

Protocole de caractérisation et de comparaison des SNR et volume de sensibilité des bobines en IRM

L Mahieu-Williame, S Gaillard, R Bolbos, J Langlois, J Verret, V Stupar, M

Viallon, P Eliat, H Saint-Jalmes, G Ginisty, et al.

▶ To cite this version:

L Mahieu-Williame, S Gaillard, R Bolbos, J Langlois, J Verret, et al.. Protocole de caractérisation et de comparaison des SNR et volume de sensibilité des bobines en IRM. Journées RMN du Grand Sud, Jul 2021, Clermont-Ferrand, France. hal-03589555

HAL Id: hal-03589555 https://hal.science/hal-03589555

Submitted on 25 Feb 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

RFMI

www.creatis.insa-lyon.fr

Protocole de caractérisation et de comparaison des SNR et volume de sensibilité des bobines en IRM

L. Mahieu-Williame¹, S. Gaillard¹, R. Bolbos², J.B. Langlois², J.M. Verret^{3,4}, V. Stupar⁴, M. Viallon¹, P.A. Eliat⁵, H. Saint-Jalmes⁵, G. Ginisty6,

F. Boumezbeur⁶, E. Bannier⁷, J. Sein⁸, D. Grenier¹, S. Camarasu-Pop¹, F. Lamberton², Olivier Beuf¹ ¹Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69100, LYON, France. ²CERMEP –imagerie du vivant, Université de Lyon, SFR Lyon-Est, CNRS UMS3453, Inserm US7, Lyon, France. ³Réseau Entraide Multicentrique IRM (REMI), Grenoble, F-38000, France. ⁴Univ. Grenoble Alpes, CNRS UMS3552, IRMaGe, Grenoble, F-38000, France. ⁵Univ Rennes, CNRS, Inserm, BIOSIT -UMS 3480, US_S 018, F-35000 Rennes, France. ⁶Neurospin, CEA, Université Paris-Saclay, Gif-sur-Yvette France. ⁷Univ Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, VISAGES (Vision, action et gestion des informations en santé) -ERL U 1228, 15 F-35000 Rennes, France. ⁸Centre IRM, Institut de Neurosciences de la Timone, CNRS & Aix-Marseille Université, UMR 7289, Marseille, France.

Objectifs

Caractériser les bobines RF en termes de SNR et de volume uniforme afin de choisir la bobine la plus adaptée pour une expérimentation donnée. Comparer des systèmes IRM dans le cadre d'étude multicentrique ou encore comme outil de contrôle qualité.

Mesure du bruit Matériels et méthode Les images RMN peuvent être filtrées, artéfactées ou mises à l'échelle ce qui • Acquisition des données : Les fantômes utilisés ont un contenu normalisé conduit à des erreurs quantitatives de la mesure du bruit du SNR [1]. Le bruit (1,25g NiSO4:6H2O + 5g NaCl par litre d'eau). Leur forme et leur volume sont stochastique d'une image en magnitude dans l'air suit la distribution statistique adaptés pour simuler les conditions in vivo. La séquence IRM utilisée est une séquence d'écho de gradient 3D ($T_{acq} \sim 4 \text{ min}$). du chi-noncentré [2] :

• Traitement des données : de manière automatique en utilisant notre programme déployé sur la plateforme d'imagerie virtuelle (VIP) [3] https://vip.creatis.insa-lyon.fr et disponible en libre accès. Le programme génère un rapport au format PDF qui inclut : une mesure du SNR ; des représentations de volumes uniformes à 10, 50 et 90% de variation ; un tableau comparatif de toutes les bobines analysées ainsi qu'une figure des profils d'intensité superposés. La mesure du bruit du SNR passe par deux tests basés sur la loi de distribution du chi-noncentré (voir encadré ci-contre). Le premier consiste à déplacer un VOI dans l'image. On appelle C_0 la classe contenant les VOIs pour lesquels $|R_{th} - R_{exp}| \le 1\%$. Deuxièmement, le test du χ^2 est appliqué sur les VOIs contenus dans C₀. Enfin nous proposons un SNR corrigé (SNR_c) prenant en compte les paramètres d'acquisition [4] ainsi que les temps de relaxation [5] :

 $SNR_{c} = \frac{SNR}{V_{vorel}} \sqrt{\frac{BW}{N_{r}N_{v}N_{r}NA}} \frac{1 - \cos(FA)\exp(-TR/T_{1})}{(1 - \exp(-TR/T_{1}))\sin(FA)\exp(-TE/T_{2})}$

avec | n : le nombre de récepteur x : l'intensité d'un pixel de l'image

Il en découle un rapport théorique de la moyenne sur la déviation standard d'un ROI dans l'air :

Le test statistique du χ^2 permet d'évaluer l'adéquation entre la distribution expérimentale et théorique définit par l'hypothèse nulle (H_0) [2] :

 $\chi^{2} = \sum_{i=1}^{df+1} \frac{(O_{i} - E_{i})^{2}}{E} \quad avec \mid O \text{ et } E \text{ : les distributions expérimentale et théorique respectivement} \\ df \text{ : le degré de liberté}$

 H_0 est vraie si $\chi^2 \leq \chi_c^2$ avec χ_c^2 la valeur critique de la fonction de densité de probabilité pour un degré de liberté et une p-value donnés.

Résultats

Coil	Mode & Nuc	Date & time	Location & station	В _о (Т)	Phant om	H _o	SNR	SNR _c	Uniform volume @50% (cm³)
PL11T7_SurfQuad MouseBrCryo1H	TxRx 1H	2020-01-29 18h26	PILoT-CREATIS BioSpec 117/16	11.8	T9660	Rej	9887 \pm Inf	$113698 \pm Inf$	0.30 ± 0.15
PL11T7_VolArr2 MouseBr1H_23mm	TxRx 1H	2020-02-06 09h46	PILoT-CREATIS BioSpec 117/16	11.8	T9660	Acc	3470 ± 87	39909 ± 998	2.61 ± 0.57
PL11T7_ SurfArr4RatBr1H	Rx 1H	2020-01-28 14h37	PILoT-CREATIS BioSpec 117/16	11.8	Mouse 11.7T	Acc	2154 ± 108	24773 ± 1239	4.04 ± 0.93
PL11T7_SurfArr4 MouseHeart1H	Rx 1H	2020-01-31 10h17	PILoT-CREATIS BioSpec 117/16	11.8	Mouse 11.7T	Acc	1920 ± 96	22077 ± 1104	4.13 ± 0.96
PL11T7_SurfLin1H_1 Omm	Rx 1H	2020-01-28 15h24	PILoT-CREATIS BioSpec 117/16	11.8	Mouse 11.7T	Rej	$2799 \pm Inf$	32194 ± Inf	0.34 ± 0.14
PL11T7_SurfLin1H_1 5mm	Rx 1H	2020-01-28 15h53	PILoT-CREATIS BioSpec 117/16	11.8	Mouse 11.7T	Acc	1378 ± 69	15853 ± 793	1.05 ± 0.30
PL11T7_SurfLin1H_2 Omm	Rx 1H	2020-01-28 15h41	PILoT-CREATIS BioSpec 117/16	11.8	Mouse 11.7T	Acc	957 ± 48	11004 ± 550	2.39 ± 0.51
PL11T7_ VolQuad1H_40mm	Tx/Rx 1H	2020-01-29 11h15	PILoT-CREATIS BioSpec 117/16	11.8	Mouse 11.7T	Acc	667 ± 17	7676 ± 192	9.6 ± 1.2
PL11T7_ VolQuad1H_60mm	Tx/Rx 1H	2020-02-07 14h46	PILoT-CREATIS BioSpec 117/16	11.8	Mouse 11.7T	Acc	568 ± 14	6536 ± 163	19 ± 2
PL11T7_ VolQuad1H_72mm	Tx/Rx 1H	2020-01-28 11h50	PILoT-CREATIS BioSpec 117/16	11.8	Mouse 11.7T	Acc	378 ± 9	4344 ± 109	15 ± 2

