
HAL Id: hal-03589399
https://hal.science/hal-03589399v1

Submitted on 25 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An agent-based simulation study of Sycomore ++ , a
scalable and self-adapting graph-based permissionless

distributed ledger
Emmanuelle Anceaume, Aimen Djari, Sara Tucci-Piergiovanni

To cite this version:
Emmanuelle Anceaume, Aimen Djari, Sara Tucci-Piergiovanni. An agent-based simulation study of
Sycomore ++ , a scalable and self-adapting graph-based permissionless distributed ledger. The 37th
ACM/SIGAPP Symposium On Applied Computing (SAC), Apr 2022, Virtual, France. �hal-03589399�

https://hal.science/hal-03589399v1
https://hal.archives-ouvertes.fr


An agent-based simulation study of Sycomore++, a
scalable and self-adapting graph-based

permissionless distributed ledger
Aimen Djari

University Paris-Saclay, CEA, List
Palaiseau, France

mohamed-aimen.djari@cea.fr

Emmanuelle Anceaume
CNRS / IRISA

France
emmanuelle.anceaume@irisa.fr

Sara Tucci-Piergiovanni
University Paris-Saclay, CEA, List

Palaiseau, France
sara.tucci@cea.fr

Abstract—The arrival of Bitcoin [1] drove the shift to de-
centralized ecosystems through the exchange of transactions
without intermediary. However, one of the main challenges
that need to face permissionless blockchains are scalability and
security. In this paper, we present a performance evaluation
of Sycomore++, a permissionless graph-based distributed ledger
whose main feature is to dynamically self-adapt the number of
created blocks to the current number of submitted transactions,
and compare them with the ones of Bitcoin and Sycomore, a
graph-based distributed ledger. Our evaluation relies on agent-
based simulations to evaluate the capability of these distributed
ledgers to address the aforementioned challenges, within different
execution contexts. One of the main lessons drawn from
these intensive simulations is the capability of Sycomore++ to
drastically reduce transaction confirmation time with respect to
the other two ledgers, to quickly react to any sudden variation of
the transaction submission rate, to minimize the computational
power waste w.r.t. PoW-based permissionless distributed ledgers,
and to surpass Bitcoin in terms of resilience to a network
adversarial environment. We also study resilience to adversarial
miners that want to endanger the quality of the graph showing
that, as in Bitcoin, the adversary is limited by its computational
power.

Index Terms—Graph-based distributed ledger, scalability, dis-
tributed ledger quality, agent-based simulation

I. INTRODUCTION

A recent evolution in blockchain technology seeks to ad-
dress the performance issue of permissionless chain-based
ledgers, in particular the small number of transactions con-
firmed per second – around 7tx/s for Bitcoin. While some
new efforts are dedicated to replace the proof-of-work (PoW)
consensus mechanisms with mechanisms such as proof-of-
stake and BFT consensus (such as [2]–[5]), reaching 102−103

tx/s, it is undeniable that Bitcoin has shown a great longevity,
validating on the ground its good design and security proper-
ties in these last 10 years. For this reason other proposals
are exploring how to leverage the same design principles, and
in particular the simplicity, of Bitcoin protocol. In this line
of works some proposals, including [6]–[8], called second-
layer protocols, propose to implement a protocol on top of
Bitcoin that hits the blockchain only from time to time. In
this way second-layer transactions are handled at the Internet
speed, while only special transactions, needed occasionally

to open/close sessions and solve disputes, are translated into
Bitcoin transactions. While the idea of off-loading transactions
is interesting, these proposals do not specifically address the
problem of scalability of the ledger-based PoW itself. In this
respect, and to the best of our knowledge (see Section II),
Sycomore [9] 1 has been the first ledger protocol, relying on
Bitcoin design principles, that addresses Bitcoin’s scalability
issues: Its graph-structure design allows for the “parallel”
creation of valid and durably appended chains of blocks.
The unique feature of Sycomore is that its graph structure
dynamically adapts to fluctuations in transaction submission
rates: when the last blocks appended to a given chain C of
the graph exceed some maximal loading threshold, subsequent
blocks of transactions are partitioned over two created sibling
chains referencing C, and these blocks are mined in parallel.
Conversely, when the last blocks of two sibling chains Ci and
Cj fall short of a minimal loading threshold, subsequent blocks
will belong to a unique chain, referencing both C1 and C2. The
decisions to split a chain of the graph or to merge two sibling
ones is locally taken by each miner, and soundness of this
decision is verifiable by everyone at any time [9].

A. Motivations of this Work.

By dynamically adapting the width of the graph to the
actual transaction load of the network, one might expect
that Sycomore would guarantee an almost optimal transaction
latency. By transaction latency it is meant the time that elapses
between the instant at which a user submits a transaction
to the network and the instant at which this transaction is
confirmed, i.e., belongs to a block that is deeply settled down
into one of the chains of the graph. Transaction latency deeply
depends on the mining difficulty, i.e. the difficulty to create a
block. To cope with variations of the network computational
power, the mining difficulty is periodically readjusted, to
guaranteeing both security and acceptable latency. In Bitcoin,
such a readjustment is executed every time the height of the
blockchain has been increased by 2016 blocks, i.e. every 14

1Sycomore is the french word for sycamore, a large broad-leaved tree
tolerant to wind.



days. Sycomore has a similar readjusting scheme, proceeding
to a readjustment of the difficulty every time the height of the
graph has been increased by Hmax = 2016 blocks since the
previous readjustment. Since Sycomore can have more than
one chains in the graph, the mining difficulty is adjusted to
fit the width of the graph, i.e., the number of leaf chains in
the graph. Unfortunately, the number of leaf chains between
any two readjustments of the difficulty can dynamically vary
to cope with variations of transaction submission rates. Hence,
the mining difficulty which was computed to fit both the
hash rate of the network and number of chains at the last
readjustment may currently be either under-estimated or over-
estimated. To illustrate this point, let us consider the scenario
where, at the time readjustment took place, the graph’s width
was very large, but subsequently the number of submitted
transactions significantly dropped, leading to a progressive
diminution of the number of leaf chains, and thus an under-
estimated mining difficulty. Such a scenario shows a possible
breach of security: adversarial miners can take advantage of a
too low mining difficulty to degrade the ledger quality [10],
that is the maximal proportion of blocks contributed by the
adversary in a sufficiently long part of the ledger maintained
by a honest node. The opposite scenario may also happen,
where a sudden augmentation of the transaction rate will give
rise to an over-estimated mining difficulty, and thus a very high
power consumption, which will be in the worst case similar
to Bitcoin’s one. As a consequence, transaction latency will
be very high, until the next readjustment of the difficult takes
place, thus hindering scalability.

B. Contributions of this work

This work presents a twofold contribution. First we present
Sycomore++, a truly scalable proof-of-work based protocol
that solves the critical issues mentioned above. Sycomore++

inherits the main mechanisms of Sycomore, while adding a
new mechanism to adjust difficulty in such a way that at any
time a constant inter-block creation delay is maintained on any
leaf chains of the graph. Secondly, we propose fine-grained
simulations to evaluate and compare protocols that have dy-
namic behavior over complex graph structures. More in detail,
to finely validate and compare the behavior of Sycomore++

with respect to its direct competitors, we have implemented
Bitcoin, Sycomore and Sycomore++ on an agent-based sim-
ulator and have compared these three protocols in presence
of adversarial environments, i.e., sophisticated attacks, large
communication delays, and sudden and substantial variations
of the system workload demand. Lessons learnt from these
experiments show that Sycomore++ succeeds in providing
(i) a transaction confirmation rate varying linearly with the
transaction submission rate, a very small and almost optimal
average transaction latency regardless of the submission trans-
action rate, a negligible number of transactions pending at
miners prior to be embedded in blocks, a drastic reduction
of the computational power used to create blocks that will
never appear in the ledger w.r.t Bitcoin and Sycomore. Finally,
we have designed sophisticated attacks that an adversary may

elaborate to hinder Sycomore++’s quality property [10]. Garay
et al. [10] define the ledger quality as the property that ensures
that an adversary cannot control more than a µ/(1 − µ)
percentage of the blocks in a sufficiently long part of the
ledger, where µ represents the ratio of the network hashing
power owned by the adversary. In this respect, and to the
best of our knowledge, this paper presents one of the most
advanced studies of fine-grained agent behaviors in graph-
based ledgers.

The remaining of the paper is organized as follows. Sec-
tion II discusses related work on simulation and graph-based
distributed ledgers. To make the paper self-contained, a brief
overview of Sycomore is presented in Section III, while Sec-
tion IV presents Sycomore++ and an analytical performance
study. Section V highlights the main lessons learnt from the
experiments we have conducted to validate Sycomore++ and
to compare its performance with both Bitcoin and Sycomore.
Finally, Section VI concludes the paper.

II. RELATED WORK

Modeling and Simulation. To shed some light on the dynam-
ics of blockchain systems, recent research focused on suitable
simulation models to capture their behavior. The different
proposals differ in the level of abstraction of the model, the
simulation type and the properties under study. Kaligotla et
al. [11] propose an agent-based framework for evaluating dis-
tributed ledgers, modelling a blockchain at a very abstract level
as a simple append-only queue where a block is added when
verified by enough agents. Agents issue transactions and verify
them through atomic actions (no messages are exchanged)
with associated costs, fees and energy costs, respectively.
In the present work we consider a simulation model at a
finer granularity level, in the sense that the proof-of-work is
simulated for each agent according to its computational power,
and a large range of transaction submission rates, network
delays, and adversarial strategies are considered. Piriou et
al. [12] propose a stochastic simulation model and Monte-
Carlo simulations to evaluate the performance of a blockchain
when the communication system loses messages. Double-
spending attacks are modeled by a simplified append-only
queue model (which considers instantaneous communication).
Alharby et. al. [13], Rosa et al. [14] and Faria et al. [15]
propose discrete-event simulators for distributed ledgers that
resemble to Bitcoin and Ethereum, but not adapted to simulate
graph-based distributed ledgers. On the other hand, Bottone
et al. [16] present a simulation model for Tangle-like DAG
ledgers [17] aiming at studying the grow of the graph of
transactions. The simulation model is instrumented on the
NetLogo [18] agent-based simulator. Due to the complexity of
the computational model, simulated strategies are very simple
and network effects are not taken into account.

Graph-based protocols. Many graph-based protocols have
been explored in the last years. Proposals such as
HashGraph [19], BYTEBALL [20], and Iota [17], [21] do not
use blocks, i.e. a graph is formed by transactions pointing

2



to each other. However, these solutions are not fully decen-
tralised because they leverage the presence of central or trusted
nodes. Ghost [22] and Spectre [23] protocols keep blocks,
modifying the blockchain data structure from a totally ordered
sequence of blocks to a directed graph of blocks. Note that in
these approaches, the absence of mechanisms to prevent the
presence of conflicting records (i.e., blocks with conflicting
transactions) or the presence of cycles in the directed graph
(Spectre [23] organises blocks in a directed, but not acyclic,
graph of blocks) require that participants execute a complex
algorithm to extract from the graph the set of accepted (i.e.,
valid) transactions [23]. Sycomore has been the first graph-
based protocol to be fully distributed. In contrast to previous
approaches, neither a chain of blocks nor a set of transactions
are extracted from the graph to become the valid blockchain
or the valid set of transactions. Instead, the full graph is
the ledger. Blocks are built so that they commit the state of
the directed graph at the time blocks were created, which
decreases the opportunity for powerful attackers to create
blocks in advance.

III. OVERVIEW OF SYCOMORE

Sycomore [9] is a cryptocurrency ledger whose structure is
a dedicated balanced directed acyclic graph of blocks called
the SYC-DAG. Construction of the SYC-DAG is very close
to Bitcoin one, i.e., it is fully distributed, permissionless, and
relies on a proof-of-work mechanism. Sycomore enjoys a set
of properties that enable it to dynamically adapt the fan-out of
the SYC-DAG to the current number of transactions submitted
to the system.

A. Properties of Sycomore

Sycomore has been designed to meet the following proper-
ties [9]:
P1. Self-adaptation to transaction load. A rise or a drop in

the current number of submitted transactions is dynam-
ically handled by the progressive creation or disappear-
ance of sibling leaf chains in the SYC-DAG;

P2. Balanced partitioning of transactions. There does not
exist any transaction that belongs to two different blocks.

P3. Unpredictability of the predecessor. The leaf chain to
which a new block is appended can neither be chosen nor
predicted among all the leaf blocks of the SYC-DAG.

P4. Chain fairness. All the leaf chains of the SYC-DAG grow
at the same speed.

P5. Negligible probability of forks. The probability of forks
is maximal when the SYC-DAG is reduced to a single
chain (i.e, 1, 2×10−3 in the time interval of 30 seconds)
and decreases proportionally with the number of leaf
blocks.

To make the paper self-contained, we detail in this section
how Sycomore implements those five properties.

Property P1 is implemented by introducing the notion of
splittable and mergeable blocks [9], which are a dynamic
response to respectively a rise or a drop in the current submis-
sion rate of transactions in the system. Both notions refer to

block load, where the load of a block is the ratio between its
number of bytes and its maximal load (for instance, 1 MByte
in Bitcoin prior to the date of SegWit activation). Hence, a
block b appended to the SYC-DAG is called splittable if the
average load of block b together with the load of its cmin − 1
predecessors on the chain exceeds the overload threshold Γ
(both cmin and Γ are system parameters). When a block b is
splittable, miners will create subsequent blocks so that they
will form two parallel chains of blocks, such that the first
block of each of both chains references b. These chains are
called sibling chains. Partitioning of the transactions over the
chain blocks is explained when Property P2 is explained. Con-
versely, when the transaction rate drastically drops, the block
load decreases accordingly, leading Sycomore to progressively
reduce the number of chains in the SYC-DAG to keep blocks
sufficiently loaded. Specifically, a block is called mergeable
if the average load of this block together with the load of its
cmin−1 successive predecessors of its chain falls short of some
given underload threshold γ (γ is a system parameter). When
two blocks belonging to two sibling chains are mergeable,
miners will create subsequent blocks so that they will form a
single chain (called merged chain). Any block that is neither
mergeable nor splittable is said regular. As argued in [9], it
is clear that everyone, and in particular miners, detect the
instant at which a block is splittable or two sibling blocks
are mergeable. This is observable and verifiable by anyone
since it only depends on a publicly observable quantity (i.e.,
block load).

Property P2 aims at fully exploiting the gain brought by
sibling chains, i.e, the effective partitioning (in the mathe-
matical sense) of the transactions over the SYC-DAG. This
property is implemented by introducing the notion of label. A
label is a binary string, and characterizes the common prefix
of the identifier (i.e. fingerprint) of the set of transactions
embedded in a block. Any block when created is tagged with
the label of the chain it will belong to (the choice of the
chain a block will belong to is explained when Property P3
is discussed). The genesis block b0 is labelled with the empty
binary string ε, and all the blocks from b0 to the first splittable
block b (if any) of the chain, say Cε

1 in Figure 1, are labelled
with the empty string ε. Hence, all the blocks of Cε contain
transactions for which there is no constraint on the prefix of
their identifier (this reflects Bitcoin’s behavior). On the other
hand, all the blocks of two sibling chains, say C0

2 and C1
3 in

Figure 1, appended to the splittable block b inherit b’s label
extended with 0 and 1 respectively. Hence, all the blocks of C0

2

(resp. C1
3 ) only contain transactions whose identifier is prefixed

by 0 (resp. 1). As transactions’ identifiers can be considered
as random bit strings, transactions are evenly partitioned over
sibling chains, and transactions cannot appear in more than one
block, which makes the parallelism introduced by the graph
structure effective. The same process applies for any splittable
block. Conversely, all the blocks that belong to a merged chain
inherit the largest common prefix of its predecessor labels.
For instance, in Figure 1, chains C00

4 and C01
5 give rise to the

merged chain C0
8 whose label is the largest common prefix of

3



Fig. 1: An example of a SYC-DAG built by Sycomore. This figure has been borrowed from [9]. System parameters: overload threshold
Γ = 95%, underload threshold γ = 15%, and cmin = 2. The number of bars in each block is representative of block load, and colors of the
bars illustrate the prefix of transaction identifiers. This provides an intuitive way to see when chains split or merge, and how transactions
are partitioned over the SYC-DAG: When the SYC-DAG is made of a single chain due to a very light load (e.g., chain Cε

1), each block
contains transactions whose identifiers are prefixed with the empty binary string label (denoted by ε), which explains the multitude of colors
of the blocks (which exactly reflects Bitcoin’s chain). When the chain must split into two sibling chains because of an increasing transaction
load, the new appended blocks partition the transactions into two sets: those whose prefix match label ε concatenated with 0, i.e, label 0,
and those whose prefix match label ε concatenated with 1, i.e, label 1. This explains the partitioning of block colors in the upper and lower
chains respectively. A similar argument applies when sibling chains merge to a single chain: subsequent blocks of this chain will contain
transactions whose identifier is prefixed by the largest common prefix of the labels of these sibling mergeable chains (e.g., label 0 in chain
C0
8 ). Chains C00

9 , C01
10 , C10

6 , and C11
7 are called leaf chains, as blocks br , bs, bm1 and bm2 are the leaf blocks of the SYC-DAG. Note that

this SYC-DAG does not contain any fork.

both labels 00 and 01, i.e., 0.
Property P3 is implemented by using the unpredictability

and randomness of the proof of work (PoW) to assign the
predecessor of any block b. To make such an assignment im-
mutable, verifiable by anyone and non-ambiguous, the header
of any block b contains a set of tuples that (i) acknowledges
or commit the miner’s local view of the SYC-DAG, and
(ii) characterizes b’s predecessor. More precisely, let Lu be
the local view of the SYC-DAG at miner u. Suppose that
Lu contains c leaf blocks bℓ1 , . . . , bℓc at the time u starts
b’s creation process, and among these c leaf blocks, s of
them are splittable, 2 miner u builds b’s header as follows: it
inserts, among different pieces of information, a set of (c+ s)
commitment tuples

{. . . , (H(bℓj ), ℓ′j ,m
ℓ′j ), . . .},

where, for 1 ≤ j ≤ c, H(bℓj ) is a cryptographic link
to leaf block bℓj , ℓ′j is the label of the block for which
bℓj will be the predecessor, and mℓ′j is the Merkle root
of the set of locally pending transactions whose identifier
is prefixed by ℓ′j . If leaf block bℓj is splittable then two
tuples (H(bℓj ), ℓj0,m

ℓj0) and (H(bℓj ), ℓj1,m
ℓj1) commit the

presence of block bℓj in Lu. If leaf blocks bℓj0 and bℓj1

are both mergeable and belong to sibling chains then two
tuples (H(bℓj0), ℓj ,m

ℓj ) and (H(bℓj1), ℓj ,m
ℓj ) commit the

presence of those mergeable blocks in Lu. By doing this,
block b extends (c + s) commitment paths, one to each leaf

2Note that a splittable block bs is considered a leaf block as long as bs is
not the predecessor of two sibling blocks.

block of Lu, and recursively down to the genesis block. The
length of a commitment path (that is the number of blocks
on the path) is used to resolve forks if any (see Rule 2).
Miner u then engages in finding a nonce ν such that ν is
the solution of the PoW applied on b’s header (exactly as
in Bitcoin). If successful, the predecessor of block b is the
leaf block bℓi in Lu closest to ν. More precisely, for each
tuple (H(bℓj ), ℓ′j ,m

ℓ′j ) in b’s header, the numerical value of
the “exclusive or” (XOR) between ν and ℓ′j is computed, and
the winning tuple is the one that minimizes this distance. Let
(H(bℓi), ℓ′i,m

ℓ′i) be that tuple. The predecessor of block b is
thus the leaf block bℓi . Miner u completes the creation of its
block b by embedding the appropriate set of transactions, that
is the set of transactions whose identifier is prefixed by ℓ′i and
whose Merkle root is mℓ′i . Extracting b’s predecessor from the
PoW computed for b makes the choice of block’s predecessor
an unpredictable and random process. Notice that no specific
reference to b’s predecessor is added in b’s header: b’s header
is securely sealed with PoW ν, and thus when a node receives
block b, it derives b’s predecessor by using the information in
b’s header (i.e. ν and the set of tuples).

Property P4 follows from the assumption that the PoW is
modeled by a random oracle, and that transaction identifiers
result from the SHA256 cryptographic hash function.

Property P5 directly derives from Properties P3 and P4:
since each created block is appended to a random leaf block,
the probability that two blocks with the same label share the
same predecessor (this is a fork situation) is equal to p/c,
where p is the probability of fork in Bitcoin, and c is the

4



current number of leaf blocks in the SYC-DAG.
Based on the above descriptions, a SYC-DAG is defined as

follows.

Definition 1 (SYC-DAG [9]). A graph G = (V,E) is a SYC-
DAG if G has a unique genesis block b0 and there exists a
partition P = {Cℓ1 , . . . , Cℓn} of V such that ∀i s.t. 1 ≤ i ≤
n, Cℓi is a chain with label ℓi (note that several chains in
P may be assigned the same label) and the following three
properties hold:

∀Cℓi ∈ P,∀k s.t. 0 ≤ k < |ℓi|, Cℓ
⌊k
i ∈ P (1)

∀Cℓi a merged chain ∈ P, Cℓi.0, Cℓi.1 ∈ P (2)
∀Cℓi , Cℓj ∈ P, ℓi = ℓj ⇒ [pred(Cℓi) ̸= pred(Cℓj )] (3)

Similarly to all PoW-based distributed ledgers, the dis-
tributed block creation process may lead to forks, that is
the presence of at least two concurrent blocks appended to
the ledger. In Sycomore two blocks are concurrent if and
only if both blocks have the same label and the same block
predecessor (which differs from split situations). The presence
of forks gives rise to concurrent SYC-DAGs Lu and L′

u (both
of them being rooted at the genesis block). To resolve forks,
that is to locally keep a single SYC-DAG L⋆

u, i.e, L⋆
u = Lu

or L⋆
u = L′

u, node u applies the fork rule described below.
This rule relies on the confirmation level of a SYC-DAG. By
definition, the confirmation level of a SYC-DAG is equal to the
number of blocks that belong to the longest commitment path
(as defined earlier in this section) that commit the presence of
the genesis block in this SYC-DAG.

Rule 2 (Fork rule [9]). At any time, keep the SYC-DAG L⋆

for which the confirmation level of the genesis block is the
largest.

As for Bitcoin, the fork rule favors the SYC-DAG that has
been acknowledged by the largest proportion of miners. Note
that two concurrent SYC-DAGs may temporarily have the
same confirmation level. By convention, the oldest SYC-DAG
is kept as long as it is not superseded. Once a block has been
inserted deep enough then by construction of the blocks and by
Rule 2, with high probability such a block will remain forever
in the local view L⋆

u of any node u in the system. The notion
of “deep enough” relates to the block confirmation level.

B. Periodic readjustment of the difficulty

To guarantee that the creation time between any two suc-
cessive blocks of any given chain is constant in average,
the mining difficulty D is periodically adjusted based on the
current network hashrate (which is reflected by the time it
took to mine the last blocks of the SYC-DAG) and the current
number c ≥ 1 of leaf blocks. Specifically, adjustment of the
difficulty takes place every time the height of the SYC-DAG
has been increased by h blocks with respect to the last time
the difficulty was adjusted, that is, when its height h satisfies
h = 0 mod Hmax, with Hmax = 2016. To cope with the fact
that some of the leaf chains may grow a little bit slower than

others, and thus leaf blocks do not reach height h at the same
instant, once a leaf chain has reached height h, miners do not
take this leaf chain into account to determine the predecessor
of their block, i.e., they only consider all the leaf blocks whose
height have not reached height h yet. Once all the leaf chains
have reached height h, miners readjust the difficulty, if needed.
Note that there is no incentive for an adversary not to follow
this rule since its new block will be rejected by the other
miners.

On the other hand, it is likely that between any two periodic
readjustments of the difficulty, the width of the SYC-DAG
drastically increases or decreases according to the transaction
load demand (a cascade of splits or merges is observed
when the submission transaction rate varies as observed in
Section V-D). This will lead to an inappropriate difficulty
whose impact is twofold: from a security point of view, it
may degrade the ledger quality, that is the maximal proportion
of blocks contributed by the adversary that belong to the
SYC-DAG of any honest node. From a progress point of
view, if the difficulty becomes too high, the average creation
delay between any two successive blocks will drastically
increase, augmenting accordingly transaction latency, and thus
transaction confirmation delay.

IV. SYCOMORE++

To prevent such critical issues, we propose Sycomore++,
which aims at guaranteeing that whatever the structure of the
SYC-DAG, a constant inter-block creation delay is maintained
on any of its chains. The main idea of Sycomore++ is to
continuously adapt the block creation difficulty to the actual
number of leaf chains of the SYC-DAG. Note that this
adaptative adjustment does not replace the periodic global
computational power readjustment. The former adapts the
difficulty to the structure of the SYC-DAG while the latter
adapts the difficulty to the hashing power of the system.

Lemma 3. The expected effort miners must exert in
Sycomore++ to successfully create a block decreases with the
number of leaf blocks of the SYC-DAG.

Proof. Let U be the current set of miners that participate
to the construction of the SYC-DAG. We suppose that the
computational power of the network is uniformly distributed
among all the miners in U . Producing a proof of work is a
random process with low probability of success so that a lot of
trials and errors are required on average before a valid proof
of work is generated, the probability of success ppow of each
trial being the same. The Geometric distribution models the
number of failures before the first success. Thus, if random
variable X represents the number of failures before the first
success, we have P (X = q) = (1− ppow)

q−1ppow. Let W be
the total computational power of the system. In Sycomore++,
the difficulty is divided by the current number c of leaf chains
in the SYC-DAG (Recall that in Sycomore, this does not
necessarily hold, in particular in presence of variations of the
system workload demand). This comes backs to multiplying
the probability of success ppow of the PoW process by c. The

5



probability p of successfully mining a block is thus given by
p = W × ppow × c, and at a miner, this probability is equal
to pu = p/|U|. In Sycomore++, the probability for a miner
to work on a given chain is 1/c, and the average number nc

of miners working on a chain is equal to |U|/c. Thus the
probability pc of successfully mining a block on a given leaf
chain pc given by pc = p/c. Let Xc be the random variable
representing the number of trials before the first success on a
given leaf chain, we have E(Xc) = 1/pc = 1/(W × ppow),
and consequently, E(X) = 1/p = 1/(W × ppow × c).

This lemma shows that in Sycomore++ the expected num-
ber of unsuccessful trials before creating a block decreases
with the number of leaf blocks, which is not the case
in Sycomore. This demonstrates the exemplary behavior of
Sycomore++: Both its SYC-DAG structure and the mining
difficulty self-adapt to the current number of transactions
submitted to the system, which allows it to operate in adver-
sarial environments in which the transaction load can change
arbitrarily. This is confirmed by the experimental evaluation
presented in Section V.

The following Lemma shows that the occurrence of forks
decreases exponentially with the number of leaf chains.

Lemma 4. [9] Given a ledger L⋆
v with c leaf chains

C1, . . . , Cc, each one being selected by the block creation
process with probability pi, with

∑c
i=1 pi = 1, the probability

that two blocks extend the very same chain Ci, 1 ≤ i ≤ c
during an interval of time [0, t] is pi(t) = 1−e−λt/c(1+λt/c),
where λ is the block creation rate.

Proof. Let us first consider the case where c = 1. We
model the block creation process as a Poisson process. In
the following an event represents the creation of a block. Let
{N(t), t ≥ 0} with rate λ, be the Poisson process representing
the number of events in the interval (0, t). We then have, for
every n ≥ 0,

P{N(t) = k} = e−λt (λt)
n

n!
.

For all t > 0, we denote by p(t) the probability that at least
two events of this process occur in an interval of length t.

p(t) = P{N(t) ≥ 2} = 1− e−λt(1 + λt).

Let us assume that the SYC-DAG contains c ≥ 1 leaf blocks,
bℓ11 , . . . , bℓcc . The probability pi for a newly created block to
have bℓii as predecessor depends on bℓii ’s header. The events
produced by the Poisson process can be of c different types. An
event of type i represents the creation of a block that matches
chain Cℓi

i . Each event produced is of type i with probability
pi = 1/c, for i = 1, . . . , c. The successive choices for the
types are supposed to be independent of each other and also
independent of the Poisson process. For every i = 1, . . . , c, let
{Ni(t), t ≥ 0} be the number of events of type i produced
the Poisson process. It is well-known that {Ni(t), t ≥ 0} is a
also Poisson process with rate λ× pi and that these c Poisson
processes are independent. We denote by pi(t) the probability

that at least two events of type i occur in the interval (0, t)
(i.e. a fork occurs in the interval (0, t)). We then have, for
every i = 1, . . . , c,

pi(t) = P{Ni(t) ≥ 2} = 1− e−λt/c(1 + λt/c).

It is interesting to remark that this probability holds in
Sycomore only at the instants at which readjustments of the
difficulty occur.

Lemma 5. For any correct node u, L⋆
u does not contain

double-spending transactions

Proof. The proof is by contradiction. Suppose that L⋆
u contains

two transactions T1 = (I1, O1) and T2 = (I2, O2) such that
T1 and T2 redeem a common UTXO o, where o belongs to
the output set of some transaction T ∈ L⋆

u. Suppose that T1

and T2 respectively belong to blocks b1 and b2. Since b1 and
b2 belong to L⋆

u both blocks are valid. Two cases must be
considered.

• b1 = b2. This case is impossible since it would mean
that block b1 = b2 is invalid (i.e., it contains conflicting
transactions T1 and T2).

• b1 ̸= b2. Suppose without loss of generality that node
u already appended b1 to L⋆

u by the time it wishes to
append b2. Two sub-cases are possible.
– b2’s header commits the existence of b1 in L⋆

u, that is
b2’s header extends at least one commitment path that
acknowldges the presence of b1 in one of the chains of
L⋆
u. This contradicts the assumption that b2 is valid.

– b1 and b2 have been concurrently mined, that is at the
time both blocks were mined their respective miners
did not know the existence of the other block. By
assumption, b1 ∈ L⋆

u at the time node u wishes to
append b2. Since the presence of b1 ∈ L⋆

u makes block
b2 invalid, node u will reject block b2. This contradicts
the assumptions that b2 ∈ L⋆

u. Note that another node
v may have first appended b2 to its ledger L⋆

v , and thus
will reject block b1. Eventually, either L⋆

v or L⋆
u will

contain the longest commitment path to the genesis
block, and thus by Rule 2, the ledger with the longest
commitment path to the genesis block will be kept by
all the nodes. This completes the proof.

V. SIMULATION STUDY

This section presents the agent-based simulation study we
have conducted on Bitcoin, Sycomore and Sycomore++. The
source codes of Bitcoin, Sycomore and Sycomore++ as well
as all the scripts of the experiments are publicly accessi-
ble [24].

A. Simulator and Experimental Environment

We have used an agent-based simulation framework dedi-
cated to blockchain systems, called Multi-Agent eXperimenter
(MAX) [25] based on the MaDKit framework [26]. MAX
offers generic libraries to easily develop distributed ledger pro-
tocols and a large range of simulation scenarios. The simulator

6



is a discrete event simulator, where the unit of simulation time
is referred to as a tick. Message-passing libraries allow us
to configure different types of communication schemes and
message delays. In this work, the communication schema is
configured as a reliable broadcast with configurable delay.
Impact of message losses is left for future works. All the
experiments for Sycomore++, Sycomore and Bitcoin have
been run on Grid’5000, a large-scale and flexible test-bed
for experiment-driven research [27]. Due to the computational
complexity of simulation models and experiments involving a
representative number of agents, each experiment presented in
this paper takes in average 8 hours.

B. Simulation Model
1) Block creation model: Miners create blocks by follow-

ing the prescribed protocols, i.e., validation of the set of
transactions to be inserted and creation of block header. For
straightforward reasons, miners do not solve proof-of-works
but follow a simulation model. Before disseminating a block
to the network, a miner waits for a time determined by the
PoW model described below. Note that for both Sycomore++

and Sycomore, the selection of the random predecessor in
the model is achieved by computing the distance between
the block header (rather than the PoW nonce ν, which is not
computed in the model) and each leaf block of the SYC-DAG.

2) Proof-of-Work Model: To simulate the effort needed
to find the proof, each miner u ∈ U waits for a certain
amount of ticks, which depends on its computational power
Wu. Specifically, Wu is a fraction of the global computational
power distributed among miners according to a power law
distribution (with parameter 3) such as

∑
u∈U

Wu = 1. The

probability for miner u to solve the proof-of-work after ℓ
successive independent draws is modeled as a geometric
distribution with parameters ℓ and pPOW , where pPOW is
the probability of successfully solving the Proof-of-Work, i.e.,
pPOW = D/2k, where k the security parameter of the Proof-
of-Work and D the difficulty level. Difficulty and security
parameters have been set such that for W = 1, the time to
solve the proof-of-work is 10 ticks in expectation. Calibration
of our model has been set by using Bitcoin real network
statistics and by running our model with data extracted from
the real network using tools presented in [28].

3) Common parameters of the simulations: For all the ex-
periments presented in the paper we have fixed some common
parameters as follows:
- The block capacity, that is the maximal number of transac-
tions a block can embed, is set to 100 transactions (to avoid
the simulator overload). Note that while in Bitcoin the block
capacity is approximately equal to 4, 000 transactions [29],
reducing the block capacity does not affect the behaviour of
the protocols.
- A transaction is confirmed when the block this transaction
belongs to has a confirmation level equal to k = 6. Recall that
the confirmation level of any block b is equal to the number
of blocks that confirm the presence of b in the blockchain.
Note that differently from Bitcoin, in both Sycomore and

Sycomore++, these blocks can belong to different chains of
Sycomore, as long as these blocks form a path of commitment
down to block b.
- cmin is set to 1. Impact of cmin on the structure of the
SYC-DAG and its performances is left for future works.
- For each experiment, we have run sufficiently many simula-
tions to get a confidence interval equal to 5±%.

C. Scalability Study

This section studies the capability of Sycomore++, Syco-
more and Bitcoin to handle high transaction submission rates.
Specifically, we evaluate the transaction confirmation rate, the
transaction latency, i.e., the average time elapsed between the
submission of a transaction in the network and the time at
which the transaction is confirmed, and the average number of
pending transactions at the end of the simulation (i.e., waiting
to be embedded in a block). The energy lost by each protocol
is also measured. The lost energy is the sum for each miner u
and for each created block b not appended to the distributed
ledger of the time spent working on b times the computational
power cpu. In this section, we assume that forks do not occur.

1) Experiment setting: The overload threshold Γ which
conditions the SYC-DAG splitting in both Sycomore and
Sycomore++ varies from 90% to 100%. Note that when
Γ = 100%, splits never occur and thus both Sycomore
and Sycomore++ reduce to Bitcoin. The submission rate of
transactions freq, which represents the number of transactions
submitted per tick of simulation, is set at the beginning of each
experiment. freq varies from 1 to 160 txs/tick. Let us remark
that we tune the proof-of-work parameters to get in expectation
one block mined every 10 ticks. This means that in Bitcoin
freq = 10 txs/tick already exhausts the system transaction
treatment capacity, as the system mines one block every 10
ticks in expectation and one block contains 100 transactions.
From this observation, we might expect that for freq > 10
txs/tick, pending transactions will accumulate over time in, at
least, Bitcoin ledger. Note that to avoid the overload of the
simulator we were limited to freq = 160 txs/tick. Anyway,
setting freq up to 160 txs/tick allows us to severely stress
Bitcoin, Sycomore and Sycomore++. Similarly to Bitcoin
Core client, miners give priority to old transactions in Bitcoin,
Sycomore and Sycomore++.

2) Experiment results: The main results of our experiments
appear in the graphs of Figure 2. Note that in all the graphs,
points are linked together with lines. This is only for readabil-
ity reasons.

Let us first focus on the confirmation rate of transactions
as a function of their creation rate (see Figure 2a). The main
observation regarding Bitcoin and Sycomore is that whatever
the computational power of the network, no more than 10
txs/tick are confirmed, which illustrates the impact of the
globally constant inter-block delay (i.e. a block is mined every
10 ticks in average). Sycomore shows slightly worse results
than Bitcoin, which is due to the augmentation of the number
of chains, in which blocks can be moderately loaded. On the
other hand, by continuously adapting the mining difficulty

7



(a) Transaction confirmation rate as a
function of the transaction creation rate.

(b) Number of pending transactions as a
function of the transaction creation rate.

(c) Lost energy as a function of the transac-
tion creation rate.

(d) Transaction average latency as a
function of the transaction creation rate. (e) Reactivity of both Sycomore and

Sycomore++ in presence of a peak of load.

Fig. 2: Scalability of Bitcoin, Sycomore and Sycomore++ (overload threshold Γ = 90%, underload threshold γ = 0%) and
Reactivity of both Sycomore and Sycomore++ (Γ = 90%, γ = 10%).

to the number of leaf blocks, and thus to freq, Sycomore++

exhibits an optimal behavior regarding confirmed transactions,
i.e., ∀freq, the transaction confirmation rate equals the transac-
tion creation rate. For the sake of comparison, confirming 160
txs/tick with the simulator (and as previously said we cannot
stress more the simulator) means confirming 6, 400 txs/mn in
the real life.

Figure 2b shows the average number of pending transactions
at miners, that is the average number of transactions that
accumulate at miners before being embedded in blocks. It
clearly shows that for both Bitcoin and Sycomore, this number
linearly increases with the transaction submission rate once it
exceeds 10txs/tick since this corresponds to the global inter-
block creation delay. In contrast, by adapting the number of
created blocks to freq, Sycomore++ drastically reduces the
average number of pending transactions. For example, for
freq = 10 txs/tick, this number is equal to 432 transactions,
and for freq = 160 txs/tick, it is equal to 1, 957 transactions,
compared to 154, 000 ones in both Bitcoin and Sycomore.

Figure 2c illustrates the lost energy as a function of freq.
In Bitcoin, since the inter-block delay, the number of miners,
and the difficulty do not vary during each experiment, the
same amount of energy is lost regardless of freq. While this
setting also applies to Sycomore, the fact that the SYC-DAG
becomes larger with increasing values of freq gives rise to a
uniform distribution of the global computational power over
the leaf chains, and thus decreases miners’ competition. Thus
less work is wasted w.r.t Bitcoin. Regarding Sycomore++, for
increasing values of freq, the SYC-DAG becomes larger and

blocks are created faster (as the mining difficulty adapts to the
SYC-DAG structure), which allows Sycomore++ to reach an
optimal number of leaf chains more quickly than Sycomore
does. As a consequence, we get a better parallelism of miners’
work, and thus a drastic reduction of energy loss.

Figure 2d illustrates the average transaction latency as a
function of freq. Recall that the transaction latency measures
the time elapsed between the instant at which a transaction
is submitted to the network by the user and the time it
becomes confirmed in the ledger. In contrast to all the other
experiments, transaction latency has been measured as follows:
transactions are submitted at freq for a while, then freq is set
to 0, and simulations stop once all the submitted transactions
have been confirmed. The first observation is that, in Bitcoin,
once freq ≥ 10 txs/tick, transaction latency linearly increases
with freq, which clearly corroborates both Figures 2a and 2b.
Regarding Sycomore, the loss of performance w.r.t Bitcoin is
due to the fact that blocks in all the sibling chains are not
necessarily fully loaded, which delays accordingly transaction
latency. On the other hand, Sycomore++ enjoys an average
constant latency, which is equal to 50 ticks regardless of
freq. Essentially, the more transactions are submitted, the
more blocks are filled until the optimal shape of the graph
is reached. Results shown in Figures 2a, 2b combined with
these results clearly demonstrate the exemplary behavior of
Sycomore++: transactions are confirmed at the rate at which
they are submitted by clients to the system, and their latency is
constant whatever the submission creation rate, meaning that
users can safely predict the time at which their transaction, if

8



valid, will be deeply confirmed in Sycomore++.

D. Reactivity Study

This section aims at assessing the capacity of both Syco-
more and Sycomore++ SYC-DAG to react to sudden and
abrupt fluctuations in the creation transaction rate. 3

1) Experiments setting: As briefly presented in Section III,
when freq shrinks, the SYC-DAG reacts by progressively
decreasing the under loaded sibling chains, and thus the
number of created blocks. Thus each merge divides by almost
two the number of blocks that will be subsequently created. By
the randomness of transaction identifiers, if one chain becomes
under loaded, then soon after all, the chains will become under
loaded too, and thus merges will occur in cascade. Initially,
freq = 100 txs/tick during 10 ticks to mimic a transaction peak
load, and then at tick t = 12, freq = 0 txs/tick.

2) Experiments results: Figure 2e illustrates the reactivity
of both Sycomore and Sycomore++ in presence of a load peak
(illustrated by the red constant function from t = 1 to t = 11
ticks at freq = 100txs/tick). Both Sycomore and Sycomore++

initially undergo a series of splits, and then progressively move
on to a series of merge up to converging to a single chain of
blocks. Sycomore++ differs from Sycomore in its rapidity to
split and merge: Sycomore++ succeeds in coping with the
load pick 75% faster than Sycomore does, and 33% faster
than Sycomore to cope with the sudden shrink of load. It is
worthwhile to observe that those results combined with the
one observed in Section V-C, assess the capability of both
Sycomore and Sycomore++ to meet Properties P1 and P4.

E. Adversarial environment

This section measures the impact of high transmission
delays on the number of forks and the time it takes for Bitcoin,
Sycomore and Sycomore++ to resolve them. This section
supposes that all miners are honest and thus do not design
adversarial strategies to create forks (adversarial behaviors are
studied in Section V-F). We suppose that simultaneous events
are not possible. Thus if transmission delays are null, fork can
never occur (once a miner receives a block b that would be
appended to the same leaf block as its own currently created
block b′, it does not broadcast b′). When transmission delays
increase, miners will broadcast their blocks before detecting
the presence of concurrent ones, giving rise to forks. Let ∆ be
the constant transmission delay on the network. Let tb and tb′

be the instant at which the two concurrent blocks b and b′ are
respectively broadcast. Forks can occur only if ∆ is greater
than the time elapsed between tb and tb′ .

1) Experiment settings: We vary the overload threshold Γ
from 90% to 100% and set the underload threshold γ to 0%,
so that merge do not happen (for Γ = 100%, splits never
happen and thus the SYC-DAG reduces to Bitcoin’s chain).
freq is set to 160txs/tick to provoke splits. ∆ ranges from 0
(no fork) to 5 ticks. It is important to observe that ∆ = 5 ticks
is very large compared to the average time needed to create

3We omit Bitcoin from this evaluation since Bitcoin chain does not adapt
to transaction demand.

∆ = 0 ∆ = 0.1 ∆ = 1 ∆ = 5
f tr f tr f tr f tr

Bitcoin 0 0 0.5 1.4 0.9 10.8 2.3 36.6
Sycomore 0 0 0 0 0 0 0.6 11.7
Sycomore++ 0 0 0 0 0 0 1.1 6.1

TABLE I: Average number f of forks and average time to
resolve one fork (tr) as a function of the network delay (ticks).

a block (i.e., 10 ticks). The reason is that we want to stress
the system under constant and very high submission rates to
provoke splits, and large transmission delays to study their
impact on the occurrence and resolution of forks.

2) Experiment results: The main results drawn from our
experiments appear in Table I, which shows the impact of ∆
on the the number of forks f and their resolution time tr
(in ticks). Forks are alternative stories, that is having n forks
in a simulation means having n + 1 alternative ledgers. The
fork resolution time tr is equal to the time elapsed between
the creation of an alternative chain (Bitcoin) or SYC-DAG
(Sycomore and Sycomore++) and the instant at which a ledger
has the best confirmation level of the genesis block w.r.t the
others ledgers (see Rule 1, Section III). As can be observed,
the number of forks f increases with ∆. As Sycomore and
Sycomore++ differ in their capacity to continuously adjust the
difficulty to the actual number of leaf blocks, their tolerance
to fork occurrence is different: decreasing (resp. increasing)
the mining difficulty reduces (resp. enlarges) the standard
deviation between any two blocks b and b′ creation times, and
therefore impacts the probability with which ∆ > |tb − tb′ |
holds or not. On the other hand, as blocks are created faster,
fork resolution takes less time in Sycomore++ than in Syco-
more. Hence, if sellers adopt the same rule as in Bitcoin to
wait for a given period of time T before sending their goods to
buyers, we clearly see that both Sycomore and Sycomore++
drastically reduce T (i.e., T/3 for Sycomore and T/6 for
Sycomore++ w.r.t Bitcoin for ∆ = 5 ticks).

F. Adversarial strategies

a) Experiments setting: Both attacks share the same
experiment settings. We set freq = 40 txs/tick to provoke
splits. The proportion of computational power µ owned by
the adversary ranges in the interval [0%−50%]. Operationally,
we divide miners into two groups, the honest and malicious
groups, and allocate each group with a proportion of the total
computational power W , i.e., W (1− µ) for the honest group
and Wµ for the malicious one. Experiments are run with
Hmax = ∞ and Hmax = 2.

This section studies the resilience of Bitcoin, Sycomore
and Sycomore++ in presence of adversarial strategies that
could hinder the chain quality property as defined in [10]. The
chain quality property states that, in Bitcoin, the adversary
may control at most a µ/(1 − µ) percentage of the blocks
in the chain, where µ represents the ratio of the network
hashing power owned by the adversary. As briefly explained
in Sections III and IV, both Sycomore and Sycomore++ aim

9



(a) Impact of a ledger attack on the
ledger quality. Hmax = ∞.

(b) Impact of a ledger attack on the
ledger quality. Hmax = 2.

(c) Impact of a chain attack on the
targeted chain quality. Hmax = ∞.

(d) Impact of a chain attack on
the ledger quality. Hmax = ∞.

(e) Impact of a chain attack on
the ledger quality. Hmax = 2

Fig. 3: Impact of the ledger and chain attacks

at guaranteeing that miners can neither foresee nor choose
the leaf chain to which their block will be appended prior
to having irremediably completed the construction of their
block’s header (Property P3). The reason is to prevent an
adversary from devoting all its computational power to the
growing of a specific chain. This means that the only way
for the adversary to target a specific chain is to repeatedly
generate blocks until a valid header for the targeted chain
is produced. This process is computationally intensive and
thus, the objective of these experiments is to determine how
much mining power the adversary should exert to have an
effective impact on targeted chains. This has led us to design
and implement the following two attacks. In the first one,
called ledger attack, the attacker tries to undermine the whole
ledger quality, i.e., tries to maximize the proportion of blocks
it contributed in Bitcoin chain, and in each chain of the SYC-
DAG in both Sycomore and Sycomore++. In the second one,
called chain attack, the adversary targets a specific chain of the
SYC-DAG and tries to maximize the proportion of blocks it
contributed within this chain. 4 This requires for the adversary
to only keep the blocks they have mined that match the
targeted leaf chain. Note that the honest miners feed all leaf
chains equally, including the one targeted by the adversary.
The impact of the readjustment period Hmax is noticeable in
the chain attack. Indeed, as discussed in Section III, at each
readjustment period, i.e., each time the length of the ledger has
been increased by Hmax w.r.t to the previous re-adjustment,
(i) the mining difficulty is recomputed to adapt to the actual
computational power of the system and (ii) late leaf chains
catch up to Hmax if necessary. In the latter case this means

4Note that the chain attack does not make sense in Bitcoin.

that if the chain targeted by the adversary is among the first
ones to reach Hmax, then the adversary (and the honest miners)
will not be able to contribute blocks on the targeted chain
(any block appended to these fast leaf chains will be ignored
by the honest miners as long as the other chains have not
caught up). So to increase the speed at which all the leaf
blocks caught up, the adversary contributes blocks on these
late leaf blocks, so that it will be able to contribute on the
targeted chain quicker. It is important to note that all the
blocks contributed by the adversary are all valid otherwise
they would not appear in the ledger. However, they possibly
favour particular transactions submitted by the adversary, or
in contrast do not contain transactions the adversary wishes to
exclude from the ledger.

1) Ledger attack: Figures 3a and 3b illustrate the impact
of the ledger attack in Bitcoin, Sycomore and Sycomore++

distributed ledgers. The main observation drawn from both
figures is the fact that the ledger quality property [10] holds
in Bitcoin, Sycomore and Sycomore++: the adversary cannot
control more than µ/(1 − µ) percent of the blocks in the
ledgers. Furthermore the impact of Hmax value is negligible
in both Sycomore and Sycomore++ since the adversary has
no better strategy than appending the maximum number of
blocks on each chain of the SYC-DAG.

2) Chain attack: Figures 3c, 3d and 3e illustrate the
impact of the chain attack on the quality of the targeted chain
(Figure 3c) and on the quality of the ledger (Figures 3d and
3e). We have implemented the chain attack as follows: the
malicious group of miners focuses on the leaf chain with
the lowest label (this could be any existing leaf label) and
only appends blocks to it, which requires for the adversarial
group to discard all the blocks they have mined that do not

10



match the lowest label. The main observation drawn from
Figure 3c is the fact that in both Sycomore and Sycomore++,
the chain quality holds: the adversary cannot control more
than µ/(1−µ) percent of the blocks in the targeted chain. This
figure also illustrates that in both Sycomore and Sycomore++,
the computational power is equally distributed on the SYC-
DAG leaf chains.

Figures 3d and 3e show the very low impact of the chain at-
tack on both Sycomore and Sycomore++ quality. For instance,
if the adversary has 50% of the hashing power, then it will
control no more than 10% of the blocks in the honest players’s
ledger. It is interesting to see the impact of Hmax value on the
ledger quality: when Hmax = ∞, the adversary continuously
tries to append its contributed blocks to its targeted chain at
the expense of throwing away all its blocks that do not fit
this chain. On the other hand, when Hmax = 2, the adversary
must periodically feed the other chains when its targeted chain
has been increased by 2 before all the other ones (actually
this is often the case since both the adversary and the honest
miners contribute to this targeted chain). As a consequence,
the percentage of blocks contributed by the adversary in the
ledger augments in both Sycomore and Sycomore++, while
completely satisfying the ledger quality property [10].

VI. CONCLUSIONS

In this paper we have presented an advanced experi-
mental study to assess the properties of three permission-
less PoW-based distributed ledgers, Bitcoin, Sycomore, and
Sycomore++. Both Sycomore and Sycomore++ organize
blocks along a particular directed acyclic graph, whose struc-
ture evolve according to the actual load of the system.
Sycomore++ drastically improves upon Sycomore by contin-
uously adapting the mining difficulty to the graph structure.
Experimental results show impressive results (compared to
both Bitcoin and Sycomore) in terms of scalability, energy
loss, reactivity, resilience, and quality of the distributed ledger.
As future work, we intend to analyse the computational cost of
adversarial strategies in these distributed ledgers in presence
of transient network partitions.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[2] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of

blockchains,” 2016.
[3] B. M. David, P. Gazi, A. Kiayias, and A. Russell, “Ouroboros praos:

An adaptively-secure, semi-synchronous proof-of-stake blockchain,” in
EUROCRYPT, 2018.

[4] J. Chen and S. Micali, “Algorand: A secure and efficient distributed
ledger,” Theor. Comput. Sci., vol. 777, pp. 155–183, 2019.

[5] L. Aştefănoaei, P. Chambart, A. Del Pozzo, T. Rieutord, S. Tucci-
Piergiovanni, and E. Zălinescu, “Tenderbake - A Solution to Dynamic
Repeated Consensus for Blockchains,” in 4th International Symposium
on Foundations and Applications of Blockchain 2021 (FAB 2021).

[6] J. Poon and T. Dryja, The bitcoin lightning network, 2016. [Online].
Available: https://lightning.network/lightning-network-paper.pdf

[7] C. Burchert, C. Decker, and R. Wattenhofer, “Scalable funding of bitcoin
micropayment channel networks,” in SSS, 2017.

[8] A. Ranchal-Pedrosa, M. G. Potop-Butucaru, and S. T. Piergiovanni,
“Scalable lightning factories for bitcoin,” Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing, 2019.

[9] E. Anceaume, A. Guellier, R. Ludinard, and B. Sericola, “Sycomore:
A permissionless distributed ledger that self-adapts to transactions
demand,” in Proceedings of the IEEE 17th International Symposium
on Network Computing and Applications (NCA), 2018.

[10] J. A. Garay, A. Kiayias, and N. Leonardos, “The Bitcoin Backbone
Protocol: Analysis and Applications,” in Proceedings of the Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques - Advances in Cryptology (EUROCRYPT), 2015.

[11] C. Kaligotla and C. M. Macal, “A generalized agent based framework for
modeling a blockchain system,” in Proceedings of the Winter Simulation
Conference (WSC), 2018.

[12] P.-Y. Piriou and J.-F. Dumas, “Simulation of stochastic blockchain
models,” in Workshop on Blockchain Dependability organized with the
14th European Dependable Computing Conference, 2018.

[13] M. Alharby and A. van Moorsel, “Blocksim: A simulation framework
for blockchain systems,” ACM SIGMETRICS Performance Evaluation
Review, vol. 46, pp. 135–138, 01 2019.

[14] E. Rosa, G. D’Angelo, and S. Ferretti, “Agent-based simulation of
blockchains,” ArXiv, vol. abs/1908.11811, 2019.

[15] C. Faria and M. Correia, “Blocksim: Blockchain simulator,” in IEEE
International Conference on Blockchain (Blockchain), 2019.

[16] M. Bottone, F. Raimondi, and G. Primiero, “Multi-agent based simula-
tions of block-free distributed ledgers,” 2018.

[17] S. Popov, “The tangle. iota white paper,” 2015. [Online]. Available:
https://iota.org/

[18] U. Wilensky, “Netlogo.” Center for Connected Learning and
Computer-Based Modeling, Northwestern University, Evanston, IL.,
1999. [Online]. Available: http://ccl.northwestern.edu/netlogo/

[19] L. Baird, “The swirlds hashgraph consensus algorithm: Fair, fast,
byzantine fault tolerance,” Tech. Rep., 2016. [Online]. Available:
http://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf

[20] A. Churyumov, “ByteBall : A decentralized system for storage
and transfer of value,” 2017. [Online]. Available: https://byteball.org/
Byteball.pdf

[21] G. Bu, Ö. Gürcan, and M. Potop-Butucaru, “G-IOTA: fair and
confidence aware tangle,” CoRR, vol. abs/1902.09472, 2019. [Online].
Available: http://arxiv.org/abs/1902.09472

[22] Y. Sompolinsky and A. Zohar, “Accelerating bitcoin’s transaction pro-
cessing. fast money grows on trees, not chains,” IACR Cryptology ePrint
Archive, vol. 2013, 2013.

[23] Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “Spectre: A fast and
scalable cryptocurrency protocol,” IACR Cryptol. ePrint Arch., p. 1159,
2016.

[24] Sycomore++, “Source code,” https://anonymous.4open.science/r/
Sycomorepp-412D.

[25] N. Lagaillardie, M. A. Djari, and O. Gurcan, “A computational study
on fairness of the tendermint blockchain protocol,” Information, vol. 10,
no. 12, 2019. [Online]. Available: https://www.mdpi.com/2078-2489/
10/12/378

[26] O. Gutknecht and J. Ferber, “The madkit agent platform architecture,”
in Proceedings of the International Workshop on Infrastructure for
Multi-Agent Systems: Infrastructure for Agents, Multi-Agent Systems,
and Scalable Multi-Agent Systems, 2000.

[27] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E. Jeannot,
E. Jeanvoine, A. Lèbre, D. Margery, N. Niclausse, L. Nussbaum,
O. Richard, C. Pérez, F. Quesnel, C. Rohr, and L. Sarzyniec, “Adding
virtualization capabilities to the Grid’5000 testbed,” in Cloud Computing
and Services Science, ser. Communications in Computer and Information
Science, I. I. Ivanov, M. van Sinderen, F. Leymann, and T. Shan, Eds.
Springer International Publishing, 2013, vol. 367, pp. 3–20.

[28] B. H. Distribution, 2020. [Online]. Available: https://blockchair.com/
bitcoin/charts/hashrate-distribution

[29] J. Göbel and A. Krzesinski, “Increased block size and bitcoin blockchain
dynamics,” in 2017 27th International Telecommunication Networks and
Applications Conference (ITNAC), 2017, pp. 1–6.

11

https://lightning.network/lightning-network-paper.pdf
https://iota.org/
http://ccl.northwestern.edu/netlogo/
http://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf
https://byteball.org/Byteball.pdf
https://byteball.org/Byteball.pdf
http://arxiv.org/abs/1902.09472
https://anonymous.4open.science/r/Sycomorepp-412D
https://anonymous.4open.science/r/Sycomorepp-412D
https://www.mdpi.com/2078-2489/10/12/378
https://www.mdpi.com/2078-2489/10/12/378
https://blockchair.com/bitcoin/charts/hashrate-distribution
https://blockchair.com/bitcoin/charts/hashrate-distribution

	Introduction
	Motivations of this Work. 
	Contributions of this work

	Related Work
	Overview of Sycomore
	Properties of Sycomore
	Periodic readjustment of the difficulty

	Sycomore++
	Simulation Study
	Simulator and Experimental Environment
	Simulation Model
	Block creation model
	Proof-of-Work Model
	Common parameters of the simulations

	Scalability Study
	Experiment setting
	Experiment results

	Reactivity Study
	Experiments setting
	Experiments results

	Adversarial environment
	Experiment settings
	Experiment results

	Adversarial strategies
	Ledger attack
	Chain attack


	Conclusions
	References

