamo letter sequences.

Not all morphemes correspond to Hangul characters. For instance, Figure 7.38 shows a
given token (shown in green) analyzed as a combination of two elements: a verb and a
modifier. The point is that the modifier is only made of one Jamo letter that combines with
the last Hangul character of the verb in order to give the last Hangul character of the whole
word (in green).

7.9. THE SPECIAL CASE OF KOREAN 199

Figure 7.37: Hangul characters and their equivalent Jamo sequences

Figure 7.38: Decomposition of a Hangul character

As a consequence, it can be convenient for Korean users to write grammars with mixes of
Hangul and Jamo characters. Thus, a grammar like the one shown on Figure 7.39 will match
sequences like the one shown Figure 7.40.

Figure 7.39: A grammar with two Jamo letters

In Korean, the text automaton displays untagged tokens on a lavender-blue background.4

REMARKS:

1. Jamo letters are not in the Korean alphabet file (Alphabet.txt). DO NOT ADD
THEM TO THIS FILE, because it would induce dysfunctions in programs.

4In Korean, versions before 3.1beta rev. 4272 display untagged tokens on a green background, as in Fig. 7.38
and 7.40.

200 CHAPTER 7. TEXT AUTOMATON

Figure 7.40: Sentence automaton matched by grammar of Figure 7.39

2. This alphabet file contains equivalences between some Chinese characters and some
Hangul ones. In practice, if a grammar contains a Chinese character that has such an
equivalent Hangul, it will match this Hangul in the text automaton. For instance, the
grammar shown on Figure 7.41 will match the sentence of Figure 7.40, because the
Korean alphabet file contains an equivalence for that character, as shown on Figure
7.42.

Figure 7.41: A grammar with a Chinese character

7.9. THE SPECIAL CASE OF KOREAN 201

Figure 7.42: Extract of Korean alphabet file

202 CHAPTER 7. TEXT AUTOMATON

Chapter 8

Sequence Automaton

The construction of local grammars can be a long process during which the linguist repeated
many times the same operations. The aim of the Seq2Grf program is to produce quickly and
automatically local grammars.

This program can be used in command line mode or by clicking on "Construct Sequences
Automaton" in the Text Menu. The use of the command Seq2Grf is described in section 14.34.

For a given document (TEILite or txt format files or SNT when preprocessed for this task
with STOP tags) this programs builds a single automaton that recognizes all the sequences
contained in the document.

Special attention should be paid to the establishment of the list of sequences that are recog-
nized by the graph.

This chapter presents the file formats supported by the Seq2Grf program, the construction
of the sequence automaton, and the use of wildcards.

8.1 Sequences Corpus

We call sequences corpus or qualified corpus a list of sequences of one or several words that
we want to be recognized by only one local grammar graph.

This sequences corpus is stored in one single file wich must be from one of the following
formats :

• raw text files in which sequences are delimited by end of line

• SNT files already processed with this menu : sequences will be delimited by the STOP
tag.

• TEILite files in which sequences are delimited by the following xml tag :

<seg type="sequence">example</seg>

203

204 CHAPTER 8. SEQUENCE AUTOMATON

Since the corpus contains specific sequences, it must be done by hand. This means that you
have to either write all the sequences in a raw text file and separate them by an end of line
(figure 8.1), or insert the specific xml tag in an existing TEILite Document (figure 8.3). The
preprocessing of TXT or XML Documents will produce a SNT file that is used for the build
of the Sequence Automaton (figure 8.2). This File can be used as an input. The produced
graph will only recognize the sequences that are correctly delimited. Production of local
grammars is automatic only from a corpus of well-defined sequences. If you have such a
corpus, then the time saved is considerable.

Figure 8.1: TXT Figure 8.2: SNT

Figure 8.3: TEILite

8.2 Usage

In order to create a sequence automaton, click on "Construct Sequence Automaton" in the
"Text" menu. You will then see the window coming up as in figure 8.4.

This window will allow you to set the parameters to produce a sequence automaton.
You have to follow these three steps :

• choose the sequence corpus : that can be a file which format is one of the three de-
scribed in the previous section. The file format is automatically detected according to
the file extension.

• set the specific options : Applying the beautifying algorithm will place each box so
that the resulting graph is smaller and as easily readable as possible. The exact case
matching will put litteral tokens into braces in the graph so that the graph doesn’t
match tokens with same letters but with case differences.

8.2. USAGE 205

You can set more options to produce a graph that allow approximate matching : you
can set the number of jokers to be used to produce new sequences derived from the
sequences of the original corpus, and what kind of joker can be used. All the details
about the use of jokers is detailed in section 8.3

• choose the directory where the graph will be saved.

Figure 8.4: The sequence automaton menu

Figure 8.5: Options of the sequence automa-
ton menu

You can see in figures 8.6 and 8.7 the graphes without wildcards produced without or with
beautify.

206 CHAPTER 8. SEQUENCE AUTOMATON

Figure 8.6: Automaton without beautify op-
tion

Figure 8.7: Automaton with beautify option

8.3 Search by approximation

When you perform a locate operation on a text using a graph produced with the Seq2Grf
program, you will find in the match occurences only sequences present in the original se-
quence corpus. Some sequences close to those of the sequence corpus might appear in the
text and be ignored because they are not in the sequence corpus. These sequences should
be included in the sequence automaton. In order to find these sequences,you can produce
a graph that recognize all the sequences from the sequence corpus, plus derived sequences
that are the result of the application of three kind of wildcards. Each wildcard makes it
possible to apply an operation to generate new sequences.

• insertion : for each sequence, add to the automaton all the sequences where <TOKEN>
was inserted between two words of the original sequence.

• replacement : for each sequence, add to the automaton all the sequences where i tokens
have been replace by <TOKEN>

• deletion : for each sequence, add to the automaton all the sequences where a token has
been deleted

Each of these operations can be applied several times to the original sequences. Applying
this grammar to a text will introduce approximations in the search of the sequences in the
text.

When wildcards are used, the produced graphs follow these rules :

• both original and derived sequences are included in the automaton

• no empty sequence nor sequence made only with wildcards will be added to this
graph (such sequences could be produced by deletions or replacements on short se-
quences)

8.3. SEARCH BY APPROXIMATION 207

• no insertion of a wildcard at the head or tail of a sequence

• every token of a sequence including the first and last can be replaced by a wildcard

The graphs produced using wildcard contain many erroneous sequences and must be con-
fronted with corpora by a locate to keep only the relevant sequences. These sequences might
be used to produce a new graph you might want to keep.

The graph in figure 8.8 was produced with replacement of 1 token and with the beautify
option activated.

Figure 8.8: Automaton with one replacement allowed

208 CHAPTER 8. SEQUENCE AUTOMATON

Chapter 9

Lexicon-grammar

The tables of lexicon-grammar are a compact way for representing syntactical properties of
the elements of a language. It is possible to automatically construct local grammars from
such tables, due to a mechanism of parameterized graphs.

In the first part of the chapter the formalism of tables is presented. The second part describes
parameterized graphs and a mechanism of automatically lexicalizing them with lexicon-
grammar tables.

9.1 Lexicon-grammar tables

Lexicon-grammar is a methodology developed by Maurice Gross and the LADL team ([9],
[10], [39], [52], [50], [51], [49], [48], [45], [44], [43], [42], [41], [66], [87]) based on the following
principle: every verb has an almost unique set of syntactical properties. Due to this fact,
these properties need to be systematically described, since it is impossible to predict the
exact behavior of a verb. These descriptions are represented by matrices where rows corre-
spond to verbs and columns to syntactical properties. The considered properties are formal
properties such as the number and nature of allowed complements of the verb and the dif-
ferent transformations the verb can undergo (passivization, nominalisation, extraposition,
etc.). The matrices, or tables, are mostly binary: a + sign occurs at the intersection of a row
and a column of a property if the verb has that property, a - sign if not. More information
in http://infolingu.univ-mlv.fr, including some lexicon-grammar tables that you
can freely download.

This type of description has also been applied to adjectives ([69]), predicative nouns ([34],
[35], [33], [40], [84]), adverbs ([46], [71]), as well as frozen expressions, in many languages
([14], [26], [27], [76], [77], [81], [91], [92], [93], [85], [82], [47]).

Figure 9.1 shows an example of a lexicon-grammar table. The table contains verbs that,
among other definitional properties, do not admit passivization.

209

http://infolingu.univ-mlv.fr

210 CHAPTER 9. LEXICON-GRAMMAR

Figure 9.1: Lexicon-grammar Table 32NM

9.2 Conversion of a table into graphs

9.2.1 Principle of parameterized graphs

The conversion of a table into graphs is carried out by a mechanism involving parameter-
ized graphs. The principle is the following: a graph that describes the possible constructions
is constructed manually. That graphs refers to the columns of the table in the form of param-
eters or variables. Afterwards, for each line of the table a copy of this graph is constructed
where the variables are replaced with the contents of the cell at the intersection of line and
the column that corresponds to the variable. If a cell of the table contains the + sign, the
corresponding variable is replaced by <E>. If the cell contains the - sign, the box containing
the corresponding variable is removed, interrupting the paths through that box. In all other
cases the variable is replaced by the contents of the cell.

9.2.2 Format of the table

The lexicon-grammar tables are usually encoded with the aid of a spreadsheet like OpenOf-
fice.org Calc ([75]). To be usable with Unitex, the tables have to be encoded in Unicode text
format in accordance with the following convention: the columns need to be separated by a

9.2. CONVERSION OF A TABLE INTO GRAPHS 211

tab and the lines by a newline.

In order to convert a table with OpenOffice.org Calc, save it in text format (.csv extension).
You can then parameterize the output format with a window as shown on Figure 9.2. Choose
"Unicode", select tabulation as column separator and do not set any text delimiter.

Figure 9.2: Saving a table with OpenOffice.org Calc

During the generation of the graphs, Unitex skips the first line, considering that it contains
the headings of the columns. It is therefore necessary to ensure that the headings of the
columns occupy exactly one line. If there is no line for the heading, the first line of a table
will be ignored anyway, and if there are multiple heading lines, from the second line on they
will be interpreted as lines of the table.

9.2.3 Parameterized graphs

Parameterized graphs are graphs with variables referring to the columns of a lexicon-grammar
table. This mechanism is usually used with syntactic graphs, but nothing prevents the con-
struction of parameterized graphs for inflection, preprocessing, or for normalization.

Variables that refer to columns are formed with the @ symbol followed by the name of the
column in capital letters (the columns are named starting with A).

Example: @C refers to the third column of the table.

Whenever a variable takes the value of a + or - sign, the - sign corresponds to the removal
of a path through that variable. It is possible to swap the meaning of these signs by typing
an exclamation mark in front of the @ symbol. In that case, the path is removed when there
is a + sign and kept where there is a - one. In all other cases, the variable is replaced by the
content of the table cell.

The special variable @% is replaced by the number of the line in the table. The fact that its
value is different for each line allows for its use as a simple characterization of a line. That
variable is not affected by an exclamation point to the left of it.

Figure 9.3 shows an example of a parameterized graph designed to be applied to the lexicon-
grammar table 31H presented in figure 9.4.

212 CHAPTER 9. LEXICON-GRAMMAR

Figure 9.3: Example of parameterized graph

Figure 9.4: Lexicon-grammar table 31H

9.2.4 Automatic generation of graphs

In order to be able to generate graphs from a parameterized graph and a table, first of all the
table must be opened by clicking on "Open..." in the "Lexicon-Grammar" menu (see figure
9.5). The table must be in Unicode text format.

The selected table is then displayed in a window (see figure figure 9.6). If it does not appear

9.2. CONVERSION OF A TABLE INTO GRAPHS 213

Figure 9.5: Menu "Lexicon-Grammar"

on your screen, it may be hidden by other Unitex windows.

Figure 9.6: Displaying a table

To automatically generate graphs from a parameterized graph, click on "Compile to GRF..."
in the "Lexicon-Grammar" menu. The window in figure 9.7 shows this.

In the "Reference Graph (in GRF format)" frame, indicate the name of the parameterized
graph to be used. In the "Resulting GRF grammar" frame, indicate the name of the main
graph that will be generated. This main graph is a graph that invokes all the graphs that are
going to be generated. When launching a search in a text with that graph, all the generated
graphs are simultaneously applied.

The "Name of produced subgraphs" frame is used to set the name of each graph that will be
generated. Enter a name containing @%, because for each line of the table, @%will be replaced
the line number, which guarantees that each graph name will be unique. For example, if the
main graph is called "TestGraph.grf" and if subgraphs are called "TestGraph_@%.grf",
the graph generated from the 16th line of the line will be named "TestGraph_0016.grf".

Figures 9.8 and 9.9 show two graphs generated by applying the parameterized graph of
figure 9.3 at table 31H.

214 CHAPTER 9. LEXICON-GRAMMAR

Figure 9.7: Configuration of the automatic generation of graphs

Figure 9.10 shows the resulting main graph.

Figure 9.8: Graph generated for the verb archaïser

Figure 9.9: Graph generated for the verb badauder

9.2. CONVERSION OF A TABLE INTO GRAPHS 215

Figure 9.10: Main graph referring to all the generated graphs

216 CHAPTER 9. LEXICON-GRAMMAR

Chapter 10

Text alignment

The principle of text alignment is simple: aligning two (or more) texts, one supposed to
be the source, and the other(s) supposed to be its translation(s). The alignment is made at
the sentence level, because word alignment is not possible yet, and certainly not relevant.
Then, one can look for an expression A in one of the texts and look for its translations in the
sentences aligned with those containing occurrences of A.

To include such a functionality into Unitex, Patrick Watrin integrated the Open Source text
alignment tool XAlign, developed at the LORIA ([68]). In this chapter, we will explain how
to use the alignment module. The reader interested in details about the integration of XAlign
can consult [23] or [78], and [95] for an illustration of what can be done with this module.

10.1 Loading texts

First, you need to select your 2 texts. To do that, go into "XAlign>Open files. . . ", and you will
see the frame shown on Figure 10.1. You provide texts under two formats: raw unicode text
(as you do for your corpus) or TEI-encoded texts (an XML format; see [55]). In the last text
field, you can select a XML alignment file, if you have already built one. If you select a raw
text, Unitex will need to build a basic TEI version of it (for more details, see section 14.51
about the XMLizer program). So, when you click on "OK", you will be asked to provide
a XML file name as shown on Figure 10.2. Then, Unitex builds the XML versions of your
texts, if needed, and displays the frame shown on Figure 10.3. As you can see, each text is
presented as a list, each cell representing a sentence.

217

218 CHAPTER 10. TEXT ALIGNMENT

Figure 10.1: Text alignment selection frame

Figure 10.2: Warning about raw texts

10.2. ALIGNING TEXTS 219

Figure 10.3: Text alignment frame

10.2 Aligning texts

Once you have loaded your texts, you can align them by clicking on the "Align" button.
You will be asked to provide the name of the XML file that will contain all the information
about the alignment. Then, Unitex launches the XAlign program and you will visualize the
alignment under the form of red links between aligned sentences, as shown on Figure 10.4.

You can edit the alignment links with the mouse. Clicking on a link removes it. To add a
link (or remove it, if it already exists), click on one sentence (in the text you want, source or
destination), and then move your mouse over the corresponding sentence in the other text.
The link about to be added will appear in yellow, as shown on Figure 10.5. When you click,
the link is actually added and becomes red. When you have made all your corrections, you
can save your modified alignment using the "Save alignment" and "Save alignment as. . . "
buttons.

An interesting feature of XAlign is that it is reentrant. It means that you can take an existing
alignment as a set of mandatory links in input of the alignment process. This can be useful if
you want to work with cognates. For more details about cognates and XAlign, see discussion
in [78].

220 CHAPTER 10. TEXT ALIGNMENT

Figure 10.4: Aligned sentences

Figure 10.5: Adding a link

10.3. PATTERN MATCHING 221

10.3 Pattern matching

You can perform pattern matching queries on any of your texts, by clicking on its "Locate"
button. The first time you click, Unitex will ask you to build a working version of your
text, as shown on Figure 10.6. This text version will be preprocessed according to the text
language (in particular, the default dictionaries will be applied).

WARNING: the text language is determined on the basis of the path name. For instance,
if your text file is located in .../MyUnitex/Klingon/Corpus, the language will be con-
sidered to be Klingon. So, if your text is not in a subdirectory of your personal working
directory, its language will not be identified.

Figure 10.6: Unitex needs to build a working version of your text

Figure 10.7: Pattern matching frame for aligned texts

Once Unitex has created and preprocessed the working version of the text, you can perform

222 CHAPTER 10. TEXT ALIGNMENT

your query using the frame shown on Figure 10.7. As the matching operation is performed
by the Locate program, you can perform the same queries than you would perform on a
normal corpus. The only restriction is that you cannot exploit the outputs of your grammars,
if any.

For instance, let us lookup for the pattern <manger> (to eat) in the French text of our ex-
ample. First, we see no result, because we have not changed yet the display mode for the
French text, which by default is "All sentences/Plain text". Clicking on "Matched sentences",
we only see sentences that contain occurrences, highlighted as usual in blue, as shown on
Figure 10.8. Clicking on "All sentences/HTML" will display all sentences, highlighting oc-
currences in blue.

Figure 10.8: Displaying matched sentences

To exploit parallel texts, it is then interesting to retrieve sentences aligned with matched
sentences. This can be done by selecting for the other text, the display mode "Aligned with
source concordance". In this mode, Unitex filters sentences that are not linked to matched
sentences in the source text. So, it is easy to lookup for an expression in one text and to find
the corresponding sentences in the other, as shown on Figure 10.9.

10.3. PATTERN MATCHING 223

Figure 10.9: Displaying matched sentences and sentences they are linked to

224 CHAPTER 10. TEXT ALIGNMENT

Chapter 11

Compound word inflection

MULTIFLEX is a multi-lingual Unicode-compatible platform for automatic inflection of multi-
word units (MWUs), also known as compound words. It is meant in particular for the creation
of morphological dictionaries of MWUs. It implements a unification-based formalism ([89])
for the description of inflectional behavior of MWUs which supposes the existence of a mod-
ule for the inflectional morphology of simple words.

In this chapter, we present the notion of multi-word unit and we describe the method to
inflect them with MULTIFLEX.

This chapter is derived from the MULTIFLEX manual, written by Agata Savary, the author
of MULTIFLEX.

11.1 Multi-Word Units

Multi-word units (MWUs) encompass a bunch of hard-to-define and controversial linguistic
objects (cf. [53], [18]). Their numerous linguistic and pragmatic definitions ([5], [22], [67],
[4], [37], [3], [90], [38], [13]) invoke three major points:

• they are composed of two or more words

• they show some degree of morphological, distributional or semantic non-compositionality

• they have unique and constant references

However, the basic notions (a word, a reference, the non-compositionality) and measures
(degree of non-compositionality) used in those definitions are themselves controversial.

Pragmatically, we consider a MWU as a contiguous sequence of graphical units which, for
some application-dependent reasons, has to be listed, described (morphologically, syntacti-
cally, semantically, etc.) and processed as a unit.

225

226 CHAPTER 11. COMPOUND WORD INFLECTION

11.1.1 Formal Description of the Inflectional Behavior of Multi-word Units

The main issue in MULTIFLEX is the inflectional morphology of MWUs. This phenomenon
has been linguistically analyzed for English, Polish and French in [88].

Obviously, a reliable inflection processing of single words is a necessary condition for the
inflection processing of MWUs. However, this condition is rarely a sufficient one. For ex-
ample, in order to obtain the plural form of

• battle cry

• battle royal

• battle of nerves

in English, not only do we need to know how to generate the plural of battle, royal and cry,
but also to know how different inflected forms of these constituents combine:

• battle cries

• battle royals, or battles royal,

• battles of nerves

but not

* battles cries

* battles royals

* battles of nerve

Formally, a fully explicit description of the inflectional paradigms of MWUs requires an
answer to the following questions:

• What is the MWU’s morphological class (noun, adjective, etc.) and thus what inflec-
tion categories (number, gender, case, etc.) are relevant to it? [80] argue for a mor-
phosyntactically motivated definition of morphological classes: a morphological class
should fully determine the inflection categories the word inflects for as well as those
that are lexically fixed for the word, e.g. in Polish, a noun has a gender and inflects for
number and case.

• What are the exceptions to the inflection categories determined above? E.g. in Polish

– wybory powszechne
(general election)

is a compound noun but it doesn’t have a singular form (although its head word
wybory does).

11.1. MULTI-WORD UNITS 227

• What are the inflectional characteristics (base form, morphological class, inflection
paradigm, etc.) of the single constituents of the MWU? E.g. in French, porte (door)
is an uninflected verb in

– porte-avion
(aircraft carrier)

while it is an inflected noun in

– porte-fenêtre
(French window)

which takes an s in plural

– portes-fenêtres

• How should we combine the inflected forms of the single constituents in order to gen-
erate the inflected forms of the whole compound? E.g. to inflect battle of nerves and
battle cry in number we need to inflect the first and the last constituent, respectively.

11.1.2 Lexicalized vs. Grammar-Based Approach to Morphological Description

A previous study ([88]) has confirmed the status of MWUs as units on the frontier between
morphology and syntax. Their compound structure suggests productivity which can hardly
be processed without a grammar-based approach. However some of their morphological,
syntactic and semantic properties exclude their processing merely in terms of the properties
of their constituents. For example, in both examples below:

• chief justice

• lord justice

there are few automatically accessible hints indicating that the former one is morphologi-
cally a standard English Noun Noun phrase taking an s at its last constituent in plural, while
the plural of the latter has three variants:

• chief justices

• lord justices, lords justice, lords justices

Thus, at least one of the above examples has to be considered as lexicalized in order for the
automatic morphological processing to be reliable.

MULTIFLEX implements a unification-based formalism for the description of the inflec-
tional behavior of MWUs presented in [89]. Its features are described in section 11.2. This
formalism requires the description to be fully lexicalized: each MWU listed in a dictionary

228 CHAPTER 11. COMPOUND WORD INFLECTION

obtains a code (e.g. NC_NN, NC_NN2, etc.) representing its inflectional paradigm, for in-
stance, in the DELA-like format:

aircraft carrier(carrier.N1:s),NC_NN
chief justice(justice.N1:s),NC_NN
lord(lord.N1:s) justice(justice.N1:s),NC_NN2
. . .

However, only a few codes, which can be seen as a phrase grammar of the language, repre-
sent the big majority of all MWUs. Thus, the lexicalization of the description mainly consists
of pointing out the MWUs which respect or don’t respect the “grammar”.

11.2 Formalism for the Computational Morphology of MWUs

In [89] was proposed a formalism for describing the morphological paradigms of MWUs. It
has been based on studies of English, Polish and French, and further tested for Serbian [59]
and Greek [30]. It consists of a language-independent kernel which is to be completed by a
set of morphological elements characteristic for the given language. In this section we give
an in-depth description of this formalism.

11.2.1 Morphological Features of the Language

When processing MWUs of a given language we have to provide some general data about
that language. These data are included in two textual files.

The Morphology.txt file gives the morphological classes (noun, adjective,. . .), categories
(number, gender, case,. . .) and values (masculine, feminine, singular, nominative,. . .). Con-
sider the following example:

Polish
<CATEGORIES>
Nb: sing, pl
Case: Nom, Gen, Dat, Acc, Inst, Loc, Voc
Gen: masc_pers, masc_anim, masc_inanim, fem, neu
<CLASSES>)
noun: (Nb,<var>),(Case,<var>),(Gen,<fixed>)
adj:(Nb,<var>),(Case,<var>),(Gen,<var>)
adv:

The above file says that, for Polish, three inflection categories are considered: the number
(Nb), the case (Case) and the gender (Gen). Each category is given an exhaustive list of its
possible values (singular and plural for number, etc.). Further, each morphological class is
described with respect to the categories it inflects for, and those that are fixed for it. For
example, a noun inflects for number and case, and has a (fixed) gender. The presence of

11.2. FORMALISM FOR THE COMPUTATIONAL MORPHOLOGY OF MWUS 229

such a file is necessary if we wish to express the fact that a certain word inflects for number,
gender or case, without having to explicitly enumerate each time which inflectional values
(singular, plural, masculine, etc.) it can take.

Similarly, for French the Morphology.txt file may be as follows:

French
<CATEGORIES>
Nb: s, p
Gen: m, f
<CLASSES>
noun: (Nb,<var>),(Gen,<var>)
adj:(Nb,<var>),(Gen,<var>)
adv:

However, in the existing systems for computational morphology, such a description of classes,
categories and values is not always present. For example, according to the DELA conven-
tions ([20]) the morphological values of each simple word are plain sequences of characters
(e.g. ms for masculine singular) without any explicit mention of their corresponding cate-
gories. In order for the program to be compatible with such systems, we use a list (contained
in a file called Equivalences.txt) that describes which foreign inflectional feature corre-
sponds to which category-value pair in our description. For example, the following lists:

Polish French
s : Nb = sing s : Nb = s
p : Nb = pl p : Nb = p
M : Case = Nom f : Gen = f
D : Case = Gen m : Gen = m
C : Case = Dat
B : Case = Acc
I : Case = Inst
L : Case = Loc
V : Case = V oc
o : Gen = masc_pers
z : Gen = masc_anim
r : Gen = masc_inanim
f : Gen = fem
n : Gen = neu

describe the equivalences between the previous Morphology.txt file for Polish and French,
respectively, and the single-character features that might be used in DELA dictionaries for
those languages under Unitex.

230 CHAPTER 11. COMPOUND WORD INFLECTION

11.2.2 Decomposition of a MWU into Units

The notion of an elementary graphical unit is controversial and varies across languages and
NLP systems. For instance in Unitex an alphabet, i.e. a set of characters, is first defined for
each language. Each non alphabet character is called a separator. A graphical unit is then
either a single separator (usually a punctuation mark, a digit, etc.) or a contiguous sequence
of alphabet characters (e.g. aujourd’hui in French consists, according to this definition, of 3
units). In other systems a graphical unit may contain a punctuation mark (e.g. c’est-à-dire),
or a limit between two graphical units may occur within a sequence of alphabet characters
(widział|bym, cf [80]).

This variety of possible definitions of a graphical unit obviously has an impact on the def-
inition of a multi-word unit. However, we wish our formalism for MWUs to be adaptable
to different morphological systems for “simple words”. Thus, the definition of a graphical
unit is a parameter to our system: each time MULTIFLEX is used with an external module
for single units, this module has to decide how a sequence of characters is to be divided into
units.

In our formalism, units are referred to by numerical variables $1, $2, $3, etc. For example
with Unitex, a sequence like

• Athens ’04

consists of five constituents referred to in MULTIFLEX as:

$1 = Athens
$2 = <space>
$3 = ’
$4 = 0
$5 = 4

Each simple unit subject to inflection within a MWU has to be morphologically identified.
The identification means providing sufficient data so that any inflected form of the same
item may be generated on demand. For instance in:

• mémoire vive

we need to know that vive is the feminine singular form of a lemma, and we have to be able
to generate the feminine plural form of the same lemma, vives. We suppose that the external
module for single units working with MULTIFLEX is responsible for such identification and
generation of inflected forms of single units.

In Unitex, the generation of forms is strongly inspired by the DELA system ([20]). In order
to be able to generate one or more inflected forms of a word we have to know:

• its lemma

11.2. FORMALISM FOR THE COMPUTATIONAL MORPHOLOGY OF MWUS 231

• its inflection paradigm (called inflection code)

• the inflection features of forms to be generated

Thus, within the Unitex/MULTIFLEX interface the description of a single unit is done as
follows:

• vive(vif.A54:fs)

where A54 is the inflection code of vif and fs is the DELA-style description using morpho-
logical features appearing in Equivalences.txt file (cf section 11.2.1). Knowing that vive
is a feminine singular form of vif we may demand the generation of its plural without hav-
ing to explicitly indicate the plural of which gender we are interested in: since we only wish
to change the number, the gender remains as in the original word vive, i.e. feminine.

11.2.3 Inflection paradigm of a MWU

The morphological description of MWUs in our formalism is inspired by the DELA system
in the sense that:

• each MWU is attributed an inflection code

• a MWU’s inflection code explicitly describes each inflected form of a MWU in terms of
actions to be performed on the lemma, and inflectional features to be attached to each
form

In the Unitex-interfaced version, MULTIFLEX uses inflection codes represented as Unitex
graphs compiled into the .fst2 format. For example, Figure 11.1 contains the inflection
graph for battle royal.

Figure 11.1: Inflection graph for battle royal

According to the Unitex convention, three constituents are present in battle royal: battle re-
ferred to as $1, a space referred to as $2, and royal referred to as $3. If a variable appears alone
in a box the constituent has to be the same as in the lemma of the MWU. For instance, <$3>
in the uppermost path means that the unit royal is to be recopied as such. If the variable is

232 CHAPTER 11. COMPOUND WORD INFLECTION

accompanied by a set of category-feature equations, the constituent has to be inflected to the
required form. E.g. <$3:Nb=p> means that the plural form of royal is needed.

In order to generate all inflected forms of the MWU we have to explore all the paths existing
in the graph. Each path starts at the leftmost right arrow and ends at the final encircled
box. Each time we come to a node we perform the action contained in the box (a recopy
or an inflection of a constituent) and we accumulate the morphological features contained
under the box. The total of the accumulated node outputs should result in the complete
morphological description of the inflected form.

For example in the graph on Figure 11.1 if we follow the intermediate path shown on Fig-
ure 11.2:

Figure 11.2: One path of the inflection graph for battle royal

we recopy battle ($1) and the space ($2), and we put royal into plural, which yields the plural
form battle royals of the whole MWU. As the graph on Figure 11.1 contains three different
paths the whole set of inflected forms generated for battle royal would be:

battle royal <Nb=s>
battle royals <Nb=p>
battles royal <Nb=p>

After rewriting these forms into the Unitex DELACF format we obtain the following entries:

battle royal,battle royal.N:s
battle royals,battle royal.N:p
battles royal,battle royal.N:p

Note that this description is independent of the way we generate inflected forms of single
words because we suppose that this problem is handled by an existing external morpho-
logical system for single words. In the Unitex-interfaced version of MULTIFLEX, we would
generate the plural of royal due to the fact that its lemma is known as having the inflection
code N1 represented on Figure 11.3.

In an inflection paradigm of a MWU, each constituent is accompanied only by those mor-
phological categories which it should inflect for. The categories that remain unchanged
don’t have to be mentioned. For instance, in bateau-mouche in French (a Paris-style river-
boat), both noun constituents have their gender set but they inflect in number: bateaux-
mouches. That’s why on Figure 11.4 containing the inflection graph for this MWU, the cor-
responding boxes contain value assignments for number only. Note that both constituents
may or may not agree in gender, here bateau is masculine while mouche is feminine.

11.2. FORMALISM FOR THE COMPUTATIONAL MORPHOLOGY OF MWUS 233

Figure 11.3: Inflection graph N1 for simple words inflecting like royal

Figure 11.4: Inflection graph for MWUs inflection like bateau-mouche

Unification Variables

An important feature of our formalism are unification variables. They are invoked by a dol-
lar sign followed by an identifier which may contain any number of characters, e.g. $g1,
$num_10, $c, etc. For example, Figure 11.5 shows a graph roughly equivalent1 to the one
on Figure 11.4 in the sense that it allows to generate the same inflected forms for the same
MWUs. However, this time, a single path represents both the singular and the plural form.
This is possible due to the unification variable $n which is instantiated in turn to all values
of the domain of its category (Nb), here $n=s then $n=p. When a unification variable occurs
in a formula such as Nb=$n, with a single equal sign (=), the system reviews all the values
declared in the configuration files for the category (cf. Section 11.2.1). For each value, it
makes a new assignment of the variable. The assignment is unique for all occurrences of
the variable on a path: if we instantiate the singular value for the first constituent, the same
value is set for the third one, as well as for the whole MWU. Similarly, if we instantiate $n to
p while processing the first node, it remains p until the end of the path.

Figure 11.5: Inflection graph for bateau-mouche with a unification variable

The inflection graph on Figure 11.5 applies to most kinds of French compounds of types
Noun Noun and Noun Adjective (bateau-mouche, ange gardien, circuit séquentiel, etc.) which
are of masculine gender. That is because the output of the final node contains Gen=m. For

1Up to the case when single constituents appearing in the lemma of a MWU are already in the plural, as in
cross-roads.

234 CHAPTER 11. COMPOUND WORD INFLECTION

all compounds of the same types but of feminine gender, e.g. main courante, moissoneuse-
batteuse, etc., a new graph has to be created which is identical to Figure 11.5 up to the final
output containing<Gen=f;Nb=$n>. That is not very intuitive since circuit séquentiel and main
courante inflect in the same way, in the sense that in both cases we need to put the first and
the last constituent in the plural in order to obtain the plural form of the whole MWU.

That’s why another type of instantiation for unification variables has been introduced. It is
invoked by a double equal sign (==), as opposed to the single equal sign = as for $n on Fig-
ure 11.5. If a unification variable is assigned to a category by this symbol, then the variable
is assigned once: it inherits the value of this category from the corresponding constituent,
as it appears in the lemma of the MWU. For instance, Figure 11.6 contains a graph describ-
ing the inflected forms for both masculine and feminine French compounds of types Noun
Noun and Noun Adjective. Its first box contains the double-= assignment of the gender to
variable $g, which means that this variable has its value set to the gender value of the first
constituent. For bateau-mouche it is set to masculine because bateau is masculine, while for
main courante it is set to feminine.

Figure 11.6: Inflection graph for bateau-mouche with two types of instantiation

When a double-= assignment and a single-= assignment occur on the same path for the same
variable, the double-= assignment prevails: the variable is instantiated once. For example,
on Figure 11.6, the final output contains Gen=$g but $g takes the value determined by the
first constituent only.

Unification variables are particularly useful in highly inflected languages. For example, in
Polish most nouns inflect for number (2 values) and case (7 values), which implies at least
14 different forms (if variants and syncretic forms are distinguished). This score is even
higher for adjectives which inflect for number, case and gender (3 till 9 values, according to
different approaches). If no unification mechanism were available each of these numerous
forms would have to be described by a separate path in the graph. The use of unification
variables allows to dramatically reduce the size of the graph (to one path only in most cases).

For example, Figure 11.7 shows the graph for Polish compounds that inflect like pranie mózgu
(brainwashing) or powożenie koniem (horse coaching). Their third constituent has its case fixed
(most often to genitive or instrumental). Their first and third constituent inflect in number
independently from each other (pranie mózgów, prania mózgu, prania mózgów, etc.). That’s
why either of them has a different unification variable for number inflection ($n1 and $n2).
The three variables $n1, $n2, and $c may be instantiated to any value from their respective
domains ({sing,pl}, {sing,pl}, and {Nom,Gen,Dat,Acc,Inst,Loc,Voc}; cf Morphology.txt file in
section 11.2.1). The whole MWU inherits its gender, number and case from its first con-
stituent. Its gender is fixed (Gen==$g) while its number and case are instantiated to any of

11.2. FORMALISM FOR THE COMPUTATIONAL MORPHOLOGY OF MWUS 235

the 14 possible combinations. The single path in this graph would have to be replaced by 28
different ones if the use of unification variables were not allowed.

Figure 11.7: Inflection graph for pranie mózgu

Orthographic and Other Variants

Our formalism allows for any constituent to be omitted or moved within different inflected
forms if there is a need for that. It also enables the insertion of extra graphical units which do
not appear in the base form of the MWU. This allows to extend an inflection paradigm to a
more general variation description, e.g. orthographic or, partly, syntactic variation (see [56]
for an extensive study on term variation). For example, in English, student union appears
in corpus also as students union, and students’ union, in singular or plural in each case. Our
formalism allows to include both types of variation in one description (cf. Figure 11.8).

Figure 11.8: Inflection graph for student union

Figure 11.9 shows an example in which, additionally to the insertion of a new constituent,
the order of constituents may be reverted. The upper path allows to generate e.g. birth date
and birth dates while the lower one represents the syntactic variants of the previous forms:
date of birth and dates of birth.

Figure 11.9: Inflection graph for birth date

Interface with the Morphological System for Simple Words

MULTIFLEX is an implementation of the formalism for the inflectional morphology of MWUs
presented above. It supposes the existence of a morphological system for single words
which satisfies the following interface constraints:

236 CHAPTER 11. COMPOUND WORD INFLECTION

• For a given sequence of characters it returns its segmentation into indivisible graphical
units (tokens) (cf section 11.2.2). For instance, in case of Unitex’ definition of a token,
sequence Athens ’04 is to be divided into 5 tokens:

“Athens ’04”→ (“Athens”,” “,””’,”0”,”4”)

• For a given simple inflected form it returns all its possible morphological identifica-
tions. A morphological identification has to allow the generation of any other inflected
form of the same lemma on demand by the same morphological module. For instance,
in case of Unitex, the form porte yields 7 morphological identifications (6 of which are
factorized with respect to their inflection code):

porte→ ((porte,porte.N21:s),(porte,porter.V3:P1s:P3s:S1s:S3s:Y2s))

In case of ambiguïty, as above, the proper identification has to be done, for the time
being, by the user during the edition of the MWU lemma to be inflected (in future, this
task will be partly automated). For instance, in case of porte-fenêtre the first constituent
has to be identified by the user as a noun rather than a verb.

• For a given morphological identification and a set of inflectional values it returns all
corresponding inflected forms. For instance, in Polish, if the instrumental forms of the
word ręka are to be produced, three forms should be returned: ręką (singular instru-
mental), rękami and rękoma (two variants of the plural instrumental).

(ręka,<Case=Inst>) → ((ręką,<Nb=sing;Gen=fem;Case=Inst>),
(rękami,<Nb=pl;Gen=fem;Case=Inst>),
(rękoma,<Nb=pl;Gen=fem;Case=Inst>))

Such definition of an interface between the morphological system for simple words and
the one for MWUs allows a better modularity and independence of one another. The latter
doesn’t need to know how inflected forms of simple words are described, analyzed and gen-
erated. It only requires a set of correct inflected forms of a MWU’s constituents. Conversely,
the former system knows nothing about how the latter one combines the provided forms to
produce multi-word sequences.

11.3 Integration in Unitex

One of the major design principles of MULTIFLEX is to be as independent as possible of
the morphological system for simple words. However, the existence of such a system is
inevitable because MWUs consist of simple words which we need to be able to inflect in
order to inflect a MWU as a whole.

In its present version, MULTIFLEX relies on the Unitex simple word inflection system:

• MULTIFLEX uses the same character encoding standards as Unitex, i.e. Unicode 3.0.

11.3. INTEGRATION IN UNITEX 237

• MULTIFLEX uses the Unitex’ graph editor for the representation of inflectional paradigms
of MWUs.

• MULTIFLEX admits similar principles of the morphological description as those ad-
mitted in the DELA system implemented in Unitex. Thus, an inflection paradigm is a
set of actions to be performed on the lemma in order to generate its inflected forms,
and of corresponding inflection features to be attached to each generated form.

• MULTIFLEX allows to extend the Unitex dictionary treatment to the inflection of a
DELAC (DELA electronic dictionary of compounds) into a DELACF (DELA electronic
dictionary of compounds’ inflected forms). The format of the generated DELACF is
compatible with Unitex, while the format of the DELAC is novel but inspired from the
one of the DELAS (DELA electronic dictionary of simple words).

The following sections present, for several languages, complete examples of a DELAC into
DELACF inflection within the MULTIFLEX/Unitex interface.

11.3.1 Complete Example in English

Let us assume that the description of morphological features of English is given by the fol-
lowing Morphology.txt file:

English
<CATEGORIES>
Nb:s,p
<CLASSES>
noun:(Nb,<var>)
adj:

and that the equivalences between these features and their corresponding codes in DELA
dictionaries are given by the following Equivalences.txt file:

English
s : Nb=s
p : Nb=p

Consider the following sample English DELAC file:

angle(angle.N1:s) of reflection,NC_NXXXX
Adam’s apple(apple.N1:s),NC_XXXXN
air brake(brake.N1:s),NC_XXN
birth date(date.N1:s),NC_NN_NofN
criminal police,NC_XXXinv
cross-roads,NC_XXNs
head(head.N1:s) of government(government.N1:s),NC_NofNs
notary(notary.N3:s) public(public.N1:s),NC_NsNs
rolling stone(stone.N1:s),NC_XXN
student(student.N1:s) union(union.N1:s),NC_Ns’N

238 CHAPTER 11. COMPOUND WORD INFLECTION

The corresponding inflection graphs N1 and N3 for simple words are represented on fig-
ures 11.10 and 11.11 while those for compounds are shown on figures 11.12 through 11.20.

The DELACF dictionary resulting from the inflection, via MULTIFLEX, of the above DELAC
is as follows:

angle of reflection,angle of reflection.NC_NXXXX:s
angles of reflection,angle of reflection.NC_NXXXX:p
Adam’s apple,Adam’s apple.NC_XXXXN:s
Adam’s apples,Adam’s apple.NC_XXXXN:p
air brake,air brake.NC_XXN:s
air brakes,air brake.NC_XXN:p
date of birth,birth date.NC_NN_NofN:s
dates of birth,birth date.NC_NN_NofN:p
birth date,birth date.NC_NN_NofN:s
birth dates,birth date.NC_NN_NofN:p
criminal police,criminal police.NC_XXXinv:p
cross-roads,cross-roads.NC_XXNs:s
cross-roads,cross-roads.NC_XXNs:p
heads of government,head of government.NC_NofNs:p
heads of governments,head of government.NC_NofNs:p
head of government,head of government.NC_NofNs:s
notaries public,notary public.NC_NsNs:p
notary public,notary public.NC_NsNs:s
notary publics,notary public.NC_NsNs:p
rolling stone,rolling stone.NC_XXN:s
rolling stones,rolling stone.NC_XXN:p
students’ union,student union.NC_Ns’N:s
students’ unions,student union.NC_Ns’N:p
students union,student union.NC_Ns’N:s
students unions,student union.NC_Ns’N:p
student union,student union.NC_Ns’N:s
student unions,student union.NC_Ns’N:p

Figure 11.10: Inflection graph N1 for En-
glish simple words

Figure 11.11: Inflection graph N3 for English
simple words

11.3. INTEGRATION IN UNITEX 239

Figure 11.12: Inflection graph NC_NXXXX for English MWUs

Figure 11.13: Inflection graph NC_XXXXN for English MWUs

Figure 11.14: Inflection graph NC_XXN for English MWUs

Figure 11.15: Inflection graph NC_NN_NofN for English MWUs

Figure 11.16: Inflection graph NC_XXXinv for English MWUs

Figure 11.17: Inflection graph NC_XXNs for English MWUs

240 CHAPTER 11. COMPOUND WORD INFLECTION

Figure 11.18: Inflection graph NC_NofNs for English MWUs

Figure 11.19: Inflection graph NC_NsNs for English MWUs

Figure 11.20: Inflection graph NC_Ns’N for English MWUs

11.3.2 Complete Example in French

Let us assume that the description of morphological features of French is given by the fol-
lowing Morphology.txt file:

French
<CATEGORIES>
Nb : s, p
Gen : m, f
<CLASSES>
noun : (Nb,<var>),(Gen,<var>)
adj:(Nb,<var>),(Gen,<var>)
adv:

and that the equivalences between these features and their corresponding codes in DELA

11.3. INTEGRATION IN UNITEX 241

dictionaries are given by the following Equivalences.txt file:

French
s : Nb=s
p : Nb=p
m : Gen=m
f : Gen=f

Consider the following sample French DELAC file (the DELAS inflection codes may vary
from those present in UNITEX):

avant-garde(garde.N21:fs),NC_XXN
bateau(bateau.N3:ms)-mouche(mouche.N21:fs),NC_NN
café(café.N1:ms) au lait,NC_NXXXX
carte(carte.N21:fs) postale(postal.A8:fs),NC_NN$
cousin(cousin.N8:ms) germain(germain.A8:ms),NC_NNmf
franc(franc.A47:ms) maçon(maçon.N41:ms),NC_AN1
mémoire(mémoire.N21:fs) vive(vif.A48:fs),NC_NN
microscope(microscope.N1:ms) à effet tunnel,NC_NXXXXXX
porte-serviette(serviette.N21:fs),NC_VNm

The corresponding inflection graphs for MWUs are shown on figures 11.21 through 11.27.

The DELACF dictionary resulting from the inflection, via MULTIFLEX, of the above DELAC
is as follows:

avant-garde,avant-garde.NC_XXN:fs
avant-gardes,avant-garde.NC_XXN:fp
bateau-mouche,bateau-mouche.NC_NN:ms
bateaux-mouches,bateau-mouche.NC_NN:mp
café au lait,café au lait.NC_NXXXX:ms
cafés au lait,café au lait.NC_NXXXX:mp
carte postale,carte postale.NC_NN:fs
cartes postales,carte postale.NC_NN:fp
cousin germain,cousin germain.NC_NNmf:ms
cousins germains,cousin germain.NC_NNmf:mp
cousine germaine,cousin germain.NC_NNmf:fs
cousines germaines,cousin germain.NC_NNmf:fp
franc-maçon,franc maçon.NC_AN1:ms
franc-maçonne,franc maçon.NC_AN1:fs
franc maçon,franc maçon.NC_AN1:ms
franc maçonne,franc maçon.NC_AN1:fs
francs-maçons,franc maçon.NC_AN1:mp
francs-maçonnes,franc maçon.NC_AN1:fp

242 CHAPTER 11. COMPOUND WORD INFLECTION

francs maçons,franc maçon.NC_AN1:mp
francs maçonnes,franc maçon.NC_AN1:fp
mémoire vive,mémoire vive.NC_NN:fs
mémoires vives,mémoire vive.NC_NN:fp
microscope à effet tunnel,microscope à effet tunnel.NC_NXXXXXX:ms
microscopes à effet tunnel,microscope à effet tunnel.NC_NXXXXXX:mp
porte-serviette,porte-serviette.NC_VNm:ms
porte-serviettes,porte-serviette.NC_VNm:ms
porte-serviettes,porte-serviette.NC_VNm:mp

Figure 11.21: Inflection graph NC_XXN for French MWUs

Figure 11.22: Inflection graph NC_NN for French MWUs

Figure 11.23: Inflection graph NC_NXXXX for French MWUs

Figure 11.24: Inflection graph NC_NNmf for French MWUs

Figure 11.25: Inflection graph NC_AN1 for French MWUs

11.3. INTEGRATION IN UNITEX 243

Figure 11.26: Inflection graph NC_NXXXXXX for French MWUs

Figure 11.27: Inflection graph NC_VNm for French MWUs

11.3.3 Complete Example in Serbian

Let us assume that the description of morphological features of Serbian is given by the fol-
lowing Morphology.txt file:

Serbian
<CATEGORIES>
Nb:s,p,w
Case:1,2,3,4,5,6,7
Gen:m,f,n
Anim:v,q,g
Comp:a,b,c
Det:d,k,e
<CLASSES>
noun:(Nb,<var>),(Case,<var>),(Gen,<var>),(Anim,<fixed>)
adj:(Nb,<var>),(Case,<var>),(Gen,<var>),(Anim,<var>),(Comp,<var>),(Det,<var>)
adv:

The particuliarity of this morphological model is not only its reachness but also the existence
of no-care features like Anim=g or Det=e. These features agree with all other features in the
same category. They are used only for some particular sublasses of nouns or adjectives and
are necessary for a better compactness of the inflection paradigms of simple words which
are already considerably huge, and would be even larger if no no-care symbols were used.

Let us assume that the equivalences between the above features and their corresponding

244 CHAPTER 11. COMPOUND WORD INFLECTION

codes in DELA dictionaries are given by the following Equivalences.txt file:

Serbian
s:Nb=s
p:Nb=p
w:Nb=w
1:Case=1
2:Case=2
3:Case=3
4:Case=4
5:Case=5
6:Case=6
7:Case=7
m:Gen=m
f:Gen=f
n:Gen=n
v:Anim=v
q:Anim=q
g:Anim=g
a:Comp=a
b:Comp=b
c:Comp=c
d:Det=d
k:Det=k
e:Det=e

Consider the following sample Serbian DELAC file (the DELAS inflection codes may vary
from those present in Unitex):

zxiro racyun(racyun.N1:ms1q),NC_2XN1+N+Comp
avio-prevoznik(prevoznik.N10:ms1v),NC_2XN2+N+Comp
predsednik(predsednik.N10:ms1v) drzxave(drzxava.N600:fs2q),NC_N2X1+N+Comp
Ujedinxene(Ujedinxen.A1:aefp1g) nacije(nacija.N600:fp1q),NC_AXN3+N+Comp+NProp+Org
Kosovo(Kosovo.N308:ns1q) i Metohija(Metohija.N623:fs1q),NC_N3XN+N+Comp+NProp+Top+Reg
istrazxni(istrazxni.A2:adms1g) sudija(sudija.N679:ms1v),NC_AXNF+N+Comp
Mirosinka(Mirosinka.N1637:fs1v) Dinkicx(Dinkicx.N1028:ms1v),NC_ImePrezime+N+Comp+Hum+PersName
gladan(gladan.A18:akms1g) kao vuk(vuk.N128:ms1v),AC_A3XN2/hungry as a wolf

The corresponding inflection graphs for MWUs are shown on figures 11.28 through 11.35.

The DELACF dictionary resulting from the inflection, via MULTIFLEX, of the above DELAC
is as follows:

zxiro-racyun,zxiro racyun.NC_2XN1+N+Comp:s1qm
zxiro-racyuna,zxiro racyun.NC_2XN1+N+Comp:s2qm
zxiro-racyunu,zxiro racyun.NC_2XN1+N+Comp:s3qm
zxiro-racyun,zxiro racyun.NC_2XN1+N+Comp:s4qm
zxiro-racyune,zxiro racyun.NC_2XN1+N+Comp:s5qm

11.3. INTEGRATION IN UNITEX 245

zxiro-racyunom,zxiro racyun.NC_2XN1+N+Comp:s6qm
zxiro-racyunu,zxiro racyun.NC_2XN1+N+Comp:s7qm
zxiro-racyuni,zxiro racyun.NC_2XN1+N+Comp:p1qm
zxiro-racyuna,zxiro racyun.NC_2XN1+N+Comp:p2qm
zxiro-racyunima,zxiro racyun.NC_2XN1+N+Comp:p3qm
zxiro-racyune,zxiro racyun.NC_2XN1+N+Comp:p4qm
zxiro-racyuni,zxiro racyun.NC_2XN1+N+Comp:p5qm
zxiro-racyunima,zxiro racyun.NC_2XN1+N+Comp:p6qm
zxiro-racyunima,zxiro racyun.NC_2XN1+N+Comp:p7qm
zxiro-racyuna,zxiro racyun.NC_2XN1+N+Comp:w2qm
zxiro-racyuna,zxiro racyun.NC_2XN1+N+Comp:w4qm
zxiro racyun,zxiro racyun.NC_2XN1+N+Comp:s1qm
zxiro racyuna,zxiro racyun.NC_2XN1+N+Comp:s2qm
zxiro racyunu,zxiro racyun.NC_2XN1+N+Comp:s3qm
zxiro racyun,zxiro racyun.NC_2XN1+N+Comp:s4qm
zxiro racyune,zxiro racyun.NC_2XN1+N+Comp:s5qm
zxiro racyunom,zxiro racyun.NC_2XN1+N+Comp:s6qm
zxiro racyunu,zxiro racyun.NC_2XN1+N+Comp:s7qm
zxiro racyuni,zxiro racyun.NC_2XN1+N+Comp:p1qm
zxiro racyuna,zxiro racyun.NC_2XN1+N+Comp:p2qm
zxiro racyunima,zxiro racyun.NC_2XN1+N+Comp:p3qm
zxiro racyune,zxiro racyun.NC_2XN1+N+Comp:p4qm
zxiro racyuni,zxiro racyun.NC_2XN1+N+Comp:p5qm
zxiro racyunima,zxiro racyun.NC_2XN1+N+Comp:p6qm
zxiro racyunima,zxiro racyun.NC_2XN1+N+Comp:p7qm
zxiro racyuna,zxiro racyun.NC_2XN1+N+Comp:w2qm
zxiro racyuna,zxiro racyun.NC_2XN1+N+Comp:w4qm
avio-prevoznik,avio-prevoznik.NC_2XN2+N+Comp:s1vm
avio-prevoznika,avio-prevoznik.NC_2XN2+N+Comp:s2vm
avio-prevozniku,avio-prevoznik.NC_2XN2+N+Comp:s3vm
avio-prevoznika,avio-prevoznik.NC_2XN2+N+Comp:s4vm
avio-prevoznicye,avio-prevoznik.NC_2XN2+N+Comp:s5vm
avio-prevoznikom,avio-prevoznik.NC_2XN2+N+Comp:s6vm
avio-prevozniku,avio-prevoznik.NC_2XN2+N+Comp:s7vm
avio-prevoznici,avio-prevoznik.NC_2XN2+N+Comp:p1vm
avio-prevoznika,avio-prevoznik.NC_2XN2+N+Comp:p2vm
avio-prevoznicima,avio-prevoznik.NC_2XN2+N+Comp:p3vm
avio-prevoznike,avio-prevoznik.NC_2XN2+N+Comp:p4vm
avio-prevoznici,avio-prevoznik.NC_2XN2+N+Comp:p5vm
avio-prevoznicima,avio-prevoznik.NC_2XN2+N+Comp:p6vm
avio-prevoznicima,avio-prevoznik.NC_2XN2+N+Comp:p7vm
avio-prevoznika,avio-prevoznik.NC_2XN2+N+Comp:w2vm
avio-prevoznika,avio-prevoznik.NC_2XN2+N+Comp:w4vm
avioprevoznik,avio-prevoznik.NC_2XN2+N+Comp:s1vm
avioprevoznika,avio-prevoznik.NC_2XN2+N+Comp:s2vm
avioprevozniku,avio-prevoznik.NC_2XN2+N+Comp:s3vm
avioprevoznika,avio-prevoznik.NC_2XN2+N+Comp:s4vm
avioprevoznicye,avio-prevoznik.NC_2XN2+N+Comp:s5vm
avioprevoznikom,avio-prevoznik.NC_2XN2+N+Comp:s6vm
avioprevozniku,avio-prevoznik.NC_2XN2+N+Comp:s7vm
avioprevoznici,avio-prevoznik.NC_2XN2+N+Comp:p1vm
avioprevoznika,avio-prevoznik.NC_2XN2+N+Comp:p2vm
avioprevoznicima,avio-prevoznik.NC_2XN2+N+Comp:p3vm
avioprevoznike,avio-prevoznik.NC_2XN2+N+Comp:p4vm
avioprevoznici,avio-prevoznik.NC_2XN2+N+Comp:p5vm

246 CHAPTER 11. COMPOUND WORD INFLECTION

avioprevoznicima,avio-prevoznik.NC_2XN2+N+Comp:p6vm
avioprevoznicima,avio-prevoznik.NC_2XN2+N+Comp:p7vm
avioprevoznika,avio-prevoznik.NC_2XN2+N+Comp:w2vm
avioprevoznika,avio-prevoznik.NC_2XN2+N+Comp:w4vm
predsednik drzxave,predsednik drzxave.NC_N2X1+N+Comp:s1vm
predsednika drzxave,predsednik drzxave.NC_N2X1+N+Comp:s2vm
predsedniku drzxave,predsednik drzxave.NC_N2X1+N+Comp:s3vm
predsednika drzxave,predsednik drzxave.NC_N2X1+N+Comp:s4vm
predsednicye drzxave,predsednik drzxave.NC_N2X1+N+Comp:s5vm
predsednikom drzxave,predsednik drzxave.NC_N2X1+N+Comp:s6vm
predsedniku drzxave,predsednik drzxave.NC_N2X1+N+Comp:s7vm
predsednici drzxave,predsednik drzxave.NC_N2X1+N+Comp:p1vm
predsednici drzxava,predsednik drzxave.NC_N2X1+N+Comp:p1vm
predsednika drzxave,predsednik drzxave.NC_N2X1+N+Comp:p2vm
predsednika drzxava,predsednik drzxave.NC_N2X1+N+Comp:p2vm
predsednicima drzxave,predsednik drzxave.NC_N2X1+N+Comp:p3vm
predsednicima drzxava,predsednik drzxave.NC_N2X1+N+Comp:p3vm
predsednike drzxave,predsednik drzxave.NC_N2X1+N+Comp:p4vm
predsednike drzxava,predsednik drzxave.NC_N2X1+N+Comp:p4vm
predsednici drzxave,predsednik drzxave.NC_N2X1+N+Comp:p5vm
predsednici drzxava,predsednik drzxave.NC_N2X1+N+Comp:p5vm
predsednicima drzxave,predsednik drzxave.NC_N2X1+N+Comp:p6vm
predsednicima drzxava,predsednik drzxave.NC_N2X1+N+Comp:p6vm
predsednicima drzxave,predsednik drzxave.NC_N2X1+N+Comp:p7vm
predsednicima drzxava,predsednik drzxave.NC_N2X1+N+Comp:p7vm
predsednika drzxave,predsednik drzxave.NC_N2X1+N+Comp:w2vm
predsednika drzxava,predsednik drzxave.NC_N2X1+N+Comp:w2vm
predsednika drzxave,predsednik drzxave.NC_N2X1+N+Comp:w4vm
predsednika drzxava,predsednik drzxave.NC_N2X1+N+Comp:w4vm
Ujedinxene nacije,Ujedinxene nacije.NC_AXN3+N+Comp+NProp+Org:fp1q
Ujedinxenih nacija,Ujedinxene nacije.NC_AXN3+N+Comp+NProp+Org:fp2q
Ujedinxenima nacijama,Ujedinxene nacije.NC_AXN3+N+Comp+NProp+Org:fp3q
Ujedinxenim nacijama,Ujedinxene nacije.NC_AXN3+N+Comp+NProp+Org:fp3q
Ujedinxene nacije,Ujedinxene nacije.NC_AXN3+N+Comp+NProp+Org:fp4q
Ujedinxene nacije,Ujedinxene nacije.NC_AXN3+N+Comp+NProp+Org:fp5q
Ujedinxenima nacijama,Ujedinxene nacije.NC_AXN3+N+Comp+NProp+Org:fp6q
Ujedinxenim nacijama,Ujedinxene nacije.NC_AXN3+N+Comp+NProp+Org:fp6q
Ujedinxenima nacijama,Ujedinxene nacije.NC_AXN3+N+Comp+NProp+Org:fp7q
Ujedinxenim nacijama,Ujedinxene nacije.NC_AXN3+N+Comp+NProp+Org:fp7q
Kosovo i Metohija,Kosovo i Metohija.NC_N3XN+N+Comp+NProp+Top+Reg:ns1q
Kosova i Metohije,Kosovo i Metohija.NC_N3XN+N+Comp+NProp+Top+Reg:ns2q
Kosovu i Metohiji,Kosovo i Metohija.NC_N3XN+N+Comp+NProp+Top+Reg:ns3q
Kosovo i Metohiju,Kosovo i Metohija.NC_N3XN+N+Comp+NProp+Top+Reg:ns4q
Kosovo i Metohijo,Kosovo i Metohija.NC_N3XN+N+Comp+NProp+Top+Reg:ns5q
Kosovom i Metohijom,Kosovo i Metohija.NC_N3XN+N+Comp+NProp+Top+Reg:ns6q
Kosovu i Metohiji,Kosovo i Metohija.NC_N3XN+N+Comp+NProp+Top+Reg:ns7q
istrazxne sudije,istrazxni sudija.NC_AXNF+N+Comp:1vfp
istrazxnih sudija,istrazxni sudija.NC_AXNF+N+Comp:2vfp
istrazxnima sudijama,istrazxni sudija.NC_AXNF+N+Comp:3vfp
istrazxnim sudijama,istrazxni sudija.NC_AXNF+N+Comp:3vfp
istrazxne sudije,istrazxni sudija.NC_AXNF+N+Comp:4vfp
istrazxne sudije,istrazxni sudija.NC_AXNF+N+Comp:5vfp
istrazxnima sudijama,istrazxni sudija.NC_AXNF+N+Comp:6vfp
istrazxnim sudijama,istrazxni sudija.NC_AXNF+N+Comp:6vfp
istrazxnima sudijama,istrazxni sudija.NC_AXNF+N+Comp:7vfp

11.3. INTEGRATION IN UNITEX 247

istrazxnim sudijama,istrazxni sudija.NC_AXNF+N+Comp:7vfp
istrazxne sudije,istrazxni sudija.NC_AXNF+N+Comp:2vfw
istrazxne sudije,istrazxni sudija.NC_AXNF+N+Comp:4vfw
istrazxnoga sudiju,istrazxni sudija.NC_AXNF+N+Comp:ms4v
istrazxnog sudiju,istrazxni sudija.NC_AXNF+N+Comp:ms4v
istrazxni sudija,istrazxni sudija.NC_AXNF+N+Comp:1vms
istrazxnoga sudije,istrazxni sudija.NC_AXNF+N+Comp:2vms
istrazxnog sudije,istrazxni sudija.NC_AXNF+N+Comp:2vms
istrazxnomu sudiji,istrazxni sudija.NC_AXNF+N+Comp:3vms
istrazxnome sudiji,istrazxni sudija.NC_AXNF+N+Comp:3vms
istrazxnom sudiji,istrazxni sudija.NC_AXNF+N+Comp:3vms
istrazxnomu sudiji,istrazxni sudija.NC_AXNF+N+Comp:7vms
istrazxnome sudiji,istrazxni sudija.NC_AXNF+N+Comp:7vms
istrazxnom sudiji,istrazxni sudija.NC_AXNF+N+Comp:7vms
istrazxni sudijo,istrazxni sudija.NC_AXNF+N+Comp:5vms
istrazxni sudija,istrazxni sudija.NC_AXNF+N+Comp:5vms
istrazxnim sudijom,istrazxni sudija.NC_AXNF+N+Comp:6vms
Dinkicx Mirosinka,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s1vf
Dinkicx Mirosinke,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s2vf
Dinkicx Mirosinki,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s3vf
Dinkicx Mirosinku,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s4vf
Dinkicx Mirosinka,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s5vf
Dinkicx Mirosinkom,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s6vf
Dinkicx Mirosinki,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s7vf
Mirosinka Dinkicx,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s1vf
Mirosinke Dinkicx,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s2vf
Mirosinki Dinkicx,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s3vf
Mirosinku Dinkicx,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s4vf
Mirosinka Dinkicx,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s5vf
Mirosinkom Dinkicx,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s6vf
Mirosinki Dinkicx,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s7vf
gladni kao vuk,gladan kao vuk.AC_A3XN2:s1mgda//hungry as a wolf
gladan kao vuk,gladan kao vuk.AC_A3XN2:s1mgka//hungry as a wolf
gladna kao vuk,gladan kao vuk.AC_A3XN2:s1fgea//hungry as a wolf
gladno kao vuk,gladan kao vuk.AC_A3XN2:s1ngea//hungry as a wolf
gladnoga kao vuk,gladan kao vuk.AC_A3XN2:s2mgda//hungry as a wolf
gladnog kao vuk,gladan kao vuk.AC_A3XN2:s2mgda//hungry as a wolf
gladna kao vuk,gladan kao vuk.AC_A3XN2:s2mgka//hungry as a wolf
gladne kao vuk,gladan kao vuk.AC_A3XN2:s2fgea//hungry as a wolf
gladnoga kao vuk,gladan kao vuk.AC_A3XN2:s2ngda//hungry as a wolf
gladnog kao vuk,gladan kao vuk.AC_A3XN2:s2ngda//hungry as a wolf
gladna kao vuk,gladan kao vuk.AC_A3XN2:s2ngka//hungry as a wolf
gladnome kao vuk,gladan kao vuk.AC_A3XN2:s3mgda//hungry as a wolf
gladnom kao vuk,gladan kao vuk.AC_A3XN2:s3mgda//hungry as a wolf
gladnu kao vuk,gladan kao vuk.AC_A3XN2:s3mgka//hungry as a wolf
gladnoj kao vuk,gladan kao vuk.AC_A3XN2:s3fgea//hungry as a wolf
gladnome kao vuk,gladan kao vuk.AC_A3XN2:s3ngda//hungry as a wolf
gladnom kao vuk,gladan kao vuk.AC_A3XN2:s3ngda//hungry as a wolf
gladnu kao vuk,gladan kao vuk.AC_A3XN2:s3ngka//hungry as a wolf
gladnu kao vuk,gladan kao vuk.AC_A3XN2:s4fgea//hungry as a wolf
gladno kao vuk,gladan kao vuk.AC_A3XN2:s4ngea//hungry as a wolf
gladni kao vuk,gladan kao vuk.AC_A3XN2:s5mgea//hungry as a wolf
gladna kao vuk,gladan kao vuk.AC_A3XN2:s5fgea//hungry as a wolf
gladno kao vuk,gladan kao vuk.AC_A3XN2:s5ngea//hungry as a wolf
gladnim kao vuk,gladan kao vuk.AC_A3XN2:s6mgea//hungry as a wolf

248 CHAPTER 11. COMPOUND WORD INFLECTION

gladnom kao vuk,gladan kao vuk.AC_A3XN2:s6fgea//hungry as a wolf
gladnim kao vuk,gladan kao vuk.AC_A3XN2:s6ngea//hungry as a wolf
gladnome kao vuk,gladan kao vuk.AC_A3XN2:s7mgda//hungry as a wolf
gladnom kao vuk,gladan kao vuk.AC_A3XN2:s7mgda//hungry as a wolf
gladnu kao vuk,gladan kao vuk.AC_A3XN2:s7mgka//hungry as a wolf
gladnoj kao vuk,gladan kao vuk.AC_A3XN2:s7fgea//hungry as a wolf
gladnome kao vuk,gladan kao vuk.AC_A3XN2:s7ngda//hungry as a wolf
gladnom kao vuk,gladan kao vuk.AC_A3XN2:s7ngda//hungry as a wolf
gladnu kao vuk,gladan kao vuk.AC_A3XN2:s7ngka//hungry as a wolf
gladni kao vuk,gladan kao vuk.AC_A3XN2:p1mgea//hungry as a wolf
gladni kao vuci,gladan kao vuk.AC_A3XN2:p1mgea//hungry as a wolf
gladni kao vukovi,gladan kao vuk.AC_A3XN2:p1mgea//hungry as a wolf
gladne kao vuk,gladan kao vuk.AC_A3XN2:p1fgea//hungry as a wolf
gladne kao vuci,gladan kao vuk.AC_A3XN2:p1fgea//hungry as a wolf
gladne kao vukovi,gladan kao vuk.AC_A3XN2:p1fgea//hungry as a wolf
gladna kao vuk,gladan kao vuk.AC_A3XN2:p1ngea//hungry as a wolf
gladna kao vuci,gladan kao vuk.AC_A3XN2:p1ngea//hungry as a wolf
gladna kao vukovi,gladan kao vuk.AC_A3XN2:p1ngea//hungry as a wolf
gladnih kao vuk,gladan kao vuk.AC_A3XN2:p2mgea//hungry as a wolf
gladnih kao vuci,gladan kao vuk.AC_A3XN2:p2mgea//hungry as a wolf
gladnih kao vukovi,gladan kao vuk.AC_A3XN2:p2mgea//hungry as a wolf
gladnih kao vuk,gladan kao vuk.AC_A3XN2:p2fgea//hungry as a wolf
gladnih kao vuci,gladan kao vuk.AC_A3XN2:p2fgea//hungry as a wolf
gladnih kao vukovi,gladan kao vuk.AC_A3XN2:p2fgea//hungry as a wolf
gladnih kao vuk,gladan kao vuk.AC_A3XN2:p2ngea//hungry as a wolf
gladnih kao vuci,gladan kao vuk.AC_A3XN2:p2ngea//hungry as a wolf
gladnih kao vukovi,gladan kao vuk.AC_A3XN2:p2ngea//hungry as a wolf
gladnima kao vuk,gladan kao vuk.AC_A3XN2:p3mgea//hungry as a wolf
gladnima kao vuci,gladan kao vuk.AC_A3XN2:p3mgea//hungry as a wolf
gladnima kao vukovi,gladan kao vuk.AC_A3XN2:p3mgea//hungry as a wolf
gladnim kao vuk,gladan kao vuk.AC_A3XN2:p3mgea//hungry as a wolf
gladnim kao vuci,gladan kao vuk.AC_A3XN2:p3mgea//hungry as a wolf
gladnim kao vukovi,gladan kao vuk.AC_A3XN2:p3mgea//hungry as a wolf
gladnima kao vuk,gladan kao vuk.AC_A3XN2:p3fgea//hungry as a wolf
gladnima kao vuci,gladan kao vuk.AC_A3XN2:p3fgea//hungry as a wolf
gladnima kao vukovi,gladan kao vuk.AC_A3XN2:p3fgea//hungry as a wolf
gladnim kao vuk,gladan kao vuk.AC_A3XN2:p3fgea//hungry as a wolf
gladnim kao vuci,gladan kao vuk.AC_A3XN2:p3fgea//hungry as a wolf
gladnim kao vukovi,gladan kao vuk.AC_A3XN2:p3fgea//hungry as a wolf
gladnima kao vuk,gladan kao vuk.AC_A3XN2:p3ngea//hungry as a wolf
gladnima kao vuci,gladan kao vuk.AC_A3XN2:p3ngea//hungry as a wolf
gladnima kao vukovi,gladan kao vuk.AC_A3XN2:p3ngea//hungry as a wolf
gladnim kao vuk,gladan kao vuk.AC_A3XN2:p3ngea//hungry as a wolf
gladnim kao vuci,gladan kao vuk.AC_A3XN2:p3ngea//hungry as a wolf
gladnim kao vukovi,gladan kao vuk.AC_A3XN2:p3ngea//hungry as a wolf
gladne kao vuk,gladan kao vuk.AC_A3XN2:p4mgea//hungry as a wolf
gladne kao vuci,gladan kao vuk.AC_A3XN2:p4mgea//hungry as a wolf
gladne kao vukovi,gladan kao vuk.AC_A3XN2:p4mgea//hungry as a wolf
gladne kao vuk,gladan kao vuk.AC_A3XN2:p4fgea//hungry as a wolf
gladne kao vuci,gladan kao vuk.AC_A3XN2:p4fgea//hungry as a wolf
gladne kao vukovi,gladan kao vuk.AC_A3XN2:p4fgea//hungry as a wolf
gladna kao vuk,gladan kao vuk.AC_A3XN2:p4ngea//hungry as a wolf
gladna kao vuci,gladan kao vuk.AC_A3XN2:p4ngea//hungry as a wolf
gladna kao vukovi,gladan kao vuk.AC_A3XN2:p4ngea//hungry as a wolf
gladni kao vuk,gladan kao vuk.AC_A3XN2:p5mgea//hungry as a wolf

11.3. INTEGRATION IN UNITEX 249

gladni kao vuci,gladan kao vuk.AC_A3XN2:p5mgea//hungry as a wolf
gladni kao vukovi,gladan kao vuk.AC_A3XN2:p5mgea//hungry as a wolf
gladne kao vuk,gladan kao vuk.AC_A3XN2:p5fgea//hungry as a wolf
gladne kao vuci,gladan kao vuk.AC_A3XN2:p5fgea//hungry as a wolf
gladne kao vukovi,gladan kao vuk.AC_A3XN2:p5fgea//hungry as a wolf
gladna kao vuk,gladan kao vuk.AC_A3XN2:p5ngea//hungry as a wolf
gladna kao vuci,gladan kao vuk.AC_A3XN2:p5ngea//hungry as a wolf
gladna kao vukovi,gladan kao vuk.AC_A3XN2:p5ngea//hungry as a wolf
gladnima kao vuk,gladan kao vuk.AC_A3XN2:p6mgea//hungry as a wolf
gladnima kao vuci,gladan kao vuk.AC_A3XN2:p6mgea//hungry as a wolf
gladnima kao vukovi,gladan kao vuk.AC_A3XN2:p6mgea//hungry as a wolf
gladnim kao vuk,gladan kao vuk.AC_A3XN2:p6mgea//hungry as a wolf
gladnim kao vuci,gladan kao vuk.AC_A3XN2:p6mgea//hungry as a wolf
gladnim kao vukovi,gladan kao vuk.AC_A3XN2:p6mgea//hungry as a wolf
gladnima kao vuk,gladan kao vuk.AC_A3XN2:p6fgea//hungry as a wolf
gladnima kao vuci,gladan kao vuk.AC_A3XN2:p6fgea//hungry as a wolf
gladnima kao vukovi,gladan kao vuk.AC_A3XN2:p6fgea//hungry as a wolf
gladnim kao vuk,gladan kao vuk.AC_A3XN2:p6fgea//hungry as a wolf
gladnim kao vuci,gladan kao vuk.AC_A3XN2:p6fgea//hungry as a wolf
gladnim kao vukovi,gladan kao vuk.AC_A3XN2:p6fgea//hungry as a wolf
gladnima kao vuk,gladan kao vuk.AC_A3XN2:p6ngea//hungry as a wolf
gladnima kao vuci,gladan kao vuk.AC_A3XN2:p6ngea//hungry as a wolf
gladnima kao vukovi,gladan kao vuk.AC_A3XN2:p6ngea//hungry as a wolf
gladnim kao vuk,gladan kao vuk.AC_A3XN2:p6ngea//hungry as a wolf
gladnim kao vuci,gladan kao vuk.AC_A3XN2:p6ngea//hungry as a wolf
gladnim kao vukovi,gladan kao vuk.AC_A3XN2:p6ngea//hungry as a wolf
gladnima kao vuk,gladan kao vuk.AC_A3XN2:p7mgea//hungry as a wolf
gladnima kao vuci,gladan kao vuk.AC_A3XN2:p7mgea//hungry as a wolf
gladnima kao vukovi,gladan kao vuk.AC_A3XN2:p7mgea//hungry as a wolf
gladnim kao vuk,gladan kao vuk.AC_A3XN2:p7mgea//hungry as a wolf
gladnim kao vuci,gladan kao vuk.AC_A3XN2:p7mgea//hungry as a wolf
gladnim kao vukovi,gladan kao vuk.AC_A3XN2:p7mgea//hungry as a wolf
gladnima kao vuk,gladan kao vuk.AC_A3XN2:p7fgea//hungry as a wolf
gladnima kao vuci,gladan kao vuk.AC_A3XN2:p7fgea//hungry as a wolf
gladnima kao vukovi,gladan kao vuk.AC_A3XN2:p7fgea//hungry as a wolf
gladnim kao vuk,gladan kao vuk.AC_A3XN2:p7fgea//hungry as a wolf
gladnim kao vuci,gladan kao vuk.AC_A3XN2:p7fgea//hungry as a wolf
gladnim kao vukovi,gladan kao vuk.AC_A3XN2:p7fgea//hungry as a wolf
gladnima kao vuk,gladan kao vuk.AC_A3XN2:p7ngea//hungry as a wolf
gladnima kao vuci,gladan kao vuk.AC_A3XN2:p7ngea//hungry as a wolf
gladnima kao vukovi,gladan kao vuk.AC_A3XN2:p7ngea//hungry as a wolf
gladnim kao vuk,gladan kao vuk.AC_A3XN2:p7ngea//hungry as a wolf
gladnim kao vuci,gladan kao vuk.AC_A3XN2:p7ngea//hungry as a wolf
gladnim kao vukovi,gladan kao vuk.AC_A3XN2:p7ngea//hungry as a wolf
gladna kao vuk,gladan kao vuk.AC_A3XN2:w2mgea//hungry as a wolf
gladna kao vuci,gladan kao vuk.AC_A3XN2:w2mgea//hungry as a wolf
gladna kao vukovi,gladan kao vuk.AC_A3XN2:w2mgea//hungry as a wolf
gladne kao vuk,gladan kao vuk.AC_A3XN2:w2fgea//hungry as a wolf
gladne kao vuci,gladan kao vuk.AC_A3XN2:w2fgea//hungry as a wolf
gladne kao vukovi,gladan kao vuk.AC_A3XN2:w2fgea//hungry as a wolf
gladna kao vuk,gladan kao vuk.AC_A3XN2:w2ngea//hungry as a wolf
gladna kao vuci,gladan kao vuk.AC_A3XN2:w2ngea//hungry as a wolf
gladna kao vukovi,gladan kao vuk.AC_A3XN2:w2ngea//hungry as a wolf
gladna kao vuk,gladan kao vuk.AC_A3XN2:w4mgea//hungry as a wolf
gladna kao vuci,gladan kao vuk.AC_A3XN2:w4mgea//hungry as a wolf

250 CHAPTER 11. COMPOUND WORD INFLECTION

gladna kao vukovi,gladan kao vuk.AC_A3XN2:w4mgea//hungry as a wolf
gladne kao vuk,gladan kao vuk.AC_A3XN2:w4fgea//hungry as a wolf
gladne kao vuci,gladan kao vuk.AC_A3XN2:w4fgea//hungry as a wolf
gladne kao vukovi,gladan kao vuk.AC_A3XN2:w4fgea//hungry as a wolf
gladna kao vuk,gladan kao vuk.AC_A3XN2:w4ngea//hungry as a wolf
gladna kao vuci,gladan kao vuk.AC_A3XN2:w4ngea//hungry as a wolf
gladna kao vukovi,gladan kao vuk.AC_A3XN2:w4ngea//hungry as a wolf

Figure 11.28: Inflection graph NC_2XN1 for Serbian MWUs

Figure 11.29: Inflection graph NC_2XN2 for Serbian MWUs

Figure 11.30: Inflection graph NC_N2X1 for Serbian MWUs

11.3. INTEGRATION IN UNITEX 251

Figure 11.31: Inflection graph NC_AXN3 for Serbian MWUs

Figure 11.32: Inflection graph NC_N3XN for Serbian MWUs

Figure 11.33: Inflection graph NC_AXNF for Serbian MWUs

252 CHAPTER 11. COMPOUND WORD INFLECTION

Figure 11.34: Inflection graph NC_ImePrezime for Serbian MWUs

Figure 11.35: Inflection graph AC_A3XN2 for Serbian MWUs

Chapter 12

Cascades of Transducers

This chapter presents the CasSys tool, which provides users the possibility to create cascades
of Unitex transducers and new opportunities to work on natural language whith Finite State
Graphs. A cascade of transducers applies several FSGraphs (also called automata or transduc-
ers), one after the other, onto a text: each graph modifies the text, and changes can be useful
for further processings with the next graphs. Such a system is typically used for syntac-
tic analysis, chunking, information extraction, recognizing named entities etc. To do that,
CasSys uses a succession of "locate pattern" commands with special options and behaviors.

The first prototype of the CasSys system was created in 2002 at the LI (Computer science
Laboratory of Université François Rabelais Tours, France) [31]. This prototype was totally
dedicated to named entity recognition. Later, CasSys was generalized to allow any sort of
work needing a cascade: throughout the years, it was improved but never really integrated
in Unitex, until a recent project which resulted in the complete integration of CasSys in
Unitex1.

Unitex grammars are known as Context free grammars and contain the notion of trans-
duction derived from the field of finite state automata. A grammar with transduction (a
transducer) is enabled to produce some ouput. CasSys is dedicated to the application of
transducers in the form of a cascade.

Transducers are interesting because they associate a recognized sequence to informations
found in the outputs of the graphs. These outputs can:

• Be merged with the recognized sequence and appear in the resulting concordance or
modified text.

• Replace the recognized sequence to modify the text.

These two operations transform the text or add information inside the text.

In this chapter, we will explain how to create/modify cascades of transducers and how to
apply them. Then, we deal with options and behaviors offered by CasSys.

1"Feder-Région Centre Entités nommées et nommables" managed by Denis Maurel, LI, Tours, France, inte-
gration carried out by Nathalie Friburger and David Nott.

253

254 CHAPTER 12. CASCADES OF TRANSDUCERS

12.1 Applying a cascade of transducers with CasSys

Applying a cascade of transducers consists in the modelling of linguistic phenomena in
several transducers listed in a specific order to apply on a text: CasSys and its interface into
Unitex permits to do this. This section explains how to use the interface to create, manage
(order, add, delete) graphs and apply the cascade.

12.1.1 Creating the list of transducers

In order to manage the list of transducers, the FSGraph menu proposes two submenus: "New
cascade" and "Edit cascade..." (Figure 12.1). You can choose "new cascade" to create a new list
of transducers. If you want to modify an existing cascade, you can choose "Edit cascade" to
open a file explorer and choose the cascade to be opened.

Figure 12.1: "FSGraph" menu of Unitex and submenus "New cascade" and "Edit cascade..."

In the language directory, there is a directory named CasSys where the cascade configu-
ration files are stored. Those files are text files with the extension .csc (ex: mycascade.csc).

12.1.2 Editing the list of transducers

The CasSys configuration window (Figure 12.2) is divided into three parts :

1. a file explorer at the left of the frame permits to select the transducers to place in the
cascade. The file explorer only displays fst2 files (all the graphs you want to place in
the list of transducers must be compiled in the fst2 format).

12.1. APPLYING A CASCADE OF TRANSDUCERS WITH CASSYS 255

Figure 12.2: CasSys configuration window with a list of transducers on the right hand side

To edit the cascade, select the graphs in the file explorer at the left, then drag and drop
them into the right frame of the window.

2. A table at the right displays the cascade: the ordered list of transducers and the selected
options for each graph. This table is obviously empty for a new cascade.

The different columns of this table (Figure 12.3) show the numbering of each graph
and permit to choose its behavior:

• #: Rank of the graph/transducer in the cascade. The fst2 file corresponding to
a graph is numbered with this rank.

• Disabled: checkbox to disable the current graph. Disabled meaning "not applied
in the cascade". The disabled graphs appear not numbered, greyed out and in
strikethrough.

• Name: The name of the graph (with extension fst2). If you let the mouse over
the name of the graph, a tooltip appears with the whole path ot the graph (from
the Graphs directory). Graph names appear in red italics when the source file of
the graph is not found.

• Merge: Whether the transducer should be applied in merge mode in the sense of
Unitex Locate pattern functionality.

• Replace: Whether the transducer should be applied in replace mode in the sense
of Unitex Locate pattern functionality.

• Until fix point: Whether the transducer should be applied one or several times
until no change occurs anymore in the text, i.e. until a fixed point is reached (see
Section 12.2.2).

3. Several buttons in the middle for different needs:

256 CHAPTER 12. CASCADES OF TRANSDUCERS

• "Up/Down/Top/Bottom" buttons are used to modify the order of the transducers on
the list (it moves the selected transducer in the list); "Up" and "Down" to move
the selected transducer one line up or down, and "Top" and "Bottom" to move the
selection to the top or to the end of the list.

• "Delete" permits to remove a selected transducer from the list of transducers.

• "Add" adds a transducer (previously selected in the explorer) onto the list. It
replaces the drag and drop actions described above.

• "View" opens the selected graph either in the file explorer or in the list of trans-
ducers of the window. It is very useful to get a quick access to any transducer
either to take a quick look at its content or to modify it.

• "Save" and "Save as" permit to save the list of transducers. By default, the lists
of transducers are stored in the CasSys directory of the current language (e.g.
English/CasSys).

• "Compile" recompile all the graphs of the cascade. Very useful to avoid to recom-
pile a graph after changes.

• "Disable all" to disable all the graphs of the cascade.

• "Enable all" to enable all the graphs of the cascade.

• "Close" to close the current window.

Figure 12.3: The table/list of transducers

12.1.3 Applying a cascade

To apply a cascade on a text, you can select the menu "Text / Apply CasSys cascade..." (Fig-
ure 12.4), which will open the CasSys window. This submenu "Apply CasSys cascade..." is
active only if a text has previously been opened.

12.1. APPLYING A CASCADE OF TRANSDUCERS WITH CASSYS 257

Figure 12.4: "Text" menu of Unitex and submenu "Apply CasSys Cascade..."

The CasSys window (Figure 12.5) displays the content of the CasSys directory of the
current language. You choose the cascade file to be applied on the text. Then, you click on
the "Launch" button to apply the cascade. The file with the list of transducers is displayed
only if it has .csc extension.

Figure 12.5: CasSys Window to launch a cascade of transducers

All morphological-mode dictionaries added in your preferences are applied to your
graphs. Preferences may be edited from the main Unitex frame (info / Preferences / morphological-
mode dictionaries).

258 CHAPTER 12. CASCADES OF TRANSDUCERS

12.2 Details on the behavior of CasSys

In this section, we present details about the operation of CasSys.

12.2.1 Type of graphs used

CasSys uses the compiled version of the graphs (the fst2 files). CasSys can handle local
grammars (section 6.1.4) such as those in Chapter 6. The grammars used in the cascade
must follow the constraints of the grammars used in Unitex. They may use subgraphs, mor-
phological filters, the morphological mode, and references to information in dictionaries.

CasSys does not support debug-mode fst2 files (Section 6.10.7). When you apply a graph
in debug mode through the Text > Locate Pattern menu, the system compiles the
graph into a special debug-mode format. To obtain a regular fst2 file, compile the graph
again, either with the FSGraph menu, or with a command line, or by unchecking the debug
mode before applying the graph with Text > Locate Pattern menu.

12.2.2 Repeat until fix point behaviour

With this option, CasSys applies a transducer repeatedly on a text as long as occurrences are
found. This behavior is selected for a graph of a cascade if the corresponding Until fix point
checkbox is checked. For instance, consider the very simple graph of Figure 12.6 which
recognizes AB and replaces it with A.

Figure 12.6: Transducer which modifies BA in A

Consider the text B B B A A A. Applying the graph 12.6 onto this text with the option
Until fix point will produce the following result :

initial text B B B A A A
iteration 1 B B A A A 1 match
iteration 2 B A A A 1 match
iteration 3 A A A 1 match
iteration 4 A A A 0 match

During the first three iterations, a match is found, so the graph is applied again on the
resulting text. At the fourth iteration, no match is found, the graph is not applied again.

Warning: Be aware of the risk of livelock when applying this option. For example,
a transducer which recognizes A and replaces it with A would be caught in a livelock if
applied on the example text.

12.2. DETAILS ON THE BEHAVIOR OF CASSYS 259

12.2.3 The Unitex rules used for the cascade

In the cascade, each successive graph is applied following the Unitex rules:

• Insertion to the left of the matched patterns: in the merge mode, the ouput is inserted to
the left of the recognized sequence.

• Priority of the leftmost match: during the application of a local grammar, overlapping
occurrences are all indexed. During the construction of a concordance, all these over-
lapping occurrences are presented but CasSys modifies the text with each graph of the
cascade : so it is necessary to choose among these occurrences the one that will be
taken into account. To do that, the priority is given to the leftmost sequence.

• Priority of the longest match: in CasSys, during the application of a graph, it is the longest
sequence that will be kept.

• Search limitation to a certain number of occurrences: in CasSys, this search is not limited.
Such a limitation has no sense in the use of CasSys, we always index all occurrences in
the text.

12.2.4 A special way to mark up patterns with CasSys

The output of the transducers can be used to insert special information into texts, particu-
larly to mark up recognized patterns: it is possible to use all the marks you want such as (),
[], "", etc. or xml tags such as <xxx> </xxx>.

CasSys also offers a special way to mark up patterns, that offers some advantages and that we
present here.

Unitex splits texts into different sorts of tokens like the sentence delimiter {S}; the stop
marker {STOP}; contiguous sequences of letters; curly-bracket-delimited lexical tags like
{aujourd’hui,.ADV}, etc. The lexical tag is used by CasSys in a special way. The lexical tag
(between curly brackets) is normally used to avoid ambiguities (see Sections 2.5.4 and 7.5.1).
For example, if the token {curly brackets,.N} is in a text, neither "curly" nor "brackets" will be
recognized but the whole sequence "curly brackets" or the tag <N>.

A lexical tag can contain complex lexical information. For example, the sequence of codes
N+Pers+Hum:fs tags a token which is a noun, a person, a human and feminine singular. In a
graph, you can look for a lexical token using the lexical codes it contains: for example, you
can write lexical masks such as <N> to search a noun, <Pers+Hum> for a human person or
simply <Pers> (lexical masks are explained in Section 4.3.1).

A cascade of transducers is interesting to locate an island of certainty first. It is necessary
for such a system to avoid that previously recognized patterns be ambiguous with patterns
recognized by the following graphs. To do that, you can tag the patterns of your graphs
surrounding them by { and ,.tag1+tag2+tagn} in the outputs of the graph (where tag1, tag2,
etc. are your own tags).

260 CHAPTER 12. CASCADES OF TRANSDUCERS

To explain this behavior, here is a very simple example. The text on which we work is :
bac a b c cc a b b ba ab a b bca a b c abaabc.

The graph grfAB (Figure 12.7) recognizes the sequence a b in the text and tags this sequence
with the lexical tag {a b,.AB}. The results are merged with the text adding the outputs { and
,.AB} around "a b" sequences.

Figure 12.7: The graph grfAB

The resulting text is : bac {a b,.AB} c cc {a b,.AB} b ba ab {a b,.AB} bca {a b,.AB} c abaabc.

Now the pattern a b is tagged AB. A part (a or b alone) of this pattern cannot be recognized
because of the tagging of a b.

After that graph, the cascade applies another graph named tagAB (Figure 12.8). It has two
paths:

• the first one to recognize the lexical mask <AB> followed by c and tags this sequence
as ABC.

• the second one to recognize and tag bca preceeded by <AB>. Only bca is tagged as
BCA.

Figure 12.8: The graph tagAB

The resulting text is : bac {{a b,.AB} c,.ABC} cc {a b,.AB} b ba ab {a b,.AB} {bca,.BCA} {{a b,.AB}
c,.ABC} abaabc.

The concordance displayed by Unitex should be like Figure 12.9.
Note that for programming reasons (ambiguities between characters in the curly brack-

ets of the lexical tags), we have no option but to place backslashes \ before all ambiguous
characters for Unitex ; that is why these symbols are protected with \ in the concordance.

12.3. TAGGING GENERALIZATION GRAPHS 261

Figure 12.9: The concordance resulting from this cascade

12.3 Tagging generalization graphs

Sometimes, we locate elements with the aid of triggering contexts, but we can’t detect them
if they appear in another context. In order to locate such occurrences, CasSys proposes to
utilise tagging generalization graphs. These graphs contain empty boxes that the program
fills automatically by extracting from the list of tokens of the text (tokens.txt) the forms
previously tagged in a given way. By applying the resulting graphs to the text, this tagging
is generalized to the other occurrencs of these forms.

12.3.1 Declaration

CasSys recognises a graph as a tagging generalization graph if the column Generalization is
checked (Figure 12.10).

Figure 12.10: Tagging Generalization Graph

12.3.2 Simple graphs

To create a tagging generalization graph, you indicate the beginning of the generalizing part
by a $G box with a left curly bracket in the output, and the end by an empty box with in the
output a right curly bracket, optionally preceded by features. Between these two boxes, one
(and only one) empty box must have in its output the targeted tag preceded by ",.". You can
use the $G button (Figure 12.11) to automatically insert the beginning and ending boxes of
the generalizing part after selecting a box.

For example, the graph of Figure 12.12 is designed to generalize the x tag.

If the file with the token list contains the lexical tag {A,.x}, the processing will produce the
graph in Figure 12.13.

262 CHAPTER 12. CASCADES OF TRANSDUCERS

Figure 12.11: $G button

Figure 12.12: Simple generalization graph

Figure 12.13: Simple generalization graph, after processing

This graph will assign the x tag to the occurrences of A that have not received it before. The
automatically inserted negative right context avoids tagging again already tagged occur-
rences. Warning: what the program inserts into the box after the negative right context are
lexical masks (see Section 2.5.4 to understand why). In case of an ambiguity between a word
and a grammatical code, they can be interpreted as grammatical codes. This is what hap-
pens with the graph of 12.12, which has a disastrous effect, because that of 12.13 recognizes
all the adjectives of the text!

Generalization graphs work only by inserting curly-brackets-delimited lexical tags, because
the forms to be tagged are extracted from the list of tokens.

When creating a generalization graph, several generalizing parts can be inserted in the
graph, and classic boxes can be added before and after each generalizing part, as shown
in Figure 12.14.

12.3.3 Graphs with restrictions

You may want to extract from tokens.txt the forms with a given sub-lexical tag. In the case
of a token such as the following:

{{March,.month} {2018,.year},.date}

we call ‘sub-lexical tags’ the elements {March,.month} and {2018,.year}, and ‘sub-categories’
the categories month and year. To target the forms with a given sub-category included in
forms with a given category, you can use restrictions in generalization graphs. 2 You type

2 In some 3.2 alpha versions, negative restrictions were available. They are not anymore, but the behavior
of a generic part using negative restriction can be reproduced with positive restrictions. For more information,
contact the Google Unitex list.

12.3. TAGGING GENERALIZATION GRAPHS 263

Figure 12.14: Simple generalization graph with several paths

the name of the sub-category in the box, with in the output the category preceded by ",.".
3 For example, assume we want to tag more occurrences with main and A, and the file
tokens.txt contains the following line:

{{first,.A} {{second,.A} {third,.B},.B},.main}

Figure 12.15: Generalization graph with a restriction on the sub-category A

The processing of the graph in Figure 12.15 will give the result shown in Figure 12.16.

Figure 12.16: Generalization graph with a restriction on the sub-category A, after processing

This graph generalizes the sub-category A to two forms, first and second. The negative right
context contains the category of the main lexical tag as well as the sub-category of the tar-
geted sub-lexical tag. The found occurrences are tagged twice, with both categories nested.

Still with the same tokens.txt file, the graph in Figure 12.17 will give the one in Figure 12.18.

3 There must be only one sub-category in the box. To extract multiple sub-categories, you have to create
multiple generic parts.

264 CHAPTER 12. CASCADES OF TRANSDUCERS

Figure 12.17: Generalization graph with a restriction on the sub-category B

Figure 12.18: Generalization graph with a restriction on the sub-category B, after processing

Only one sub-lexical tag with the sub-category B has been found in tokens.txt; this sub-
lexical tag contains in turn two other sub-lexical tags; so the extracted content is second third.
Because the sub-category matched, the search was not spread to further nested sub-lexical
tags, and the sub-lexical tag third alone has not been found.

A generalization graph should not contain a generalizing part with a restriction and another
without restriction for the same outer category, because of the ambiguity that would result,
except using weights on the different paths (see Section 5.2.4), as shown on Figure 12.19.

Figure 12.19: Graph with weights to avoid ambiguity

12.3.4 Substitution of a category

You may want to change the outer category that will be assigned to the sub-lexical tags
extracted form the token list. For example, in the following case:

{from {{January,.month} {2017,.year},.date} to {{November,.month} {2018,.year},.date},.period}

with a generalization graph with restriction in order to extract years, the resulting sub-lexical
tags would be:

12.4. THE RESULTS OF A CASCADE 265

{{2017,.year},.period} and {{2018,.year},.period}

The "period" tag is little relevant for these occurrenes. To replace it with "date", you can
indicate the final category, by appending it (separated by a dot) to the targeted sub-category
(see Figures 12.20 and 12.21).

Figure 12.20: Graph with replacement of the final category

Figure 12.21: Graph with replacement of the final category, after procesing

12.4 The results of a cascade

12.4.1 Displaying the concordance of a cascade

The results of a cascade are stored in an index file (concord.ind), just as for the "Locate pat-
tern" operation. This index file contains all the sequences recognized using the restrictions
imposed by the rules of unitex.

In order to display a concordance, you have to access the frame "Text / Located sequences..."
and click on the "Build concordance" button (as described in Chapter 6). The figure 12.22
presents a sample of concordance resulting of a cascade recognizing named entities.

Figure 12.22: Concordance of CasSys under Unitex

266 CHAPTER 12. CASCADES OF TRANSDUCERS

12.4.2 The different resulting files of a cascade

CasSys keeps all the text created by each graph of the cascade. This can be useful to test,
debug or check the different results of the cascade. It is possible to correct the errors on the
order of the graphs or to find the errors in the writing of the graphs. A good idea is to write
the name of the graph recognizing a pattern in the output of this graph: thanks to that, you
can see in the final results the name of the graph by which a pattern is recognized.

If you apply a cascade on the text named example.txt, two directories are created:
example_snt and example_csc. The files produced in example_csc are the results
obtained by each graphs. These files are named according to the number of the graph which
produced them. For example, if the third graph of a cascade finds at least a pattern, the
results of this graph will be stored in the directory example_3_0_snt and the file named
example_3_0.snt will contain the modified text.

12.4.3 An xml-like output text for lexical tags

The output is provided in two forms: the direct output of the transducers, and an XML-like
output with the lexical tags transformed into XML. This change is done in order to provide
the end user with more easily manageable text. From this format, it is possible to use one
of the numerous tools to process xml and it is easier to apply further transducers to get the
desired output.
The direct output of the transducers is in the example_csc.raw file. The xml-ized ouput
text is copied in the example_csc.txt file.

More precisely, lexical tags have the following format :
{forme.lemme,code1+code2:flex1:flex2}

The corresponding xml-like output of CasSys has the following format :
<csc>

<form>forme</form>
<lemma>lemme</lem>
<code>code1</code>
<code>code2</code>
<inflect>flex1</inflect>
<inflect>flex2</inflect>

</csc>

The DTD of our xml format is:
<?xml version="1.0" encoding="ISO-8859-1"?>
<!ELEMENT text (#PCDATA|csc)*>
<!ELEMENT csc (form,lemma?,code*,inflect*) >
<!ELEMENT form (#PCDATA|csc)*>
<!ELEMENT lemma (#PCDATA)>
<!ELEMENT code (#PCDATA)>
<!ELEMENT inflect (#PCDATA)>

12.5. CREATING AN INVENTORY OF TAG OCCURRENCES 267

12.5 Creating an inventory of tag occurrences

The standoff option of CasSys (section 14.6) allows for processing an XML-style tagged
corpus, and producing a file that inventories the tag-delimited phrases of the corpus, with
the number of occurrences of each unique phrase. This option is not available via the Uni-
tex graphical user interface. It must be launched from a script (chapitre 13) or an external
program.

You need to provide a graph that recognises the elements to be searched for (elements in the
XML sense, i.e. phrases delimited by an opening tag and the corresponding end tag). Ths
graph will generally involve a negative right context (section 6.3). For example, the graph of
Figure 12.23 inventories the phrases enclosed between <placeName> and </placeName>.

Figure 12.23: Graph for placeName-tagged elements

The program can process a corpus where an element contains another element with another
name,4 but not a corpus where it contains another element with the same name.

To use the standoff option, launch a cascade containing the graph. The output is a file
with a _standoff-suffixed name, which lists the phrases found. It sorts them according
to the element names, and, as a secondary criterion, according to the values of the type
attribute, if the opening tags have it. Take for example the following tagged text:

<placeName type="City">Birmingham</placeName> is a populous city.
<placeName type="City">Birmingham</placeName> is the largest urban area of
<placeName type="Region">West Midlands</placeName>.

By applying a cascade with the graph of Figure 12.23, you get:

Tagged elements found:
List for element "placeName" and attribute "City"

term="Birmingham"
number=2

End of list for this pair.
List for element "placeName" and attribute "Region"

term="West Midlands"
number=1

End of list for this pair.
End of list for this corpus

In the graph that recognises the elements, you can also restrict the values of the type at-
tribute. For example, the graph of Figure 12.24 inventories the placeName-tagged elements,
except those of the Region type.

4The name of an XML element is the name in the tag.

268 CHAPTER 12. CASCADES OF TRANSDUCERS

Figure 12.24: Graph for placeName-tagged elements, except those of the Region type

By applying a cascade with the graph of Figure 12.24, you get a result about a single pair:

Tagged elements found:
List for element "placeName" and attribute "City"

term="Birmingham"
number=2

End of list for this pair.
End of list for this corpus

The output file is produced on the model of a template file. Provide the name of the template
file in command line with the following syntax:

--standoff=<template file name>
The template file is a text file with at most 10 sections:

1. free introductive text

2. a line with just #LINE: the part from #LINE to #REST will be used as a template to
generate the part on an element (or on an element-type pair) in the output file

3. text introducing an element name, noted {TYPE}, and optionally a value of the type
attribute, noted {SUBTYPE}. The optional part must be enclosed in double angles:
<<...>>

4. a #BLOCK line: the part from #BLOCK to #END will be a template for the part on a
tagged phrase in the output file

5. text introducing a tagged phrase, noted {TERM}

6. text introducing the number of occurrences of this phrase, noted {COUNT}

7. an #END line

8. text signalling the end of the part on an element (or on an element-type pair)

9. a #REST line

10. free conclusive text

Here is the template file for the example above:

12.5. CREATING AN INVENTORY OF TAG OCCURRENCES 269

Tagged elements found:
#LINE

List for element "{TYPE}"<< and attribute "{SUBTYPE}">>
#BLOCK

term="{TERM}"
number={COUNT}

#END
End of list for this pair.

#REST
End of list for this corpus

270 CHAPTER 12. CASCADES OF TRANSDUCERS

Chapter 13

Using Unitex/GramLab with scripts

Unitex/GramLab can be used through scripts instead of the graphical interface. The script
launches external programs, which are documented in Chapter 14. The advantage of this
possibility is that you may access additional options in the programs, like option standoff
of CasSys (Section 12.5), and even additional programs, such as DumpOffsets (Section 14.13).
You may also, during preprocessing, chain graphs in MERGE mode, whereas the graphical
interface allows for only one. Using scripts require more computer skills, and in particular
more familiarity with the operating system.

13.1 Translating into a script a processing launched via the graph-
ical interface

A simple way of writing a script that uses Unitex/GramLab is to launch the Unitex graph-
ical interface, to implement a preliminary version of the processing, and to translate your
clicks into a sequence of commands. To do that, you can generate a log file of the launched
operations (Section 15.13.8). You can also take advantage of the fact that the Unitex graph-
ical interface keeps track of these operations and can display them in the console ("Info >
Console", Section 14.2, Fig. 14.3). You select the steps to be retained, you copy them into a
text file and if needed you adapt them into an operational script. In order to select the steps
in the console, click on the corresponding cells in the ‘Log #’ column (a shift-click and a ctrl-
click have the usual effect in selecting several items). You can insert into the script programs
or options documented in Chapter 14, even if they are not available via the interface.

You can formalize a script in shell or batch form (Section 13.2), or in the form of a Unitex-
interpreted script (Section 13.3).

13.2 Shell or batch scripts

You can put a script in the form of a shell or batch script and execute it in the command-line
interface of the operating system. For example, the following commands open the 80jours
French corpus, without the REPLACE- or MERGE-mode preprocessings, but with default

271

272 CHAPTER 13. USING UNITEX/GRAMLAB WITH SCRIPTS

dictionary Dela_fr, then they launch a "Locate pattern" with graph pattern.fst2 as a
query and generate a concordance:

mkdir "U:\Unitex\French\Corpus\80jours_snt"
"C:\Unitex-GramLab\App\UnitexToolLogger.exe" Normalize

"U:\Unitex\French/corpus.txt" "-rU:\Unitex\French\Norm.txt"
"--output_offsets=U:\Unitex\French\Corpus\80jours_snt\normalize.out.offsets" -qutf8-no-bom

"C:\Unitex-GramLab\App\UnitexToolLogger.exe" Tokenize "U:\Unitex\French\Corpus\80jours.snt"
"-aU:\Unitex\French\Alphabet.txt" -qutf8-no-bom

"C:\Unitex-GramLab\App\UnitexToolLogger.exe" Dico "-tU:\Unitex\French\Corpus\80jours.snt"
"-aU:\Unitex\French\Alphabet.txt" "C:\Unitex-GramLab\French\Dela\Dela_fr.bin" -qutf8-no-bom

"C:\Unitex-GramLab\App\UnitexToolLogger.exe" SortTxt "U:\Unitex\French\Corpus\80jours_snt\dlf"
"-lU:\Unitex\French\Corpus\80jours_snt\dlf.n" "-oU:\Unitex\French\Alphabet_sort.txt"
-qutf8-no-bom

"C:\Unitex-GramLab\App\UnitexToolLogger.exe" SortTxt "U:\Unitex\French\Corpus\80jours_snt\dlc"
"-lU:\Unitex\French\Corpus\80jours_snt\dlc.n" "-oU:\Unitex\French\Alphabet_sort.txt"
-qutf8-no-bom

"C:\Unitex-GramLab\App\UnitexToolLogger.exe" SortTxt "U:\Unitex\French\Corpus\80jours_snt\err"
"-lU:\Unitex\French\Corpus\80jours_snt\err.n" "-oU:\Unitex\French\Alphabet_sort.txt"
-qutf8-no-bom

"C:\Unitex-GramLab\App\UnitexToolLogger.exe" SortTxt
"U:\Unitex\French\Corpus\80jours_snt\tags_err"
"-lU:\Unitex\French\Corpus\80jours_snt\tags_err.n" "-oU:\Unitex\French\Alphabet_sort.txt"
-qutf8-no-bom

"C:\Unitex-GramLab\App\UnitexToolLogger.exe" Locate "-tU:\Unitex\French\Corpus\80jours.snt"
"U:\Unitex\French\Graphs\pattern.fst2" "-aU:\Unitex\French\Alphabet.txt" -L -M --all -b -Y
--stack_max=1000 --max_matches_per_subgraph=200 --max_matches_at_token_pos=400
--max_errors=50 -qutf8-no-bom

"C:\Unitex-GramLab\App\UnitexToolLogger.exe" Concord
"U:\Unitex\French\Corpus\80jours_snt\concord.ind" "-fCourier new" -s10 -l40 -r55 --html
"-aU:\Unitex\French\Alphabet_sort.txt" --CL -qutf8-no-bom

For details of the scripts or any comments in it, you have to respect the operating system’s
conventions.

13.3 Unitex/GramLab-interpreted scripts

Unitex/GramLab has also a scripting language, with several advantages over shell or batch
scripts.

• Execution is faster than with an equivalent shell or batch script, since the interpreter
manages a virtual file system.

• The script and all the resources it requires are encapsulated in a ‘linguistic package’
that you can deploy in another environment later. This way, the development of the
script and its use in a processing chain are completely independent:

– you can deploy the package without any knowledge of Unitex or of the linguistic
processing implemented in the script,

13.3. UNITEX/GRAMLAB-INTERPRETED SCRIPTS 273

– the development environment and the deployment environment are not neces-
sarily in the same operating system,

– the processing does not modify any data in the deployment environment, since it
is applied to a copy of the corpus and uses a copy of the resources included in the
package. Only the files explicitly specified as being the output of the processing
are copied into the deployment environment at the end of the processing.

The scripting language consists of the Unitex external programs, including a few programs
implemented specially for the script interpreter (Section 13.3.4). There can be comment lines,
beginning with the # character. The commands of the operating system are not recognised.

The Unitex/GramLab script interpreter exists in two variants:

• RunScript launches a script on a corpus contained in one or several files;

• BatchRunScript processes a corpus consisting of all the files in a directory, by launch-
ing the script once on each file, and it generates a separate output file for each.

13.3.1 Implementing a linguistic package

A Unitex/GramLab linguistic package includes a script and all the language resources it
uses, except the input corpus. The package is organised in the form of a directory tree, and
compressed in Zip format.

The tree root is a directory <ling_pkg_name> with two subdirectories named script and
resource. The script must be placed in <ling_pkg_name>/script and all the required
language resources in <ling_pkg_name>/resource. You can mimic in resource the
organization of a personal Unitex workspace, with a subdirectory for each language pro-
cessed by the script (for example French), then, in each language directory, alphabet files
Alphabet.txt and Alphabet_sort.txt, normalization file Norm.txt etc., and subdi-
rectories Dela, Graphs etc. and, in turn, the respective data in them. With this organization,
it is easier to write the script by adapting a script from the console.

If you want the script to access the date of the package, create an empty text file in the fol-
lowing directory:

<ling_pkg_name>/resource

and name it VERSION_AAAAMMJJ (without extension).

When the tree is finished, compress it in Zip format.

For example, in order to encapsulate the processing of Section 13.2 in a package named
pkg.zip, you have to copy into a pkg directory:

• in subdirectory resource:

274 CHAPTER 13. USING UNITEX/GRAMLAB WITH SCRIPTS

– the alphabet files, Alphabet.txt and Alphabet_sort.txt, and the normal-
ization file Norm.txt in French;

– the dictionary files Dela_fr.bin and Dela_fr.inf in French/Dela;
– the graph pattern.fst2 in French/Graphs (optionally, you can also copy the

file pattern.grf there);

• in subdirectory script, the script file.

13.3.2 Launching with RunScript

RunScript launches a script on a corpus contained in one or several files. To do that,
invoke UnitexToolLogger (Section 14.49) with the following syntax:

UnitexToolLogger [{ SelectOutput <args1> }] { InstallLingResourcePackage <args2> } { RunScript
<args3> } { InstallLingResourcePackage <args4> }

Each pair of curly brackets delimits the invocation of a Unitex command with its arguments.

1. The SelectOutput step is optional but recommended. By including it in the follow-
ing form:

{ SelectOutput --output=off }
you block the debugging messages of each subsequent command, which would con-
sume space in the case of an extensive run.

2. The next step, InstallLingResourcePackage, installs the content of the linguistic
package in the virtual file system.

3. The Runscript step launches the script. It must set:

• in INPUT_FILE_1 and if necessary INPUT_FILE_2, etc., the name of the file(s)
that contain the input corpus;
• in OUTPUT_FILE_1, OUTPUT_FILE_2, etc., the name of the output file(s);
• in PACKAGE_DIR the name of the root directory of the linguistic package in the

virtual file system;
• in CORPUS_WORK_DIR the name of the directory that will contain the files gener-

ated during the execution of the script.

4. The last step writes the output file(s) and then terminates the virtual file system.

For example, the following command uses the pkg.zip linguistic package of Section 13.3.1
and launches the uniscript script contained in the package, with the 80jours.txt file
as input corpus and 80jours_result.html as output file.

"C:\Unitex-GramLab\App\UnitexToolLogger.exe" { SelectOutput --output=off } {
InstallLingResourcePackage -p U:\Scripts\pkg.zip -x "$:UnitexPkgResource" -v } { RunScript -v
-a INPUT_FILE_1=U:\Unitex\French\Corpus\80jours.txt
-a "CORPUS_WORK_DIR=$:UnitexPkgWork" -a "PACKAGE_DIR=$:UnitexPkgResource"
-a OUTPUT_FILE_1=U:\Unitex\French\Corpus\80jours_result.html
"$:UnitexPkgResource\script\uniscript" } { InstallLingResourcePackage -p U:\Scripts\pkg.zip
-x "$:UnitexPkgResource" -u -v }

13.3. UNITEX/GRAMLAB-INTERPRETED SCRIPTS 275

13.3.3 Launching with BatchRunScript

BatchRunScript processes a corpus consisting of all the files in a directory. It launches
the script once on each file and generates a separate output file for each. This way, you can
implement massive processings efficiently, even on many documents contained in separate
files. The result is stored in an output directory, in files with the same names as the input
files, suffixed by default 1 by .result.txt. BatchRunScript is multi-threaded and runs
several instances in parallel: this way, all the cores of the processing machine can work at
the same time and process all the files faster.

To deploy a script with BatchRunScript, use the following syntax:

UnitexToolLogger { BatchRunScript <args> }

The arguments must set the name of the directory containing the input corpus in the virtual
file system, the name of the output directory, the number of threads, the name of the linguis-
tic package and the name of the script. For example, the following command processes all
the files in the input_folder directory, stores the output in output_folder and runs on
four threads:

"C:\Unitex-GramLab\App\UnitexToolLogger.exe" { BatchRunScript -i .\input_folder -o .\output_folder
-t 4 .\pkg -v -p -m -s script/uniscript }

The -v, -m and -p options control the information output on the teminal during the pro-
cessing. With -v -p, you display the most messages, which is useful during development.
With -m and even more with -f, you display the least messages.

With BatchRunScript, the running of a script on an input file cannot generate several
output files, as opposed to RunScript.2

13.3.4 Developing a script for RunScript

In order to write a script in a linguistic package, we recommend adapting a script from the
console, such as that of Section 13.2.

• In the script from the console, most lines begin with a mention of the name of the
UnitexToolLogger program. Remove this mention, i.e. in our example:
"C:\Unitex-GramLab\App\UnitexToolLogger.exe" (cf. the body of the script
below).

• In the name of the resource files, substitute {PACKAGE_DIR}/resource for the path
of the working directory. In our example, the normalization file for French becomes
{PACKAGE_DIR}/resource/French/Norm.txt.

1You can specify another suffix with the -x option. With the -e option, the extension of the input file is
stripped off before appending the suffix.

2You can bypass this constraint with the PackFile and UnpackFile tools, by grouping several output files
into a single Zip file.

276 CHAPTER 13. USING UNITEX/GRAMLAB WITH SCRIPTS

• In the names of the files generated by the script, replace the complete path with:
{CURRENT_WORK_DIR}
In our example, 80jours.snt with its path becomes:
{CURRENT_WORK_DIR}/80jours.snt

PACKAGEDIR is already set when the script begins to run, but for CURRENT_WORK_DIR, a
few lines are required at the beginning of the script in order to name the directory, create it,
copy the input corpus in it and make some other arrangements:

CURRENT_WORK_DIR = {CORPUS_WORK_DIR}/{UNIQUE_VALUE}

This line gives a name to CURRENT_WORK_DIR. The value of CORPUS_WORK_DIR is already
set when the script begins to run. UNIQUE_VALUE contains a character string which is set
either by RunScript or by BatchRunScript, with the guarantee that the chain is different
for each execution of RunScript or for each simultaneous thread of BatchRunScript.
This prevents collisions between temporary files during simultaneous processings. Then, as
the mkdir command is unavailable in a Unitex/GramLab interpreted script, the directory
is created by DuplicateFile:

DuplicateFile -p {CURRENT_WORK_DIR}

The input corpus is copied:

DuplicateFile -i {INPUT_FILE_1} {CURRENT_WORK_DIR}/corpus.txt

The first command in the script from the console uses the mkdir command to create the
corpus_snt subdirectory. The script must use DuplicateFile instead:

DuplicateFile --make-dir {CURRENT_WORK_DIR}/corpus_snt

The following two lines write into files some information about the Unitex version:

VersionInfo -n -o {CURRENT_WORK_DIR}/newrevision.txt
VersionInfo -s -o {CURRENT_WORK_DIR}/semver.txt

The following line stores the version date of the linguistic package, provided you have in-
cluded a file named VERSION_AAAAMMJJ in the package (see Section 13.3.1):

VersionInfo -B -o {CURRENT_WORK_DIR}/builddate.txt

Then comes the body of the script:

Normalize "{CURRENT_WORK_DIR}/corpus.txt" "-r{PACKAGE_DIR}/resource/French/Norm.txt"
"--output_offsets={CURRENT_WORK_DIR}/corpus_snt/normalize.out.offsets" -qutf8-no-bom

Tokenize "{CURRENT_WORK_DIR}/corpus.snt" "-a{PACKAGE_DIR}/resource/French/Alphabet.txt"
-qutf8-no-bom

Dico "-t{CURRENT_WORK_DIR}/corpus.snt" "-a{PACKAGE_DIR}/resource/French/Alphabet.txt"
"{PACKAGE_DIR}/resource/French/Dela/Dela_fr.bin" -qutf8-no-bom

SortTxt "{CURRENT_WORK_DIR}/corpus_snt/dlf" "-l{CURRENT_WORK_DIR}/corpus_snt/dlf.n"

13.3. UNITEX/GRAMLAB-INTERPRETED SCRIPTS 277

"-o{PACKAGE_DIR}/resource/French/Alphabet_sort.txt" -qutf8-no-bom
SortTxt "{CURRENT_WORK_DIR}/corpus_snt/dlc" "-l{CURRENT_WORK_DIR}/corpus_snt/dlc.n"

"-o{PACKAGE_DIR}/resource/French/Alphabet_sort.txt" -qutf8-no-bom
SortTxt "{CURRENT_WORK_DIR}/corpus_snt/err" "-l{CURRENT_WORK_DIR}/corpus_snt/err.n"

"-o{PACKAGE_DIR}/resource/French/Alphabet_sort.txt" -qutf8-no-bom
SortTxt "{CURRENT_WORK_DIR}/corpus_snt/tags_err"

"-l{CURRENT_WORK_DIR}/corpus_snt/tags_err.n"
"-o{PACKAGE_DIR}/resource/French/Alphabet_sort.txt" -qutf8-no-bom

Locate "-t{CURRENT_WORK_DIR}/corpus.snt"
"{PACKAGE_DIR}/resource/French/Graphs/test.fst2"
"-a{PACKAGE_DIR}/resource/French/Alphabet.txt" -L -M --all -b -Y --stack_max=1000
--max_matches_per_subgraph=200 --max_matches_at_token_pos=400 --max_errors=50
-qutf8-no-bom

Concord "{CURRENT_WORK_DIR}/corpus_snt/concord.ind" "-fCourier new" -s10 -l40 -r55 --html
"-a{PACKAGE_DIR}/resource/French/Alphabet_sort.txt" --CL -qutf8-no-bom

The end of the script must set the name of the output file(s) and free the memory:

DuplicateFile -i {CURRENT_WORK_DIR}/corpus_snt/concord.html {OUTPUT_FILE_1}
DuplicateFile --recursive-delete {CURRENT_WORK_DIR}

You can launch the script with the command of Section 13.3.3. The output is just a concor-
dance file 80jours_result.html, placed next to 80jours.txt.

If you insert the following line in the script, as the one but last line:

DuplicateFile -i {CURRENT_WORK_DIR}/corpus_snt/dlf {OUTPUT_FILE_2}

then you must also add to the launching command the following option:

-a OUTPUT_FILE_2=U:\Unitex\French\Corpus\80jours_result.dic

and you get as additional output a dictionary file 80jours_result.dic, placed next to
the other two.

278 CHAPTER 13. USING UNITEX/GRAMLAB WITH SCRIPTS

Chapter 14

Use of external programs

This chapter presents the use of the different programs of which Unitex is composed. These
programs, which can be found in the Unitex/App directory, are automatically called by the
interface (in fact, UnitexToolLogger is actually called, in order to reduce significantly the
size of the downloadable zip file). It is possible to see the commands that have been executed
by clicking on "Info>Console". It is also possible to see the options of the different programs
on "Info>Help on commands" (see Figure 14.1). Note that that all Unitex programs support
the -h/--help option.

Figure 14.1: Help on commands

WARNING: many programs use the text directory (my_text_snt). This directory is cre-
ated by the graphical interface after the normalization of the text. If you work with the
command line, you have to create the directory manually before the execution of the pro-
gram Normalize.

279

280 CHAPTER 14. USE OF EXTERNAL PROGRAMS

WARNING (2): whenever a parameter contains spaces, it needs to be enclosed in quotation
marks so it will not be considered as multiple parameters.

WARNING (3): many programs need an Alphabet.txt file. For all those programs,
this information can be omitted. In that case, a default definition of letters is used (see
u_is_letter in Unicode.cpp source file).

14.1 Creating log files

Figure 14.2: Logging configuration

You can create log files of external program launches. These log files can be useful
for debugging or regression tests. You just need to enable this feature in the Preferences
frame. You have to choose a log directory where all log files will be stored and to select
the "Produce log" check box. Clicking on the "Clear all logs" button will remove all log
files contained in this directory, if any. Then, any further program execution will produce a
unitex_log_XXX.ulp file located in the log directory. XXX stands for the log number that
can be found in the console (see next section).

14.2 The console

When Unitex launches an external program, the invoked command line is stored in the
console. To see it, click on “Info>Console”. When a command emits no error message, it is
displayed with a green icon. Otherwise, the icon is a red triangle that you can click on to see
the error messages, as shown on Figure 14.3. This is useful when an error message occurs

14.3. UNITEX JNI 281

so fast that you cannot read it. If a command has been logged, its log number appears in the
second column. Note that you can export all the commands diplayed in the console to the
clipboard with Ctrl+C.

Figure 14.3: Console

14.3 Unitex JNI

You can use Unitex as a Java Native interface by including the following imports :

import fr.umlv.unitex.jni.UnitexJni;
import java.io.*;
import fr.umlv.unitex.*;

This will allow you to load .bin, .fst2 and alphabet files and to keep them in memory persis-
tently. You use the filename created by loadPersistent* function.

String persistentAlphabet = UnitexJni.loadPersistentAlphabet("/.../unitex/French/Alphabet.txt");
String persistentFst2 = UnitexJni.loadPersistentFst2("/.../unitex/French/Dela/fogg-r.fst2");
String persistentDictionary = UnitexJni.loadPersistentDictionary(
"/.../unitex/French/Dela/communesFR+.bin");

14.4 Text file encoding parameters

Unitex uses Unicode for text file15.1. All program which read or write text file share same
encoding parameters. Possible format are utf16le-bom, utf16le-no-bom, utf16be-bom, utf16be-
no-bom, utf8-bom, utf8-no-bom, for Unicode Big-Endian, Little-Endian and UTF-8, with or

282 CHAPTER 14. USE OF EXTERNAL PROGRAMS

without Unicode byte order mark at the beginning of the file. For the input format, you can
specify several *-bom encoding separated by comma, but only one *-no-bom encoding.

OPTIONS:

• -k=ENCODING/--input_encoding=ENCODING: input text file format. Can contain
several value, separated by a comma;

• -q=ENCODING/--output_encoding=ENCODING: output text file format.

By default, value are --input_encoding=utf16le-bom,utf16be-bom,utf8-bom --output_encoding=utf16le-bom.

14.5 BuildKrMwuDic

BuildKrMwuDic [OPTIONS] dic

This program generates a MWU dictionary graph from a text table dic describing each
component of each MWU.

OPTIONS:

• -o GRF/--output=GRF: .grf file to produce;

• -d DIR/--directory=DIR: inflection directory containing the inflection graphs re-
quired to produce morphological variants of roots;

• -a ALPH/--alphabet=ALPH: alphabet file to use;

• -b BIN/--binary=BIN: .bin simple word dictionary to use.

14.6 CasSys

Cassys [OPTIONS] <snt>

This program applies an ordered list of grammars to a text and constructs an index of the
occurrences found.

OPTIONS:

• -a ALPH/--alphabet=ALPH: the language alphabet file

• -r X/--transducer_dir=X: take transducer on directory X (avoids specifying full
path for each transducer); X must be (back)slash terminated

• -w DIC/--morpho=DIC: specifies that DIC is a .bin dictionary for the morphologi-
cal mode. Use one -w XXX option for each .bin file, or delimit several .bin filenames
with the colon character (:).

14.6. CASSYS 283

• -l TRANSDUCERS_LIST/--transducers_list=TRANSDUCERS_LIST: the trans-
ducers list file with their output policy

• -s transducer.fst2/--transducer_file=transducer.fst2: a transducer
to apply

• -m output_policy/--transducer_policy=output_policy: the output pol-
icy of the transducer specified

• -t TXT/--text=TXT: the text file to be modified, with extension .snt;

• -i/--in_place: means the same csc/snt directories must be used for each trans-
ducer

• -d/--no_create_directory: mean the all snt/csc directories already exist and
don’t need to be created

• -g minus/--negation_operator=minus: uses minus as negation operator for
Unitex 2.0 graphs

• -g tilde/--negation_operator=tilde: uses tilde as negation operator (de-
fault)

• --standoff=: specifies the name and path of the file for the standoff template and
launches the creation of the standOff file for the text;

• -h/--help: display this help

CasSys applies a list of grammar to a text and saves the matching sequence index in a file
named c̈oncord.inds̈tored in the text directory. The target text file has to be a preprocessed
snt file with its _snt/ directory. The transducer list file is a file in which each line contains
the path to a transducer followed by the output policy to be applied to this transducer.

Instead a list file, you can specify each file and each output policy by a set of couple of
-s/–transducer_file and -m/–transducer_policy argument to enumerate the list

The policy may be MERGE or REPLACE.

The file option, the alphabet option and the transducer list file option are mandatory

As the locate pattern program, this program saves the references to the found occurrences
in a file called concord.ind stored in the _snt directory of the text. The file concord.ind
produced is in the same format as described in the chapter 15 , but the cascade may be
constituted of graphs applied in merge or replace mode so the #M or #R at the first line of
the file concord.ind has no sense in this context.

284 CHAPTER 14. USE OF EXTERNAL PROGRAMS

14.7 CheckDic

CheckDic [OPTIONS] dic

This program carries out the verification of the format of a dictionary of DELAS or DELAF
type. dic corresponds to the name of the dictionary that is to be verified.

OPTIONS:

• -f/--delaf: checks an inflected dictionary;

• -s/--delas: checks a non inflected dictionary;

• -r/--strict: strict syntax checking against unprotected dot and comma;

• -t/--tolerate: tolerates unprotected dot and comma (default);

• -n/--no_space_warning: tolerates spaces in grammatical/semantic/inflectional
codes;

• -p/--skip_path: does not display the full path of the dictionary (useful for consis-
tent log files across several systems);

• -a ALPH/--alphabet=ALPH: specifies the alphabet file to use.

The program checks the syntax of the lines of the dictionary. It also creates a list of all
characters occurring in the inflected and canonical forms of words in the text, the list of
grammatical codes and syntax, as well as the list of inflection codes used. The results of the
verification are stored in a file called CHECK_DIC.TXT.

Selecting strict syntax checking detects using unprotected dot in inflected form, or unpro-
tected comma in lemma. The --tolerate option acts like Unitex 2.0 and lower and does
not detect them.

14.8 Compress

Compress [OPTIONS] dictionary

OPTIONS:

• -o BIN/--output=BIN: sets the output file. By default, a file xxx.dic will produce
a file xxx.bin;

• -f/--flip: indicates that the inflected and canonical forms should be swapped in the
compressed dictionary. This option is used to construct an inverse dictionary which is
necessary for the program Reconstrucao;

14.9. CONCORD 285

• -s/--semitic: indicates that the semitic compression algorithm should be used.
Setting this option with semitic languages like Arabic significantly reduces the size of
the output dictionary.

• --v1: produces an old style .bin file

• --v2: produces a new style .bin file, with no file size limitation to 16 Mb and a smaller
size (default)

This program takes a DELAF dictionary as a parameter and compresses it. The compression
of a dictionary dico.dic produces two files:

• dico.bin: a binary file containing the minimum automaton of the inflected forms of
the dictionary;

• dico.inf: a text file containing the compressed forms required for the reconstruction
of the dictionary lines from the inflected forms contained in the automaton.

For more details on the format of these files, see chapter 15.

14.9 Concord

Concord [OPTIONS] <index>

This program takes a concordance index file produced by the program Locate and pro-
duces a concordance. It is also possible to produce a modified text version taking into ac-
count the transducer outputs associated to the occurrences. Here is the description of the
parameters:

OPTIONS:

• -f FONT/--font=FONT: the name of the font to use if the output is an HTML file;

• -s N/--fontsize=N: the font size to use if the output is an HTML file. The font
parameters are required if the output is an HTML file;

• --only_ambiguous: Only displays identical occurrences with ambiguous outputs,
in text order.

• --only_matches: this option will force empty right and left contexts. Moreover, if
used with -t/–text, Concord will not surround matches with tabulations

• -l X/--left=X: number of characters on the left of the occurrences (default=0). In
Thai mode, this means the number of non-diacritic characters.

286 CHAPTER 14. USE OF EXTERNAL PROGRAMS

• -r X/--right=X: number of characters (non-diacritic ones in Thai mode) on the
right of the occurrences (default=0). If the occurrence is shorter than this value, the
concordance line is completed up to right. If the occurrence is longer than the length
defined by right, it is nevertheless saved as whole.

NOTE: For both --left and --right, you can add the s character to stop at the first
{S} tag. For instance, if you set 40s for the left value, the left context will end at 40
characters at most, less if the {S} tag is found before.

Sort order options:

• --TO: order in which the occurrences appear in the text (default);

• --LC: left context for primary sort, then occurrence for secondary sort;

• --LR: left context, then right context;

• --CL: occurrence, then left context;

• --CR: occurrence, then right context;

• --RL: right context, then left context;

• --RC: left context, then occurrence.

For details on the sorting modes, see section 4.8.2.

Output options:

• -H/--html: produces a concordance in HTML format encoded in UTF-8 (default);

• -t/--text: produces a concordance in Unicode text format;

• -g SCRIPT/--glossanet=SCRIPT: produces a concordance for GlossaNet in HTML
format. The HTML file is encoded in UTF-8;

• -p SCRIPT/--script=SCRIPT: produces a HTML concordance file where occur-
rences are links described by SCRIPT. For instance, if you use

-phttp://www.google.com/search?q=, you will obtain a HTML concordance
file where occurrences are hyperlinks to Google queries;

• -i/--index: produces an index of the concordance, made of the content of the occur-
rences (with the grammar outputs, if any), preceded by the positions of the occurrences
in the text file given in characters;

• -u offsets/--uima=offsets: produces an index of the concordance relative to
the original text file, before any Unitex operation. Offsets is supposed to be the file
produced by Tokenize’s --output_offsets option

14.10. CONCORDIFF 287

• --PRLG=X,Y: produces a concordance for PRLG corpora where each line is prefixed
by information extracted with Unxmlize’s --PRLG option. X is the file produced by
Unxmlize’s --PRLG option and Y is the file produced by Tokenize’s --output_offsets
option. Note that if this option is used in addition with -u, the Y argument oferrides
the argument of -u;

• -e/--xml: produces xml index of the concordance;

• -w/--xml-with-header: produces xml index of the concordance with full xml
header;

• -A/--axis: quite the same as --index, but the numbers represent the median char-
acter of each occurrence. Fore more information, see [32];

• -x/--xalign: another index file, used by the text alignment module. Each line is
made of 3 integers X Y Z followed by the content of the occurrence. X is the sen-
tence number, starting from 1. Y and Z are the starting and ending positions of the
occurrence in the sentence, given in characters;

• -m TXT/--merge=TXT: indicates to the program that it is supposed to produce a
modified version of the text and save it in a file named TXT (see section 6.10.4).

Other options:

• -d DIR/--directory=DIR: indicates to the program that it must not work in the
same directory than <index> but in DIR;

• -a ALPH/--alphabet=ALPH: alphabet file used for sorting;

• -T/--thai: option to use for Thai concordances.

The result of the application of this program is a file called concord.txt if the concor-
dance was constructed in text mode, a file called concord.html if the output mode was
--html, --glossanet or --script, and a text file with the name defined by the user of
the program if the program has constructed a modified version of the text.

In --html mode, the occurrence is coded as a hypertext link. The reference associated to
this link is of the form . X et Y represent the beginning and ending po-
sitions of the occurrence in characters in the file text_name.snt. Z represents the number
of the sentence in which the occurrence was found.

14.10 ConcorDiff

ConcorDiff [OPTIONS] <concor1> <concor2>

This program takes two concordance files and produces an HTML page that shows their
differences (see section 6.10.6, page 161). <concor1> and <concor2> concordance index

288 CHAPTER 14. USE OF EXTERNAL PROGRAMS

files must have absolute names, because Unitex uses these names to deduce on which text
there were computed.

OPTIONS:

• -o X/--out=X: output HTML page;

• -f FONT/--font=FONT: name of the font to use in output HTML page;

• -s N/--size=N: font size to use in output HTML page.

• -d/--diff_only: don’t show identical sequences;

14.11 Convert

Convert [OPTIONS] <text_1> [<text_2> <text_3> ...]

With this program you can transcode text files.

OPTIONS:

• -s X/--src=X: input encoding;

• -d X/--dest=X: output encoding (default=LITTLE-ENDIAN);

Transliteration options (only for Arabic):

• -F/--delaf: the input is a DELAF and we only want to transliterate the inflected
form and the lemma;

• -S/--delas: the input is a DELAS and we only want to transliterate the lemma.

Output options:

• -r/--replace: input files are overwritten (default);

• -o file/--output=file: name of destination file (only one file to convert);

• --ps=PFX: input files are renamed with the PFX prefix (toto.txt⇒ PFXtoto.txt);

• --pd=PFX: ouput files are renamed with the PFX prefix;

• --ss=SFX: input files are named with the SFX suffix; (toto.txt⇒ totoSFX.txt);

• --sd=SFX: ouput files are named with the SFX suffix.

HTML options:
Convert offers some special options dedicated to HTML files. You can use a combination
of the following options:

14.11. CONVERT 289

• --dnc (Decode Normal Chars): things like é x and ø will be
decoded as the single equivalent unicode character, except if it represents an HTML
control character;

• --dcc (Decode Control Chars): < > & and " will be decoded as <
> & and the quote (the same for their decimal and hexadecimal representations);

• --eac (Encode All Chars): every character that is not supported by the output encod-
ing will be encoded as a string like ǉ

• --ecc (Encode Control Chars): < > & and the quote will be encoded by < >
& and "

All HTML options are deactivated by default.

Other options:

• -m/--main-names: prints the list of the encoding main names;

• -a/--aliases: prints the list of the encoding aliases;

• -A/--all-infos: prints all the information about all the encodings;

• -i X/--info=X: prints all the information about the encoding X.

The encodings can take values in the following list (non exhaustive, see below):

FRENCH
ENGLISH
GREEK
THAI
CZECH
GERMAN
SPANISH
PORTUGUESE
ITALIAN
NORWEGIAN
LATIN (default latin code page)
windows-1252: Microsoft Windows 1252 - Latin I (Western Europe & USA)
windows-1250: Microsoft Windows 1250 - Central Europe
windows-1257: Microsoft Windows 1257 - Baltic
windows-1251: Microsoft Windows 1251 - Cyrillic
windows-1254: Microsoft Windows 1254 - Turkish
windows-1258: Microsoft Windows 1258 - Viet Nam
iso-8859-1 : ISO 8859-1 - Latin 1 (Europe de l’ouest & USA)
iso-8859-15 : ISO 8859-15 - Latin 9 (Western Europe & USA)
iso-8859-2 : ISO 8859-2 - Latin 2 (Eastern and Central Europe)

290 CHAPTER 14. USE OF EXTERNAL PROGRAMS

iso-8859-3 : ISO 8859-3 - Latin 3 (Southern Europe)
iso-8859-4 : ISO 8859-4 - Latin 4 (Northern Europe)
iso-8859-5 : ISO 8859-5 - Cyrillic
iso-8859-7 : ISO 8859-7 - Greek
iso-8859-9 : ISO 8859-9 - Latin 5 (Turkish)
iso-8859-10 : ISO 8859-10 - Latin 6 (Nordic)
next-step : NextStep code page
LITTLE-ENDIAN
BIG-ENDIAN
UTF8

14.12 Dico

Dico [OPTIONS] <dic_1> [<dic_2> <dic_3>...]

This program applies dictionaries to a text. The text must have been cut up into lexical units
by the Tokenize program.

OPTIONS:

• -t TXT/--text=TXT: complete .snt text file name;

• -a ALPH/--alphabet=ALPH: the alphabet file to use;

• -m DICS/--morpho=DICS: this optional parameter indicates which morphological-
mode dictionaries are to be used, if needed by some .fst2 dictionaries. DICS repre-
sents a list of .bin files (with full paths) separated with semi-colons;

• -K/--korean: tells Dico that it works on Korean;

• -s/--semitic: tells Dico that it works on a semitic language (needed if Dico has
to compress a dictionary);

• -u X/--arabic_rules=X: specifies the Arabic typographic rule configuration file.

• r X/--raw=X: indicates that Dico should just produce one output file X containing
both simple and compound words, without requiring a text directory. If X is omitted,
results are displayed on the standard output.

<dic_i> represents the path and name of a dictionary. The dictionary must be a .bin dic-
tionary (obtained with the Compress program) or a dictionary graph in the .fst2 format
(see section 3.8, page 66). It is possible to give priorities to the dictionaries. For details see
section 3.8.1.

The program Dico produces the following files, and saves them in the directory of the text:

• dlf: dictionary of simple words in the text;

14.13. DUMPOFFSETS 291

• dlc: dictionary of compound words in the text;

• err: list of unknown words in the text;

• tags_err: unrecognized simple words that are not matched by the tags.ind file;

• tags.ind : sequences to be inserted in the text automaton (see section 3.8.3, page 67);

• stat_dic.n: file containing the number of simple words, the number of compound
words, and the number of unknown words in the text.

NOTE: Files dlf, dlc, err and tags_err are not sorted. Use the program SortTxt to
sort them.

14.13 DumpOffsets

Usage: DumpOffsets [OPTIONS] <txt>

<txt>: an offset file to read

DumpOffsets dump sequence offset to study them.

OPTIONS:

• -o X/--old=X: name of old file to read

• -n X/--new=X: name of new file to read

• -p X/--output=X: name of output dump file to write

• -f/--full: dump common text additionaly

• -q/--quiet: display no message

• -c/--no_escape_sequence: don’t escape text sequence

• -h/--help: this help

Example:

UnitexToolLogger Normalize -r .\resource\Norm.txt
.\work\text_file.txt
--output_offsets .\work\text_file_offset.txt

UnitexToolLogger DumpOffsets -o .\work\text_file_offset.txt
-n .\work\text_file_offset.snt
-p .\work\dump\dump_offsets.txt .\work\text_file_offset.txt

292 CHAPTER 14. USE OF EXTERNAL PROGRAMS

Other Usage: DumpOffsets [-m/--merge] [OPTIONS] <txt>

<txt>: an offset file to read

Merge two offset file(15.13.10, page 349)) produced by two successive modification of text

OPTIONS:

• -o X/--old=X: name of old file to read

• -n X/--output=X: name of output merged offset file to write

Other Usage: DumpOffsets [-v/--convert_modified_to_common] [OPTIONS] <txt>

<txt>: an offset file to read

Create an offset file which list offset of common string between the original and modified
file. At least one size must be provided

OPTIONS:

• -s N/--old_size=N: size of original file (in characters)

• -S N/--new_size=N: size of modified file (in characters)

• -p X/--output=X: name of output common offset file to write

• -h/--help: this help

Other Usage: DumpOffsets [-M/--convert_common_to_modified] [OPTIONS] <txt>

<txt>: an offset file to read

Create a standard modified offset file from offset of common string between the original and
modified file. Both size must be provided

OPTIONS:

• -s N/--old_size=N: size of original file (in characters)

• -S N/--new_size=N: size of modified file (in characters)

• -p X/--output=X: name of output common offset file to write

• -h/--help: this help

14.14. ELAG 293

Other Usage: DumpOffsets -o <list_of_position_file_to_read.txt>

<list_of_position_file_to_read.txt> is a text file with just one number (a posi-
tion) at each line.

This will convert a list of position using the offset file. The created file contain the converted
position at each line, with a + at the end of line if the character at this position is on result
file, a - is it was removed.

• -p <list_to_create> -T <offset_file_to_read>

Using -t instead -T will do the reverse translation

OPTIONS:

• -d/--denormalize=: Denormalize the output

This programs reproduces the white spaces removed by Normalize. It also adds the text
deleted by the Preprocessing or by a graph. It preserves the text added as long as it is
between the brackets (<,>).

The file fichier_dump contains the text of the file fichier version 1 and the text added in
the file fichier version 2.

DumpOffsets [OPTIONS] -d -o <fichier_version1>
-n <fichier_version2> <fichier_offset> -p <fichier_dump>

14.14 Elag

Elag [OPTIONS] <tfst>

This program takes a .tfst text automaton <tfst> and applies to it ambiguity removal
rules.

OPTIONS:

• -l LANG/--language=LANG: ELAG configuration file for the language of the text;

• -r RULES/--rules=RULES: rule file compiled in the .rul format;

• -o OUT/--output=OUT: output text automaton.

294 CHAPTER 14. USE OF EXTERNAL PROGRAMS

14.15 ElagComp

ElagComp [OPTIONS]

This program compiles the ELAG grammar named GRAMMAR, or all the grammars specified
in the RULES file. The result is stored in the OUT file that will be used by the Elag program.

OPTIONS:

• -r RULES/--rules=RULES: file listing ELAG grammars;

• -g GRAMMAR/--grammar=GRAMMAR: single ELAG grammars;

• -l LANG/--language=LANG: ELAG configuration file for the language of the gram-
mar(s);

• -o OUT/--output=OUT: output file. By default, the output file name is the same as
RULES, except for the extension that is .rul.

14.16 Evamb

Evamb [OPTIONS] <tfst>

This program computes an average lexical ambiguity rate on the text automaton <tfst>,
or just on the sentence which number is specified by N. The results of the computation are
displayed on the standard output. The text automaton is not modified.

OPTIONS:

• -o OUT/--output=OUT: optional output filename;

• -s N/--sentence=N: sentence number.

14.17 Extract

Extract [OPTIONS] <text>

This program extracts from the given text all sentences that contain at least one occurrence
from the concordance. The parameter <text> represents the complete path of the text file,
without omitting the extension .snt.

OPTIONS:

• -y/--yes: extracts all sentences containing matching units (default);

• -n/--no: extracts all sentences that don’t contain matching units;

• -o OUT/--output=OUT: output text file;

14.18. FLATTEN 295

• -i X/--index=X: the .ind file that describes the concordance. By default, X is the
concord.ind file located in the text directory.

The result file is a text file that contains all extracted sentences, one sentence per line.

14.18 Flatten

Flatten [OPTIONS] <fst2>

This program takes a .fst2 grammar as its parameter, and tries to transform it into a finite-
state transducer.

OPTIONS:

• -f/--fst: the grammar is "unfolded" to the maximum depth and is truncated if there
are calls to sub-graphs. Truncated calls are replaced by void transitions. The result is
a .fst2 grammar that only contains a single finite-state transducer;

• -r/--rtn: calls to sub-graphs that remain after the transformation are left as they are.
The result is therefore a finite-state transducer in the favorable case, and an optimized
grammar strictly equivalent to the original grammar if not (default);

• -d N/--depth=N: maximum depth to which graph calls should be unfolded. The
default value is 10.

14.19 Fst2Check

Fst2Check [OPTIONS] <fst2>

This programs checks if a .fst2 file has no error for Locate.

OPTIONS:

• -y/--loop_check: enables error checking (loop detection);

• -n/--no_loop_check: disables error checking (default);

• -t/--tfst_check: checks wether the given graph can be considered as a valid sen-
tence automaton or not;

• -e/--no_empty_graph_warning: no warning will be emitted when a graph matches
the empty word. This option is used by MultiFlex in order not to scare users with
meaningless error messages when they design an inflection grammar that matches the
empty word.

Output options:

296 CHAPTER 14. USE OF EXTERNAL PROGRAMS

• -o file/--output=file: output file for error message;

• -a/--append: opens the message output file in append mode;

• -s/--statistics: displays statistics about fst2 file.

14.20 Fst2List

Fst2List [-o out][-p s/f/d][-[a/t] s/m][-m][-f s/a][-s "Str"]
[--io_separator "Str"] [--stop_mark "Str"]
[-r [s/l/x] "Str"] [-l line#] [-i subname]*
[-c SS=0xxxx]* fname

This program takes a .fst2 file and lists the sequences recognized by this grammar. The
parameters are:

• fname : grammar name, including .fst2;

• -o out : specifies the output file, lst.txt by default;

• -S : display result on standard output. Exclusive with -o;

• -[a/t] s/m : indicates if the program must take into account (t) or not (a) the out-
puts of the grammars if any. s indicates that there is only one initial state, whereas m
indicates that there are several ones (this mode is useful in Korean). The default value
is -a s;

• -l line# : maximum number of lines to be printed in the output file;

• -i subname : indicates that the recursive exploration must end when the program
enters in graph subname. This parameter can be used several times in order to specify
several stop graphs;

• -p s/f/d : s displays paths graph by graph; f (default) displays global paths; d
displays global paths with information on nested graph calls;

• -c SS=0xXXXX: replaces symbol SS when it appears between angle brackets by the
Unicode character whose hexadecimal number is 0xXXXX;

• -s "L[,R]" : specifies the left (L) and right (R) delimiters that will enclose items. By
default, no delimiters are specified;

• -g/--io_separator "Str" : if the program must take outputs into account, this
parameter specifies the sequence Str that will be inserted between input and output.
By default, there is no separator;

• -f a/s : if the program must take outputs into account, this parameter specifies the
format of the lines that will be generated: in0 in1 out0 out1 (s) or in0 out0 in1 out1
(a). The default value is s;

14.21. FST2TXT 297

• -q/--stop_mark "stop": stops exploration at "stop". The defauld value is null

• -v : prints information during the process (verbose mode);

• -m : mode special for description with alphabet

• -rx "L,[R]": specifies how cycles must be displayed. L and R are delimiters. If we
consider the graph shown on Figure 14.4, here are the results for L="[" and R="]*":

il fait [très très]*

il fait très beau

Figure 14.4: Graph with a cycle

14.21 Fst2Txt

Fst2Txt [OPTIONS] <fst2>

This program applies a transducer to a text in longest match mode at the preprocessing
stage, when the text has not been cut into lexical units yet.

OPTIONS:

• -t TXT/--text=TXT: the text file to be modified, with extension .snt;

• -a ALPH/--alphabet=ALPH: the alphabet file of the language of the text;

• -s/--start_on_space: this parameter indicates that the search will start at any
position in the text, even before a space. This parameter should only be used to carry
out morphological searches;

• -x/--dont_start_on_space: forbids the program to match expressions that start
with a space (default);

• -c/--char_by_char: works in character by character tokenization mode. This is
useful for languages like Thai;

• -w/--word_by_word: works in word by word tokenization mode (default);

Output options:

• -M/--merge: merge transducer outputs with text inputs (default);

• -R/--replace: replace texts inputs with corresponding transducer outputs.

This program modifies the input text file.

298 CHAPTER 14. USE OF EXTERNAL PROGRAMS

14.22 Grf2Fst2

Grf2Fst2 [OPTIONS] <grf>

This program compiles a grammar into a .fst2 file (for more details see section 6.2). The
parameter <grf> denotes the complete path of the main graph of the grammar, without
omitting the extension .grf.

OPTIONS:

• -y/--loop_check: enables error checking (loop detection);

• -n/--no_loop_check: disables error checking (default);

• -a ALPH/--alphabet=ALPH: specifies the alphabet file to be used for tokenizing
the content of the grammar boxes into lexical units;

• -c/--char_by_char: tokenization will be done character by character. If neither -c
nor -a option is used, lexical units will be sequences of any Unicode letters.

• -d DIR/--pkgdir=DIR: specifies the repository directory to use (see section 5.2.2,
page 99).

• -e/--no_empty_graph_warning: no warning will be emitted when a graph matches
the empty word. This option is used by MultiFlex in order not to scare users with
meaningless error messages when they design an inflection grammar that matches the
empty word.

• -t/--tfst_check: checks wether the given graph can be considered as a valid sen-
tence automaton or not.

• -s/--silent_grf_name: does not print the graph names (needed for consistent log
files across several systems).

• -r XXX/--named_repositories=XXX: declaration of named repositories. XXX is
made of one or more X=Y sequences, separated by ‘;’, where X is the name of the
repository denoted by pathname Y. You can use this option several times.

• --debug: compile graphs in debug mode.

• -v/check_variables: check output validity to avoid malformed variable expres-
sions.

The result is a file with the same name as the graph passed to the program as a parameter,
but with extension .fst2. This file is saved in the same directory as <grf>.

14.23. GRFDIFF 299

14.23 GrfDiff

GrfDiff <grf1> <grf2>: .grf files to be compared
OPTIONS:

• --output X: saves the result, if any, in X instead of printing it on the output

Compares the given grf files and prints their difference on the standard output. Returns
0 if they are identical modulo box and transition reordering, 1 if there are differences, 2 in
case of error.

Here are the diff indications that can be emitted:

• P name: a presentation property has changed. name=property name (SIZE, FONT, ...)

• M a b: box moved. a=box number in <grf1>, b=box number in <grf2>

• C a b: box content changed. a=box number in <grf1>, b=box number in <grf2>

• A x: box added. x=box number in <grf2>

• R x: box removed. x=box number in <grf1>

• T a b x y: transition added. a,b=src and dst box numbers in <grf1>. x,y=src and
dst box numbers in <grf2>

• X a b x y: transition removed. a,b=src and dst box numbers in <grf1>. x,y=src and
dst box numbers in <grf2>

Note that transition modifications related to boxes that have been added or removed are
not reported.

14.24 GrfDiff3

GrfDiff3 <mine> <base> <other>
<mine>: my .grf file <other>: the other .grf file that may be conflicting <base>: the

common ancestor .grf file

OPTIONS:

• --output X: saves the result, if any, in X instead of printing it on the output

• --conflicts X: saves the description of the conflicts, if any, in X

• --only-cosmetic: reports a conflict for any change that is not purely cosmetic

Tries to merge <mine> and <other>. In case of success, the result is printed on the stan-
dard output and 0 is returned. In case of unresolved conflicts, 1 is returned and nothing is
printed. 2 is returned in case of error.

300 CHAPTER 14. USE OF EXTERNAL PROGRAMS

14.25 ImplodeTfst

ImplodeTfst [OPTIONS] <tfst>

This program implodes the specified text automaton by merging together lexical entries
which only differ in their inflectional features.

OPTIONS:

• -o OUT/--output=OUT: output file. By default, the input text automaton is modi-
fied.

14.26 Locate

Locate [OPTIONS] <fst2>

This program applies a grammar to a text and constructs an index of the occurrences found.

OPTIONS:

• -t TXT/--text=TXT: complete path of the text file, without omitting the .snt ex-
tension;

• -a ALPH/--alphabet=ALPH: complete path of the alphabet file;

• -m DICS/--morpho=DICS: this optional parameter indicates which morphological-
mode dictionaries are to be used, if needed by some .fst2 dictionaries. DICS repre-
sents a list of .bin files (with full paths) separated with semi-colons;

• -s/--start_on_space: this parameter indicates that the search will start at any
position in the text, even before a space. This parameter should only be used to carry
out morphological searches;

• -x/--dont_start_on_space: forbids the program to match expressions that start
with a space (default);

• -c/--char_by_char: works in character by character tokenization mode. This is
useful for languages like Thai;

• -w/--word_by_word: works in word by word tokenization mode (default);

• -d DIR/--sntdir=DIR: puts produced files in DIR instead of the text directory.
Note that DIR must end with a file separator (\ or /);

• -K/--korean: tells Locate that it works on Korean;

• -u X/--arabic_rules=X: Arabic typographic rule configuration file;

14.26. LOCATE 301

• -g X/--negation_operator=X: specifies the negation operator to be used in Lo-
cate patterns. The two legal values for X are minus and tilde (default). Using minus
provides backward compatibility with previous versions of Unitex.

Search limit options:

• -l/--all: looks for all matches (default);

• -n N/--number_of_matches=N: stops after the first N matches.

Maximum iterations per token options:

• -o N/--stop_token_count=N: stops after N iterations on a token;

• -o N,M/--stop_token_count=N,M: emits a warning after N iterations on a token
and stops after M iterations.

Matching mode options:

• -S/--shortest_matches;

• -L/--longest_matches (default);

• -A/--all_matches.

Output options:

• -I/--ignore: ignore transducer outputs (default);

• -M/--merge: merge transducer outputs with text inputs;

• -R/--replace: replace texts inputs with corresponding transducer outputs;

• -p/--protect_dic_chars: when -M or -R mode is used, -p protects some input
characters with a backslash. This is useful when Locate is called by Dico in order to
avoid producing bad lines like:

3,14,.PI.NUM

• -v X=Y/--variable=X=Y: sets an output variable named X with content Y. Note
that Y must be ASCII.

Ambiguous output options:

• -b/--ambiguous_outputs: allows the production of several matches with same
input but different outputs (default);

302 CHAPTER 14. USE OF EXTERNAL PROGRAMS

• -z/--no_ambiguous_outputs: forbids ambiguous outputs. In case of ambiguous
outputs, one will be arbitrarily chosen and kept, depending on the internal state of the
program.

Variable error options
These options have no effect if the output mode is set with --ignore; otherwise, they rule
the behavior of the Locate program when an output is found that contains a reference to a
variable that is not correctly defined.

• -X/--exit_on_variable_error: kills the program;

• -Y/--ignore_variable_errors: acts as if the variable has an empty content (de-
fault);

• -Z/--backtrack_on_variable_errors: stop exploring the current path of the
grammar.

Variable injection:

• -v X=Y/--variable=X=Y: sets an output variable named X with content Y. Note
that Y must be ASCII

This program saves the references to the found occurrences in a file called concord.ind.
The number of occurrences, the number of units belonging to those occurrences, as well
as the percentage of recognized units within the text are saved in a file called concord.n.
These two files are stored in the directory of the text.

14.27 LocateTfst

LocateTfst [OPTIONS] <fst2>

Applies a grammar to a text automaton, and saves the matching sequence index in a file
named concord.ind, just as Locate does.

OPTIONS:

• -t TFST/--text=TFST: complete path of the text automaton, without omitting the
.tfst extension;

• -a ALPH/--alphabet=ALPH: complete path of the alphabet file;

• -K/--korean: tells LocateTfst that it works on Korean;

• -g X/--negation_operator=X: specifies the negation operator to be used in Lo-
cate patterns. The two legal values for X are minus and tilde (default). Using minus
provides backward compatibility with previous versions of Unitex.

14.27. LOCATETFST 303

Search limit options:

• -l/--all: looks for all matches (default);

• -n N/--number_of_matches=N: stops after the first N matches.

Matching mode options:

• -S/--shortest_matches;

• -L/--longest_matches (default);

• -A/--all_matches.

Output options:

• -I/--ignore: ignore transducer outputs (default);

• -M/--merge: merge transducer outputs with text inputs;

• -R/--replace: replace texts inputs with corresponding transducer outputs.

Ambiguous output options:

• -b/--ambiguous_outputs: allows the production of several matches with same
input but different outputs (default);

• -z/--no_ambiguous_outputs: forbids ambiguous outputs. In case of ambiguous
outputs, one will be arbitrarily chosen and kept, depending on the internal state of the
program.

Variable error options
These options have no effect if the output mode is set with --ignore; otherwise, they rule
the behavior of the Locate program when an output is found that contains a reference to a
variable that is not correctly defined.

• -X/--exit_on_variable_error: kills the program;

• -Y/--ignore_variable_errors: acts as if the variable has an empty content (de-
fault);

• -Z/--backtrack_on_variable_errors: stop exploring the current path of the
grammar.

Variable injection

• -v X=Y/--variable=X=Y: sets an output variable named X with content Y. Note
that Y must be ASCII.

304 CHAPTER 14. USE OF EXTERNAL PROGRAMS

Tagging option

• --tagging: indicates that the concordance must be a tagging one, containing addi-
tional information on the start and end states of each match.

This program saves the references to the found occurrences in a file called concord.ind.
The number of occurrences and the number of produced outputs are saved in a file called
concord_tfst.n. These two files are stored in the directory of the text.

14.28 MultiFlex

MultiFlex [OPTIONS] <dela>

This program carries out the automatic inflection of a DELA dictionary containing simple
(see section 3.1.2) or compound word lemmas (see chapter 11).

OPTIONS:

• -o DELAF/--output=DELAF: output DELAF file;

• -a ALPH/--alphabet=ALPH: alphabet file;

• -d DIR/--directory=DIR: the directory containing Morphology and Equivalences
files and inflection graphs for single and compound words;

• -K/--korean: tells MultiFlex that it works on Korean;

• -s/--only-simple-words: the program will consider compound words as errors;

• -c/--only-compound-words: the program will consider simple words as errors;

• -p DIR/--pkgdir=DIR: specifies the graph repository.

• -rXXX/--named_repositories=XXX: declaration of named repositories. XXX is
made of one or more X=Y sequences, separated by ; where X is the name of the repos-
itory denoted by the pathname Y. You can use this option several times.

Note that .fst2 inflection transducers will automatically be built from corresponding .grf
files if absent or older than .grf files.

14.29 Normalize

Normalize [OPTIONS] <text>

This program carries out a normalization of text separators. The separators are space, tab,
and newline. Every sequence of separators that contains at least one newline is replaced by
a unique newline. All other sequences of separators are replaced by a single space.

14.30. POLYLEX 305

This program also checks the syntax of lexical tags found in the text. All sequences in curly
brackets should be either the sentence delimiter {S}, the stop marker {STOP}, or valid
entries in the DELAF format ({aujourd’hui,.ADV}).

Parameter <text> represents the complete path of the text file. The program creates a
modified version of the text that is saved in a file with extension .snt.

OPTIONS:

• -n/--no_carriage_return: every separator sequence will be turned into a single
space;

• --input_offsets=XXX: base offset file to be used.

• --output_offsets=XXX: offset file to be produced.

• -r XXX/--replacement_rules=XXX: specifies the normalization rule file to be used.
See section 15.13.6 for details about the format of this file. By default, the program only
replaces { and } by [and].

• --no_separator_normalization: only applies replacement rules specified with
-r

WARNING: if you specify a normalization rule file, its rules will be applied prior to anything
else. So, you have to be very careful if you manipulate separators in such rules.

14.30 PolyLex

PolyLex [OPTIONS] <list>

This program takes a file containing unknown words <list> and tries to analyse each of
the words as a compound obtained by concatenating simple words. The words that have at
least one analysis are removed from the file of unknown words and the dictionary lines that
correspond to the analysis are appended to file OUT.

OPTIONS:

• -a ALPH/--alphabet=ALPH: the alphabet file to use;

• -d BIN/--dictionary=BIN: .bin dictionary to use;

• -o OUT/--output=OUT: designates the file in which the produced dictionary lines
are to be printed; if that file already exists, the produced lines are appended at the end
of the file;

• -i INFO/--info=INFO: designates a text file in which the information about the
analysis has been produced.

306 CHAPTER 14. USE OF EXTERNAL PROGRAMS

Language options:

• -D/--dutch

• -G/--german

• -N/--norwegian

• -R/--russian

NOTE: for Dutch or Norwegian words, the program tries to read a text file containing a list
of forbidden words. This file is supposed to be named ForbiddenWords.txt (see section
15.13.7) and stored in the same directory than BIN.

14.31 RebuildTfst

RebuildTfst <tfst>

This program reconstructs text automaton <tfst> taking into account the manual modi-
fications. If the program finds a file sentenceN.grf in the same directory as <tfst>, it
replaces the automaton of sentence N with the one represented by sentenceN.grf. The
input text automaton is modified.

14.32 Reconstrucao

Reconstrucao [OPTIONS] <index>

This program generates a normalization grammar designed to be applied before the con-
struction of an automaton for a Portuguese text. The <index> file represents a concordance
which has to be produced by applying in MERGE mode to the considered text a grammar
that extracts all forms to be normalized. This grammar is called V-Pro-Suf, and is stored
in the /Portuguese/Graphs/Normalization directory.

OPTIONS:

• -a ALPH/--alphabet=ALPH: the alphabet file to use;

• -r ROOT/--root=ROOT: the inverse .bin dictionary to use to find forms in the fu-
ture and conditional given their canonical forms. It has to be obtained by compressing
the dictionary of verbs in the future and conditional with the parameter --flip (see
section 14.8);

• -d BIN/--dictionary=BIN: the .bin dictionary to use;

• -p PRO/--pronoun_rules=PRO: the .fst2 grammar describing pronoun rewrit-
ing rules;

14.33. REG2GRF 307

• -n PRO/--nasal_pronoun_rules=PRO: the .fst2 grammar describing nasal pro-
noun rewriting rules;

• -o OUT/--output=OUT: the name of the .grf graph to be generated.

14.33 Reg2Grf

Reg2Grf <txt>

This program constructs a .grf file corresponding to the regular expression written in file
<txt>. The parameter <txt> represents the complete path to the file containing the regular
expression. This file needs to be a Unicode text file. The program takes into account all
characters up to the first newline. The result file is called regexp.grf and is saved in the
same directory as <txt>.

14.34 Seq2Grf

Seq2Grf [OPTIONS] <snt>

This program constructs a .grf file corresponding to the sequences contained in file <snt>.

OPTIONS:

• -a ALPH/--alphabet=ALPH: the alphabet file to use;

• -o XXX/--output=XXX: output GRF file;

• -s/--only-stop: only consider STOP-separated sequences;

• -b/--beautify: apply the grf beautifying algorithm;

• -n/--no_beautify: do not apply the grf beautifying algorithm (default);

• --case-sensitive: all letter tokens are protected with double-quotes (default);

• --case-insensitive: letter tokens are not protected with double-quotes;

• -w x: number of wildcards;

• -i x: number of insertions;

• -r x: number of replations;

• -d x: number of deletions;

Constructs the sequences automaton : one single automaton that recognizes all the se-
quences from the SNT. The sequences must be delimited with the special tag {STOP}. The
produced .grf file is stored in the user’s Graphs directory The other files, named text.tfst,
text.tind are stored in the text directory.

308 CHAPTER 14. USE OF EXTERNAL PROGRAMS

14.35 SortTxt

SortTxt [OPTIONS] <txt>

This program carries out a lexicographical sorting of the lines of file <txt>. <txt> repre-
sents the complete path of the file to be sorted.

OPTIONS:

• -n/--no_duplicates: remove duplicate lines (default);

• -d/--duplicates: remove duplicate lines;

• -r/--reverse: sort in descending order;

• -o XXX/--sort_order=XXX: sorts using the alphabet of the order defined by file
XXX. If this parameter is missing, the sorting is done according to the order of Unicode
characters;

• -l XXX/--line_info=XXX: backup the number of lines of the result file in file XXX;

• -t/--thai: option for sorting Thai text.

• -f/--factorize_inflectional_codes: makes two entries XXX,YYY.ZZZ:A and
XXX,YYY.ZZZ:B become a single entry XXX,YYY.ZZZ:A:B

The input text file is modified. By default, the sorting is performed in the order of Unicode
characters, removing duplicate lines.

14.36 Stats

Stats [OPTIONS] <ind>

This program computes some statistics from the <ind> concordance index file.

OPTIONS:

• -m MODE/--mode=MODE: specifies the output to be produced:

– 0 = matches with left and right contexts + number of occurrences;
– 1 = collocates + number of occurrences;
– 2 = collocates + number of occurrences + z-score.

• -a ALPH/--alphabet=ALPH: alphabet file to use;

• -o OUT/--output=OUT: output file;

• -l N/--left=N: length of left contexts in tokens;

• -r N/--right=N: length of right contexts in tokens;

• -c N/--case=N: case policy: 0 = case insensitive, 1 = case sensitive (default).

14.37. TABLE2GRF 309

14.37 Table2Grf

Table2Grf [OPTIONS] <table>

This program automatically generates graphs from a lexicon-grammar <table> and a tem-
plate graph.

OPTIONS:

• -r GRF/--reference_graph=GRF: name of the template graph;

• -o OUT/--output=OUT: name of the result main graph;

• -s XXX/--subgraph_pattern=XXX: if this optional parameter if specified, all the
produced subgraphs will be named according to this pattern. In order to have un-
ambiguous names, we recommend to include @% in the parameter (remind that @%
will be replaced by the line number of the entry in the table). For instance, if you
set the pattern parameter to ’subgraph-@%.grf’, subgraph names will be such as
’subgraph-0013.grf’. By default, subgraph names look like ’result_0013.grf’,
where ’result.grf’ designates the result main graph.

14.38 Tagger

Tagger [OPTIONS] <tfst>

The input of this program is the text automaton in the specified .tfst. The program applies
the Viterbi-Path algorithm to it and produces a linear automaton. The automaton is pruned
in a probabilistic way based on a second-order hidden Markov model. If the specified tagger
data file contains tuples of "cat" tags, the tagger prunes transitions on the basis of grammati-
cal, syntactic and semantic codes (for example, that.DET+Ddem versus that.PRO+Pdem).
Else if it contains tuples of "morph" tags, so the tagger prunes transitions on grammatical,
semantic, syntactic and inflectional codes (the.DET+Ddef:s versus the.DET+Ddef:p).
In that case, the automaton needs to be exploded before applying the tagging process and a
tagset file must be specified by the -t option below.

OPTIONS:

• -a ALPH/--alphabet=ALPH: alphabet file.

• -o OUT/--output=OUT: output text automaton.

• -t TAGSET/--tagset=TAGSET: name of the tagset description file.

• -d DATA/--data=DATA: a .bin tagger data file that contains occurrence counts for
unigrams, bigrams and trigrams in order to compute probabilities. This file is obtained
with the TrainingTagger program (see section 15.10.2).

310 CHAPTER 14. USE OF EXTERNAL PROGRAMS

14.39 TagsetNormTfst

TagsetNormTfst [OPTIONS] <tfst>

This program normalizes the specified .tfst text automaton according to a tagset de-
scription file, discarding undeclared dictionary codes and incoherent lexical entries. Inflec-
tional features are unfactorized so that {rouge,.A:fs:ms} will be divided into the 2 tags
{rouge,.A:fs} and {rouge,.A:ms}.

OPTIONS:

• -o OUT/--output=OUT: output text automaton. By default, the input text automa-
ton is modified;

• -t TAGSET/--tagset=TAGSET: name of the tagset description file.

14.40 TEI2Txt

TEI2Txt [OPTIONS] <xml>

Produces a raw text file from the given <xml> TEI file.

OPTIONS:

• -o TXT/--output=TXT: name of the output text file. By default, the output file has
the same name than the input one, replacing .xml by .txt.

14.41 Tfst2Grf

Tfst2Grf [OPTIONS] <tfst>

This program extracts a sentence automaton in .grf format from the given text automaton.

OPTIONS:

• -s N/--sentence=N: the number of the sentence to be extracted;

• -o XXX/--output=XXX: pattern used to name output files XXX.grf, XXX.txt and
XXX.tok (default=cursentence);

• -f FONT/--font=FONT: sets the font to be used in the output .grf

(default=Times new Roman);

• -z N/--fontsize=N: sets the font size (default=10).

The program produces the following files and saves them in the directory of the text:

14.42. TFST2UNAMBIG 311

• cursentence.grf: graph representing the automaton of the sentence;

• cursentence.txt: text file containing the sentence;

• cursentence.tok: text file containing the numbers of the tokens that compose the
sentence.

14.42 Tfst2Unambig

Tfst2Unambig [OPTIONS] <tfst>

This programs takes a .tfst text automaton and produces an equivalent text file if the
automaton is linear (i.e. with no ambiguity). See section 7.6, page 194.

OPTIONS:

• -o TXT/--out=TXT: the output text file.

14.43 Tokenize

Tokenize [OPTIONS] <txt>

This program tokenizes a tet text into lexical units. <txt> the complete path of the text file,
without omitting the .snt extension.

OPTIONS:

• -a ALPH/--alphabet=ALPH: alphabet file;

• -c/--char_by_char: indicates whether the program is applied character by char-
acter, with the exceptions of the sentence delimiter {S}, the stop marker {STOP} and
lexical tags like {today,.ADV} which are considered to be single units;

• -w/--word_by_word: with this option, the program considers a unit to be either a se-
quence of letters (the letters are defined by file alphabet), or a character which is not
a letter, or the sentence separator {S}, or a lexical label like {aujourd’hui,.ADV}.
This is the default mode.

• -t TOKENS/--tokens=TOKENS: specifies a tokens.txt file to load and modify,
instead of creating a new one from scratch.

Offsets options:

• input_offsets: base offset file to be used;

• output_offsets: offset file to be produced;

312 CHAPTER 14. USE OF EXTERNAL PROGRAMS

The program codes each unit as a whole. The list of units is saved in a text file called
tokens.txt. The sequence of codes representing the units now allows the coding of the
text. This sequence is saved in a binary file named text.cod. The program also produces
the following four files:

• tok_by_freq.txt: text file containing the units sorted by frequency;

• tok_by_alph.txt: text file containing the units sorted alphabetically;

• stats.n: text file containing information on the number of sentence separators, the
number of units, the number of simple words and the number of numbers;

• enter.pos: binary file containing the list of newline positions in the text. The coded
representation of the text does not contain newlines, but spaces. Since a newline counts
as two characters and a space as a single one, it is necessary to know where newlines
occur in the text when the positions of occurrences located by the Locate program are
to be synchronized with the text file. File enter.pos is used for this by the Concord
program. Thanks to this, when clicking on an occurrence in a concordance, it is cor-
rectly selected in the text. File enter.pos is a binary file containing the list of the
positions of newlines in the text.

All produced files are saved in the text directory.

14.44 TrainingTagger

TrainingTagger [OPTIONS] <txt>

This program automatically generates two tagger data files from a tagged corpus text file.
They are used by the Tagger program in order to compute probabilities and linearize the
text automaton. The tagged corpus file must follow the format described in section 15.10.1.
Those files contain tuples (unigrams, bigrams and trigrams), formed by tags and words. In
the first data file, tags are "cat" tags (i.e. grammatical, syntactic and semantic codes). In the
second data file, tags are "morph" tags (i.e. grammatical, syntactic, semantic and inflectional
codes).

OPTIONS:

• -a/--all: indicates whether the program should produce all data files (default);

• -c/--cat: indicates whether the program should produce only data file with "cat"
tags;

• -m/--morph: indicates whether the program should produce only data file with
"morph" tags;

• -n/--no_binaries: indicates whether the program should not compress data files
into .bin files, in this case only .dic data files are generated;

14.45. TXT2TFST 313

• -b/--binaries: indicates whether the program should compress data files into
.bin files (default);

• -o XXX/--output=XXX: pattern used to name output tagger data files XXX_data_cat.bin
and XXX_data_morph.bin (default=filename of text corpus without extension);

• -s/--semitic: indicates that the semitic compression algorithm should be used.

14.45 Txt2Tfst

Txt2Tfst [OPTIONS] <txt>

This program constructs an automaton of a text. <txt> represents the complete path of a
text file without omitting the .snt extension.

OPTIONS:

• -a ALPH/--alphabet=ALPH: alphabet file;

• -c/--clean: indicates whether the rule of conservation of the best paths (see section
7.2.4) should be applied;

• -n XXX/--normalization_grammar=XXX: name of a normalization grammar that
is to be applied to the text automaton;

• -t TAGSET/--tagset=TAGSET: Elag tagset file to use to normalize dictionary en-
tries;

• -K/--korean: tells Txt2Tfst that it works on Korean.

If the text is separated into sentences, the program constructs an automaton for each sen-
tence. If this is not the case, the program arbitrarily cuts the text into sequences of 2000
tokens and produces an automaton for each of these sequences.

The result is a file called text.tfst which is saved in the directory of the text. Another file
named text.tind is also produced.

NOTE: The program will also try to use the tags.ind file, if any (see section 15.7.4).

14.46 Uncompress

Uncompress [OPTIONS] <bin>

This program uncompresses a .bin dictionary into a text file .dic one.

OPTIONS:

• -o OUT/--output=OUT: optional output file name (default: file.bin > file.dic).

314 CHAPTER 14. USE OF EXTERNAL PROGRAMS

14.47 Untokenize

Untokenize [OPTIONS] <txt>

Untokenizes and rebuild the orgininal text. The token list is stored into tokens.txt and
the coded text is stored into text.cod. The file enter.pos contains the position in tokens
of all the carriage return sequences. These files are located in the XXX_snt directory where
XXX is <txt> without its extension.

OPTIONS:

• -d X/--sntdir=X: uses directory X instead of the text directory; note that X must be
(back)slash terminated

• -n N/--number_token=N: adds tokens number each N token;

• -r N/--range=N: emits only token from number N to end;

• -r N,M/--range=N,M: emits only token from number N to M.

14.48 UnitexTool

UnitexTool <utilities>

This program is a super-program that allows you to invoke all Unitex external programs.
With it, you can chain programs so that they will be invoked within a same system pro-
cess, in order to speed up processing (see also Chapter 13). This can be done by invoking
commands nested in curly brackets as follows:

UnitexTool { SelectOutput [OPTIONS] }
{ cmd #1+args }
{ cmd #2+args }
etc.

For instance, if you want to join a Locate operation and the construction of the concordance,
you can use the following command:

UnitexTool { Locate "-tD:\My Unitex\English\Corpus\ivanhoe.snt"
"D:\My Unitex\English\regexp.fst2"
"-aD:\My Unitex\English\Alphabet.txt" -L -I -n200
"--morpho=D:\Unitex2.0\English\Dela\dela-en-public.bin" -b -Y }
{ Concord "D:\My Unitex\English\Corpus\ivanhoe_snt\concord.ind"
"-fCourier new" -s12 -l40 -r55 --CL --html
"-aD:\My Unitex\English\Alphabet_sort.txt" }

14.49. UNITEXTOOLLOGGER 315

OPTIONS:

• -o [on/off]/--output=[on/off]: enable (on) or disable (off) standard output

• -e [on/off]/--error=[on/off]: enable (on) or disable (off) error output

For example:

UnitexTool { SelectOutput -o off -e off } { Normalize
Unitex\English\Corpus\ivanhoe.txt }

14.49 UnitexToolLogger

UnitexToolLogger <utilities>

This program is a superset of UnitexTool. It can rerun a .ulp logfile. It can also record a
running session of an UnitexTool and create a .ulp logfile. If UnitexToolLogger is used like
UnitexTool (with just parameters with command lines for Unitex external programs), and
if a file named unitex_logging_parameters_count.txt (in the current directory) contains a
path, a .ulp logfile for the running session will be created. The .ulp file is a compressed
zipfile (compatible with unzip), which can be useful for debugging.

UnitexToolLogger RunLog [OPTIONS] <ulp>

OPTIONS after RunLog:

• -m/--quiet: do not emit message when running;

• -v/--verbose: emit message when running;

• -d DIR/--rundir=DIR: path where log is executed;

• -r newfile.ulp/--result=newfile.ulp: name of result ulp created;

• -c/--clean: remove work file after execution;

• -k/--keep: keep work file after execution;

• -s file.txt/--summary=file.txt: summary file with log compare result to be
created;

• -e file.txt/--summary-error=file.txt: summary file with error compare
result to be created;

• -b/--no-benchmark: do not store time execution in result log;

• -n/--cleanlog: remove result ulp after execution;

• -l/--keeplog: keep result ulp after execution;

• -o NameTool/--tool=NameTool: run only log for NameTool;

316 CHAPTER 14. USE OF EXTERNAL PROGRAMS

• -i N/--increment=N: increment filename <ulp> by 0 to N;

• -t N/--thread=N: create N thread;

• -a N/--random=N: select N time a random log in the list (in each thread);

• -f N/--break-after=N: user cancel after N run (with one thread only);

• -u PATH/--unfound-location=PATH: take dictionnary and FST2 from PATH if
not found on the logfile;

Another usage of UnitexToolLogger is using the MzRepairUlp option to repair a cor-
rupted ulp file (often, a crashing log):

UnitexToolLogger MzRepairUlp [OPTIONS] <ulpfile>

OPTIONS after MzRepairUlp:

• -t X/--temp=X: uses X as filename for temporary file (<ulpfile>.build by default);

• -o X/--output=X: uses X as filename for fixed .ulp file (<ulpfile>.repair by default);

• -m/--quiet: do not emit message when running;

• -v/--verbose: emit message when running;

Another usage of UnitexToolLogger is using the CreateLog option (with round bracket)
to create logfile of running Unitex program, like:

UnitexToolLogger { CreateLog [OPTIONS] } cmd args

UnitexToolLogger { CreateLog [OPTIONS] } { cmd #1+args } { cmd #2+args } etc.
By example,

UnitexToolLogger { CreateLog --log_file=my_run_normalize.ulp }
Normalize "C:\My Unitex\French\Corpus\80jours.txt"

UnitexToolLogger { CreateLog --directory=c:\logs }
{ Compress c:\dela\mydela.dic }
{ CheckDic --delaf c:\dela\mydela.inf }

OPTIONS after CreateLog:

• -g/--no_create_log: do not create any log file. Incompatible with all others op-
tions;

• -p XXX/--param_file=XXX: load a parameters file like unitex_logging_parameters.txt.
Incompatible with all others options;

14.50. UNXMLIZE 317

• -d XXX/--directory=XXX: location directory where log file to create;

• -l XXX/--log_file=XXX: filename of log file to create;

• -i/--store_input_file: store input file in log (default);

• -n/--no_store_input_file: don’t store input file in log (prevent rerun the log-
file);

• -o/--store_output_file: store output file in log;

• -u/--no_store_output_file: don’t store output file in log (default);

• -s/--store_list_input_file: store list of input file in log (default);

• -t/--no_store_list_input_file: don’t store list of input file in log;

• -r/--store_list_output_file: store list of output file in log (default);

• -f/--no_store_list_output_file: don’t store list of output file in log.

UnitexToolLogger { SelectOutput [OPTIONS] }
{ cmd #1+args }
{ cmd #2+args }
etc.

OPTIONS after SelectOutput:

• -o [on/off]/--output=[on/off]: enable (on) or disable (off) standard output

• -e [on/off]/--error=[on/off]: enable (on) or disable (off) error output

For example:

UnitexToolLogger { SelectOutput -o off -e off } { Normalize
Unitex\English\Corpus\ivanhoe.txt }

14.50 Unxmlize

This program removes all xml tags from the given .xml or .html file to produce a text file
that can be processed by Unitex. Unxmlize [OPTIONS] <file>

OPTIONS:

• -o TXT/--output=TXT: output file. By default, foo.xml => foo.txt

• --output_offsets=XXX: specifies the offset file to be produced

318 CHAPTER 14. USE OF EXTERNAL PROGRAMS

• --PRLG=XXX: extracts to file XXX special information used in the PRLG project on
ancient Greek (requires --output_offsets)

• -t/--html: consider the file as html file (disregard extension)

• -x/--xml: consider the file as xml file (disregard extension)

• -l/--tolerate: try tolerate somes markup langage malformation

• --comments=IGNORE: every comment is removed (default)

• --comments=SPACE: every comment is replaced by a single space

• --scripts=IGNORE: every script block is removed

• --scripts=SPACE: every comment is replaced by a single space (default for .html)

Note: by default, script tags are handled as normal tags (default for .xml).

• --normal_tags=IGNORE: every other tag is removed (default for .xml)

• --normal_tags=SPACE: every other tag is replaced by a single space(default for
.html)

14.51 XMLizer

XMLizer [OPTIONS] <txt>

This program takes the raw text file <txt> and produces a corresponding basic TEI or XML
file. The difference between TEI and XML is that TEI files will contain a TEI header.

OPTIONS:

• -x/--xml: produces a XML file;

• -t/--tei: produces a TEI file (default);

• -n XXX/--normalization=XXX: specify the normalization rule file to be used (see
section 15.13.6);

• -o OUT/--output=OUT: optional output file name (default: file.txt > file.xml);

• -a ALPH/--alphabet=ALPH: alphabet file;

• -s SEG/--segmentation_grammar=SEG: sentence delimitation grammar to be used.
This grammar should be like the Sentence.grf one used during the preprocessing
of a corpus, but it can include the special tag {P} to indicate paragraph bounds.

Chapter 15

File formats

This chapter presents the formats of files read or generated by Unitex. The formats of the
DELAS and DELAF dictionaries have already been presented in sections 3.1.1 and 3.1.2.

NOTE: In this chapter the symbol ¶ represents the newline symbol. Unless otherwise indi-
cated, all text files described in this chapter are encoded in Unicode Little-Endian.

15.1 Unicode encoding

By default, text files processed by Unitex have to be encoded in Unicode Little-Endian. Uni-
tex accepts also Unicode Big-Endian or UTF-8 files. This encoding allows the representation
of 65536 characters by coding each of them in 2 bytes. In Little-Endian, the bytes are in lo-
byte hi-byte order. If this order is reversed, we speak of Big-Endian. A text file encoded in
Unicode Little-Endian, Big-Endian or UTF-8 starts with the special character (Unicode Byte
Order Mark - BOM) with the hexadecimal value FFFE (Little-Endian), FEFF (Big-Endian)
or EFBBBF (UTF-8). Because UTF-8 has no byte order, adding a UTF-8 BOM is optional; for
UTF-16 it is required. The newline symbols have to be encoded by the two characters 0D00
and 0A00 (Little-Endian), 000D and 000A (Big-Endian), or 0D and 0A (UTF-8).

Consider the following text:

Unitex¶
β-version¶

Here is its representation in Unicode Little-Endian:

319

320 CHAPTER 15. FILE FORMATS

BOM header U n i t e x ¶ β

FFFE 5500 6E00 6900 7400 6500 7800 0D000A00 B203

- v e r s i o n ¶
2D00 7600 6500 7200 7300 6900 6F00 6E00 0D000A00

Table 15.1: Hexadecimal representation of a Unicode Little-Endian text

Here is its representation in Unicode Big-Endian:

BOM header U n i t e x ¶ β

FEFF 0055 006E 0069 0074 0065 0078 000D000A 03B2

- v e r s i o n ¶
002D 0076 0065 0072 0073 0069 006F 006E 000D000A

Table 15.2: Hexadecimal representation of a Unicode Big-Endian text

Here is its representation in Unicode UTF-8:

BOM header U n i t e x ¶ β

EFBBBF 55 6E 69 74 65 78 0D0A CEB2

- v e r s i o n ¶
2D 76 65 72 73 69 6F 6E 0D0A

Table 15.3: Hexadecimal representation of a Unicode UTF-8 text

On Unicode Little-Endian, the hi-bytes and lo-bytes have been reversed, which explains
why the start character is encoded as FFFE in stead of FEFF, and 000D and 000A are
0D00 and 0A00 respectively.

15.2 Alphabet files

There are two kinds of alphabet files: a file which defines the characters of a language, and a
file that indicates the sorting preferences. The first is designed under the name alphabet, the
second under the name sorted alphabet.

15.2.1 Alphabet

The alphabet file is a text file that describes all characters of a language, as well as the corre-
spondances between capitalized and non-capitalized letters. This file is called Alphabet.txt

15.2. ALPHABET FILES 321

and is found in the root of the directory of a language. Its presence is obligatory for Unitex
to function.

Example: the English alphabet file has to be in the directory .../English/

Each line of the alphabet file must have one of the following three forms, followed by a
newline symbol:

• : a hash symbol followed by two characters X and Y which indicate that all
characters between X and Y are letters. All these characters are considered to be in
non-capitalized and capitalized form at the same time. This method is used to define
the alphabets of Asian languages like Korean, Chinese or Japanese where there is no
distinction between upper- and lower-case, and where the number of characters makes
a complete enumeration tedious;

• Aa : two characters X and Y indicate that X and Y are letters and that X is a capital-
ized equivalent of the non-capitalized Y form.

• : a unique character X defines X as a letter in capitalized and non-capitalized form.
This form is used to define a single Asian character.

For certain languages like French, it is possible that a lower-case letter corresponds to mul-
tiple upper-case letters. For example, é, in practice, can have the upper-case form E or E. To
express this, it suffices to use multiple lines. The reverse is equally true: a capitalized letter
can correspond to multiple lower-case letters. Thus, E can be the capitalization of e, é, è,
ë or ê. Here is an excerpt of the French alphabet file which defines different properties of
letter e:

Ee¶
Eé¶
Éé¶
Eè¶
Èè¶
Eë¶
Ëë¶
Eê¶
Êê¶

15.2.2 Sorted alphabet

The sorted alphabet file defines the sorting priorities of the letters of a language. It is used
by the SortTxt program. Each line of that file defines a group of letters. If a group of letters
A is defined before a group of letters B, every letter of group A is inferior to every letter in
group B.

322 CHAPTER 15. FILE FORMATS

The letters of a group are only distinguished if necessary. For example if the group of letters
eéèëê has been defined, the word ébahi should be considered ’smaller’ than estuaire,
and also ’smaller’ than été. Since the letters that follow e and é determine the order of the
words, it is not necessary to compare letters e and é since they are of the same group. On
the other hand, if the words chantés and chantes are to be sorted, chantes should be
considered as ’smaller’. It is therefore necessary to compare the letters e and é to distin-
guish these words. Since the letter e appears first in the group eéèëê, it is considered to be
’smaller’ than chantés. The word chantes should therefore be considered to be ’smaller’
than the word chantés.

The sorted alphabet file allows the definition of equivalent characters. It is therefore possible
to ignore the different accents as well as capitalization. For example, if the letters b, c, and
d are to be ordered without considering capitalization and the cedilla, it is possible to write
the following lines:

Bb¶
CcÇç¶
Dd¶

This file is optional. If no sorted alphabet file is specified, the SortTxt program sorts in the
order of the Unicode encoding.

15.3 Graphs

This section presents the two graph formats: the graphic format .grf and the compiled
format .fst2.

15.3.1 Format .grf

A .grf file is a text file that contains presentation information in addition to information
representing the contents of the boxes and the transitions of the graph. A .grf file begins
with the following lines:

#Unigraph¶
SIZE 1313 950¶
FONT Times New Roman: 12¶
OFONT Times New Roman:B 12¶
BCOLOR 16777215¶
FCOLOR 0¶
ACOLOR 12632256¶
SCOLOR 16711680¶
CCOLOR 255¶
DBOXES y¶
DFRAME y¶
DDATE y¶

15.3. GRAPHS 323

DFILE y¶
DDIR y¶
DRIG n¶
DRST n¶
FITS 100¶
PORIENT L¶
#¶

The first line #Unigraph is a comment line. The following lines define the parameter values
of the graph presentation:

• SIZE x y : defines the width x and the hight y of a graph in pixels;

• FONT name:xyz : defines the font used for displaying the contents of the boxes. name
represents the name of the mode. x indicates if the text should be in bold face or not.
If x is B, it indicates that it should be bold. For non-bold face, x should be a space. In
the same way, y has value I if the text should be italic, a space if not. z represents the
size of the text;

• OFONT name:xyz : defines the mode used for displaying transducer outputs. Param-
eters name, x, y, and z are defined in the same way as FONT;

• BCOLOR x : defines the background color of the graph. ’x’ represents the color in RGB
format;

• FCOLOR x : defines the foreground color of the graph. ’x’ represents the color in RGB
format;

• ACOLOR x : defines the color inside the boxes that correspond to the calls of sub-
graphs. x represents the color in RGB format;

• SCOLOR x : defines the color used for writing in comment boxes (boxes that are not
linked up with any others). x represents the color in RGB format;

• CCOLOR x : defines the color used for designing selected boxes. x represents the color
in RGB format;

• DBOXES x : this line is ignored by Unitex. It is conserved to ensure compatibility with
Intex graphs;

• DFRAME x : there will be a frame around the graph if x is y, not if it is n;

• DDATE x : puts the date at the bottom of the graph if x is y, not if it is n;

• DFILE x : puts the name of the file at the bottom of the graph depending on whether
x is y or n;

• DDIR x : prints the complete path of the graph wether x is y or n. This option has no
effect if the DFILE option is set to n;

324 CHAPTER 15. FILE FORMATS

• DRIG x : displays the graph from right to left or left to right depending on whether x
is y or n;

• DRST x : this line is ignored by Unitex. It isconserved to ensure compatibility with
Intex graphs;

• FITS x : this line is ignored by Unitex. It isconserved to ensure compatibility with
Intex graphs;

• PORIENT x : this line is ignored by Unitex. It isconserved to ensure compatibility
with Intex graphs;

• # : this line is ignored by Unitex. It serves to indicate the end of the header information.

The lines after the header give the contents and the position of the boxes in the graph. The
following example corresponds to a graph recognizing a number:

3¶
"<E>" 84 248 1 2 ¶
"" 272 248 0 ¶
s"1+2+3+4+5+6+7+8+9+0" 172 248 1 1 ¶

The first line after the header indicates the number of boxes in the graph, immediately fol-
lowed by a newline. This number can not be lower than 2, since a graph always has an
initial and a final state.

The following lines define the boxes of the graph. The boxes are numbered starting at 0. By
convention, state 0 is the initial state and state 1 is the final state. The contents of the final
state is always empty.

Each box in the graph is defined by a line that has the following format:

contents X Y N transitions ¶

contents is a sequence of characters enclosed in quotation marks that represents the contents
of the box. This sequence can sometimes be preceded by an s if the graph is imported from
Intex; this character is then ignored by Unitex. The contents of the sequence is the text that
has been entered in the editing line of the graph editor. Table 15.4 shows the encoding of
two special sequences that are not encoded in the same way as they are entered into the
.grf files:

NOTE: The characters between < and > or between { and } are not interpreted. Thus the
+ character in sequence "le <A+Conc>" is not interpreted as a line separator, since the
pattern <A+Conc> is interpreted with priority.

X and Y represent the coordinates of the box in pixels. Figure 15.1 shows how these coordi-
nates are interpreted by Unitex.

15.3. GRAPHS 325

Sequence in the graph editor Sequence in the .grf file
" \"
\" \\\"

Table 15.4: Encoding of special sequences

Figure 15.1: Interpretation of the coordinates of boxes

N represents the number of outgoing transitions of the box. This number is always 0 for the
final state.

The transitions are defined by the number of their target box.

Every line of the box definition ends with a newline.

15.3.2 Format .fst2

An .fst2 file is a text file that describes a set of graphs. Here is an example of an .fst2
file:

0000000002¶
-1 NP¶
: 1 1 ¶
: 2 2 -2 2 ¶
: 3 3 ¶
t ¶
f ¶
-2 Adj¶
: 6 1 5 1 4 1 ¶

326 CHAPTER 15. FILE FORMATS

t ¶
f ¶
%<E>¶
%the/DET¶
%<A>/ADJ¶
%<N>¶
%nice¶
@pretty¶
%small¶
f¶

The first line represents the number of graphs that are encoded in the file. The beginning
of each graph is identified by a line that indicates the number and the name of the graph
(-1 NP and -2 Adj in the file above).

The following lines describe the states of the graph. If the state is final, the line starts with
the t character and with the : character if not. For each state, the list of transitions is a
possibly empty sequence of pairs of integers:

• the first integer indicates the number of the label or sub-graph that corresponds to the
transition. Labels are numbered starting at 0. Sub-graphs are represented by nega-
tive integers, which explains why the numbers preceding the names of the graphs are
negative;

• the second integer represents the number of the result state after the transition. In each
graph, the states are numbered starting at 0. By convention state 0 is the initial state.

Each state definition line terminates with a space. The end of each graph is marked by a line
containing an f followed by a space and a newline.

Labels are defined after the last graph. If the line begins with the @ character, the contents
of the label is to be searched without allowing case variations. This information is not used
if the label is not a word. If the line starts with a %, capitalization variants are authorized. If
a label carries a transducer output sequence, the input and output sequences are separated
by the / character (example: the/DET). By convention, the first label is always the empty
word (<E>), even if that label is never used for any transition.

The end of the file is indicated by a line containing the f character followed by a newline.

15.4 Texts

This section presents the different files used to represent texts.

15.4. TEXTS 327

15.4.1 .txt files

.txt files are text files encoded in Unicode Little-Endian. These files should not contain
any opening or closing braces, except for those used to mark a sentence delimiter ({S}) or a
valid lexical tag ({aujourd’hui,.ADV}). The newline needs to be encoded with the two
special characters with hexadecimal values 000D and 000A.

15.4.2 .snt files

.snt files are .txt files that have been processed by Unitex. These files should not contain
any tabs. They should also not contain multiple consecutive spaces or newlines. The only
allowed braces in .snt files are those of the sentence delimiter {S} and those of lexical
labels ({aujourd’hui,.ADV}).

15.4.3 File text.cod

The text.cod file is a binary file containing a sequence of integers that represent the text.
Each integer i reflects the token with index i in the tokens.txt file. These integers are
encoded in four bytes.

NOTE: Tokens are numbered starting at 0.

15.4.4 The tokens.txt file

The tokens.txt file is a text file that contains the list of all lexical units of the text. The
first line of this file indicates the number of units found in the file. Units are separated by a
newline. Whenever a sequence is found in the text with capitalization variants, each variant
is encoded as a distinct unit.

NOTE: Newlines that might be in the .snt file are encoded like spaces. Therefore there is
no unit encoding the newline.

15.4.5 The tok_by_alph.txt and tok_by_freq.txt files

These two files are text files that contain the list of lexical units sorted alphabetically or by
frequence.

In the tok_by_alph.txt file, each line is composed by a unit, followed by a tab and the
number of occurrences of the unit within the text.

The lines of the tok_by_freq.txt file are formed after the same principle, but the number
of occurrences is placed after the tab and the unit.

15.4.6 The enter.pos file

This file is a binary file containing the list of positions of the newline symbol in the .snt
file. Each position is the index in the text.cod file where a newline has been replaced by a
space. These positions are integers that are encoded in 4 bytes.

328 CHAPTER 15. FILE FORMATS

15.5 Text Automaton

15.5.1 The text.tfst file

The text.tfst file represents the text automaton. It is a text file that starts with a ten
digit line indicating the number of sentence automata it contains. Then, for each sentence
automaton, you have the following header lines:

• $XXX¶: XXX = number of the sentence

• foo foo foo...¶: text of the sentence

• a/b c/d e/f g/h...¶: for each token of the sentence, we have a pair x/y: x is the
token index in file tokens.txt, y is the length of the token in characters

• X_Y¶: X is the offset of the first token of the sentence, in tokens from the beginning of
the text; Y is the same, but the offset is in characters from the beginning of the text.

Then, all states of the automaton are encoded, one per line. If the state is final, the line starts
with t. Otherwise, the line starts with :. All transitions are written as pairs x y, x being the
number of the tag, y being the number of the destination state. Note that, at the opposite of
.fst2 format, lines have not to end with a space. The end of state lines is marked by a line
containing f.

Finally, all tags are encoded. By convention, the first tag is always the epsilon one:

@<E>¶
.¶

Other labels have to be either lexical units or entries in the DELAF format in braces. They
are encoded as follows:

@STD¶
@content¶
@a.b.c- x.y.z¶
.¶

content is the tag content. The a.b.c-x.y.z information describe the zone in text covered by the
tag:

• a: start offset in tokens from the beginning of the sentence;

• b: start offset in characters from the beginning of the first token of the tag;

• c: start offset in logical letters from the first character of the tag. This information is
useful for Korean, because a tag can represent a Jamo sequence that occurs inside a
Hangul character. Thus, the character offset is not precise enough;

15.5. TEXT AUTOMATON 329

• x: end offset in tokens from the beginning of the sentence;

• y: end offset in characters from the beginning of the last token of the tag;

• z: end offset in logical letters from the last character of the tag. In Korean sentence
automata, empty surface forms can occur that correspond to the empty word in the
text. In such cases, z has special value −1.

The and of tag definitions is marked by a line containing f.

Example: Here is the file that corresponds to the text He is drinking orange juice.

0000000001¶
$1¶
He is drinking orange juice. ¶
0/2 1/1 2/2 1/1 3/8 1/1 4/6 1/1 5/5 6/1 1/1¶
0_0¶
: 2 1 1 1¶
: 4 2 3 2¶
: 7 3 6 3 5 3¶
: 10 5 9 4 8 4¶
: 12 5 11 5¶
: 13 6¶
t¶
f¶
@<E>¶
.¶
@STD¶
@{He,he.N:s:p}¶
@0.0.0-0.1.0¶
.¶
@STD¶
@{He,he.PRO+Nomin:3ms}¶
@0.0.0-0.1.0¶
.¶
@STD¶
@{is,be.V:P3s}¶
@2.0.0-2.1.0¶
.¶
@STD¶
@{is,i.N:p}¶
@2.0.0-2.1.0¶
.¶
@STD¶
@{drinking,drinking.A}¶

330 CHAPTER 15. FILE FORMATS

@4.0.0-4.7.0¶
.¶
@STD¶
@{drinking,drinking.N:s}¶
@4.0.0-4.7.0¶
.¶
@STD¶
@{drinking,drink.V:G}¶
@4.0.0-4.7.0¶
.¶
@STD¶
@{orange,orange.A}¶
@6.0.0-6.5.0¶
.¶
@STD¶
@{orange,orange.N:s}¶
@6.0.0-6.5.0¶
.¶
@STD¶
@{orange juice,orange juice.N+XN+z1:s}¶
@6.0.0-8.4.0¶
.¶
@STD¶
@{juice,juice.N+Conc:s}¶
@8.0.0-8.4.0¶
.¶
@STD¶
@{juice,juice.V:W:P1s:P2s:P1p:P2p:P3p}¶
@8.0.0-8.4.0¶
.¶
@STD¶
@.¶
@9.0.0-9.0.0¶
.¶
f¶

15.5.2 The text.tind file

The text.tind file is an index file used to jump at correct byte offset in the text.tfst file
when we want to load a given sentence. It is a binary file that contains 4×N bytes, where N
is the number of sentences. It gives the start offset of each sentence as a 4-byte little-endian
sequence.

15.5. TEXT AUTOMATON 331

15.5.3 The cursentence.grf file

The cursentence.grf file is generated by Unitex during the display of a sentence au-
tomaton. The Fst2Grf program constructs a .grf file from the text.fst2 file that repre-
sents a sentence automaton.

NOTE: outputs of graph boxes are used to encode offsets, as defined in .tfst tags. Offsets
are separated with spaces. For instance, here are some lines of the graph representing the
first sentence of Ivanhoe:

"Ivanhoe/0 0 0 0 6 0" 100 200 2 3 4 ¶
"{by,by.PART}/2 0 0 2 1 0" 220 150 2 5 6 ¶
"{by,by.PREP}/2 0 0 2 1 0" 220 50 2 5 6 ¶
"{Sir,sir.N+Hum:s}/4 0 0 4 2 0" 310 200 1 7¶

15.5.4 The sentenceN.grf file

Whenever the user modifies a sentence automaton, that automaton is saved under the name
sentenceN.grf, where N represents the number of the sentence. Such a graph contains
offsets in graph box outputs (see note in section 15.5.3).

15.5.5 The cursentence.txt file

During the extraction of the sentence automaton, the text of the sentence is saved in the file
called cursentence.txt. That file is used by Unitex to display the text of the sentence
under the automaton. That file contains the text of the sentence, followed by a newline.

15.5.6 The cursentence.tok file

During the extraction of the sentence automaton, the numbers of the tokens that compose
the sentence are stored in a file named cursentence.tok. This file contains one line per
token, each line being made of 2 integers x y: x is the token number, y is the length of the
token in characters.

Here is the content of this file for the first sentence of Ivanhoe:

0 7¶ Ivanhoe
1 1¶
2 2¶ by
1 1¶
3 3¶ Sir
1 1¶
4 6¶ Walter
1 1¶
5 5¶ Scott
1 1¶

332 CHAPTER 15. FILE FORMATS

15.5.7 The tfst_tags_by_freq.txt and tfst_tags_by_alph.txt files

Those files contain all the tags that appear in the text automaton sorted by frequence and
alphabetical order.

15.6 Concordances

15.6.1 The concord.ind file

The concord.ind file is the index of the occurrences found by either Locate or LocateTfst
during the application of a grammar. It is a text file that contains the starting and ending
positions of each occurrence, possibly accompanied by a sequence of letters if the construc-
tion of the concordance took into account the possible transducer outputs of the grammar.
Here is an example of such a file:

#M¶
59.0.0 63.3.0 the[ADJ= greater] part¶
67.0.0 71.4.0 the beautiful hills¶
87.0.0 91.3.0 the pleasant town¶
123.0.0 127.4.0 the noble seats¶
157.0.0 161.5.0 the fabulous Dragon¶
189.0.0 193.3.0 the Civil Wars¶
455.0.0 459.11.0 the feeble interference¶
463.0.0 467.6.0 the English Council¶
566.0.0 570.10.0 the national convulsions¶
590.0.0 594.5.0 the inferior gentry¶
626.0.0 630.11.0 the English constitution¶
696.0.0 700.4.0 the petty kings¶
813.0.0 817.5.0 the certain hazard¶
896.0.0 900.5.0 the great Barons¶
938.0.0 942.3.0 the very edge¶

The first line indicates in which transduction mode the concordance has been constructed.
The three possible values are:

• #I : transducer outputs have been ignored;

• #M : transducer outputs have been inserted before the corresponding inputs (MERGE
mode);

• #R : transducer outputs have replaced the recognized sequences (REPLACE mode)).

Each occurrence is described in one line. The lines start with the start and end positions of
the occurrence. These positions corresponds to the offsets defined in .tfst tags (see 15.5.1).

15.6. CONCORDANCES 333

If the file has the heading line #I, the end position of each occurrence is immediately fol-
lowed by a newline. Otherwise, it is followed by a space and a sequence of characters. In
REPLACE mode, that sequence corresponds to the output produced for the recognized se-
quence. In MERGE mode, it represents the recognized sequences into which the outputs
have been inserted. In MERGE or REPLACE mode, this sequence is displayed in the con-
cordance. If the outputs have been ignored, the contents of the occurrence is extracted from
the text file.

15.6.2 The concord.txt file

The concord.txt file is a text file that represents a concordance. Each occurrence is en-
coded in a line that is composed of three character sequences separated by a tab, represent-
ing the left context, the occurrence (possibly modified by transducer outputs) and the right
context.

15.6.3 The concord.html file

The concord.html file is an HTML file that represents a concordance. This file is encoded
in UTF-8.

The title of the page is the number of occurrences it describes. The lines of the concor-
dance are encoded as lines where the occurrences are considered to be hypertext lines. The
reference associated to each of these lines has the following form: .
X and Y represent the start and end position of the occurrence in characters in the file
name_of_text.snt. Z represents the number of the phrase in which this occurrence ap-
pears.

All spaces that are at the left and right edges of lines are encoded by a non breaking space
(in HTML), which allows the preservation of the alignment of the occurrences even
if one of them has a left context with spaces.

NOTE: If the concordance has been constructed with the glossanet parameter, the HTML
file has the same structure, except for the links. In these concordances, the occurrences are
real links pointing at the web server of the GlossaNet application. For more information on
GlossaNet, consult the link on the Unitex web site.

Here is an example of a file:

<html lang=en>¶
<head>¶
¶

<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8">¶

<title>6 matches</title>¶
</head>¶
<body>¶

334 CHAPTER 15. FILE FORMATS

<table border="0" cellpadding="0" width="100%"
style="font-family: ’Arial Unicode MS’; font-size: 12">¶

¶
on, there extended i
¶
 extended in ancient
¶
 Scott {S}IN THAT PL
¶
STRICT of merry Engl
¶
S}IN THAT PLEASANT D
¶
 which is watered by
¶
¶
</td></table></body>¶
</html>¶

Figure 15.2 shows the page that corresponds to the file below.

Figure 15.2: Example of a concordance

15.6.4 The diff.html file

The diff.html file is an HTML file that presents the differences between two concordances.
This file is encoded in UTF-8. Here is an example of file (new lines have been introduced for
presentation convenience):

<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8">
<style type="text/css">
a.blue {color:blue; text-decoration:underline;}
a.red {color:red; text-decoration:underline;}
a.green {color:green; text-decoration:underline;}
</style>
</head>
<body>
<h4>

15.7. TEXT DICTIONARIES 335

Blue: identical sequences

Red: similar but different sequences

Green: sequences that occur in only
one of the two concordances

<table border="1" cellpadding="0" style="font-family: Courier new;
font-size: 12">
<tr><td width="450">ed in ancient times
<u>a large forest</u>, covering the greater par</td>
<td width="450">ed in ancient times
<u>a largeforest</u>, covering the greater par</td>
</tr>
<tr><td width="450">ge forest, covering
<u>the greater part</u> of the beautiful hills
</td>
<td width="450"></td>
</tr>
</table>
</body>
</html>

15.7 Text dictionaries

The Dico program produces several files that represent text dictionaries.

15.7.1 dlf and dlc

dlf and dlc are simple and compound word dictionaries in the DELAF format (see section
3.1.1).

15.7.2 err

This file is made of unkown words, one per line.

15.7.3 tags_err

This file is made of unkown words, one per line. The difference with the err file is that in
this one do not appear simple words that have been matched in the tags.ind file.

15.7.4 tags.ind

This file has the same format than a concord.ind one obtained in MERGE or REPLACE
mode, but its header is #T. Note that the outputs DO NOT BEGIN with a slash.

336 CHAPTER 15. FILE FORMATS

15.8 Dictionaries

The compression of the DELAF dictionaries by the Compress program produces two files:
a .bin file that represents the minimal automaton of the inflected forms of the dictionaries,
and a .inf file that contains the compressed forms required for the construction of the
dictionaries from the inflected forms. This section describes the format of these two file
types, as well as the format of the CHECK_DIC.TXT file, which contains the result of the
verification of a dictionary.

15.8.1 The .bin files

A .bin file is a binary file that represents an automaton. The first 4 bytes of the file represent
an integer that indicates the size of the file in bytes. The states of the automaton are encoded
in the following way:

• the first two bytes indicate if the state is final as well as the number of its outgoing
transitions. The highest bit is 0 if the state is final, 1 if not. The other 15 bits encode the
number of transitions.

Example: a non-final state with 17 transitions is encoded by the hexadecimal sequence
8011

• if the state is final, the three following bytes encode the index in the .inf file of the
compressed form to be used to reconstruct the dictionary lines for this inflected form.

Example: if the state refers to the compressed form with index 25133, the correspond-
ing hexadecimal sequence is 00622D

• each leaving transition is then encoded in 5 bytes. The first 2 bytes encode the character
that labels the transition, and the three following encode the byte position of the result
state in the .bin file. The transitions of a state are encoded next to each other.

Example: a transition that is labeled with the A letter and goes to the state of which the
description starts at byte 50106, is represented by the hexadecimal sequence 004100C3BA.

By convention, the first state of the automaton is the initial state.

15.8.2 The .inf files

A .inf file is a text file that describes the compressed files that are associated to a .bin file.
Here an example of a .inf file:

0000000006¶
_10\0\0\7.N¶

15.8. DICTIONARIES 337

.PREP¶
_3.PREP¶
.PREP,_3.PREP¶
1-1.N+Hum:mp¶
3er 1.N+AN+Hum:fs¶

The first line of the file indicates the number of compressed forms that it contains. Each line
can contain one or more compressed forms. If there are multiple forms, they are separated
by commas. Each compressed form is made up of a sequence required to reconstruct a
canonical knowing an inflected form, followed by a sequence of grammatical, semantic and
inflection codes that are associated to the entry.

The mode of compression of the canonical form varies in function of the inflected form. If
the two forms are identical, the compressed form contains only the grammatical, semantic
and inflectional information as in:

.N+Hum:ms

If the forms are different, the compression program cuts up the two forms in units. These
units can be a space, a hyphen, or a sequence of characters that contains neither a space nor
a hyphen. This way of cutting up units allows the program to efficiently take into account
the inflected forms of the compound words.

If the inflected and the canonical form do not have the same number of units, the program
encodes the canonical form by the number of characters to be removed from the inflected
form followed by the characters to append. For instance, the line below is a line in the initial
dictionary:

James Bond,007.N

Since the sequence James Bond contains three units and 007 only one, the canonical form
is encoded with _10\0\0\7. The _ character indicates that the two forms do not have the
same number of units. The following number (here 10) indicates the number of characters
to be removed. The sequence \0\0\7 indicates that the sequence 007 should be appended.
The digits are preceeded by the \ character so they will not be confused with the number of
characters to be removed.

Whenever the two forms have the same number of units, the units are compressed two
by two. Each pair consists of a unit the inflected form and the corresponding unit in the
canonical form. If each of the two units is a space or a hyphen, the compressed form of the
unit is the unit itself, as in the following line:

0-1.N:p

which is the output for battle-axes,battle-axe.N:p

338 CHAPTER 15. FILE FORMATS

This maintains a certain readability of the .inf file when the dictionary contains compound
words.

Whenever one or both of the units in a pair is neither a space nor a hyphen, the compressed
form is composed of the number of characters to be removed followed by the sequence of
characters to be appended. Thus, the dictionary line:

première partie,premier parti.N+AN+Hum:fs

is encoded by the line:

3er 1.N+AN+Hum:fs

The 3er code indicates that 3 characters are to be removed from the sequence première
and the characters er are to be appended to obtain premier. The 1 indicates that only
one character needs to be removed from partie to obtain parti. The number 0 is used
whenever it needs to be indicated that no letter should be removed.

15.8.3 Dictionary information file

In the "Apply lexical resources" frame, it is possible for some dictionaries to get some infor-
mation with a right click. Such information is attached to a biniou.bin or biniou.fst2
dictionary by the mean of a raw text file named biniou.txt, located in the same directory.

15.8.4 The CHECK_DIC.TXT file

This file is produced by the dictionary verification program CheckDic. It is a text file that
contains information about the analysed dictionary and has four parts.

The first part is the possibly empty list of all syntax errors found in the dictionary: absence
of the inflected or the canonical form, the grammatical code, empty lines, etc. Each error is
described by the number of the line, a message describing the error, and the contents of the
line. Here is an example of a message:

Line 12451: unexpected end of line
garden,N:s

The second and third parts display the list of grammatical codes and/or semantic and inflec-
tional codes respectively. In order to prevent coding errors, the program reports encodings
that contain spaces, tabs, or non-ASCII characters. For instance, if a Greek dictionary con-
tains the ADV code where the Greek A character is used instead of the Latin A character, the
program reports the following warning:

ADV warning: 1 suspect char (1 non ASCII char): (0391 D V)

15.8. DICTIONARIES 339

Non-ASCII characters are indicated by their hexadecimal character number. In the example
below, the code 0391 represents Greek A. Spaces are indicated by the SPACE sequence:

Km s warning: 1 suspect char (1 space): (K m SPACE s)

When the following dictionary is checked:

1,2 et 3!,.INTJ
abracadabra,INTJ
supercalifragilisticexpialidocious,.INTJ
damned,. INTJ
Paul,.N+Hum+Hum
eat,.V:W:P1s:Ps:P1p:P2p:P3p

the following CHECK_DIC.TXT file is obtained:

Line 1: unprotected comma in lemma¶
1,2 et 3!,.INTJ ¶
Line 2: unexpected end of line¶
abracadabra,INTJ ¶
Line 5: duplicate semantic code¶
Paul,.N+Hum+Hum¶
Line 6: an inflectional code is a subset of another¶
eat,.V:W:P1s:Ps:P1p:P2p:P3p¶
-----------------------------------¶
------------- Stats -------------¶
-----------------------------------¶
File: D:\My Unitex\English\Dela\axe.dic¶
Type: DELAF¶
6 lines read¶
2 simple entries for 2 distinct lemmas¶
0 compound entry for 0 distinct lemma¶
-----------------------------------¶
---- All chars used in forms ----¶
-----------------------------------¶
a (0061)¶
c (0063)¶
d (0064)¶
e (0065)¶
f (0066)¶
g (0067)¶
i (0069)¶
l (006C)¶
m (006D)¶

340 CHAPTER 15. FILE FORMATS

n (006E)¶
o (006F)¶
p (0070)¶
r (0072)¶
s (0073)¶
t (0074)¶
u (0075)¶
x (0078)¶
---¶
---- 2 grammatical/semantic codes used in dictionary ----¶
---¶
INTJ¶
INTJ warning: 1 suspect char (1 space): (SPACE I N T J)¶
---¶
---- 0 inflectional code used in dictionary -----¶
---¶

Note that the inflectional codes of eat are not reported, since an error occurred in this line.

15.9 ELAG files

15.9.1 tagset.def file

See section 7.3.6, page 181.

15.9.2 .lst files

.LST FILES ARE NOT UNICODE FILES.

A .lst file contains a list of .grf file names. If a file’s path is not absolute, it is relative to
the location of the elag.lst file. Here is the elag.lst file used for French:

PPVs/PpvIL.grf¶
PPVs/PpvLE.grf¶
PPVs/PpvLUI.grf¶
PPVs/PpvPR.grf¶
PPVs/PpvSeq.grf¶
PPVs/SE.grf¶
PPVs/postpos.grf¶

15.9.3 .elg files

.elg files contain compiled ELAG rules. These files are in the .fst2 format.

15.10. TAGGER FILES 341

15.9.4 .rul files

.RUL FILES ARE NOT UNICODE FILES.

A .rul file contains the different .elg files that compose an ELAG rule set. It contains one
part per .elg file. Each part lists the ELAG grammars that correspond to a given .elg file.
.elg file names are surrounded with angles brackets. The lines that start with a tabulation
are considered as comments by the Elag program. Here is the elag.rul file used for
French:

PPVs/PpvIL.elg¶
PPVs/PpvLE.elg¶
PPVs/PpvLUI.elg¶

<elag.rul-0.elg>¶
PPVs/PpvPR.elg¶
PPVs/PpvSeq.elg¶
PPVs/SE.elg¶
PPVs/postpos.elg¶

<elag.rul-1.elg>¶

15.10 Tagger files

This section presents files produced and used by TrainingTagger and Tagger programs.

15.10.1 The corpus.txt file

This file is used by the TrainingTagger program in order to compute statistics for the Tagger
program. It contains sentences where each word is represented in a separate line. Each line
representing a word is composed of a word, simple or compound, followed by a slash and
the tag of the word. This tag is composed of a grammatical code, sometimes followed by
a ’+’ and syntactic or semantic codes. Inflectional codes are specified after a ’:’. If the
word is a compound, simple words contained in it must be separated by a ’_’. Here is an
example of a corpus.txt file :

The/DET+Ddef:s¶
GATT/N:s¶
had/V:I3s¶
formerly/ADV¶
a/DET+Dind:s¶
political/A¶
assessment/N:s¶
of/PREP¶
the/DET+Ddef:s¶
behavior/N:s¶
of/PREP¶

342 CHAPTER 15. FILE FORMATS

foreign_countries/N:p¶
./PONCT¶
¶
She/PRO+Nomin:3fs¶
closed/V:I3s¶
easily/ADV¶
her/DET+Poss3fs:p¶
eyes/N:p¶
when/CONJ¶
some/DET+Dadj:p¶
infractions/N:p¶
might/V:I3p¶
appear/V:W¶
justified/V:K¶
against/PREP¶
higher/A¶
interests/N:p¶
./PONCT¶
¶

NOTE: Sentences must be delimited by empty lines.

The .txt file format can also be used (see section 15.4.1). Each word of the text must be
represented by a valid lexical label ({aujourd’hui,.ADV}) and sentences are delimited
by {S}. Here is the previous example in the .txt file format :

{The,.DET+Ddef:s} {GATT,.N:s} {had,.V:I3s} {formerly,.ADV}
{a,.DET+Dind:s} {political,.A} {assessment,.N:s} {of,.PREP}
{the,.DET+Ddef:s} {behavior,.N:s} {of,.PREP} {foreign countries,.N:p}
{.,.PONCT} {S} {She,.PRO+Nomin:3fs} {closed,.V:I3s} {easily,.ADV}
{her,.DET+Poss3fs:p} {eyes,.N:p} {when,.CONJ} {some,.DET+Dadj:p}
{infraction,.N:p} {might,.V:I3p} {appear,.V:W} {justified,.V:K}
{against,.PREP} {higher,.A} {interests,.N:p} {.,.PONCT} {S}

15.10.2 The tagger data file

The TrainingTagger program generates two data files (by default) used by the Tagger pro-
gram in order to compute a second-order hidden Markov model. These files contain uni-
gram, bigram and trigram tuples extracted from the tagged corpus.txt file. Tuples are com-
posed of either a sequence of 2 or 3 tags (to compute transition probability) or a word pre-
ceded by 0 or 1 tag (to compute emit probability). Units in a tuple must be separated by a
tabulation. These tuples are followed by the sequence of delimiters ",." and then an integer
representing the number of occurrences of this tuple in the corpus file.

Filenames are suffixed by "cat" or "morph". In the first one, tuples are composed of tags
formed of grammatical, syntactic and semantic codes. In the second one, tuples consist in

15.11. CONFIGURATION FILES 343

tags formed of grammatical, syntactic and semantic codes and sometimes followed by a ’:’
and inflectional codes. Here is an example of a data file with "cat" tags :

the,.9630¶
those,.236¶
eyes,.32¶
DET+Ddef the,.9630¶
DET+Ddem those,.140¶
PRO+Pdem those,.96¶
N eyes,.32¶
DET N,.62541¶
PREP DET N,.25837¶
¶

Here is an example of a data file with "morph" tags :

the,.9630¶
those,.236¶
eyes,.32¶
DET+Ddef:s the,.4437¶
DET+Ddef:p the,.5193¶
DET+Ddem:p those,.140¶
PRO+Pdem:p those,.96¶
N:p eyes,.32¶
DET:s N:s,.18489¶
PREP DET:s N:s,.6977¶
¶

A special line is added to data files in order to identify whether the file contains "cat" or
"morph" tags. This line contains CODE FEATURES followed by either the integer 0 for "cat"
tags or 1 for "morph" tags.

NOTE: At the final stage, TrainingTagger compresses these two data files into the ".bin"
format.

15.11 Configuration files

15.11.1 The Config file

Whenever the user modifies his preferences for a given languages, these modifications are
saved in a text file named ’Config’ which can be found in the directory of the current lan-
guage. The file has the following syntax (the order of lines can vary):

#Unitex configuration file of ’paumier’ for ’English’¶
#Fri Oct 10 15:18:06 CEST 2008¶
TEXT\ FONT\ NAME=Courier New¶

344 CHAPTER 15. FILE FORMATS

TEXT\ FONT\ STYLE=0¶
TEXT\ FONT\ SIZE=10¶
CONCORDANCE\ FONT\ NAME=Courier new¶
CONCORDANCE\ FONT\ HTML\ SIZE=12¶
INPUT\ FONT\ NAME=Times New Roman¶
INPUT\ FONT\ STYLE=0¶
INPUT\ FONT\ SIZE=10¶
OUTPUT\ FONT\ NAME=Arial Unicode MS¶
OUTPUT\ FONT\ STYLE=1¶
OUTPUT\ FONT\ SIZE=12¶
DATE=true¶
FILE\ NAME=true¶
PATH\ NAME=false¶
FRAME=true¶
RIGHT\ TO\ LEFT=false¶
BACKGROUND\ COLOR=-1¶
FOREGROUND\ COLOR=-16777216¶
AUXILIARY\ NODES\ COLOR=-3289651¶
COMMENT\ NODES\ COLOR=-65536¶
SELECTED\ NODES\ COLOR=-16776961¶
PACKAGE\ NODES\ COLOR=-2302976¶
CONTEXT\ NODES\ COLOR=-16711936¶
CHAR\ BY\ CHAR=false¶
ANTIALIASING=false¶
HTML\ VIEWER=¶
MAX\ TEXT\ FILE\ SIZE=2097152¶
ICON\ BAR\ POSITION=West¶
PACKAGE\ PATH=D\:\\repository¶
MORPHOLOGICAL\ DICTIONARY=D\:\\MyUnitex\\English\\Dela\\zz.bin¶
MORPHOLOGICAL\ NODES\ COLOR=-3911728¶
MORPHOLOGICAL\ USE\ OF\ SPACE=false¶

The first two lines are comment lines. The following three lines indicate the name, the style
and the size of the font used to display texts, dictionaries, lexical units, sentences in text
automata, etc.

The CONCORDANCE FONT NAME and CONCORDANCE FONT HTML SIZE parameters define
the name, the size and the font to be used when displaying concordances in HTML. The size
of the font has a value between 1 and 7.

The INPUT FONT ... and OUTPUT FONT ... parameters define the name, the style and
the size of the fonts used for displaying the paths and the transducer outputs of the graphs.

The following 10 parameters correspond to the parameters given in the headings of the
graphs. Table 15.5 describes the correspondances.

15.11. CONFIGURATION FILES 345

Parameters in the Config file Parameters in the .grf file
DATE DDATE

FILE NAME DFILE
PATH NAME DDIR
FRAME DFRAME

RIGHT TO LEFT DRIG
BACKGROUND COLOR BCOLOR
FOREGROUND COLOR FCOLOR

AUXILIARY NODES COLOR ACOLOR
COMMENT NODES COLOR SCOLOR
SELECTED NODES COLOR CCOLOR

Table 15.5: Meaning of the parameters

The PACKAGE NODES parameter defines the color to be used for displaying calls to sub-
graphs located in the repository.

The CONTEXT NODES parameter defines the color to be used for displaying boxes that cor-
respond to context bounds.

The CONTEXT NODES indicates if the current language must be tokenized character by char-
acter or not.

The ANTIALIASING parameter indicates whether graphs as well as sentence automata are
displayed by default with the antialiasing effect.

The HTML VIEWER parameter indicates the name of the navigator to be used for displaying
concordances. If no navigator name is defined, concordances are displayed in a Unitex
window.

The MAX TEXT FILE SIZE parameter is deprecated.

The ICON BAR POSITION parameter indicates the default position of icon bars in graph
frames.

The PACKAGE PATH parameter specifies the location of the repository.

The MORPHOLOGICAL DICTIONARY parameter specifies the list of morphological-mode
dictionaries, separated with semi-colons.

The MORPHOLOGICAL NODES COLOR parameter specifies the color to use to render the $<
and $> tags.

The MORPHOLOGICAL USE OF SPACE parameter indicates if the Locate program is al-
lowed to start matching on spaces. Default is false.

346 CHAPTER 15. FILE FORMATS

15.11.2 The system_dic.def file

The system_dic.def file is a text file that describes the list of system dictionaries that are
applied by default. This file can be found in the directory of the current language. Each line
corresponds to a name of a .bin file. The system dictionaries are in the Unitex system direc-
tory, and within that directory, in the (current language)/Dela sub-directory. Here is
an example of this file:

delacf.bin¶
delaf.bin¶

15.11.3 The user_dic.def file

The user_dic.def file is a text file that describes the list of dictionaries the user has de-
fined to be applied by default. This file is in the directory of the current language and has the
same format as the system_dic.def file. The dictionaries need to be in the (current language)/Dela
sub-directory of the user’s working directory.

15.11.4 The (user login).cfg and .unitex.cfg files

Under Linux and Mac OS, your working directory is expected to be called unitex and to be
in your root directory ($HOME). If you want to change this default location, a .unitex.cfg
file is created in your home directory, and it contains the path to your working directory.
This file is a UTF8 one. If .unitex.cfg does not contain a valid Linux path to an existing
directory, it is ignored. 1

Under Windows, it is not always possible to associate a directory to a user by default. To
compensate for that, Unitex creates for each user a .cfg file that contains the path to his/her
working directory. This file is saved under the name (user login).cfg in the Users
sub-directory of the Unitex system directory. If the user does not have permission to write
into this directory, Unitex saves a file named .unitex.cfg in the Windows user profile
directory:

• in Documents and Settings\(user login) if under Windows XP

• in Users\(user login) if under WindowsVista or later.

WARNING: THIS FILE IS NOT IN UNICODE

WARNING (2): THE PATH OF THE PERSONAL WORKING DIRECTORY IS NOT FOL-
LOWED BY A NEWLINE.

1This allows you to launch Unitex sometimes under Linux, sometimes under Windows, on shared files: the
Windows path to your working directory is contained in .unitex.cfg, and Unitex ignores it when launched
under Linux.

15.12. CASSYS FILES 347

15.12 CasSys files

15.12.1 CasSys configuration files csc

To memorize the list of transducer of a CasSys cascade, we use a text file (csc file) in which
each line contains the path to a transducer followed by the output policy (merge/replace) to
be applied to this transducer. The generic format of a line of csc file is : Name_and_path_of_transducer
Merge Here is an example of cascade file csc:

"C:\apps\my_unitex\French\Graphs\grf1.fst2" Merge
"C:\apps\my_unitex\French\Graphs\grf2.fst2" Replace

15.13 Various other files

For each text, Unitex creates multiple files that contain information that are designed to be
displayed in the graphical interface. This section describes these files and some others.

15.13.1 The dlf.n, dlc.n, err.n et tags_err.n files

These files are text files that are stored in the text directory. They contain the number of lines
of the dlf, dlc, err and tags_err files respectively. These numbers are followed by a
newline.

15.13.2 The stat_dic.n file

This file is a text file in the directory of the text. It has three lines that contain the number of
lines of the dlf, dlc and err files.

15.13.3 The stats.n file

This file is in the text directory and contains a line with the following form:

3949 sentence delimiters, 169394 (9428 diff) tokens, 73788 (9399)
simple forms, 438 (10) digits¶

The numbers indicated are interpreted in the following way:

• sentence delimiters: number of sentence delimiters ({S});

• tokens: total number of lexical units in the text. The number preceeding diff indi-
cates the number of different units;

• simple forms: the total number of lexical units in the text that are composed of
letters. The number in parentheses represents the number of different lexical units
that are composed of letters;

• digits: the total number of digits used in the text. The number in parentheses indi-
cates the number of different digits used (10 at most).

348 CHAPTER 15. FILE FORMATS

15.13.4 The concord.n file

The concord.n file is a text file in the directory of the text. It contains information on the
latest search of the text and looks like the following:

6 matches¶
6 recognized units¶
(0.004% of the text is covered)¶

The first line gives the number of found occurrences, and the second the name of units
covered by these occurrences. The third line indicates the ratio between the covered units
and the total number of units in the text.

15.13.5 The concord_tfst.n file

The concord_tfst.n file is a text file in the directory of the text. It contains information
on the latest search on the text automaton and looks like the following:

23 matches(45 outputs)¶

15.13.6 Normalization rule file

This file is used by the Normalization and XMLizer programs. It represents replacement
rules. Each line stands for a rule, according to the following format (7−→ stands for the
tabulation character):

input sequence 7−→ output sequence

If you want to use the tabulation or the new line, you must protect them with a backslash
like this:

123\
7−→ ONE_TWO_THREE_NEW_LINE

15.13.7 Forbidden word file

The PolyLex programs requires a forbidden word file for Dutch and Norwegian. This raw
text file is supposed to be named ForbiddenWords.txt . If must be in the user’s Dela
directory corresponding to the language to work on. Each line is supposed to contain one
forbidden word.

15.13.8 Log file

The UnitexToolLogger programs, when a unitex_logging_parameters.txt file is
found with a path (to store logfile) creates .ulp file with a log of the running Unitex tool
selected. It creates a unitex_logging_parameters_count.txt file which contain only
the number of latest log file created.

15.13. VARIOUS OTHER FILES 349

Log file (with .ulp extension) are uncompressed zipfile, compatible with unzip and all
standard unzip tools. It contain these files:

• test_info/command_line.txt: a list of parameter of the command line used to
run the tool. There is one parameter on each line. The first line contain the return
value, the second line the number of parameters;

• test_info/command_line_synth.txt: a simple line with a summary of the com-
mand line used to run the tool;

• test_info/list_file_in.txt: a list of file read by the tool. The first column is
file size, second column is crc32, third is filename;

• test_info/list_file_out.txt: a list of file created by the tool. The first column
is file size, second column is crc32, third is filename;

• test_info/std_out.txt: content of standard console output;

• test_info/std_err.txt: content of error console output;

• src/xxx: a copy of file read by the tool (needed to run the log again);

• dest/xxx: a copy of file created by the tool.

If the second line of unitex_logging_parameters.txt contains 0, these file are not recorded;
if this line contains 1, they are recorded;

15.13.9 Arabic typographic rules: arabic_typo_rules.txt

For Arabic, dictionary lookups can be parameterized with a configuration file named Arabic/arabic_typo_rules.txt,
which allows for some typographic variations (Section 3.8.5). This file contains lines like the
following:

fatha omission=YES

where fatha omission is the name of a predefined rule. All the available rules are de-
scribed in the Arabic.h file in the program sources.

15.13.10 Offsets file of difference

Offsets file of difference are write by Unxmlize(14.50), read by Tokenize(14.43), read and
write by DumpOffsets(14.13), Normalize(14.29), Fst2Txt(14.21), Tokenize(14.43), Concord(14.9)
and GrfTest. These files contain line with 4 integers A B C D. Each line mean there is a text

modification: The text at position [A;B[before applying modiffication is replaced by text at

position [C;D[after computing, A, B, C and D are offsets (in characters) into text files.

By example, if we run Normalize on text texte "Hello world" (with two space between
the 2 words), the offsets file is:

350 CHAPTER 15. FILE FORMATS

5 7 5 6

This mean we replace two characters (the two spaces) by a new string of one characters.

Each programs which modify text build a new offsets file. If we provide a previous
offsets file (build by previous program which made previous modification), offsets file will
be combined.

Appendix A - GNU Lesser General
Public License

This license can also be found in [36].

GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts as the successor of the
GNU Library Public License, version 2, hence the version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public Licenses are intended to guarantee your
freedom to share and change free software–to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated
software packages–typically libraries–of the Free Software Foundation and other authors
who decide to use it. You can use it too, but we suggest you first think carefully about
whether this license or the ordinary General Public License is the better strategy to use in
any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our
General Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish); that you receive source code
or can get it if you want it; that you can change the software and use pieces of it in new free
programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you
these rights or to ask you to surrender these rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too, receive

351

352 CHAPTER 15. FILE FORMATS

or can get the source code. If you link other code with the library, you must provide com-
plete object files to the recipients, so that they can relink them with the library after making
changes to the library and recompiling it. And you must show them these terms so they
know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we
offer you this license, which gives you legal permission to copy, distribute and/or modify
the library.

To protect each distributor, we want to make it very clear that there is no warranty for
the free library. Also, if the library is modified by someone else and passed on, the recipients
should know that what they have is not the original version, so that the original author’s
reputation will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We
wish to make sure that a company cannot effectively restrict the users of a free program
by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent
license obtained for a version of the library must be consistent with the full freedom of use
specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU Gen-
eral Public License. This license, the GNU Lesser General Public License, applies to certain
designated libraries, and is quite different from the ordinary General Public License. We
use this license for certain libraries in order to permit linking those libraries into non-free
programs.

When a program is linked with a library, whether statically or using a shared library, the
combination of the two is legally speaking a combined work, a derivative of the original
library. The ordinary General Public License therefore permits such linking only if the entire
combination fits its criteria of freedom. The Lesser General Public License permits more lax
criteria for linking other code with the library.

We call this license the "Lesser" General Public License because it does Less to protect the
user’s freedom than the ordinary General Public License. It also provides other free software
developers Less of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many libraries. However, the
Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest
possible use of a certain library, so that it becomes a de-facto standard. To achieve this, non-
free programs must be allowed to use the library. A more frequent case is that a free library
does the same job as widely used non-free libraries. In this case, there is little to gain by
limiting the free library to free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a
greater number of people to use a large body of free software. For example, permission to
use the GNU C Library in non-free programs enables many more people to use the whole
GNU operating system, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it
does ensure that the user of a program that is linked with the Library has the freedom and
the wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a "work based on the library" and a "work that uses

15.13. VARIOUS OTHER FILES 353

the library". The former contains code derived from the library, whereas the latter must be
combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which con-
tains a notice placed by the copyright holder or other authorized party saying it may be
distributed under the terms of this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be con-
veniently linked with application programs (which use some of those functions and data) to
form executables.

The "Library", below, refers to any such software library or work which has been dis-
tributed under these terms. A "work based on the Library" means either the Library or
any derivative work under copyright law: that is to say, a work containing the Library or
a portion of it, either verbatim or with modifications and/or translated straightforwardly
into another language. (Hereinafter, translation is included without limitation in the term
"modification".)

"Source code" for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts used to control compilation and
installation of the library.

Activities other than copying, distribution and modification are not covered by this Li-
cense; they are outside its scope. The act of running a program using the Library is not
restricted, and output from such a program is covered only if its contents constitute a work
based on the Library (independent of the use of the Library in a tool for writing it). Whether
that is true depends on what the Library does and what the program that uses the Library
does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as
you receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty; and distribute a copy
of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming
a work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices stating that you changed

the files and the date of any change.
c) You must cause the whole of the work to be licensed at no charge to all third parties

under the terms of this License.

354 CHAPTER 15. FILE FORMATS

d) If a facility in the modified Library refers to a function or a table of data to be supplied
by an application program that uses the facility, other than as an argument passed when the
facility is invoked, then you must make a good faith effort to ensure that, in the event an
application does not supply such function or table, the facility still operates, and performs
whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is en-
tirely well-defined independent of the application. Therefore, Subsection 2d requires that
any application-supplied function or table used by this function must be optional: if the
application does not supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Library, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Library, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution of
derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium does
not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices that
refer to this License, so that they refer to the ordinary GNU General Public License, version
2, instead of to this License. (If a newer version than version 2 of the ordinary GNU General
Public License has appeared, then you can specify that version instead if you wish.) Do not
make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works made
from that copy.

This option is useful when you wish to copy part of the code of the Library into a pro-
gram that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided that
you accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies the
requirement to distribute the source code, even though third parties are not compelled to
copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed
to work with the Library by being compiled or linked with it, is called a "work that uses the
Library". Such a work, in isolation, is not a derivative work of the Library, and therefore

15.13. VARIOUS OTHER FILES 355

falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library creates an executable

that is a derivative of the Library (because it contains portions of the Library), rather than a
"work that uses the library". The executable is therefore covered by this License. Section 6
states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be linked
without the Library, or if the work is itself a library. The threshold for this to be true is not
precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and acces-
sors, and small macros and small inline functions (ten lines or less in length), then the use
of the object file is unrestricted, regardless of whether it is legally a derivative work. (Exe-
cutables containing this object code plus portions of the Library will still fall under Section
6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also fall
under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a "work that
uses the Library" with the Library to produce a work containing portions of the Library, and
distribute that work under terms of your choice, provided that the terms permit modifica-
tion of the work for the customer’s own use and reverse engineering for debugging such
modifications.

You must give prominent notice with each copy of the work that the Library is used in
it and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference directing the user to the
copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source code
for the Library including whatever changes were used in the work (which must be dis-
tributed under Sections 1 and 2 above); and, if the work is an executable linked with the
Library, with the complete machine-readable "work that uses the Library", as object code
and/or source code, so that the user can modify the Library and then relink to produce a
modified executable containing the modified Library. (It is understood that the user who
changes the contents of definitions files in the Library will not necessarily be able to recom-
pile the application to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A suitable mech-
anism is one that (1) uses at run time a copy of the library already present on the user’s
computer system, rather than copying library functions into the executable, and (2) will op-
erate properly with a modified version of the library, if the user installs one, as long as the
modified version is interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at least three years, to give the
same user the materials specified in Subsection 6a, above, for a charge no more than the cost
of performing this distribution.

356 CHAPTER 15. FILE FORMATS

d) If distribution of the work is made by offering access to copy from a designated place,
offer equivalent access to copy the above specified materials from the same place.

e) Verify that the user has already received a copy of these materials or that you have
already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must include
any data and utility programs needed for reproducing the executable from it. However, as a
special exception, the materials to be distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other propri-
etary libraries that do not normally accompany the operating system. Such a contradiction
means you cannot use both them and the Library together in an executable that you dis-
tribute.

7. You may place library facilities that are a work based on the Library side-by-side in a
single library together with other library facilities not covered by this License, and distribute
such a combined library, provided that the separate distribution of the work based on the
Library and of the other library facilities is otherwise permitted, and provided that you do
these two things:

a) Accompany the combined library with a copy of the same work based on the Library,
uncombined with any other library facilities. This must be distributed under the terms of
the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work
based on the Library, and explaining where to find the accompanying uncombined form of
the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify, sublicense,
link with, or distribute the Library is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in full
compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying, dis-
tributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipi-
ent automatically receives a license from the original licensor to copy, distribute, link with or
modify the Library subject to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do

15.13. VARIOUS OTHER FILES 357

not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations,
then as a consequence you may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by all those who receive
copies directly or indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular cir-
cumstance, the balance of the section is intended to apply, and the section as a whole is
intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other prop-
erty right claims or to contest validity of any such claims; this section has the sole purpose
of protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that sys-
tem; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the
Lesser General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version number,
you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distri-
bution conditions are incompatible with these, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EX-
CEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND,

358 CHAPTER 15. FILE FORMATS

EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS
WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MOD-
IFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO
YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CON-
SEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LI-
BRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING REN-
DERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAIL-
URE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the
public, we recommend making it free software that everyone can redistribute and change.
You can do so by permitting redistribution under these terms (or, alternatively, under the
terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them
to the start of each source file to most effectively convey the exclusion of warranty; and each
file should have at least the "copyright" line and a pointer to where the full notice is found.

<one line to give the library’s name and a brief idea of what it does.> Copyright (C)
<year> <name of author>

This library is free software; you can redistribute it and/or modify it under the terms
of the GNU Lesser General Public License as published by the Free Software Foundation;
either version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with
this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your school, if

any, to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library ‘Frob’ (a library for
tweaking knobs) written by James Random Hacker.

15.13. VARIOUS OTHER FILES 359

<signature of Ty Coon>, 1 April 1990 Ty Coon, President of Vice
That’s all there is to it!

360 CHAPTER 15. FILE FORMATS

Appendix B - 2-clause BSD-style
Licenses

B.1. TRE

This is the license, copyright notice, and disclaimer for TRE, a regex matching package (li-
brary and tools) with support for approximate matching.

Copyright c© 2001-2009 Ville Laurikari <vl@iki.fi>
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of con-
ditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIM-
ITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-
ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

B.2. wingetopt

This is the license, copyright notice, and disclaimer for wingetopt, a getopt library for Win-
dows compilers.

361

362 CHAPTER 15. FILE FORMATS

Copyright c© 2002 Todd C. Miller <Todd.Miller@courtesan.com>

Permission to use, copy, modify, and distribute this software for any purpose with or with-
out fee is hereby granted, provided that the above copyright notice and this permission
notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WAR-
RANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LI-
ABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS AC-
TION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.

Sponsored in part by the Defense Advanced Research Projects Agency (DARPA) and Air
Force Research Laboratory, Air Force Materiel Command, USAF, under agreement number
F39502-99-1-0512.

Copyright c© 2000 The NetBSD Foundation, Inc. All rights reserved.

This code is derived from software contributed to The NetBSD Foundation by Dieter Baron
and Thomas Klausner.

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

1. 1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. 2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other mate-
rials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIB-
UTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Appendix C - Xerces2’s Apache
License

This is the license, copyright notice, and disclaimer for the Xerces2 Java Parser, an XML
parser used by XAlign ([68]).

Copyright c© 1999-2010 The Apache Software Foundation. All Rights Reserved.

Apache License, Version 2.0, January 2004, http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.
"License" shall mean the terms and conditions for use, reproduction, and distribution as
defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that
is granting the License.
"Legal Entity" shall mean the union of the acting entity and all other entities that control, are
controlled by, or are under common control with that entity. For the purposes of this defini-
tion, "control" means (i) the power, direct or indirect, to cause the direction or management
of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or
more of the outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted
by this License.
"Source" form shall mean the preferred form for making modifications, including but not
limited to software source code, documentation source, and configuration files.
"Object" form shall mean any form resulting from mechanical transformation or translation
of a Source form, including but not limited to compiled object code, generated documenta-
tion, and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or Object form, made available
under the License, as indicated by a copyright notice that is included in or attached to the
work (an example is provided in the Appendix at the following address: http://www.apache.org/licenses/).
"Derivative Works" shall mean any work, whether in Source or Object form, that is based
on (or derived from) the Work and for which the editorial revisions, annotations, elabora-
tions, or other modifications represent, as a whole, an original work of authorship. For the
purposes of this License, Derivative Works shall not include works that remain separable

363

364 CHAPTER 15. FILE FORMATS

from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works
thereof.
"Contribution" shall mean any work of authorship, including the original version of the
Work and any modifications or additions to that Work or Derivative Works thereof, that is
intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by
an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, "submitted" means any form of electronic, verbal, or writ-
ten communication sent to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems, and issue tracking
systems that are managed by, or on behalf of, the Licensor for the purpose of discussing
and improving the Work, but excluding communication that is conspicuously marked or
otherwise designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom
a Contribution has been received by Licensor and subsequently incorporated within the
Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Con-
tributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-
free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly dis-
play, publicly perform, sublicense, and distribute the Work and such Derivative Works in
Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contrib-
utor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to make, have made, use, offer
to sell, sell, import, and otherwise transfer the Work, where such license applies only to
those patent claims licensable by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s) with the Work to which
such Contribution(s) was submitted. If You institute patent litigation against any entity (in-
cluding a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution
incorporated within the Work constitutes direct or contributory patent infringement, then
any patent licenses granted to You under this License for that Work shall terminate as of the
date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works
thereof in any medium, with or without modifications, and in Source or Object form, pro-
vided that You meet the following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this
License; and

2. You must cause any modified files to carry prominent notices stating that You changed
the files; and

3. You must retain, in the Source form of any Derivative Works that You distribute, all
copyright, patent, trademark, and attribution notices from the Source form of the

15.13. VARIOUS OTHER FILES 365

Work, excluding those notices that do not pertain to any part of the Derivative Works;
and

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative
Works that You distribute must include a readable copy of the attribution notices con-
tained within such NOTICE file, excluding those notices that do not pertain to any part
of the Derivative Works, in at least one of the following places: within a NOTICE text
file distributed as part of the Derivative Works; within the Source form or documen-
tation, if provided along with the Derivative Works; or, within a display generated by
the Derivative Works, if and wherever such third-party notices normally appear. The
contents of the NOTICE file are for informational purposes only and do not modify the
License. You may add Your own attribution notices within Derivative Works that You
distribute, alongside or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide ad-
ditional or different license terms and conditions for use, reproduction, or distribution of
Your modifications, or for any such Derivative Works as a whole, provided Your use, repro-
duction, and distribution of the Work otherwise complies with the conditions stated in this
License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution
intentionally submitted for inclusion in the Work by You to the Licensor shall be under the
terms and conditions of this License, without any additional terms or conditions. Notwith-
standing the above, nothing herein shall supersede or modify the terms of any separate
license agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks,
service marks, or product names of the Licensor, except as required for reasonable and cus-
tomary use in describing the origin of the Work and reproducing the content of the NOTICE
file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Li-
censor provides the Work (and each Contributor provides its Contributions) on an "AS
IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied, including, without limitation, any warranties or conditions of TITLE, NON-
INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You
are solely responsible for determining the appropriateness of using or redistributing the
Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You
for damages, including any direct, indirect, special, incidental, or consequential damages
of any character arising as a result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill, work stoppage, computer

366 CHAPTER 15. FILE FORMATS

failure or malfunction, or any and all other commercial damages or losses), even if such
Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative
Works thereof, You may choose to offer, and charge a fee for, acceptance of support, war-
ranty, indemnity, or other liability obligations and/or rights consistent with this License.
However, in accepting such obligations, You may act only on Your own behalf and on Your
sole responsibility, not on behalf of any other Contributor, and only if You agree to indem-
nify, defend, and hold each Contributor harmless for any liability incurred by, or claims
asserted against, such Contributor by reason of your accepting any such warranty or addi-
tional liability.

END OF TERMS AND CONDITIONS

Appendix D - LibYAML’s MIT License

This is the license, copyright notice, and disclaimer for LibYAML, an Open Source YAML
1.1 parser and emitter written in C.

Copyright (c) 2006 Kirill Simonov

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restric-
tion, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

367

368 CHAPTER 15. FILE FORMATS

Appendix E - SVNKit’s TMate Open
Source License

This is the license, copyright notice, and disclaimer for SVNKit, an Open Source pure Java
Subversion library by TMate Software.

This license applies to all portions of TMate SVNKit library which are not externally-maintained
libraries (e.g. Ganymed SSH library).

All the source code and compiled classes in package org.tigris.subversion.javahl except Svn-
Client class are covered by the license in JAVAHL-LICENSE file

Copyright c© 2004-2009, TMate Software

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of con-
ditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Redistributions in any form must be accompanied by information on how to obtain
complete source code for the software that uses SVNKit and any accompanying soft-
ware that uses the software that uses SVNKit. The source code must either be included
in the distribution or be available for no more than the cost of distribution plus a nom-
inal fee, and must be freely redistributable under reasonable conditions. For an exe-
cutable file, complete source code means the source code for all modules it contains. It
does not include source code for modules or files that typically accompany the major
components of the operating system on which the executable file runs.

4. Redistribution in any form without redistributing source code for software that uses
SVNKit is possible only when such redistribution is explictly permitted by TMate Soft-
ware. Please, contact TMate Software at support@svnkit.com to get such permission.

369

370 CHAPTER 15. FILE FORMATS

THIS SOFTWARE IS PROVIDED BY TMATE SOFTWARE “AS IS” AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT, ARE DISCLAIMED.

IN NO EVENT SHALL TMATE SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Appendix F - Lesser General Public
License For Linguistic Resources

This license was designed by the University of Marne-la-Vallée. It has received the approval
of the Free Software Foundation ([1]) and belongs to the List of Open Source Licences (from
version 2.1) of the Software Package Data Exchange (SPDX) of the Linux Foundation.

Preamble

The licenses for most data are designed to take away your freedom to share and change
it. By contrast, this License is intended to guarantee your freedom to share and change free
data–to make sure the data are free for all their users.

This license, the Lesser General Public License for Linguistic Resources, applies to some
specially designated linguistic resources – typically lexicons, grammars, thesauri and textual
corpora.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

0. This License Agreement applies to any Linguistic Resource which contains a notice
placed by the copyright holder or other authorized party saying it may be distributed
under the terms of this Lesser General Public License for Linguistic Resources (also
called "this License"). Each licensee is addressed as "you".

A "linguistic resource" means a collection of data about language prepared so as to be
used with application programs.

The "Linguistic Resource", below, refers to any such work which has been distributed
under these terms. A "work based on the Linguistic Resource" means either the Lin-
guistic Resource or any derivative work under copyright law: that is to say, a work
containing the Linguistic Resource or a portion of it, either verbatim or with modifica-
tions and/or translated straightforwardly into another language. (Hereinafter, trans-
lation is included without limitation in the term "modification".)

"Legible form" for a linguistic resource means the preferred form of the resource for
making modifications to it.

371

372 CHAPTER 15. FILE FORMATS

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Linguistic
Resource is not restricted, and output from such a program is covered only if its con-
tents constitute a work based on the Linguistic Resource (independent of the use of
the Linguistic Resource in a tool for writing it). Whether that is true depends on what
the program that uses the Linguistic Resource does.

1. You may copy and distribute verbatim copies of the Linguistic Resource as you receive
it, in any medium, provided that you conspicuously and appropriately publish on
each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this License and to the absence of any warranty; and distribute
a copy of this License along with the Linguistic Resource.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Linguistic Resource or any portion of it,
thus forming a work based on the Linguistic Resource, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that you also meet
all of these conditions:

(a) The modified work must itself be a linguistic resource.

(b) You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

(c) You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.
These requirements apply to the modified work as a whole. If identifiable sec-
tions of that work are not derived from the Linguistic Resource, and can be rea-
sonably considered independent and separate works in themselves, then this Li-
cense, and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole
which is a work based on the Linguistic Resource, the distribution of the whole
must be on the terms of this License, whose permissions for other licensees ex-
tend to the entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to con-
trol the distribution of derivative or collective works based on the Linguistic Re-
source.
In addition, mere aggregation of another work not based on the Linguistic Re-
source with the Linguistic Resource (or with a work based on the Linguistic Re-
source) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

3. A program that contains no derivative of any portion of the Linguistic Resource, but is
designed to work with the Linguistic Resource (or an encrypted form of the Linguistic

15.13. VARIOUS OTHER FILES 373

Resource) by reading it or being compiled or linked with it, is called a "work that uses
the Linguistic Resource". Such a work, in isolation, is not a derivative work of the
Linguistic Resource, and therefore falls outside the scope of this License.

However, combining a "work that uses the Linguistic Resource" with the Linguistic
Resource (or an encrypted form of the Linguistic Resource) creates a package that is
a derivative of the Linguistic Resource (because it contains portions of the Linguistic
Resource), rather than a "work that uses the Linguistic Resource". If the package is a
derivative of the Linguistic Resource, you may distribute the package under the terms
of Section 4. Any works containing that package also fall under Section 4.

4. As an exception to the Sections above, you may also combine a "work that uses the
Linguistic Resource" with the Linguistic Resource (or an encrypted form of the Lin-
guistic Resource) to produce a package containing portions of the Linguistic Resource,
and distribute that package under terms of your choice, provided that the terms per-
mit modification of the package for the customer’s own use and reverse engineering
for debugging such modifications.

You must give prominent notice with each copy of the package that the Linguistic
Resource is used in it and that the Linguistic Resource and its use are covered by this
License. You must supply a copy of this License. If the package during execution
displays copyright notices, you must include the copyright notice for the Linguistic
Resource among them, as well as a reference directing the user to the copy of this
License. Also, you must do one of these things:

(a) Accompany the package with the complete corresponding machine-readable leg-
ible form of the Linguistic Resource including whatever changes were used in
the package (which must be distributed under Sections 1 and 2 above); and, if the
package contains an encrypted form of the Linguistic Resource, with the com-
plete machine-readable "work that uses the Linguistic Resource", as object code
and/or source code, so that the user can modify the Linguistic Resource and then
encrypt it to produce a modified package containing the modified Linguistic Re-
source.

(b) Use a suitable mechanism for combining with the Linguistic Resource. A suit-
able mechanism is one that will operate properly with a modified version of the
Linguistic Resource, if the user installs one, as long as the modified version is
interface-compatible with the version that the package was made with.

(c) Accompany the package with a written offer, valid for at least three years, to give
the same user the materials specified in Subsection 4a, above, for a charge no
more than the cost of performing this distribution.

(d) If distribution of the package is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

(e) Verify that the user has already received a copy of these materials or that you
have already sent this user a copy.

374 CHAPTER 15. FILE FORMATS

If the package includes an encrypted form of the Linguistic Resource, the required
form of the "work that uses the Linguistic Resource" must include any data and util-
ity programs needed for reproducing the package from it. However, as a special ex-
ception, the materials to be distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of proprietary
libraries that do not normally accompany the operating system. Such a contradiction
means you cannot use both them and the Linguistic Resource together in a package
that you distribute.

5. You may not copy, modify, sublicense, link with, or distribute the Linguistic Resource
except as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense, link with, or distribute the Linguistic Resource is void, and will
automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

6. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Linguistic Resource or
its derivative works. These actions are prohibited by law if you do not accept this Li-
cense. Therefore, by modifying or distributing the Linguistic Resource (or any work
based on the Linguistic Resource), you indicate your acceptance of this License to do
so, and all its terms and conditions for copying, distributing or modifying the Linguis-
tic Resource or works based on it.

7. Each time you redistribute the Linguistic Resource (or any work based on the Linguis-
tic Resource), the recipient automatically receives a license from the original licensor
to copy, distribute, link with or modify the Linguistic Resource subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise
of the rights granted herein. You are not responsible for enforcing compliance by third
parties with this License.

8. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Linguistic Resource at
all. For example, if a patent license would not permit royalty-free redistribution of
the Linguistic Resource by all those who receive copies directly or indirectly through
you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Linguistic Resource.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a whole

15.13. VARIOUS OTHER FILES 375

is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free resource distribution system which
is implemented by public license practices. Many people have made generous con-
tributions to the wide range of data distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute resources through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

9. If the distribution and/or use of the Linguistic Resource is restricted in certain coun-
tries either by patents or by copyrighted interfaces, the original copyright holder who
places the Linguistic Resource under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

10. The Free Software Foundation may publish revised and/or new versions of the Lesser
General Public License for Linguistic Resources from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns.

Each version is given a distinguishing version number. If the Linguistic Resource spec-
ifies a version number of this License which applies to it and "any later version", you
have the option of following the terms and conditions either of that version or of any
later version published by the Free Software Foundation. If the Linguistic Resource
does not specify a license version number, you may choose any version ever published
by the Free Software Foundation.

11. If you wish to incorporate parts of the Linguistic Resource into other free programs
whose distribution conditions are incompatible with these, write to the author to ask
for permission.

NO WARRANTY

12. BECAUSE THE LINGUISTIC RESOURCE IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE LINGUISTIC RESOURCE, TO THE EX-
TENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PRO-
VIDE THE LINGUISTIC RESOURCE "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE LINGUISTIC RESOURCE IS WITH YOU. SHOULD

376 CHAPTER 15. FILE FORMATS

THE LINGUISTIC RESOURCE PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY
WHO MAY MODIFY AND/OR REDISTRIBUTE THE LINGUISTIC RESOURCE
AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING
ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE LINGUISTIC RE-
SOURCE (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BE-
ING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE LINGUISTIC RESOURCE TO OPERATE WITH
ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Bibliography

[1] Free Software Foundation. http://www.fsf.org. 15.13.10

[2] Anna ANASTASSIADIS-SYMEONIDIS, Tita KYRIACOPOULOU, Elsa SKLAVOUNOU, Ias-
son THILIKOS, and Rania VOSKAKI. A system for analysing texts in modern greek:
representing and solving ambiguities. In Proceedings of COMLEX 2000, Workshop on
Computational Lexicography and Multimedia Dictionaries. Patras, 2000. 3.9

[3] Jean-Claude ANSCOMBRE. Pourquoi un moulin à vent n’est pas un ventilateur. Langue
Française, 86, 1990. 11.1

[4] Laurie BAUER. English Word-Formation. Cambridge University Press, 1983. 11.1

[5] Emile BENVENISTE. Fondements syntaxiques de la composition nominale. Formes nouvelles
de la composition nominale, pages 145–176. Gallimard, Paris, 1974. 11.1

[6] Olivier BLANC and Anne DISTER. Automates lexicaux avec structure de traits. In Actes
RECITAL 2004, 2004. 7.3

[7] Xavier BLANCO. Noms composés et traduction français-espagnol. Lingvisticæ Investi-
gationes, 21(1), 1997. Amsterdam-Philadelphia : John Benjamins Publishing Company.
3.9

[8] Xavier BLANCO. Les dictionnaires électroniques de l’espagnol (DELASs et DELACs).
Lingvisticæ Investigationes, 23(2), 2000. Amsterdam-Philadelphia : John Benjamins Pub-
lishing Company. 3.9

[9] Jean-Paul BOONS, Alain GUILLET, and Christian LECLÈRE. La structure des phrases
simples en français : classes de constructions transitives. Technical report, LADL, Paris,
1976. 9.1

[10] Jean-Paul BOONS, Alain GUILLET, and Christian LECLÈRE. La structure des phrases sim-
ples en français : constructions intransitives. Droz, Genève, 1976. 9.1

[11] Firefox. Web browser. http://www.mozilla.com/firefox/. 4.8.2

[12] Netscape. Web browser. http://www.netscape.com. 4.8.2

[13] Pierre CADIOT. A entre deux noms : vers la composition nominale. Lexique, 11:193–240,
1992. 11.1

377

http://www.fsf.org
http://www.mozilla.com/firefox/
http://www.netscape.com

378 BIBLIOGRAPHY

[14] Folker CAROLI. Les verbes transitifs à complément de lieu en allemand. Lingvisticæ In-
vestigationes, 8(2):225–267, 1984. Amsterdam-Philadelphia : John Benjamins Publishing
Company. 9.1

[15] A. CHROBOT, B. COURTOIS, M. HAMMANI-MC CARTHY, M. GROSS, and K. ZELLAGUI.
Dictionnaire electronique DELAC anglais : noms composés. Technical Report 59,
LADL, Université Paris 7, 1999. 3.9

[16] Unicode Consortium. http://www.unicode.org. 2.2

[17] Matthieu CONSTANT and Anastasia YANNACOPOULOU. Le dictionnaire électronique
du grec moderne: Conception et développement d’outils pour son enrichissement et
sa validation. In Studies in Greek Linguistics, Proceedings of the 23rd annual meeting of the
Department of Linguistics. Faculty of Philosophy, Aristotle University of Thessaloniki,
2002. 3.9

[18] Danielle CORBIN. Hypothèses sur les frontières de la composition nominale. Cahiers de
grammaire, 17:26–55, 1992. Université de Toulouse Le Mirail. 11.1

[19] Blandine COURTOIS. Formes ambiguës de la langue française. Lingvisticæ Investiga-
tiones, 20(1):167–202, 1996. Amsterdam-Philadelphia : John Benjamins Publishing Com-
pany. 3.9

[20] Blandine Courtois and Max Silberztein, editors. Les dictionnaires électroniques du français.
Larousse, Langue française, vol. 87, 1990. 3.9, 11.2.1, 11.2.2

[21] Anne DISTER, Nathalie FRIBURGER, and Denis MAUREL. Améliorer le découpage en
phrases sous INTEX. In Anne Dister, editor, Revue Informatique et Statistique dans les
Sciences Humaines, volume Actes des 3èmes Journées INTEX, pages 181–199, 2000. 2.5.2

[22] Pamela DOWNING. On the Creation and Use of English Compound Nouns. In Proceed-
ings of CICLING-2002, volume 53, pages 810–842. Linguistic Society of America, 1977.
11.1

[23] Dana-Marina DUMITRIU and Sébastien PAUMIER. Requêtes linguistiques sur aligne-
ments multilingues. In Directia Terminologie si Inginerie Lingvistica (DTIL’08), February
2008. ISBN: 978-9-291220-37-3. 10

[24] Inkscape. Vector Graphics Editor. http://www.inkscape.org. 5.4.1

[25] Samuel ELEUTERIO, Elisabete RANCHHOD, Helena FREIRE, and Jorge BAPTISTA. A
system of electronic dictionaries of portuguese. Lingvisticæ Investigationes, 19(1):57–82,
1995. Amsterdam-Philadelphia : John Benjamins Publishing Company. 3.9

[26] Anibale ELIA. Le verbe italien. Les complétives dans les phrases à un complément.
Schena/Nizet, Fasano/Paris, 1984. 9.1

[27] Anibale ELIA. Lessico-grammatica dei verbi italiani a completiva. Tavole e indice generale.
Liguori, Napoli, 1984. 9.1

http://www.unicode.org
http://www.inkscape.org

BIBLIOGRAPHY 379

[28] Anibale ELIA and Simoneta VIETRI. Electronic dictionaries and linguistic analysis of
italian large corpora. In Actes des 5es Journées internationales d’Analyse statistique des
Données Textuelles. Ecole Polytechnique fédérale de Lausanne, 2000. 3.9

[29] Anibale ELIA and Simoneta VIETRI. L’analisi automatica dei testi e i dizionari elet-
tronici. In E. Burattini and R. Cordeschi, editors, Manuale di Intelligenza Artificiale per le
Scienze Umane. Roma:Carocci, 2002. 3.9

[30] Vassiliki Foufi. Les noms composés A(A)N du Grec Moderne et leurs variantes. In
Kakoyianni Doa [57]. 11.2

[31] Nathalie FRIBURGER. Reconnaissance automatique des noms propres : application à la classi-
fication automatique de textes journalistiques, 2002. Thèse de doctorat. Université de Tours.
12

[32] A Simple English Axis Generator. http://nlp.cs.nyu.edu/GMA/docs/
HOWTO-axis. 14.9

[33] Jacqueline GIRY-SCHNEIDER. Syntax and lexicon: Blessure (wound), noeud (knot),
caresse (caress)... SMIL, Journal of Linguistic Calculus, 3-4:55–72, 1978. 9.1

[34] Jacqueline GIRY-SCHNEIDER. Les nominalisations en français. L’opérateur faire dans le lex-
ique. Droz, Genève-Paris, 1978. 9.1

[35] Jacqueline GIRY-SCHNEIDER. Les prédicats nominaux en français. Les phrases simples à
verbe support. Droz, Genève-Paris, 1987. 9.1

[36] GNU. Lesser General Public License. http://www.gnu.org/licenses/lgpl.
html. 1.1, 15.13.10

[37] Gaston GROSS. Définition des noms composés dans un lexique-grammaire. Langue
Française, 87, 1990. 11.1

[38] Gaston GROSS. Les expressions figées en français. Noms composés et autres locutions.
Ophrys, Paris, 1996. 3.9, 11.1

[39] Maurice GROSS. Méthodes en syntaxe. Hermann, Paris, 1975. 9.1

[40] Maurice GROSS. Sur quelques groupes nominaux complexes. In J.-C. Chevalier
et M. Gross, editor, Méthodes en grammaire française, pages 97–119. Paris: Klincksieck,
1976. 9.1

[41] Maurice GROSS. Taxonomy in syntax. SMIL, Journal of Linguistic Calculus, 3-4:73–96,
1978. 9.1

[42] Maurice GROSS. Simple sentences. Discussion of Fred W. Householder’s paper (anal-
ysis, synthesis and improvisation). In Sture Allen, editor, Text Processing, Proceedings of
Nobel Symposium 51, pages 297–315. Stockholm:Almqvist Wiksell, 1982. 9.1

[43] Maurice GROSS. On structuring the lexicon. Quaderni di Semantica, 4(1):107–120, 1983.
9.1

http://nlp.cs.nyu.edu/GMA/docs/HOWTO-axis
http://nlp.cs.nyu.edu/GMA/docs/HOWTO-axis
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html

380 BIBLIOGRAPHY

[44] Maurice GROSS. Lexicon-grammar and the syntactic analysis of french. In Proceedings
of the 10 th International Conference on Computational Linguistics (COLING’84). Stanford,
California, 1984. 9.1

[45] Maurice GROSS. A linguistic environment for comparative romance syntax. In Ph.
Baldi, editor, Papers from the XIIth Linguistic Symposium on Romance Languages, volume
IV(26) of Amsterdam studies in the theory and history of linguistic science, pages 373–446.
Amsterdam/Philadelphia: Benjamins, 1984. 9.1

[46] Maurice GROSS. Grammaire transformationnelle du français. 3 - Syntaxe de l’adverbe. AS-
STRIL, Paris, 1986. 3.9, 9.1

[47] Maurice GROSS. Lexicon-grammar. the representation of compound words. In
COLING-1986 Proceedings, pages 1–6. Bonn, 1986. 9.1

[48] Maurice GROSS. Methods and tactics in the construction of a lexicon-grammar. In Lin-
guistics in the Morning Calm 2, Selected papers from SICOL, pages 177–197. Seoul: Han-
shin, 1986. 9.1

[49] Maurice GROSS. Linguistic representations and text analysis. In Linguistic Unity and
Linguistic Diversity in Europe, pages 31–61. London: Academia Europaea, 1991. 9.1

[50] Maurice GROSS. Constructing lexicon-grammars. In Atkins and Zampolli, editors,
Computational Approaches to the Lexicon, pages 213–263. Oxford Univ. Press, 1994. 9.1

[51] Maurice GROSS. The lexicon-grammar of a language: Application to french. In R.E.
Asher, editor, The Encyclopedia of Language and Linguistics, volume 4, pages 2195–2205.
Oxford/NewYork/Seoul/Tokyo: Pergamon, 1994. 9.1

[52] Alain GUILLET and Christian LECLÈRE. La structure des phrases simples en français : les
constructions transitives locatives. Droz, Genève, 1992. 9.1

[53] Benoît HABERT and Christian JACQUEMIN. Noms composés, termes, dénominations
complexes: problématiques linguistiques et traitements automatiques. Traitement Au-
tomatique des Langues, 2:5–41, 1993. 11.1

[54] IGM. Lesser General Public License for Linguistic Resources. http://igm.
univ-mlv/~unitex/lgpllr.html. 1.1

[55] Text Encoding Initiative. http://www.tei-c.org. 10.1

[56] Christian JACQUEMIN. Spotting and Discovering Terms through Natural Language Process-
ing. MIT Press, 2001. 11.2.3

[57] Fryni Kakoyianni Doa, editor. Penser le lexique-grammaire : perspectives actuelles. Editions
Honoré Champion, Paris, France, 2014. 30, 79

[58] Gaby KLARSFLED and Mary HAMMANI-MC CARTHY. Dictionnaire électronique du
ladl pour les mots simples de l’anglais (DELASa). Technical report, LADL, Université
Paris 7, 1991. 3.9

http://igm.univ-mlv/~unitex/lgpllr.html
http://igm.univ-mlv/~unitex/lgpllr.html
http://www.tei-c.org

BIBLIOGRAPHY 381

[59] Cvetana KRSTEV, Duško VITAS, and Agata SAVARY. Prerequisites for a Comprehensive
Dictionary of Serbian Compounds. LNCS, 4139:552–563, 2006. 11.2

[60] Tita KYRIACOPOULOU. Les dictionnaires électroniques: la flexion verbale en grec moderne,
1990. Thèse de doctorat. Université Paris 8. 3.9

[61] Tita KYRIACOPOULOU. Un système d’analyse de textes en grec moderne: représenta-
tion des noms composés. In Actes du 5ème Colloque International de Linguistique Grecque,
13-15 septembre 2001. Sorbonne, Paris, 2002. 3.9

[62] Tita KYRIACOPOULOU, Safia MRABTI, and AnastasiaYANNACOPOULOU. Le diction-
naire électronique des noms composés en grec moderne. Lingvisticæ Investigationes,
25(1):7–28, 2002. Amsterdam-Philadelphia : John Benjamins Publishing Company. 3.9

[63] Jacques LABELLE. Le traitement automatique des variantes linguistiques en français:
l’exemple des concrets. Lingvisticæ Investigationes, 19(1):137–152, 1995. Amsterdam-
Philadelphia : John Benjamins Publishing Company. 3.9

[64] Eric LAPORTE and Anne MONCEAUX. Elimination of lexical ambiguities by gram-
mars : The ELAG system. Lingvisticæ Investigationes, 22:341–367, 1998. Amsterdam-
Philadelphia : John Benjamins Publishing Company. 7.3

[65] Ville LAURIKARI. TRE home page. http://laurikari.net/tre/. 1, 4.7

[66] Christian LECLÈRE. The lexicon-grammar of french verbs: a syntactic database. In
Kawaguchi Y. et alii, editor, Linguistic Informatics - State of the Art and the Future, pages
29–45. Amsterdam/Philadelphia: Benjamins, 2005. 9.1

[67] Judith N. LEVI. The Syntax and Semantics of Complex Nominals. Academic Press, New
York-London, 1978. 11.1

[68] XAlign(Alignement multilingue) LORIA (2006). http://led.loria.fr/outils/
ALIGN/align.html. 10, 15.13.10

[69] Annie MEUNIER. Nominalisation d’adjectifs par verbes supports, 1981. Thèse de doctorat.
Université Paris 7. 9.1

[70] Sun Microsystems. Java. http://java.sun.com. 1.2

[71] Christian MOLINIER and Françoise LEVRIER. Grammaire des adverbes: description des
formes en -ment. Droz, Genève, 2000. 9.1

[72] Anne MONCEAUX. Le dictionnaire des mots simples anglais : mots nouveaux et vari-
antes orthographiques. Technical Report 15, IGM, Université de Marne-la-Vallée, 1995.
3.9

[73] Marcello C. M. MUNIZ, Maria das Graças V. NUNES, and Eric LAPORTE. UNITEX-
PB, a set of flexible language resources for Brazilian Portuguese. In Proceedings of the
Workshop on Technology of Information and Human Language, 2005. São Leopoldo (Brazil):
Unisinos. 3.9

http://laurikari.net/tre/
http://led.loria.fr/outils/ALIGN/align.html
http://led.loria.fr/outils/ALIGN/align.html
http://java.sun.com

382 BIBLIOGRAPHY

[74] Alexis NEME. A lexicon of arabic verbs constructed on the basis of semitic taxonomy
and using finite-state transducers. In Proceedings of the International Workshop on Lexical
Resources (WoLeR) at ESSLLI. Ljubljana, Slovenia, 2011. 3.6

[75] OpenOffice.org. http://www.openoffice.org. 2.2, 9.2.2

[76] Dong-Ho PAK. Lexique-grammaire comparé français-coréen. Syntaxe des constructions com-
plétives. PhD thesis, UQAM, Montréal, 1996. 9.1

[77] Soun-Nam PARK. La construction des verbes neutres en coréen, 1996. Thèse de doctorat.
Université Paris 7. 9.1

[78] Sébastien PAUMIER and Dana-Marina DUMITRIU. Editable text alignments and pow-
erful linguistic queries. In Matthieu Constant, Takuya Nakamura, Michele De Gioia,
and Sara Vecchiato, editors, 27th International Conference on Lexis and Grammar (LGC’08),
pages 117–125, September 2008. 10, 10.2

[79] Sébastien PAUMIER and Jee-Sun NAM. Un système de dictionnaire de mots simples du
coréen. In Kakoyianni Doa [57], pages 481–490. 6.9.3

[80] Adam PRZEPIÓRKOWSKI and Marcin WOLIŃSKI. The Unbearable Lightness of Tag-
ging: A Case Study in Morphosyntactic Tagging of Polish. In Proceedings of the 4th In-
ternational Workshop on Linguistically Interpreted Corpora, EACL 2003, 2003. 11.1.1, 11.2.2

[81] Roger-Bruno RABENNILAINA. Le verbe malgache. AUPELF-UREF et Université Paris 13,
Paris, 1991. 9.1

[82] Elisabete RANCHHOD. Frozen adverbs. comparative forms como c in portuguese.
Lingvisticæ Investigationes, 15(1):141–170, 1991. Amsterdam-Philadelphia : John Ben-
jamins Publishing Company. 3.9, 9.1

[83] Elisabete RANCHHOD. Ressources linguistiques du portugais implémentées sous in-
tex. In C. Fairon, editor, Analyse Lexicale et Syntaxique: Le système INTEX, Lingvisticae
Investigationes, pages 263–277. Amsterdam-Philadelphia : John Benjamins Publishing
Company, 1998. 3.9

[84] Elisabete RANCHHOD. Problèmes de traduction automatique des constructions
à verbes supports. Lingvisticæ Investigationes, 23(2):253–267, 2001. Amsterdam-
Philadelphia : John Benjamins Publishing Company. 9.1

[85] Elisabete RANCHHOD and Michele DE GIOIA. Comparative romance syntax. frozen
adverbs in italian and in portuguese. Lingvisticæ Investigationes, 20(1):33–85, 1996.
Amsterdam-Philadelphia : John Benjamins Publishing Company. 9.1

[86] Elisabete RANCHHOD and Samuel ELEUTERIO. Construção de dicionários electrónicos
do português. problemas teóricos e metodológicos. In Actas do Congresso Internacional
sobre o Português, pages 265–282, 1996. Lisboa, Colibri. 3.9

http://www.openoffice.org

BIBLIOGRAPHY 383

[87] Morris SALKOFF. Verbs of mental states. In Lexique, syntaxe et lexique-grammaire. Papers
in honour of Maurice Gross, volume 24 of Lingvisticæ Investigationes Supplementa, pages
561–571. Amsterdam/Philadelphia: Benjamins, 2004. 9.1

[88] Agata SAVARY. Recensement et description des mots composés - méthodes et applications,
2000. Thèse de doctorat. Université de Marne-la-Vallée. 3.9, 11.1.1, 11.1.2

[89] Agata SAVARY. A formalism for the computational morphology of multi-word units.
Archives of Control Sciences, 15(3):437–449, 2005. 11, 11.1.2, 11.2

[90] Max SILBERZTEIN. Les groupes nominaux productifs et les noms composés lexical-
isés. Lingvisticæ Investigationes, 27(2):405–426, 1999. Amsterdam-Philadelphia : John
Benjamins Publishing Company. 3.9, 11.1

[91] Carlos SUBIRATS-RÜGGEBERG. Sentential complementation in Spanish. A lexico-
grammatical study of three classes of verbs. John Benjamins, Amsterdam/Philadelphia,
1987. 9.1

[92] Thomas TREIG. Complétives en allemand. classification. Technical Report 7, LADL,
1977. 9.1

[93] Lidia VARGA. Classification syntaxique des verbes de mouvement en hongrois dans
l’optique d’un traitement automatique. In F. Kiefer, G. Kiss, and J. Pajzs, editors, Papers
in Computational Lexicography (COMPLEX), pages 257–265, Budapest, Research Institute
for Linguistics, Hungarian Academy of Sciences, 1996. 9.1

[94] Simoneta VIETRI. On the study of idioms in italian. In Sintassi e morfologia della lingua
italiana, Congresso internazionale della Società di Linguistica Italiana. Roma:Bulzoni, 1984.
3.9

[95] Duško VITAS, Svetla KOEVA, Cvetana KRSTEV, and Ivan OBRADOVIĆ. Tour du monde
through the dictionaries. In Matthieu Constant, Takuya Nakamura, Michele De Gioia,
and Sara Vecchiato, editors, 27th International Conference on Lexis and Grammar (LGC’08),
pages 249–256, September 2008. 10

384 BIBLIOGRAPHY

Index

! . 79
. 42, 53, 80
- . 66
\ . 42, 75, 78
. 32, 76, 79, 126, 140
$. 107–108
* . 82, 135
+ . 42, 66, 81, 96
, . 42, 44
/ . 42, 103
1 . 46
2 . 46
3 . 46
: . 42, 99
$< . 139
<^> . 32, 124
<CDIC> . 76, 140
<DIC> . 76, 79, 140
<E>32, 76, 79, 81, 95, 124, 126
<FIRST> 32, 76, 79, 140
<I=?> .53
<L> . 124
<LETTER> . 140
<LOWER> 32, 76, 79, 140
<MAJ> . 32, 76, 79, 140
<MIN> . 32, 76, 79, 140
<MOT> . 32, 76, 140
<NB> .32, 76, 79, 140
<PNC> .32
<PRE> . 32, 76, 79
<R=?> .53
<SDIC> . 76, 140
<TDIC> . 76
<TOKEN> . 140, 197

<UPPER> 32, 76, 79, 140
<WORD> . 32, 76
<X=n> .53
= . 43
$> . 139
@ . 211
@% . 211
$[. 132
$] . 132
_ . 107, 184
{S} 32, 80, 305, 311, 327, 342, 347
{STOP} . 34, 77, 80

A
A . 45
Abst . 45
Acyclic automaton 165
Adding languages . 22
ADV . 45
Advanced search options 156
Algebraic languages 94
All matches . 84, 154
Alphabet . . . 33, 67, 287, 297, 300, 302, 311,

313, 320
Korean . 199
sort . 49
sorted . 321

Ambiguity rate . 181
Ambiguity removal 175
Ambiguous

transducer 106, 156
Analysis of free compound words

in Germanic languages 39, 305
in Russian . 39, 305

385

386 INDEX

Anl . 45
AnlColl . 45
Antialiasing . 116, 345
Apache-2.0 License 363
Approximation of a grammar with a

finite state transducer127, 295
Arabic typographic rules 72, 349
Assessment of ambiguity rate 181
Automatic inflection 51, 123, 304
Automaton

acyclic . 165
finite state . 94
minimal . 62
of the text 77, 125, 165, 310, 313

Axiom. .93

B
Box alignement .117
Boxes

alignement . 117
connecting . 96
creating . 94
deleting . 103
selection . 102
sorting lines . 114

BSD License . 361
Buckwalter++ . 61
BuildKrMwuDic . 282

C
C . 46, 52, 123
Cascade of transducers 253, 282
Case

respect of lowercase/uppercase
124–126

Case sensitivity . 76, 84
CasSys. .253, 282
cat . 183
CheckDic 48, 284, 338
Checking dictionary format 48
Chinese characters 200
Clitics

normalization 169, 306
Cognates . 219
Collections of graphs 144

Colors
configuration . 118

Comment
in a dictionary . 42
in a graph . 96

Comparing concordances161
Comparing variables 153
Compilation

of a graph . 298
of an ELAG grammar 176

Compilation of a graph 127
complete . 184
Compound words . 225
Compress 43, 62, 284, 336
Compression of a dictionary 284, 306
Conc . 45
Concatenation of regular expressions. .75,

80
ConcColl . 45
Concord . 285
Concordance 85, 159, 285

comparison . 161
frame . 87

ConcorDiff . 161, 287
CONJC .45
CONJS .45
Conjugation . 51
Conservation of better paths 313
Console . 280
Consonant skeleton.59
Constraints on grammars 128
Context-free languages 94
Contexts . 132

concordance 87, 159, 285
copy of a list . 108
zone in a graph. 69

Convert . 288
Copy . 102, 108, 110
Copying lists . 108
Corpus . see Text
Creating a Box . 94
Creating log files . 280
Cut. .110

INDEX 387

D
D . 53, 123
Declension . 51
Degree of ambiguity 167
DELA . 31, 41
DELAC . 41
DELACF . 41
DELAF . 41–44, 67, 336
DELAS . 41, 44
Derivation. .93
DET . 45
Dico . 38, 67, 290
Dictionaries

applying 37, 66, 290
automatic inflection 51, 304
checking . 48
codes used within 45
comments in . 42
compression 62, 284, 306
contents . 45
default selection 39
DELAC . 41
DELACF . 41
DELAF 41–44, 67, 284, 336
DELAS . 41, 44
filters . 66
format . 41
granularity . 167
lookup . 47
of the text . 77, 165
priority . 66
reference to information in the 77, 126
search . 47
sorting . 49
text . 38
transliterating . 61
verification . 284

Dictionary graphs . 67
Dictionary information file 338
Dictionary-entry variables 141
Directory

personal working . . 21, 23, 25, 97, 221,
346

text . 31, 279
Unitex system 18, 21–22, 25, 346

discr . 183
DumpOffsets . 291
Dutch

free compound words 39, 305

E
ELAG . 126, 175
Elag . 293, 341
ELAG tag sets . 181
ElagComp . 294
en . 45
Epsilon . see <E>
Equivalences.txt 229
Equivalent characters 49
Error detection in graphs 132, 295, 298
Errors in graphs 132, 295, 298
Evamb . 294
Exclusion of grammatical and semantic

codes . 78
Exploring the paths of a grammar 143
External programs

BatchRunScript 273, 275
BuildKrMwuDic 282
CasSys . 282
CheckDic 48, 284, 338
Compress 43, 62, 284, 336
Concord .285
ConcorDiff 161, 287
Convert .288
Dico . 38, 67, 290
DumpOffsets 291
DuplicateFile 276–277
Elag 178, 180–181, 293, 341
ElagComp178, 181, 187, 294
Evamb . 294
Extract .294
Flatten . 127, 295
Fst2Check . 295
Fst2Grf .191
Fst2List . 296
Fst2Txt 33–34, 297
Grf2Fst2 127, 298
ImplodeTfst 300
InstallLingResourcePackage

274

388 INDEX

Locate . 67, 300
LocateTfst . 302
MultiFlex . 304
Normalize 280, 304
PolyLex . 40, 305
RebuildTfst 306
Reconstrucao 171, 306
Reg2Grf .307
RunScript 273–274
SelectOutput 274, 314, 317
Seq2Grf .307
SortTxt49, 308, 321
Stats . 308
Table2Grf . 309
Tagger . 309
TagsetNormTfst 310
TEI2Txt .310
Tfst2Grf . 310
Tfst2Unambig 194, 311
Tokenize . 36, 311
TrainingTagger 312
Txt2Tfst . 313
Uncompress . 313
UnitexTool . 314
UnitexToolLogger 274, 315
Untokenize . 314
Unxmlize . 317
VersionInfo 276
XMLizer .318

Extract . 294
Extracting occurrences 161

F
F . 46
f . 46
Factorized lexical entries 180
File

alphabet . . . 25, 33–34, 48, 67, 287, 297,
300, 302, 311, 313

Alphabet_sort.txt 49
Alphabet.txt 67, 321
arabic_typo_rules.txt 349
.bin62, 284, 290, 336, 346
.cfg . 346
CHECK_DIC.TXT 48, 284, 338

-conc.fst2 . 178
concord_tfst.n 304, 348
concord.html 333
concord.ind 302, 304, 332
concord.n 302, 348
concord.txt 333
Config . 343
corpus.txt . 341
cursentence.grf 311, 331
cursentence.tok 311, 331
cursentence.txt 311, 331
.dic . 48, 62, 284
diff.html . 334
dlc 38, 51, 290, 335, 347
dlc.n . 347
dlf 38, 51, 290, 335, 347
dlf.n . 347
.elg . 340
enter.pos 312, 327
Equivalences.txt 229
err 38, 51, 290, 335, 347
err.n . 347
ForbiddenWords.txt348
formats . 319
.fst2 85, 127, 191, 298, 325
.grf 85, 132, 191, 298, 307, 322
HTML . 87, 159
.html . 287
.inf . 62, 284, 336
.lst . 180, 340
Morphology.txt 228–229
norm.rul . 186
regexp.grf . 307
.rul 176, 178, 180, 293–294, 341
Sentence.fst2 33
.snt 31, 305, 311, 313, 319, 327
stat_dic.n 290, 347
stats.n36, 312, 347
system_dic.def 346
tags_err 335, 347
tags_err.n . 347
tagset.def . . 181, 184, 186–187, 340
tags.ind . 335
text . 28, 319
text.cod 36, 312, 327

INDEX 389

text.tfst 313, 328
text.tind 313, 330
.tfst . 293
tfst_tags_by_alph.txt 332
tfst_tags_by_freq.txt 332
tok_by_alph.txt 36, 312, 327
tok_by_freq.txt 36, 312, 327
tokens.txt 36, 312, 327
train_dict . 342
transcoding . 26
.txt 160, 287, 319, 327
Unitex . 21
Unitex.jar 18, 21, 23
user_dic.def 346

Find and replace . 112
Flatten . 127, 295
flex . 183
Folder . see Directory
Forbidden word file 348
Form

canonical . 42
inflected. .41

Fst2Check . 295
Fst2Grf . 191
Fst2List . 296
Fst2Txt . 33–34, 297

G
G . 46
Generation of Korean MWU dictionary

282
German

free compound words 39, 305
GlossaNet . 286, 333
Grammars

ambiguity removal 175
collection . 180
constraints . 128
context-free . 93
ELAG . 126
extended algebraic 94
for phrase boundary recognitions 124
formalism . 93
inflectional . 51
local . 126

normalisation
of non-ambiguous forms 124
of the text automaton 125

normalization
of non-ambiguous forms 33

splitting into sentences 31
Granularity of dictionaries 167
Graph

antialiasing . 116
approximation with a finite state

transducer127, 295
box alignment . 117
calling a sub-graph 99
comments in . 96
compilation 127, 298
connecting boxes 96
creating a box . 94
deleting boxes .103
detection of errors 132
display . 114
display options, fonts and colors . 118
error detection 295, 298
format . 322
including into a document 120
inflection . 51
main . 309, 312
parameterized 127, 210
printing . 122
repository . 100
saving. .97
syntactic . 126
types of . 123
variables in a . 107
zoom . 114

Graphical units . 225
Grf2Fst2 . 127, 298
Grid. .117

H
Hangul . 53, 304, 328
Hum . 45
HumColl . 45

I
I . 46

390 INDEX

i . 45
ImplodeTfst . 300
Including a graph into a document . . . 120
Inflection . 51
Inflectional codes . 184
Inflectional constraints 78
Information

grammatical .42
inflectional . 42
semantic . 42

Installation
on Linux . 19
on OS X . 19
on Windows . 18

Installer . 18
Integrated text editor 28
Interval . 131
INTJ . 45

J
J . 46, 53
Jamo . 53, 328
Java

JRE. .18
Runtime Environment 18
virtual machine 18

JRE . 18

K
K . 46
Keeping the best paths 171
Kleene star . 75, 82
Korean MWU dictionary 282

L
L . 52, 123
LADL . 13, 41, 209
Language selection . 25
Lemma . 42
Lexical

entries . 41
labels 77, 167, 305, 311, 327, 342
mask . 76, 188
unit . 311, 313

Lexicon-grammar . 209
tables 209, 309, 312

LGPL . 351
LGPLLR . 371
License

Apache-2.0 . 363
BSD . 361
LGPL . 17, 351
LGPLLR . 17, 371
MIT . 367
TMate .369

Locate . 67, 222, 300
LocateTfst . 302
Log file . 348
Log Unitex programs 315, 317
Longest matches 84, 154
Looking up a word in a dictionary 47
Loop

number of repetitions 131
Lowercase

case respect 124, 126

M
m . 46
Matrices . 209
Menu character size 22
MERGE 33, 67, 146, 154, 332
Meta-characters . 109
Meta-symbols . 32, 76
MIT License . 367
Modification of the text 160, 285
Morphological dictionary-graphs 71
Morphological filters 69, 82
Morphological mode 69, 139
Morphological-mode dictionaries . 69, 140
Morphology.txt 228–229
Moving phrases . 149
MultiFlex . 304
Multiple selection . 102

copy-paste . 102
Multi-word units . 225
MWU . 225

N
N . 45
n . 46
ne . 45

INDEX 391

Negation
of a feature . 77
of a lexical mask 79

Non-terminal symbols 93
Normalization

of ambiguous forms 125, 168, 313
of clitics in Portuguese 169, 306
of non-ambiguous forms 33
of separators 31, 304
of the text automaton . . . 125, 168, 313

Normalization rule file 348
Normalize . 280, 304
norm.rul . 186
Norwegian

free compound words 39, 305
Number of repetitions 131

O
Occurrences

extraction . 161
number of . 85, 154

Operator
. 53
<I=?> . 53
<R=?> . 53
<X=n> . 53
C . 52, 123
concatenation . 80
D . 53, 123
disjunction . 81
iteration . 82
J . 53
Kleene star . 82
L . 52, 123
P . 53, 123
R . 52, 123
U . 53, 123
W . 53, 123

Optimizing ELAG Grammars 187
Options

configuration . 118
Output associated to a subgraph call . .129
Output variables . 151
Overlapping occurrences 147

P
P . 46, 53, 123
p . 46
Package

linguistic . 272
Parameterized graphs 210
Parenthesis . 81
Paste . 102, 108, 110
Pattern search 300, 302
Pixellisation . 116
PNG graph export . 120
PolyLex . 40, 305
Portuguese

normalization of clitics169, 306
POSIX . 83
Preferences . 119
PREP . 45
Printing

a graph . 122
a sentence automaton 194

Priority
of dictionaries . 66
of the leftmost match 147
of the longest match 148

PRO . 45

Q
Querying variables 153

R
R . 52, 123
RebuildTfst . 306
Reconstrucao 171, 306
Reconstruction of the text automaton . 306
Recursive Transition Networks 94
Reentrant alignment 219
Reference to information in the

dictionaries 77, 126
Reg2Grf . 307
Regular expressions 75, 83, 94, 307
Repetition

number of .131
REPLACE 146, 154, 332
Resolving ambiguity 178
Respect

392 INDEX

of lowercase/uppercase 124, 126
of spaces . 126

RTN . 94
Rules

for transducer application 146
rewriting . 93
upper case and lower case letters . . 67
white space . 67

Russian
free compound words 39, 305

S
S . 46
s . 46
Scripting Unitex programs 271, 314
se . 45
Search for patterns 84, 154
Selecting a language 25
Semitic languages . 59
Sentence delimiter . . . 32, 80, 305, 311, 327,

342, 347
Separators

word . 31
Seq2Grf . 307
Sequence Automaton 203
Shortest matches 84, 154
Sorting . 307–308

a dictionary . 49
concordances 87, 286
lines of a box . 114
of concordances 159

SortTxt . 49, 308, 321
Space

obligatory . 76
prohibited . 76

Splitting
into sentences . 31
into tokens . 34

State
final . 94
initial . 94

Statistics . 308
Stats . 308
SVG graph export . 122
Symbols

non-terminal . 93
special . 109
terminal . 93

Synchronization point 175
Syntactical properties.209
Syntax diagrams. .94

T
T . 46
t . 45
Table2Grf . 309
Tagger . 309
TagsetNormTfst 310
tags.ind . 71
TEI2Txt . 310
Testing variables . 152
Text

automaton of the 77, 306, 310, 313
conversion into linear text 311

directory. .31, 279
file

encoding parameters 281
formats . 25
modification 160, 285
normalisation of the automaton . . 125
normalization.31, 304
normalization of the automaton . . 168
preprocessing 29, 124
splitting into sentences 31
splitting into tokens 34
tokenization 34, 311

Text alignment . 217
Text automaton

conversion into linear text 194
Tfst2Grf . 310
Tfst2Unambig 194, 311
TMate License . 369
Token . 34, 75, 311, 313
Tokenization . 34, 311
Tokenize . 36, 311
tokens.txt . 197
Toolbar . 109
TrainingTagger 312
Transducer . 94

inflection . 51, 123

INDEX 393

rules for application 146
with variables . 107

Transducer output .118
ambiguity 106, 156
with variables . 148

Transducers . 103
Transduction . 94
Transliterating

Arabic . 61
Txt2Tfst . 313
Types of graphs . 123

U
U . 53, 123
Uncompress . 313
Underscore . 107, 149
Unicode 25, 114, 288, 319
Unification variables 233
Union of regular expressions 75, 81
Unitex JNI . 281
UnitexTool . 314
UnitexToolLogger 315
Untokenize . 314
Unxmlize . 317
Uppercase

case respect 124, 126
UTF-8 . 286, 333–334

V
V . 45
Variable

comparison . 153
dictionary-entry 141, 153
error policy . 157
in graphs. .148
input . 107

names. .107
output . 151
query . 153
redefine . 108, 151
test .152
undefined . 108

Variables
in parameterized graphs 211

Verification of the dictionary format . . 284
Void loops. .129

W
W . 46, 53, 123
Web browser . 87, 159
Weight . 106
Window for ELAG Processing 180
Word separators . 31
Words

compound . 38, 76
in Germanic languages 39, 305
in Russian 39, 305
with space or dash 43

simple . 37, 76
unknown . 38, 80

X
XMLizer . 318

Y
Y . 46

Z
z1 . 45
z2 . 45
z3 . 45
Zoom . 114

	Introduction
	What's new from version 3.2?
	Content
	Unitex contributors
	If you use Unitex in research projects...

	Installation of Unitex
	Licenses
	Java runtime environment
	Installers
	Installer for Windows
	Installer for GNU/Linux and OS X

	Manual installation
	First use
	Adding new languages
	Uninstalling Unitex
	Unitex for developers

	Loading a text
	Selecting a language
	Text formats
	Editing text files
	Opening a text
	Preprocessing a text
	Normalization of separators
	Splitting into sentences
	Normalization of non-ambiguous forms
	Splitting a text into tokens
	Applying dictionaries
	Analysis of compound words in Dutch, German, Norwegian and Russian

	Opening a tagged text

	Dictionaries
	The DELA dictionaries
	The DELAF format
	The DELAS Format
	Dictionary Contents

	Looking up a word in a dictionary
	Checking dictionary format
	Sorting
	Automatic inflection
	Inflection of simple words
	Advanced inflection operators
	Inflection of compound words
	Inflection of Semitic languages

	Transliterating Arabic dictionaries
	Compression
	Applying dictionaries
	Priorities
	Application rules for dictionaries
	Dictionary graphs
	Morphological dictionary-graphs
	Allowing for omission, substitution or insertion of letters

	Bibliography

	Searching with regular expressions
	Definition
	Tokens
	Lexical masks
	Special symbols
	References to information in the dictionaries
	Grammatical and semantic constraints
	Inflectional constraints
	Negation of a lexical mask

	Concatenation
	Union
	Kleene star
	Morphological filters
	Search
	Search configuration
	Presentation of the results
	Statistics

	Local grammars
	The local grammar formalism
	Algebraic grammars
	Extended algebraic grammars

	Editing graphs
	Creating a graph
	Sub-Graphs
	Manipulating boxes
	Transducers
	Input Variables
	Copying lists
	Special Symbols
	Toolbar Commands
	Find and replace in graphs

	Display options
	Sorting the lines of a box
	Zoom
	Antialiasing
	Box alignment
	Display options, fonts and colors

	Exporting graphs
	Inserting a graph into a document
	Printing a Graph

	Advanced use of graphs
	Types of graphs
	Inflection transducers
	Preprocessing graphs
	Graphs for normalizing the text automaton
	Syntactic graphs
	ELAG grammars
	Parameterized graphs

	Compilation of a grammar
	Compilation of a graph
	Approximation with a finite state transducer
	Constraints on grammars
	Interval for number of repetitions
	Error detection

	Contexts
	Right contexts
	Left contexts

	The morphological mode
	Why ?
	The rules
	Morphological-mode dictionaries
	Dictionary-entry variables

	Exploring grammar paths
	Graph collections
	Rules for applying transducers
	Insertion to the left of the matched pattern
	Application while advancing through the text
	Priority of the leftmost match
	Priority of the longest match
	Transducer outputs with variables

	Output variables
	Operations on variables
	Testing variables
	Comparing variables
	Querying variables

	Applying graphs to texts
	Configuration of the search
	Advanced search options
	Concordance
	Modification of the text
	Extracting occurrences
	Comparing concordances
	Debug mode

	Text automaton
	Displaying text automaton
	Construction
	Construction rules for text automata
	Normalization of ambiguous forms
	Normalization of clitic pronouns in Portuguese
	Keeping the best paths

	Resolving Lexical Ambiguities with ELAG
	Grammars For Resolving Ambiguities
	Compiling ELAG Grammars
	Resolving Ambiguities
	Grammar collections
	Window For ELAG Processing
	Description of the tag sets
	Grammar Optimization

	Linearizing text automaton with the tagger
	Compatibility of the tagset
	Use of the Tagger
	Creation of a new tagger

	Manipulation of text automata
	Displaying sentence automata
	Modifying the text automaton
	Display configuration

	Converting the text automaton into linear text
	Searching patterns in the text automaton
	Table display
	The special case of Korean

	Sequence Automaton
	Sequences Corpus
	Usage
	Search by approximation

	Lexicon-grammar
	Lexicon-grammar tables
	Conversion of a table into graphs
	Principle of parameterized graphs
	Format of the table
	Parameterized graphs
	Automatic generation of graphs

	Text alignment
	Loading texts
	Aligning texts
	Pattern matching

	Compound word inflection
	Multi-Word Units
	Formal Description of the Inflectional Behavior of Multi-word Units
	Lexicalized vs. Grammar-Based Approach to Morphological Description

	Formalism for the Computational Morphology of MWUs
	Morphological Features of the Language
	Decomposition of a MWU into Units
	Inflection paradigm of a MWU

	Integration in Unitex
	Complete Example in English
	Complete Example in French
	Complete Example in Serbian

	Cascades of Transducers
	Applying a cascade of transducers with CasSys
	Creating the list of transducers
	Editing the list of transducers
	Applying a cascade

	Details on the behavior of CasSys
	Type of graphs used
	Repeat until fix point behaviour
	The Unitex rules used for the cascade
	A special way to mark up patterns with CasSys

	Tagging generalization graphs
	Declaration
	Simple graphs
	Graphs with restrictions
	Substitution of a category

	The results of a cascade
	Displaying the concordance of a cascade
	The different resulting files of a cascade
	An xml-like output text for lexical tags

	Creating an inventory of tag occurrences

	Using Unitex/GramLab with scripts
	Translating into a script a processing launched via the graphical interface
	Shell or batch scripts
	Unitex/GramLab-interpreted scripts
	Implementing a linguistic package
	Launching with RunScript
	Launching with BatchRunScript
	Developing a script for RunScript

	Use of external programs
	Creating log files
	The console
	Unitex JNI
	Text file encoding parameters
	BuildKrMwuDic
	CasSys
	CheckDic
	Compress
	Concord
	ConcorDiff
	Convert
	Dico
	DumpOffsets
	Elag
	ElagComp
	Evamb
	Extract
	Flatten
	Fst2Check
	Fst2List
	Fst2Txt
	Grf2Fst2
	GrfDiff
	GrfDiff3
	ImplodeTfst
	Locate
	LocateTfst
	MultiFlex
	Normalize
	PolyLex
	RebuildTfst
	Reconstrucao
	Reg2Grf
	Seq2Grf
	SortTxt
	Stats
	Table2Grf
	Tagger
	TagsetNormTfst
	TEI2Txt
	Tfst2Grf
	Tfst2Unambig
	Tokenize
	TrainingTagger
	Txt2Tfst
	Uncompress
	Untokenize
	UnitexTool
	UnitexToolLogger
	Unxmlize
	XMLizer

	File formats
	Unicode encoding
	Alphabet files
	Alphabet
	Sorted alphabet

	Graphs
	Format .grf
	Format .fst2

	Texts
	.txt files
	.snt files
	File text.cod
	The tokens.txt file
	The tok_by_alph.txt and tok_by_freq.txt files
	The enter.pos file

	Text Automaton
	The text.tfst file
	The text.tind file
	The cursentence.grf file
	The sentenceN.grf file
	The cursentence.txt file
	The cursentence.tok file
	The tfst_tags_by_freq.txt and tfst_tags_by_alph.txt files

	Concordances
	The concord.ind file
	The concord.txt file
	The concord.html file
	The diff.html file

	Text dictionaries
	dlf and dlc
	err
	tags_err
	tags.ind

	Dictionaries
	The .bin files
	The .inf files
	Dictionary information file
	The CHECK_DIC.TXT file

	ELAG files
	tagset.def file
	.lst files
	.elg files
	.rul files

	Tagger files
	The corpus.txt file
	The tagger data file

	Configuration files
	The Config file
	The system_dic.def file
	The user_dic.def file
	The (user login).cfg and .unitex.cfg files

	CasSys files
	CasSys configuration files csc

	Various other files
	The dlf.n, dlc.n, err.n et tags_err.n files
	The stat_dic.n file
	The stats.n file
	The concord.n file
	The concord_tfst.n file
	Normalization rule file
	Forbidden word file
	Log file
	Arabic typographic rules: arabic_typo_rules.txt
	Offsets file of difference

	Appendix A - GNU Lesser General Public License
	Appendix B - 2-clause BSD-style Licenses
	Appendix C - Xerces2's Apache License
	Appendix D - LibYAML's MIT License
	Appendix E - SVNKit's TMate Open Source License
	Appendix F - Lesser General Public License For Linguistic Resources
	Bibliography
	Index

