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PRESHEAVES ON VI, nil-CLOSED UNSTABLE

ALGEBRAS AND THEIR CENTRES

OURIEL BLOEDE

Abstract

A nil-closed, noetherian, unstable algebra K over the Steenrod Algebra is determined, up
to isomorphism, by the functor HomKf.g.(K,H∗( )), which is a presheaf on the category VI of
finite dimensional vector spaces and injections, by the theory of Henn-Lannes-Schwartz. In this
article, we use this theory to study the centre, in the sense of Heard, of a nil-closed noetherian
unstable algebra.

For F a presheaf on VI, we construct a groupoid GF which encodes F . Then, taking F :=
HomKf.g.(K,H∗( )), we show how the centre of K is determined by the associated groupoid.
We also give a generalisation of the second theorem of Adams-Wilkerson, defining sub-algebras
H∗(W )G of H∗(W ) for appropriate groupoids G.

There is a H∗(C)-comodule structure on K that is associated with the centre. For K
integral, we explain how the algebra of primitive elements of this H∗(C)-comodule structure is
also determined by the groupoid associated with HomKf.g.(K,H∗( )). Along the way, we prove
that this algebra of primitive elements is also noetherian.

1 Introduction

1.1 The two theorems of Adams-Wilkerson

For p a prime number, W a finite dimensional Fp-vector space, and for BW the classifying space
of W , W 7→ H∗(W ) := H∗(BW ;Fp) defines a functor from Vf , the category of finite dimensional
vector spaces, to K, the category of unstable algebra over the Steenrod algebra over Fp. Then, for
G a sub-group of Gl(W ), G acts on H∗(W ) and we can define H∗(W )G ∈ K, the unstable algebra
of invariant elements of H∗(W ) under the action of G. For K an integral, noetherian, unstable
algebra of transcendence degree dim(W ), the first theorem of Adams-Wilkerson states that there
always exists an injection ϕ from K to H∗(W ) and that this injection induces a structure of finitely
generated K-module on H∗(W ). Then, for Gal(ϕ) the sub group of Gl(W ) whose elements are
the automorphisms α such that α∗ϕ = ϕ with α∗ϕ the composition of ϕ with the isomorphism
induced by α on H∗(W ), the image of ϕ is a sub-algebra of H∗(W )Gal(ϕ). H∗(W )Gal(ϕ) is a first
approximation of K, but usually ϕ does not define an isomorphism between K and H∗(W )Gal(ϕ).

The category of unstable modules over the Steenrod algebra admits a localizing subcategory
N il (cf [Sch94]), whose objects are called nilpotent unstable modules. We call an unstable module
nil-closed if its localization away from N il is an isomorphism. The algebras H∗(W )G are nil-closed,
hence ϕ cannot be an isomorphism when K is not nil-closed. In this case, and when p = 2 the
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second theorem of Adams-Wilkerson gives a condition for ϕ to be an isomorphism, when K is
nil-closed. Namely, if K is

1. noetherian,

2. integral,

3. nil-closed,

4. integrally closed in its field of fractions,

the morphism ϕ of the first theorem of Adams-Wilkerson is an isomorphism between K and
H∗(W )Gal(ϕ). (There is a similar statement when p is odd.)

The first objective of this article is the following, for G a groupoid whose objects are the sub-
spaces of W and whose morphisms satisfy a restriction property, we define an object H∗(W )G that
generalises the algebra of invariants H∗(W )G. We will show that the H∗(W )G give a complete list
of the nil-closed, noetherian, unstable sub-algebras of H∗(W ).

1.2 The centre of an unstable algebra

In [DW92b], Dwyer and Wilkerson introduced the notion of a central element of an unstable algebra,
this notion allowed them to exhibit the only exotic finite loop space at prime 2 in [DW92a]. In the
case where K is noetherian and connected, the set of central elements of K coincides with the set
of pairs (V, ϕ) such that

1. ϕ ∈ HomK(K,H
∗(V )),

2. K admits a structure κ of H∗(V )-comodule in K, such that the following diagram commutes:

K
κ //

ϕ
((

K ⊗H∗(V )

ϵK⊗id

��

H∗(V ),

where ϵK denotes the augmentation of K (which is uniquely defined because of the connect-
edness of K).

In [Hea21], Heard showed that for K noetherian, K admits a unique (up to isomorphism) cen-
tral element (C, γ) such that γ induces a structure of finitely generated K-module on H∗(C) and
dim(C) is maximal among such central elements. Heard called this central element the centre of
K. The centre of an unstable algebra have been shown to be an important invariant. In [Kuh07]
and [Kuh13], Kuhn used it to approximate the depth of K as well as invariants d0(K) and d1(K)
introduced by Henn, Lannes and Schwartz in [HLS95], in the case where K is the cohomology of a
group. Heard generalised those results for K noetherian in [Hea20] and [Hea21].

For K noetherian, since the centre of K is associated with a H∗(C)-comodule structure on K,
it gives rise to a second invariant: the sub-algebra of primitive elements of K under this H∗(C)-
comodule structure. The second objective of this article is to explain how the centre of H∗(W )G

and its sub-algebra of primitive elements are determined by G. We will then be able to classify
nil-closed, noetherian sub-algebras of H∗(W ) with a given centre and algebra of primitive elements.
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1.3 The category Set(VI)op

We consider K/N il the localization of K with respect to morphisms whose kernels and cokernels
are nilpotent unstable modules. In [HLS93], Henn, Lannes and Schwartz proved that the func-
tor which sends an unstable algebra K to HomK(K,H

∗( )), the functor which maps V ∈ Vf to
HomK(K,H

∗(V )), induces an equivalence of category between K/N il and a certain sub-category

of Set(Vf )op the category of contravariant functors from Vf to Set. Furthermore, they used abun-
dantly the fact that, when K is noetherian, the functor HomK(K,H

∗( )) is fully determined by
the HomKf.g.(K,H

∗(V )) for V running through Vf , where HomKf.g.(K,H
∗(V )) is the subset of

HomK(K,H
∗(V )) whose objects are the morphisms from K to H∗(V ) which turn H∗(V ) into a

finitely generated K-module.

When K is noetherian, HomKf.g.(K,H
∗( )) defines a contravariant functor from VI to Set,

where VI is the wide sub-category of Vf whose morphisms are the injective morphisms. The cat-

egory Set(VI)op is a lot easier to understand than the category Set(Vf )op , and that is going to be
our main tool.

The two first sections of this article consist of recollections about the equivalences of categories
constructed in [HLS93] and the definition of central elements of an unstable algebra. In the third
section, we will introduce the category Set(VI)op and its connections with noetherian unstable
algebras. Furthermore, we will define a notion of central elements for functors in Set(VI)op . For
F = HomKf.g.(K,H

∗( )), with K a noetherian nil-closed unstable algebra, the central elements
of F will coincide with the central elements (V, ϕ) of K, such that ϕ turns H∗(V ) into a finitely
generated K-module.

Theorem 4.51. For K a noetherian unstable algebra, F = HomKf.g.(K,H
∗( )) and ϕ ∈ F (V ),

(V, ϕ) is central for K if and only if it is central for F .

1.4 The groupoid GF

An injection ϕ from a noetherian unstable algebraK to some
∧∏
i∈I

H∗(Wi), where
∧∏
denotes the prod-

uct in the category of connected unstable algebras and such that ϕ turns each H∗(Wi) into a finitely
generated K-module, induces a surjection from

⊔
i∈I

HomVI( ,Wi) to HomKf.g.(K,H
∗( )). For I a

set, we consider (Wi)i∈I
Set(VI)op , the category whose objects are pairs (F, qF ) with F ∈ Set(VI)op

and qF a natural surjection from
⊔
i∈I

HomVI( ,Wi) to F .

In the fourth section, we define an application which sends an object (F, qF ) ∈ (Wi)i∈I
Set(VI)op

to a groupoid G(F,qF ) whose set of objects is the disjoint union of the sub-spaces of the Wi. This
groupoid satisfies a property called the restriction property. The first main result of this article is
that the isomophism classes of objects in (Wi)i∈I

Set(VI)op are in one-to-one correspondence with
such groupoids. This is stated in the following theorem, where ∼G is an equivalence relation on⊔
i∈I

HomVI( ,Wi) characterised by the groupoid G.

Theorem 5.17. 1. For G a groupoid whose objects are the sub-spaces of the Wi and whose
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morphisms are isomorphisms of vector spaces such that G has the restriction property,

G(
⊔
i∈I

HomVI( ,Wi)/∼G ,q) = G,

for q the canonical surjection from
⊔
i∈I

HomVI( ,Wi) to
⊔
i∈I

HomVI( ,Wi)/ ∼G.

2. Conversely, let F ∈ (Wi)i∈I
Set(VI)op . Then, F is isomorphic to

⊔
i∈I

HomVI( ,Wi)/ ∼GF
.

We also show, in Theorem 5.30, how the central elements of
⊔
i∈I

HomVI( ,Wi)/ ∼G are deter-

mined by the groupoid G.

Now, for K a noetherian, nil-closed, unstable sub algebra of H∗(W ) with transcendence degree
dim(W ), the inclusion of K in H∗(W ) turns HomKf.g.(K,H

∗( )) into an object of WSet(VI)op . This
implies the following:

Theorem 6.7. For all W ∈ Vf , there is a one-to-one correspondence between the set of nil-
closed and noetherian sub-algebras of H∗(W ) whose transcendence degree is dim(W ) and the set of
groupoids with the restriction property, whose objects are the sub-vector spaces of W .

Then, for G a groupoid with the restriction property whose objects are sub-spaces of W , we
will denote by H∗(W )G the noetherian, nil-closed sub-algebra of H∗(W ) such that the groupoid
associated with the surjection HomVI( ,W ) ↠ HomKf.g.(H

∗(W )G , H∗( )) is G.

By Theorems 4.51 and 5.30, the central elements of H∗(W )G are determined by G. In the fifth
section we will prove the following, where P (K,x) denotes the algebra of primitive elements of K
for the H∗(V )-comodule structure induced by a central element (V, x).

Theorem 6.25. Let K be a noetherian unstable sub algebra of H∗(W ) of finite transcendence degree
dim(W ) such that (V, δ∗ϕ) is central, for ϕ the inclusion of K in H∗(W ) and δ some morphism
from H∗(W ) to H∗(V ). Then, P (K, δ∗ϕ) is nil-closed and noetherian.

In this context, we will identify naturally P (K, δ∗ϕ) with a sub algebra of H∗(W/Im(δ)) of tran-
scendence degree dim(W/Im(δ)). By Theorem 6.7, P (K, δ∗ϕ) identifies with some H∗(W/Im(δ))G

′
.

In the case where K = H∗(W )G , we explain in Theorem 6.28 how to determine G′ from G.

We conclude this article by giving examples on how to use those constructions to determine nil-
closed, noetherian, integral, unstable algebras whose transcendence degree is fixed, with a H∗(V )-
comodule structure whose primitive elements are isomorphic to some H∗(U)G

′
with U in Vf and G′

a groupoid whith the restriction property and whose objects are the sub spaces of U . For example:

Theorem 6.30. Let K be a noetherian, nil-closed, integral, unstable algebra of transcendence degree
d. We assume that the centre of K is of dimension d − 1. Then, there exists G, a sub-group of
Gl(W ), such that K is isomorphic to the algebra of invariant elements H∗(W )G with dim(W ) = d.
Furthermore, G satisfies that the set of element x ∈ W such that g(x) = x for all g ∈ G is a
sub-vector space of W of dimension d− 1.
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This Theorem implies that for K noetherian, nil-closed, integral of transcendence degree d
whose centre is of dimension d−1 and for ϕ the injection of Adams-Wilkerson, ϕ is an isomorphism
from K to H∗(W )Gal(ϕ).

Acknowledgements: I am thankful to Geoffrey Powell for its careful proofreading. I also want
to thank Antoine Boivin for his help in computing the H∗(W )G of the last section. This work was
partially supported by the ANR Project ChroK, ANR-16-CE40-0003.

2 Unstable algebras over the Steenrod algebra and the func-
tor f

In this section, we recall some known facts about Lannes’ T functor as well as results from [HLS93]
about the localization of the categories of unstable modules and algebras modulo away from nilpo-
tent objects. Recollections about unstable algebras, unstable modules and nilpotent objects can be
found in [Sch94]. In the following, A denotes the Steenrod algebra over Fp with p a prime number,
U and K denote the category of unstable modules and unstable algebras over A and N il denotes
the class of nilpotent objects in U .

2.1 The T functor

Let us recall the definition of Lannes’ T functor.

Theorem 2.1. [Lan87, Proposition 2.1] For V , a finite dimensional vector space the functor −⊗
H∗(V ) has a left adjoint TV .

Proposition 2.2. [Sch94, Proposition 3.8.4]

1. Let K be an unstable algebra, then TV (K) is given in a natural way a structure of unstable
algebra.

2. Then, TV defines a functor from K to K which is left adjoint to the tensor product with H∗(V )
in K.

Example 2.3. [Sch94, 3.9.1] For V and W two finite dimensional Fp-vector spaces, there is an

isomorphism of unstable algebras, natural in both V and W , TV (H
∗(W )) ∼= H∗(W )⊗ FHom(V,W )

p .

By the adjonction property, we get that (FHom(V,W )
p )♯ ∼= HomU (H

∗(W ), H∗(V )). In other words,
Fp [Hom(V,W )] ∼= HomU (H

∗(W ), H∗(V )) which is a theorem first proved by Adams, Gunawardena
and Miller.

2.2 N il-localisation of unstable modules

The class of nilpotent modules is a Serre class in U , we recall the existence of an equivalence of
categories between U/N il (defined as in [Gab62]) and a category of functors. The proofs can be
found in [HLS93].

Theorem 2.4. [HLS93, Part I.4] There is an adjunction of functors:

r1 : U // U/N il : s1,oo
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such that, for ϕ a morphism of unstable modules, r1(ϕ) is an isomorphism if and only if ker(ϕ) and
coker(ϕ) are objects in N il.

Then, U/N il satisfies the following universal property: for A an abelian category and F : U →
A an exact functor such that for all M ∈ N il, F (M) = 0, there exists a unique G : U/N il → A
such that F = G ◦ r1.

Definition 2.5. For M an unstable module, l1(M) := s1 ◦ r1(M) is the nil-localisation of M , and
we say that M is nil-closed if the unit of the adjunction M → l1(M) is an isomorphism.

For F the category of functors from the category Vf of finite dimensional Fp-vector spaces to
the category V of Fp-vector spaces, we consider f : U → F the functor which assigns to M in U ,

f(M) : V 7→ TV (M)0.

The class N il satisfies that f(M) = 0 if and only if M ∈ N il. Then, f induces a functor f ′

from U/N il to F such that f = f ′ ◦ r1.

We will denote by Fω the essential image of f in F .

Theorem 2.6. [Sch94, Theorem 5.2.6] The functor f ′ induces an equivalence of categories between
U/N il and the category Fω.

In [HLS93], the authors exhibit a right adjoint to f ′, m′ such that the restriction of m′ to Fω
is an inverse of the equivalence of categories induced by f ′.

Definition 2.7. Let m : F → U be the composition of m′ with s1.

Definition 2.8. For F ∈ F and V ∈ Vf , let ∆V F denote the object of F such that ∆V F (W ) =
F (V ⊕W ) and ∆V F (α) = F (idV ⊕ α) for all W ∈ Vf and for all morphism α in Vf .

We recall the following results from [Kuh94]

Proposition 2.9. For M ∈ U and V ∈ Vf , f(TV (M)) = ∆V (f(M)).

For F an object of F , TV (m(F )) ∼= m(∆V (F )).

Corollary 2.10. For M ∈ U nil-closed, TV (M) is also nil-closed.

2.3 N il-localisation of unstable algebras

Since K is not abelian, one cannot define a localized category of K in the sense of [Gab62]. In
[HLS93], Henn, Lannes and Schwartz constructed a localized category K/N il with respect to the
morphisms whose kernels and cokernels are in N il, in the sense of [KS05]. Then, the functor f
restricted to K factorises through a functor from K/N il to F . The authors of [HLS93] identified the
essential image of f restricted to K and they deduced an equivalence of category between K/N il
and a category of contravariant functors from Vf to the category of profinite sets.

Definition 2.11. A p-boolean algebra, is an algebra B over Fp, such that, for all x ∈ B, xp = x.
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Since TV (K) is an unstable algebra, TV (K)0 is a p-boolean algebra. We can then use standard
results on p-boolean algebras to study f(K).

For B the category of p-boolean algebras and B a p-boolean algebra, we consider HomB(B,Fp)
the set of morphisms of Fp-algebras from B to Fp. Then B is the direct limit of its finite dimensional
subalgebras Bα. Therefore, HomB(B,Fp) is the inverse limit of the HomB(Bα,Fp) which are finite.
HomB(B,Fp) inherits a structure of profinite set.

Proposition 2.12. [HLS93] For Pfin the category of profinite sets, the functor spec : Bop →
Pfin, where spec(B) := HomB(B,Fp), is an equivalence of categories whose inverse is the functor
which sends S to the algebra of continuous maps from S to Fp, FSp .

In particular, for K ∈ K, by adjunction HomB(TV (K)0,Fp) ∼= HomK(K,H
∗(V )) and this iso-

morphism is an isomorphism of profinite sets, where the structure of profinite set on HomK(K,H
∗(V ))

comes from the fact that K is the direct limit of the unstable sub-algebra of K which are finitely

generated as A-algebras. Then, TV (K)0 is isomorphic as a p-boolean algebra to FHomK(K,H∗(V ))
p .

Definition 2.13. 1. Let Pfin(V
f )op be the category of functors from (Vf )op to Pfin,

2. let L be Lannes’ linearization functor from (Pfin(V
f )op)op to F defined by L(F )(V ) := FF (V )

p ,

3. let g : K → (Pfin(V
f )op)op be the functor which sends K to the functor g(K) : V 7→

HomK(K,H
∗(V )).

We have a commutative diagram of functors:

K
g
//

��

(Pfin(V
f )op)op

L
��

U
f

// F ,

where the functor from K to U is the forgetful functor. We denote by Pfin(V
f )op

ω the full subcategory

of Pfin(V
f )op , whose objects are those whose image under L are in Fω.

The functor g has a unique factorisation of the following form:

K → K/N il → Pfin(V
f )op

ω → Pfin(V
f )op .

Theorem 2.14. [HLS93, Theorem 1.5 of Part II] The functor from K/N il to Pfin(V
f )op

ω induced
by g is an equivalence of categories.

The following lemma will be of importance in the following.

Lemma 2.15. The functor g turns injections into surjections and finite inverse limits into direct
limits.

Proof. Since f is exact, f sends injections into injections and commutes with finite inverse limits.

The result is then a consequence of the isomorphism f(K) ∼= Fg(K)
p .
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3 Connected components of TV (K) and central elements of
an unstable algebra

In this section, we recall the definition of central elements of an unstable algebra first introduced
by Dwyer and Wilkerson in [DW92b].

3.1 Connected components of TV (K)

For K an unstable algebra, we recall the definition of the connected components of TV (K) which
is exposed in [Hea20] and [Hea21]. Such a decomposition exists for any graded algebra over a
p-boolean algebra.

Lemma 3.1. For K an unstable algebra which is finitely generated as an algebra over A,
HomK(K,H

∗(V )) is finite.

Definition 3.2. For V ∈ Vf and ϕ ∈ HomK(K,H
∗(V )), let T(V,ϕ)(K) := TV (K) ⊗TV (K)0 Fp(ϕ),

where the structure of TV (K)0-module over Fp(ϕ) is induced by the morphism from TV (K)0 to Fp
adjoint to ϕ.

Proposition 3.3. [Hea20, Equation (2.6)] For K an unstable algebra finitely generated as an
algebra over A and V ∈ Vf , we have the following natural isomorphism of unstable algebra

TV (K) ∼=
∏

ϕ∈HomK(K,H∗(V ))

T(V,ϕ)(K).

Lemma 3.4. For K a nil-closed unstable algebra, V ∈ Vf and ϕ ∈ HomK(K,H
∗(V )), T(V,ϕ)(K)

is nil-closed.

Proof. By corollary 2.10 TV (K) is nil-closed. By the isomorphism of proposition 3.3, T(V,ϕ)(K)
is the kernel of the morphism from TV (K) to

⊕
ϕ ̸=ψ

TV (K) which sends x to the direct sum of the

components of x in each T(V,ψ)(K) with ϕ ̸= ψ. Since
⊕
ϕ ̸=ψ

TV (K) is nil-closed and l1 is left exact,

l1(T(V,ϕ)(K)) is the kernel of the same morphism, thus, it is isomorphic to T(V,ϕ)(K).

3.2 Central elements of an unstable algebra

The notion of a central element of an unstable algebra K is defined by Dwyer and Wilkerson in
[DW92b] and they used it in [DW92a] to exhibit the only exotic finite loop space at the prime 2.
The centre of K has been studied in details in [Hea20] and [Hea21].

The aim of this subsection is to recall some known facts about central elements of an unstable
algebra.

Notation 3.5. Let M be an unstable module, V a finite dimensional vector space, K an unstable
algebra and ϕ ∈ HomK(K,H

∗(V )). Denote by:

• ηM,V : M → TV (M)⊗H∗(V ) the unit of the adjunction between TV and −⊗H∗(V );
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• ρM,V the following composition

ρM,V : M
ηM,V−→ TV (M)⊗H∗(V )

id⊗ϵV−→ TV (M),

where ϵV denote the augmentation of H∗(V );

• ρK,(V,ϕ) the composition of ρK,V with the projection onto T(V,ϕ)(K).

Remark 3.6. The morphism ρM,V identifies with TιV0 (M) : M ∼= T0(M) → TV (M), the morphism

induced by naturality of TV (M) with respect to V by ιV0 , the injection from 0 to V .

Definition 3.7. Let K be an unstable algebra and ϕ ∈ HomK(K,H
∗(V )). Then, the pair (V, ϕ)

is said to be central if ρK,(V,ϕ) : K → T(V,ϕ)(K) is an isomorphism.
Let C(K) be the set of central elements of K.

The classical example and first motivation for studying the centre of an unstable algebra is the
example of H∗(G), the cohomology of a group G. The details can be found in [Hen01].

Example 3.8. ForG a discrete group or a compact Lie group, HomK(H
∗(G), H∗(V )) ∼= Fp [Rep(V,G)],

where Rep(V,G) denote the conjugacy classes of morphisms from V to G.

Let ρ represent a conjugacy class in Rep(V,G). We consider the morphism V × CG(ρ) → G,
where CG(ρ) denote the centraliser in G of the image of ρ, which sends (v, g) to ρ(v) · g. It
induces a morphism from H∗(G) → H∗(V ) ⊗H∗(CG(ρ)). By adjunction, it gives us a morphism
TV (H

∗(G)) → H∗(CG(ρ)) which depends only on the conjugacy class of ρ. This morphism induce
an isomorphism between T(V,ρ)(H

∗(G)) and H∗(CG(ρ)), and

ρH∗(G),(V,ρ) : H∗(G) → T(V,ρ)(H
∗(G)) ∼= H∗(CG(ρ))

is the morphism induced by the injection CG(ρ) ↪→ G.

Hence, (V, ρ) is central if and only if the injection CG(ρ) ↪→ G induces an isomorphism in
cohomology.

Definition 3.9. Let K be an unstable algebra, K is connected if K has an augmentation ϵK :

K → Fp which induces an isomorphism K0
∼=→ Fp.

Remark 3.10. The connected components T(V,ϕ)(K) are connected, hence, if K is not connected,
C(K) = ∅.

Example 3.11. The functor T0 is the identity, hence, if K is connected, T(0,ϵK)(K) ∼= K, for
ϵK : K → Fp the unique morphism of unstable algebra from K to Fp. Hence (0, ϵK) is central.

Notation 3.12. Let ϵK,V , be the composition of ϵK with the injection from Fp to H∗(V ).

For K a connected unstable algebra, I(K) denotes the augmentation ideal of K. Then the
module of indecomposable elements of K is defined by Q(K) := I(K)/I(K)2. An unstable module
M is said to be locally finite if, for all x ∈M , Ax is finite.

In [DW90], Dwyer and Wilkerson exhibit how, when Q(K) is locally finite, central elements of
K are related to H∗(V )-comodule structures on K.
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Proposition 3.13. [DW90, Proof of Theorem 3.2]
Let K be a connected unstable algebra such that Q(K) is locally finite as an unstable module,

then (V, ϵK,V ) is central for all V ∈ Vf .

In particular, if K is a connected, noetherian, unstable algebra, then (V, ϵK,V ) is central for all
vector space V .

We recall the following results of [DW92b].

Proposition 3.14. [DW92b, Proposition 3.4]
Let K be a connected unstable algebra such that Q(K) is locally finite. Then, for

ϕ ∈ HomK(K,H
∗(V )), (V, ϕ) is central if and only if there exists a morphism from K to K⊗H∗(V )

such that the following diagram commutes:

K

K

id

66

//

ϕ
((

K ⊗H∗(V )

id⊗ϵH∗(V )

OO

ϵK⊗id

��

H∗(V ).

Corollary 3.15. [DW92b] Let K be a connected unstable algebra such that Q(K) is locally finite.
For ϕ ∈ HomK(K,H

∗(V )), (V, ϕ) is central if and only if K has a structure of H∗(V )-comodule κ
in K, such that the following diagram commutes:

K
κ //

ϕ
((

K ⊗H∗(V )

ϵK⊗id

��

H∗(V ).

In particular, this implies:

Proposition 3.16. Let K be an unstable algebra such that Q(K) is locally finite, then for ϕ ∈ C(K)
and α : V → E a morphism in Vf , (V, α∗ ◦ ϕ) ∈ C(K).

Example 3.17. For W ∈ Vf , the addition in W , ∇W , induces on H∗(W ) a coalgebra structure
in K. Then, for every morphism of unstable modules ϕ from H∗(W ) to H∗(V ), one can take the
composition of ∇∗

W with idH∗(W ) ⊗ f to define a H∗(V )-comodule structure on H∗(W ) satisfying
the hypothesis of corollary 3.15. Therefore (V, ϕ) is central.

4 The category Set(VI)op

In [Rec84], Rector used the fact that for a noetherian unstable algebra K, the functor which maps V
to HomK(K,H

∗(V )) is fully determined by the functor which maps V to HomKf.g.(K,H
∗(V )), where

HomKf.g.(K,H
∗(V )) is the set of morphism from K to H∗(V ) which makes H∗(V ) a finitely gener-

atedK-module. The functor V 7→ HomKf.g.(K,H
∗(V )) is defined on the category VI, whose objects
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are finite dimensional vector spaces on Fp and whose morphisms are injective morphisms. In this

section, we start by recalling the notion of a regular element of a functor in Pfin(V
f )op , introduced

in [HLS93]. This allows us to understand the passage from HomK(K,H
∗( )) to HomKf.g.(K,H

∗( ))

as a construction on functors in Pfin(V
f )op .

Then, we define a shift functor for contravariant functors on the category VI. This will
allow us to define a notion of centrality for objects of Set(VI)op , which coincides for noethe-
rian unstable algebras, with the notion of centrality ”away from N il” for pairs (V, ϕ) such that
ϕ ∈ HomKf.g.(K,H

∗(V )).

4.1 The functor HomKf.g.(K,H∗( ))

Definition 4.1. Let VI be the wide sub-category of Vf with only injective morphisms.

In the following, we will navigate between different presheaf categories from Vf or VI to variants
of Set. Let us define all those categories.

Definition 4.2. 1. Let Set(Vf )op and Set(VI)op be the categories of contravariant functors from
Vf and VI to the category of sets.

2. Let F in(V
f )op and F in(VI)op be the categories of contravariant functors from Vf and VI to

the category of finite sets.

3. Let Pfin(V
f )op and Pfin(VI)op be the categories of contravariant functors from Vf and VI to

the category of profinite sets.

Definition 4.3. For K in K, we define HomKf.g.(K,H
∗( )) in Set(VI)op which maps V ∈ VI to the

set of morphisms ϕ from K to H∗(V ) such that ϕ makes H∗(V ) a finitely generated K-module.

Remark 4.4. If K is finitely generated as an algebra over A, then, for all finite dimensional
vector spaces V , HomK(K,H

∗(V )) is finite. Thus HomK(K,H
∗( )) and HomKf.g.(K,H

∗( )) are

respectively in F in(V
f )op and F in(VI)op .

In particular, this is the case for K noetherian.

4.2 Regular elements of an object in Set(Vf )op

In this sub-section we recall the notion of a regular element of an object of Set(Vf )op . The interest

of this notion is that, for F in Set(Vf )op satisfying a noetherianity condition introduced in [HLS93],
the regular elements of F define an object in the much simpler category Set(VI)op . Moreover, if
F ∼= HomK(K,H

∗( )) for K a noetherian unstable algebra, the regular elements of F are given by
HomKf.g.(H,H

∗( )) and we can show that F is fully determined by its regular elements. This will
allow us to make the connection between the study of the N il-localisation of noetherian unstable
algebras, and the study of functors in F in(VI)op .

Proposition 4.5. [HLS93, Proposition-Definition 5.1] Let G ∈ Set(Vf )op , V ∈ Vf and s ∈ G(V ).
Then, there exists a unique sub-vector space U of V , denoted by ker(s), such that:

1. For all t ∈ G(W ) and all morphism α : V →W such that s = G(α)(t), ker(α) ⊂ U .
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2. There exists W0 in (Vf )op, t0 ∈ G(W0) and α0 : V → W0 such that s = G(α0)(t) and
ker(α0) = U .

3. There exists t0 ∈ G(V/U) such that s = G(π)(t0), where π is the projection of V onto V/U .

Definition 4.6. Let G ∈ Set(Vf )op , V ∈ Vf and s ∈ G(V ). We say that s is regular if ker(s) = 0.
Let reg(G)(V ) := {x ∈ G(V ) ; ker(x) = 0}.

We recall the definition of a noetherian functor from [HLS93].

Definition 4.7. Let F be in Pfin(V
f )op , we say that F is noetherian if it satisfies the following:

1. F ∈ F in(V
f )op ,

2. there exists an integer d such that F (V ) = ∅ for dim(V ) > d,

3. for all V ∈ Vf and s ∈ F (V ) and for all morphisms α which takes values in V , ker(F (α)s) =
α−1(ker(s)).

Proposition 4.8. [HLS93, Theorem 7.1]

1. If K ∈ K is noetherian, HomK(K,H
∗( )) is noetherian.

2. If F ∈ Set(Vf )op is noetherian, then m ◦ L(F ) ∈ K is noetherian.

Lemma 4.9. Let F be a noetherian functor, then, reg(F ) is an object in F in(VI)op .

Proof. We only have to prove that if x ∈ reg(F )(V ), and if α from E to V is an injection, α∗x is
regular. But, since F is supposed noetherian, ker(α∗x) = α−1(ker(x)) which is equal to {0} since
x is regular and α is an injection.

Remark 4.10. reg is not a functor, since the image under a natural transformation of a regular
element is not necessarily regular. For example, fix V and U where U ̸= 0 is a sub-vector space
of V , and consider the natural transformation from HomF2

( , V )
π→ HomF2

( , V/U) induced by
the projection from V to V/U . Then, idV is regular in HomF2(V, V ) but ker(π ◦ idV ) = U in
HomF2(V, V/U).

Proposition 4.11. [DW92b, Proposition 4.8] For K a noetherian unstable algebra, we have a
natural isomorphism reg(HomK(K,H

∗( ))) ∼= HomKf.g.(K,H
∗( )).

Let us denote by O the forgetful functor from Set(Vf )op to Set(VI)op induced by restriction to
(VI)op. We define the left Kan extension of O along the identity.

Proposition 4.12. The functor O has a left adjoint, which maps a functor F ∈ Set(VI)op to F̃ ,
which is defined by F̃ (V ) :=

⊔
U∈S(V )

F (V/U), where S(V ) is the set of sub-vector spaces of V .

Proof. Let us first prove that F̃ defines an object in Set(Vf )op . To a morphism α : V → W we
associate F̃ (α) in the following way: for x ∈ F (W/U) we consider π ◦ α where π is the projection
from W to W/U , we factorise π ◦ α as α̃ ◦ ψ with ψ the projection from V to V/ ker(π ◦ α), then α̃
is injective and we define F̃ (α)(x) = F (α̃)(x) ∈ F (V/ ker(π ◦ α)).
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Let ϕ be a natural transformation from F̃ to A, where A is an object in Set(Vf )op . For all
V ∈ Vf , we have a morphism in Set,

ϕV :
⊔

U∈S(V )

F (V/U) → A(V ).

Then,
ϕV |F (V )

induces a morphism ι(ϕ)V from F (V ) to O(A)(V ). ι(ϕ) is a natural transformation in Set(VI)op .
Conversely, for ϕ a natural transformation from F to O(A), we define

γ(ϕ)V : F̃ (V ) → A(V )

in the following way: for x ∈ F (V/U) we define γ(ϕ)V (x) := A(π)(ϕV/U (x)), for π the projection

from V to V/U . Then, γ(ϕ) is a natural transformation in Set(Vf )op , and γ and ι are mutually
inverse.

Remark 4.13. For F ∈ Set(VI)op , F̃ always satisfies the second condition in the definition of a

noetherian functor. Moreover, F̃ is in F in(V
f )op if and only if F ∈ F in(VI)op and there is an integer

d such that F (V ) = ∅ for dim(V ) ≥ d, hence F̃ is noetherian if and only if F ∈ F in(VI)op and there
exists d ∈ N such that F (V ) is empty for dim(V ) greater than d.

Proposition 4.14. For F a noetherian functor, r̃eg(F ) ∼= F .

Proof. Let F be a noetherian functor. For V a finite dimensional vector space, we define the

following morphism from r̃eg(F )(V ) to F (V ): r̃eg(F )(V ) → F (V )
x ∈ reg(F )(V/U) 7→ F (π)(x),

where π is the

projection from V to V/U . Then, Proposition 4.5 implies that this morphism is an isomorphism,
and the fact that F is noetherian implies that it is natural in V .

Corollary 4.15. For K a noetherian unstable algebra, there is a natural bijection with respect to
V ,

HomK(K,H
∗(V )) ∼=

⊔
U∈S(V )

HomKf.g.(K,H
∗(V/U)).

4.3 Central elements of a noetherian algebra

In the last subsection, we explained why, for K a noetherian unstable algebra, HomK(K,H
∗( )) is

fully determined by its regular elements, given by HomKf.g.(K,H
∗( )). In this section, we prove that

for K noetherian, one can deduce C(K) from the central elements (V, ϕ) of K such that ϕ is regular.

We recall the definition of the centre of a noetherian unstable algebra from [Hea21] which is in
some sense the maximal regular central element of K.

We state the following results for noetherian algebras, since it is in this case that we will use
those, but all of them are true if we only suppose that Q(K) is locally finite.
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Proposition 4.16. Let K be a noetherian unstable algebra and let ϕ be in HomK(K,H
∗(E)), then

if (E, ϕ) is central, let ϕ0 be the only element in HomK(K,H
∗(E/ ker(ϕ))) such that ϕ = π∗ϕ0.

Then, ϕ0 is regular and (E/ker(ϕ), ϕ0) is central.

Conversely, if (E/U, ϕ) is central with ϕ regular, (E, π∗ ◦ ϕ) is central. Thus, (E, ϕ) is central
if and only if (E/ ker(ϕ), ϕ0) is central.

Proof. We consider s a section of π, the projection from E to E/ker(ϕ), then ϕ0 = s∗ ◦ ϕ. Then,
by Proposition 3.16, if (E, ϕ) is central, so is (E/ker(ϕ), ϕ0). The converse is a direct conseequence
of Proposition 3.16.

Lemma 4.17. [DW92b, Lemma 4.6] Let K be a noetherian unstable algebra, let f be in HomK(K,H
∗(E))

and (C, g) ∈ C(K), then there exists a unique pair (E⊕C, f⊞g) with f⊞g ∈ HomK(K,H
∗(E⊕C))

such that f ⊞ g composed respectively with the projections on H∗(E) and H∗(C) gives f and g.

H∗(C)

K

g
55

f⊞g
//

f
))

H∗(C)⊗H∗(E)

id⊗ϵH∗(E)

OO

ϵH∗(C)⊗id

��

H∗(E).

Remark 4.18. In Lemma 4.17, even if f and g are regular, f ⊞ g is not regular in general.

We recall now the definition of the centre of a noetherian algebra.

Definition 4.19. [Hea21, Definition 3.9] Let K be a noetherian unstable algebra, let f be in
HomK(K,H

∗(E)) and (C, g) ∈ C(K), we define (E ◦ C, σ(f, g)) by E ◦ C = (E ⊕ C)/ker(f ⊞ g),
and σ(f, g) : K → E ◦ C such that the composition of σ(f, g) by H∗(π(E⊕C)/ker(f⊞g)) is equal to
f ⊞ g, for π(E⊕C)/ker(f⊞g) the projection on (E ⊕ C)/ker(f ⊞ g).

Proposition 4.20. [Hea21, Corollary 3.11] Let K be a noetherian unstable algebra and (C, g) and
(E, f) be two central elements of K. Then (E ⊕ C, f ⊞ g) and (E ◦ C, σ(f, g)) are central.

Theorem 4.21. [Hea21, Theorem 3.13] Let K be a connected, noetherian, unstable algebra. Then,
up to isomorphism, there is a unique couple (C, γ) ∈ C(K) which is regular and satisfy the following:
for all central element (E, f) with f regular, there exists an injection ι from E to C, such that
f = ι∗γ. We will call (C, γ) the centre of K.

The idea of the proof is to consider (C, γ) a regular central element of maximal dimension.
Then, show that for (E, f) regular and central, either (E, f) = (E, ι∗γ) for ι an injection from E
to C, or the dimension of E ◦ C is greater than that of C which contradicts the assumption.

Corollary 4.22. For E ∈ Vf and f ∈ HomK(K,H
∗(V )), (E, f) is central if and only if there is a

morphism α from E to C, with (C, γ) the centre of K, such that f = α∗γ.

Proof. It is a direct consequence of Proposition 3.16 and Theorem 4.21.
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4.4 The shift functor

We want to be able to discuss centrality away from N il, and define accordingly a notion of central
elements for objects in Set(VI)op . The aim of this subsection is to define, for F ∈ Set(VI)op ,
V ∈ Vf and ϕ ∈ F (V ) a functor σ(V,ϕ)F , in such a way that for F = HomKf.g.(K,H

∗( )),
σ(V,ϕ)F ∼= HomKf.g.(T(V,ϕ)(K), H∗( )).

We start by defining functors ΣV from Set(Vf )op to Set(Vf )op such that, for all unstable al-
gebras K, ΣVHomK(K,H

∗( )) ∼= HomK(TV (K), H∗( )), and such that ΣVHomK(K,H
∗( )) nat-

urally decomposes in Σ(V,ϕ)HomK(K,H
∗( )) ∼= HomK(T(V,ϕ)(K), H∗( )), with ϕ running through

HomK(K,H
∗(V )).

Then, we define a shift functor σV in the category Set(VI)op and we identify the desired func-
tors σ(V,ϕ)F as the connected components of σV F . It is worth pointing out that since the de-
composition of HomKf.g.(TV (K), H∗( )) is induced by elements (V, ϕ) with ϕ ∈ HomK(K,H

∗(V ))
(and not only elements in HomKf.g.(K,H

∗(V ))), σVHomKf.g.(K,H
∗( )) is only a sub functor of

HomKf.g.(TV (K), H∗( )).

Definition 4.23. For V ∈ Vf , define the functor ΣV from Set(Vf )op to Set(Vf )op by

ΣV F (W ) = F (V ⊕W ),

and ΣV F (α) = F (idV ⊕ α), for F ∈ Set(Vf )op , W ∈ Vf and α a morphism in Vf .

Lemma 4.24. For K ∈ K and V ∈ Vf , there is an isomorphism natural both in K and V ,
HomK(TV (K), H∗( )) ∼= ΣVHomK(K,H

∗( )).

Proof. This is a direct consequence of the definition of TV as the adjoint of the tensor product by
H∗(V ) and of the natural isomorphism H∗(V )⊗H∗(W ) ∼= H∗(V ⊕W ).

Definition 4.25. For F ∈ Set(Vf )op , V ∈ Vf and ϕ ∈ F (V ), we consider Σ(V,ϕ)F (W ) to be the
fibre over {ϕ} of the morphism ΣV F (W ) → ΣV F (0) ∼= F (V ) induced by the injection from 0 to
W .

Lemma 4.26. Let K be an unstable algebra, V ∈ Vf and ϕ ∈ HomK(K,H
∗(V )). There is a

natural isomorphism Σ(V,ϕ)HomK(K,H
∗(W )) ∼= HomK(T(V,ϕ)(K), H∗(W )).

Proof. We have a commutative diagram

ΣVHomK(K,H
∗(W ))

∼= //

��

HomK(TV (K), H∗(W ))

��

HomK(K,H
∗(V ))

∼= // HomK(TV (K),Fp),

where the vertical maps are induced by the injection from {0} to W , and the horizontal ones are
given by the natural isomorphism of Lemma 4.24. By definition, Σ(V,ϕ)HomK(K,H

∗(W )) is the
fibre over ϕ of the left map, and by construction HomK(T(V,ϕ)(K), H∗(W )) is the fibre over the
adjoint of ϕ of the right one. This concludes the proof.
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Proposition 4.27. If F is noetherian, for x an element in F (V ), ΣV F and Σ(V,x)F are also
noetherian.

Proof. If F is finite, ΣV F and Σ(V,x)F are obviously finite, we only have to prove the second con-
dition. Let a be an element in σV F (W ), then a ∈ F (V ⊕W ). There is an ambiguity in considering
ker(a), since a can be viewed either as an element in F or ΣV F . Let ker

1(a) denote the kernel of a
considered as an element in F , and ker2(a) its kernel in ΣV F . We notice that ker1(a) is a sub-vector
space of V ⊕W , whereas ker2(a) is a sub-space of W . Then, ker2(a) = ker1(a) ∩W . Indeed, for
t regular such that a = π∗t for π the projection from V ⊕W to (V ⊕W )/ ker1(a), π factorises as
π2 ◦ π1, for π1 the projection from V ⊕W to V ⊕ (W/(ker1(a) ∩W )) and π2 the projection from
V ⊕ (W/(ker1(a)∩W )) to (V ⊕W )/ ker1(a), then a = ΣV F (π

′)(π∗
2t), for π

′ the projection from W
to W/(ker1(a) ∩W ). Therefore, ker1(a) ∩W ⊂ ker2(a).

Conversely, if π is now the projection from W to W/ ker2(a), let t ∈ F (V ⊕ (W/ ker2(a)))
such that a = ΣV F (π)(t). Then, a = (idV ⊕ π)∗t, hence ker2(a) ⊂ ker1(a). Since, we also have
ker2(a) ⊂W , ker2(a) = ker1(a)∩W . Then, for α a morphism from a finite dimensional vector space
U to W , ker2(ΣV F (α)(a)) = ker1((idV ⊕ α)∗a) ∩W which is equal to (idV ⊕ α)−1(ker1(a)) ∩W ),
since F is noetherian. Hence, it is equal to α−1(ker1(a) ∩W ) = α−1(ker2(a)). This proves that
ΣV F is noetherian. The proof for Σ(V,x)F is similar.

Corollary 4.28. If K is noetherian and nil-closed, TV (K) and T(V,ϕ)K are noetherian, for V ∈ Vf
and ϕ ∈ HomK(K,H

∗(V )).

Proof. By Proposition 4.27, g(TV (K)) and g(T(V,ϕ)(K)) are noetherian, then by Proposition 4.8
l1(TV (K)) ∼= (m ◦ L ◦ g)(TV (K)) and l1(T(V,ϕ)(K)) are noetherian. Therefore, since by Corollary
2.10 and Lemma 3.4 TV (K) and T(V,ϕ)(K) are nil-closed, they are noetherian.

We want to identify a shift functor σV from Set(VI)op to Set(VI)op , in so that σVHomKf.g.(K,H
∗( ))

captures the behaviour of TV (K) away from nilpotent objects for K noetherian, and such that for
F in Set(VI)op , σV F comes with a decomposition in σ(V,ϕ)F with ϕ running through F (V ).

In order to define this shift functor, we have to discuss pushouts in Vf and VI. It is worth
noticing that the pull-back in Vf of a diagram whose morphisms are in VI is also a pull-back in
VI.

Remark 4.29. Pushouts usually don’t exist in VI, for example, if one consider the following
diagram

0 //

��

V

V ,

the pushout “should be” V ⊕ V , but since non injective morphisms are not in VI the commutative
square

0 //

��

V

��

V // V
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does not give rise to a morphism from V ⊕V to V satisfying the universal property of the pushout.
So, in the following, we will consider pushouts in Vf of diagrams in VI.

The following simple lemma deals with this.

Lemma 4.30. Consider a pushout square in Vf :

M
ω //

ν

��

W

��

V // P.

Suppose that ν and ω are injections. Then, for all pullback squares

M
ω //

ν

��

W

��

V // N,

such that the morphisms from V and W to N are injections, the morphism from P to N induced
by the universal property of the pushout in Vf , is a morphism in VI.

Let us also recall the pasting law for pullbacks:

Lemma 4.31. [AHS90, Proposition 11.10] We consider a diagram of the following shape in a
category C:

A //

��

B //

��

C

��

D // E // F.

If the right square is a pullback square, then the outer square is a pullback square if and only if the
left square is.

Definition 4.32. For V andW some fixed objects of Vf , let B(V,W ) be the set of triples (M,ν, ω),
where M ∈ Vf and ν and ω are morphisms from M to V and W in VI. Let also ≡ be the relation
on B(V,W ) defined by (M,ν, ω) ≡ (M ′, ν′, ω′) if there exists an isomorphism µ from M ′ to M such
that ν′ = ν ◦ µ and ω′ = ω ◦ µ.

The following lemma is obvious.

Lemma 4.33. ≡ is an equivalence relation on B(V,W ).

Definition 4.34. For V and W two objects of VI, let B(V,W ) be the set of equivalence classes for
≡ in B(V,W ). For [M,ν, ω] ∈ B(V,W ), let V ⊕ν,ωW denote the pushout of the following diagram
in Vf :

M
ω //

ν

��

W

V ,

let also denote by ι
V⊕ν,ωW
V and ι

V⊕ν,ωW
W the induced injections from V and W to V ⊕ν,ωW . When

there is no ambiguity, we will denote them by ιV and ιW .
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Remark 4.35. V ⊕ν,ω W does not depend on the choice of (M,ν, ω) ∈ [M,ν, ω].

Proposition 4.36. B( , ) is a bifunctor on VIop.

Proof. Let α : V ′ ↪→ V and β :W ′ ↪→W be morphisms in VI, for [M,ν, ω] ∈ B(V,W ) we define
B(α, β)([M,ν, ω]) ∈ B(V ′,W ′) in the following way. We consider the following diagram, where
MV , MW and M ′ are defined by pullback.

M ′ //

��

MW
//

��

W ′

β

��

MV
//

��

M
ω //

ν

��

W

V ′
α
// V .

Then, ν′ and ω′ are given by the compositions M ′ →MV → V ′ and M ′ →MW →W ′.

Remark 4.37. By the pasting law of pullbacks (lemma 4.31, that we used two times) we can show
that the outer square of the following diagram is a pullback square:

M ′ //

��

MW
//

��

W ′

��

MV
//

��

M
ω //

ν

��

W

��

V ′ // V // V ⊕ν,ω W.

Definition 4.38. Let α : V ′ ↪→ V and β :W ′ ↪→W be injections in VI, for [M,ν, ω] ∈ B(V,W )
and for [M ′, ν′, ω′] := B(α, β)([M,ν, ω]) ∈ B(V ′,W ′) we define

α⊕ν,ω β : V ′ ⊕ν′,ω′ W ′ ↪→ V ⊕ν,ω W,

the injective (cf lemma 4.30) morphism induced by the universal property of the pushout in Vf of
the following pullback square:

M ′ ν′
//

ω′

��

W ′

ω◦β
��

V ′
ν◦α
// V ⊕ν,ω W.

Definition 4.39. For F ∈ Set(VI)op and V and W two objects in VI, we define

σV F (W ) :=
⊔

[M,ν,ω]∈B(V,W )

F (V ⊕ν,ω W ).

Even though the roles of V and W are symmetric in the definition of σV F (W ), we use an
asymmetric notation to reflect that of TV (K).
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Proposition 4.40. For F ∈ Set(VI)op , σ F is a bifunctor on VIop.

Proof. For α : V ′ ↪→ V and β : W ′ ↪→ W two morphisms in VI we have to define σα(β) from
σV F (W ) to σV ′F (W ′). For x ∈ F (V ⊕ν,ω W ) let σαF (β)(x) = F (α⊕ν,ω β)(x) ∈ F (V ′ ⊕ν′,ω′ W ′).
Then, the fact that σ F is a bifunctor comes from the fact that idV ⊕ν,ω idW = idV⊕ν,ωW and that
for α′ : V ” → V ′ and β′ : W” →W ′, (α⊕ν,ω β) ◦ (α′ ⊕ν′,ω′ β′) = (α ◦ α′)⊕ν,ω (β ◦ β′).

Corollary 4.41. For F ∈ Set(VI)op and V and W some fixed objects in VI, σV F and σ F (W ) are
objects in Set(VI)op .

Let us now define the analogue of T(V,ϕ) in the category Set(VI)op .

Lemma 4.42. For F ∈ Set(VI)op and V and W in VI, we have natural isomorphisms σ0F (W ) ∼=
F (W ) and σV F (0) ∼= F (V ).

Definition 4.43. For F ∈ Set(VI)op and V and W two objects of VI, the morphism from 0 to W
induces a morphism σV F (W ) → σV F (0) ∼= F (V ). For x ∈ F (V ), let σ(V,x)F (W ) be the inverse
image of {x} under this morphism.

Lemma 4.44. For F ∈ Set(VI)op , V and W objects in VI and for x ∈ F (V ), σ(V,x)F is a sub-
functor of σV F .

Proof. We only have to prove that for α : U → W a morphism in VI and for y ∈ σ(V,x)F (W ),
σV F (α)(y) ∈ σ(V,x)F (U). This follow directly from the fact that the morphism 0 → W factorizes
through 0 → U →W .

As we stated in the beginning of this sub-section,

σVHomKf.g.(K,H
∗( )) ̸∼= HomKf.g.(TV (K), H∗( )).

Nonetheless, as we will see in corollary 4.46, for ϕ ∈ HomKf.g.(K,H
∗(V )), we have that

σ(V,ϕ)HomKf.g.(K,H
∗( )) ∼= HomKf.g.(T(V,ϕ)(K), H∗( )).

Proposition 4.45. For F ∈ Set(VI)op , V ∈ Vf and x ∈ F (V ), σ̃(V,x)F ∼= Σ(V,x)F̃ .

Proof. Let W be a finite dimensional vector space. Let us first notice that both σ̃(V,x)F (W ) and

Σ(V,x)F̃ (W ) can be seen as sub-sets of F̃ (V ⊕W ) =
⊔

H∈S(V⊕W )

F ((V ⊕W )/H). It is obvious for

Σ(V,x)F̃ (W ). For σ̃(V,x)F (W ) ⊂ σ̃V F (W ), for every V ⊕ν,ω (W/U) the universal property of the
product induces a projection πν,ω from V ⊕W to V ⊕ν,ω (W/U). It induces an isomorphism from
(V ⊕W )/ ker(πν,ω) to V ⊕ν,ω (W/U), we identify F (V ⊕ν,ω (W/U)) with

F ((V ⊕W )/ ker(πν,ω)) ⊂ F̃ (V ⊕W ) through this isomorphism. Then we only have to prove that
those sub-sets are equals.

Σ(V,x)F̃ (W ) identifies with the set of elements γ in F̃ (V ⊕W ) such that F̃ (ιV⊕W
V )(γ) = x ∈

F (V ). Since F̃ is noetherian and x is regular, ker(γ) ∩ V = {0}. Then, there exists U a sub-
space of W and a class [M,ν, ω] ∈ B(V,W/U) such that the canonical projection from V ⊕ W
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to V ⊕ν,ω (W/U) induces an isomorphism (V ⊕W )/ ker(γ) ∼= V ⊕ν,ω (W/U). Then, up to this

isomorphism γ ∈ F (V ⊕ν,ω (W/U)) and (ι
V⊕ν,ω(W/U)
V )∗γ = x, so γ ∈ σ(V,x)F (W/U) ⊂ σ̃(V,x)F (W ).

Conversely, for γ ∈ σ(V,x)F (W/U) ⊂ σ̃(V,x)F (W ), there is [M,ν, ω] ∈ B(V,W/U) such that

γ ∈ F (V ⊕ν,ω (W/U)) and (ι
V⊕ν,ω(W/U)
V )∗γ = x, then for H the kernel of the projection from

V ⊕ W to V ⊕ν,ω (W/U), we have the following isomorphism induced by the first isomorphism

theorem (V ⊕W )/H ∼= V ⊕ν,ω (W/U). Up to this isomorphism, γ ∈ F ((V ⊕W )/H) ⊂ F̃ (V ⊕W ).

Then, by construction and up to the isomorphism from (V ⊕W )/H to V ⊕ν,ω(W/U), F̃ (ιV⊕W
V )(γ) =

(ι
V⊕ν,ω(W/U)
V )∗γ = x. Then, γ ∈ Σ(V,x)F̃ (W ).

Corollary 4.46. For K a noetherian algebra, V ∈ Vf and ϕ ∈ HomKf.g.(K,H
∗(V )),

σ(V,ϕ)HomKf.g.(K,H
∗( )) ∼= HomKf.g.(T(V,ϕ)(K), H∗( )).

Proof. This is a direct consequence of Lemma 4.26, of Proposition 4.45 and of the fact that, if K
is noetherian, T(V,ϕ)(K) is also noetherian.

Remark 4.47. Since the morphism σV F (W ) → F (V ) is a surjection, σV F (W ) is the disjoint
union of the fibres over singletons in F (V ), we then have an isomorphism which is natural in both
K and W , σVHomKf.g.(K,H

∗(W )) ∼=
⊔

ϕ∈HomKf.g.(K,H∗(V ))

HomKf.g.(T(V,ϕ)(K), H∗(W )).

4.5 Central elements of an object of Set(VI)op

In Definition 3.7, we defined the notion of a central elements of an unstable algebra K. In the
following, we define a notion of centrality ”away from N il”.

Definition 4.48. For K ∈ K, V ∈ Vf and ϕ ∈ HomK(K,H
∗(V )), we will say that (V, ϕ) is central

away from N il, if g(ρK,(V,ϕ)) (or equivalently f(ρK,(V,ϕ))) is an isomorphism.

Remark 4.49. Since, by lemma 3.4, for K nil-closed, T(V,ϕ)(K) is also nil-closed, if K is nil-closed
(V, ϕ) is central away from N il if and only if it is central.

The centrality away from N il can be characterised by properties of the functor
HomKf.g.(K,H

∗( )) ∈ Set(VI)op . For F ∈ Set(VI)op , V ∈ Vf and ϕ ∈ F (V ), we want to define
ρF,(V,ϕ) : σ(V,ϕ)F → F in such a way that, when F ∼= HomKf.g.(K,H

∗( )) where K is a noetherian
unstable algebra, ρF,(V,ϕ) is an isomorphism if and only if g(ρK,(V,ϕ)) is.

Definition 4.50. For F ∈ Set(VI)op , V and W two objects of VI, let ρF,V : σV F → F be the
natural transformation induced by the morphism 0 → V and the natural isomorphism σ0F ∼= F .

For x ∈ F (V ), we also define
ρF,(V,x) : σ(V,x)F → F

as the restriction of ρF,V to σ(V,x)F .

If ρF,(V,x) is an isomorphism we will say that (V, x) is a central element of F . We will denote
by C(F ) the set of central elements of F .
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Theorem 4.51. For K a noetherian unstable algebra and ϕ ∈ HomKf.g.(K,H
∗(V )), (V, ϕ) is central

away from N il for K if and only if it is central for HomKf.g.(K,H
∗( )).

Proof. By construction,

g(ρK,(V,ϕ)) : HomK(T(V,ϕ)(K), H∗( )) ∼= Σ(V,ϕ)g(K) → g(K),

is the morphism which sends δ ∈ Σ(V,ϕ)HomK(K,H
∗(W )) to (ιV⊕W

W )∗δ ∈ HomK(K,H
∗(W )). Then,

for FK = HomKf.g.(K,H
∗( )) and for ϕ regular, by construction the isomorphisms ˜σ(V,ϕ)FK(W ) ∼=

Σ(V,ϕ)HomK(K,H
∗(W )) and F̃K(W ) ∼= HomK(K,H

∗(W )) (Propositions 4.14 and 4.11), fit into
the following commutative diagram, which is natural with respect to K:

Σ(V,ϕ)HomK(K,H
∗( ))

g(ρK,(V,ϕ))
// HomK(K,H

∗( ))

˜σ(V,ϕ)FK

∼=

OO

˜ρF,(V,ϕ)

// F̃K .

∼=

OO

This concludes the proof.

Definition 4.52. For F ∈ Set(VI)op , we will say that F is connected if F (0) is reduced to one
element.

Remark 4.53. For F ∈ Set(VI)op , V ∈ VI and x ∈ F (V ), σ(V,x)F (0) = {x}, therefore it is
connected. For F not connected, C(F ) = ∅.

We give an alternative criterion for the centrality of (V, x). This alternative criterion will often
prove to be easier to check, when we have to prove the centrality of a given element.

Lemma 4.54. Let F ∈ Set(VI)op , V ∈ Vf and x ∈ F (V ). Then, (V, x) is central if for all W ∈ Vf
and y ∈ F (W ) there is a unique class [M,ν, ω] ∈ B(V,W ) and a unique b ∈ F (V ⊕ν,ωW ) such that
ι∗V b = x and ι∗W y.

Proof. By construction, ρF,V is the morphism which maps b ∈ F (V ⊕ν,ω W ) to ι∗W b, then b ∈
σF,(V,x)F (W ) if and only if ι∗V b = x. So, y has a unique element in its inverse image under ρF,(V,x)
if there is a unique [M,ν, ω] ∈ B(V,W ) and a single b ∈ F (V ⊕ν,ω W ) such that ι∗V b = x and
ι∗W b = y.

In the rest of this subsection, we want to prove an analogue of Theorem 4.21 for objects in
Set(VI)op . Namely, we want to prove that, for F ∈ Set(VI)op such that F (V ) = ∅ when dim(V ) is
greater than some integer d, there is, up to isomorphism, a unique maximal central element (C, c)
in the following sense, for all central element (V, x) there is an injection ι from V to C such that
x = ι∗c.

Lemma 4.55. For F ∈ Set(VI)op , V an object in Vf , x ∈ F (V ) and α : T → V a morphism in

VI, α∗x is always in the image of ρF,(V,x). Furthermore, the morphism ι
T⊕idT ,αV

V is inversible and

((ι
T⊕idT ,αV

V )−1)∗x is an element in the inverse image of α∗x.
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Proof. The morphism ι
T⊕idT ,αV

V : V → T ⊕idT ,α V is an isomorphism. Indeed, the following
commutative diagram is a pushout in Vf :

T
α //

idT

��

V

idV

��

T
α // V.

Then, ((ι
T⊕idT ,αV

V )−1)∗x satisfies the two following conditions, ι
T⊕idT ,αV ∗
V ((ι

T⊕idT ,αV

V )−1)∗x = x

and ι
T⊕idT ,αV ∗
T ((ι

T⊕idT ,αV

V )−1)∗x = α∗x, where the second is a consequence of the following com-
mutative diagram:

T
α //

idT

��

V

ιV

��

idV

��

T
ιT //

α
44

T ⊕idT ,α V
ι−1
V

%%
V.

Therefore it is in the inverse image of α∗x under ρF,(V,x), if (V, x) is central it is the only element
in the inverse image.

In the following, for V, W and T finite dimensional vector spaces, we think of spaces of the
form (V ⊕ν,ω W ) ⊕g,τ T as V + W + T , where we identified V , W and T with their images in
(V ⊕ν,ω W )⊕g,τ T , in order to use the associativity (V +W ) + T = V + (W + T ). The following
technical construction aims to identify a canonical isomorphism ζν,ω,g,τ from (V ⊕ν,ωW )⊕g,τ T to
the appropriate V ⊕ν′,g′ (W ⊕ω′,τ ′ T ).

Notation 4.56. For V , W and T in Vf , we denote

T1(V,W ;T ) :=
⊔

[M,ν,ω]∈B(V,W )

B(V ⊕ν,ω W,T ),

and
T2(V ;W,T ) :=

⊔
[M ′,ω′,τ ′]∈B(W,T )

B(V,W ⊕ω′,τ ′ T ).

Lemma 4.57. 1. T1( , ; ) and T2( ; , ) are trifunctors on VIop.

2. There is a natural transformation ζ from T1( , ; ) and T2( ; , ),

3. for [M, g, τ ] ∈ B(V ⊕ν,ω W,T ) ⊂ T1(V,W ;T ) and for (ν′, g′, ω′, τ ′) such that ζ([M, g, τ ]) =
[M ′, ν′, g′] ∈ B(V,W ⊕ω′,τ ′ T ), there is a natural isomorphism

ζν,ω,g,τ : (V ⊕ν,ω W )⊕g,τ T → V ⊕ν′,g′ (W ⊕ω′,τ ′ T ),

such that the canonical injections from V , W and T to V ⊕ν′,g′ (W⊕ω′,τ ′ T ) factorizes through
ζν,ω,g,τ and their injections in (V ⊕ν,ω W )⊕g,τ T .
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Proof. The fact that T1( , ; ) and T2( ; , ) are trifunctors is a direct consequence of the fact that
B( , ) is a bifunctor. Let us construct the natural transformation ζ.

For [M, g, τ ] ∈ B(V ⊕ν,ω W,T ) ⊂ T1(V,W ;T ), we consider ιW + ιT from W ⊕ T to
(V ⊕ν,ω W )⊕g,τ T . Since ιW and ιT are injections from W and T to (V ⊕ν,ω W )⊕g,τ T ,
ker(ιW + ιT ) ∩W = ker(ιW + ιT ) ∩ T = {0}. Then, for all x ∈ ker(ιW ⊕ ιT ), x has a non trivial
component both in W and T , hence there exists ω′(x) ∈ W\{0} and τ ′(x) ∈ T\{0} such that
x = ω′(x)− τ ′(x). Then, by the first isomorphism theorem, ιW + ιT factorises through an injection
ιW⊕ω′,τ′T from W ⊕ω′,τ ′ T to (V ⊕ν,ω W )⊕g,τ T .

We do the same construction a second time. We consider ιV +ιW⊕ω′,τ′T from V ⊕(W⊕ω′,τ ′T ) to
(V ⊕ν,ωW )⊕g,τT . Since the two are injections, there are injections ν′ and g′ from ker(ιV +ιW⊕ω′,τ′T )
to V and W ⊕ω′,τ ′ T such that, for all x ∈ ker(ιV + ιW⊕ω′,τ′T ), x = ν′(x)−g′(x). Then, by the first
isomorphism theorem, ιV + ιW⊕ω′,τ′T factorises through an injection from V ⊕ν′,g′ (W ⊕ω′,τ ′ T ) to
(V ⊕ν,ωW )⊕g,τ T . But, by construction, ιV + ιW⊕ω′,τ′T is surjective, therefore this injection is an

isomorphism that we denote ζν,ω,g,τ . We define ζ([M, g, τ ]) :=
[
ker(ιV + ιW⊕ω′,τ′T ), ν

′, g′
]
.

By construction, ζν,ω,g,τ satisfies the desired factorizations.

Lemma 4.58. Let F be an object in Set(VI)op , V be an object of VI and x be an element of F (V )
such that (V, x) is central. For α : T → V in VI, (T, α∗x) is central.

Proof. By Lemma 4.54, we have to prove that for every y ∈ F (W ) there is a unique b ∈ F (W⊕ω,τ T )
for some [M,ω, τ ] ∈ B(W,T ), such that ι∗W b = y and ι∗T b = α∗x.

We will prove the existence first. For a ∈ F (V ⊕ν,ω W ) satisfying ι∗V a = x, we have that

σαF (W )(a) = (α⊕ν,ω idW )∗a

is in some F (T⊕τ,ϵW ) and satisfies ι∗T (α⊕ν,ωidW )∗a = α∗ι∗V a = α∗x, so σαF (W )(a) ∈ Σ(T,α∗x)F (W ),
then if a is the unique element such that ι∗Wa = y (which exists since (V, x) is central), then
b := σαF (W )(a) satisfies ι∗T b = α∗x and ι∗W b = ι∗Wa = y.

Let us now prove the uniqueness. Let b be in the preimage of y in σF,(T,α∗x)F (W ), with

b ∈ F (W ⊕ω,τ T ).

Then, since (V, x) is central, there is a unique [M, g, ν] ∈ B(W ⊕ω,τ T, V ) and a

c ∈ F ((W ⊕ω,τ T )⊕g,ν V )

such that ι∗V c = x and ι∗W⊕ω,τT
c = b. We consider the isomorphism ζω,τ,g,ν given by Lemma 4.57,

which take values in some space W ⊕ω′,g′ (T ⊕τ ′,ν′ V ). Then, by construction, ι∗T⊕τ′,ν′V ζ
∗
ω,τ,g,νc

satisfies ι∗T ι
∗
T⊕τ′,ν′V ζ

∗
ω,τ,g,νc = α∗x and ι∗V ι

∗
T⊕τ′,ν′V ζ

∗
ω,τ,g,νc = x. Therefore, since (V, x) is central,

Lemma 4.55 implies that ιV : V → T ⊕τ ′,ν′ V is an isomorphism and (ι−1
V )∗ι∗T⊕τ′,ν′V ζ

∗
ω,τ,g,νc = x.

Then, identifying W ⊕ω′,g′ (T ⊕τ ′,ν′ V ) with the appropriate W ⊕ω′′,ν′′ V , we get that ζ∗ω,τ,g,νc ∈
F (W ⊕ω′′,ν′′ V ) satisfies ι∗W ζ

∗
ω,τ,g,νc = y and ι∗V ζ

∗
ω,τ,g,νc = x. ζ∗ω,τ,g,νc is then the unique element

in the inverse image of y by ρF,(V,x) and b = σαF (W )(ζ∗ω,τ,g,νc), which proves the uniqueness of b.
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Lemma 4.59. Let F be in Set(VI)op and (V, x) and (T, y) be central elements of F , then there
exists, up to isomorphism, a unique pair (R, z), with R = V ⊕ν,τ T for some [M,ν, τ ] ∈ B(V, T )
and with z ∈ F (R), such that x = ι∗V z and y = ι∗T z. Moreover, (R, z) is central.

Proof. By centrality of (V, x) and by Lemma 4.54, z is necessarily the only element in the inverse
image of y under ρF,(V,x), which prove the existence and the uniqueness of (R, z).

Let us prove that it is central. Let e be in F (W ), we take e′ in F (W ⊕ω,τ T ) the only ele-
ment in the inverse image of e under ρF,(T,y) and e′′ ∈ F ((W ⊕ω,τ T ) ⊕g,ν V ) the only element in
the inverse image of e′ under ρF,(V,x). We consider ζω,τ,g,ν as in lemma 4.57, an isomorphism from
(W ⊕ω,τ T )⊕g,ν V to someW ⊕ω′,g′ (T ⊕τ ′,ν′ V ). Then, ι∗T⊕τ′,ν′V (ζ

−1
ω,τ,g,ν)

∗e′′ is in the inverse image

of y under ρF,(V,x), since (V, x) is central ι∗T⊕τ′,ν′V (ζ
−1
ω,τ,g,ν)

∗e′′ = z. Moreover, ι∗W (ζ−1
ω,τ,g,ν)

∗e′′ = e,

this imply that (ζ−1
ω,τ,g,ν)

∗e′′ is in the inverse image of e under ρF,(R,z).

Let us now show the uniqueness of the element in the inverse image of e. We take R to be of the
form V ⊕ν,τ T , and we take a ∈ F (W ⊕ω,g (V ⊕ν,τ T )) and b ∈ F (W ⊕ϵ,γ (V ⊕ν,τ T )) two elements
in the inverse image of e under ρF,(R,z). We consider the isomorphisms ζω′,ν′,g′,τ ′ and ζϵ′,ν′′,γ′,τ ′′

given by Lemma 4.57, from some vector spaces (W ⊕ω′,ν′ V ′) ⊕g′,τ ′ T and (W ⊕ϵ′,ν′′ V ′) ⊕γ′,τ ′′ T
to W ⊕ω,g (V ⊕ν,τ T ) and W ⊕ϵ,γ (V ⊕ν,τ T ). Set a′ = ι∗W⊕ω′,ν′V ζ

∗
ω′,ν′,g′,τ ′a ∈ F (W ⊕ω′,ν′ V ) and

b′ = ι∗W⊕ϵ′,ν′′V ζ
∗
ϵ′,ν′′,γ′,τ ′′b ∈ F (W ⊕ϵ′,ν′′ V ). They both satisfy that their image by ι∗W is e and by

ι∗V is x. Then, by the centrality of (V, x) we have that a′ = b′. Moreover, applying ι∗T to ζ∗ω′,ν′,g′,τ ′a
and ζ∗ϵ′,ν′′,γ′,τ ′′b, we obtain y. Therefore, ζ∗ω′,ν′,g′,τ ′a and ζ∗ϵ′,ν′′,γ′,τ ′′b are both in the inverse image
of a′ = b′ under ρF,(T,y). Since (T, y) is also central, ζ∗ω′,ν′,g′,τ ′a = ζ∗ϵ′,ν′′,γ′,τ ′′b, hence a = b.

Theorem 4.60. Let F be an object in Set(VI)op such that C(F ) is not empty and such that F (V ) =
∅ for dim(V ) greater than some integer d, then there is a unique central element (C, c) up to
isomorphism satisfying that (V, x) is central if and only if there is an injective morphism α from V
to C such that x = α∗c. We call (C, c) the centre of F .

Proof. It is a direct consequence of lemma 4.58 and 4.59. Indeed, for (C, c) a central element with
dim(C) maximal, if (V, x) is a central element such that there is no injection from V to C satisfying
α∗c = x, then the dimension of (R, z) the unique pair satisfying the assumptions of lemma 4.59 for
(T, y) = (C, c) is greater than dim(C) which is absurd, since dim(C) is supposed to be maximal
among central elements.

Corollary 4.61. For K a noetherian unstable algebra, if K is nil-closed, the centre of K is equal
to the centre of HomKf.g.(K,H

∗( )).

5 Definition of the groupoid GF and application to the com-
putation of the centre of F

For F ∈ Set(VI)op , Yoneda’s Lemma implies the existence of surjections from functors of the
form

⊔
i∈I

HomVI( ,Wi) to F . This statement is not specific to Set(VI)op , we could make a similar

one for Set(Vf )op . The interest we have about such surjections in Set(VI)op is that the simplicity
of the category VI makes it easy to classify functors in Set(VI)op with a given surjections from
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⊔
i∈I

HomVI( ,Wi). We start this section by explaining how to associate to objects F in Set(VI)op

with a given surjection from some
⊔
i∈I

HomVI( ,Wi) to F , a groupoid GF with objects the sub-vector

spaces of theWi. We will prove that the isomorphism class of F in the coslice category with respect
to

⊔
i∈I

HomVI( ,Wi) is determined by GF .

In the second sub-section, we will prove that the centre of F is explicitly determined by the
groupoid GF of the first sub-section.

5.1 Definition of the groupoid

By Yoneda’s lemma, F (W ) is naturally isomorphic to HomSet(VI)op (HomVI( ,W ), F ) under the
morphism which sends a natural transformation η to η(idV ). Then, we can always exhibit a surjec-
tion from some

⊔
i∈I

HomVI( ,Wi) to F , where the cardinal of I may be very big. The most obvious

one being defined by
I = {x ∈ F (Fdp) ; d ∈ N}, Wx = Fdp for x ∈ F (Fdp), and q is the only natural transformation which
sends idWx

to x for all x ∈ I.
So F is always isomorphic to some functor of the form

⊔
i∈I

HomVI( ,Wi)/ ∼F with ∼F an

equivalence relation on
⊔
i∈I

HomVI( ,Wi). In this part, we will show how the equivalence relation

∼F associated with a surjection ⊔
i∈I

HomVI( ,Wi) ↠ F,

is encoded by a groupoid whose objects are the sub-spaces of the Wi.

Definition 5.1. Let F be an object in Set(VI)op , a generating family of F is a family (Wi)i∈I of
objects of VI, together with a surjection q :

⊔
i∈I

HomVI( ,Wi) ↠ F .

Even though the results of this sub-section do not require any finiteness condition on the cardinal
of I, for ((Wi)i∈I , q) a generating family, the constructions might not be exploitable in the case
where I is not finite.

Definition 5.2. An object F in Set(VI)op is finitely generated if F admits a generating family
((Wi)i∈I , q) with |I| finite.

Let F be an object in Set(VI)op , and let ((Wi)i∈I , q) be a generating family for F . We denote
by Fi the image of HomVI( ,Wi) under q. Then, we have F =

⋃
i∈I

Fi. We also denote by ϕFi (or

just ϕi when there is no ambiguity) the image of idWi
under q.

Let us now define the main ingredient of this section.

Definition 5.3. For F ∈ Set(VI)op and ((Wi)i∈I , q) a generating family of F , let G((Wi)i∈I ,q)
F be

the groupoid whose set of objects is the disjoint union of the sets of sub-spaces of the Wi and
whose morphisms from U ⊂ Wi to U ′ ⊂ Wj are the isomorphisms α from U to U ′ such that
α∗ι∗U ′ϕj = ι∗Uϕi.
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The groupoid G((Wi)i∈I ,q)
F depends heavily on the choice of a generating family ((Wi)i∈I , q), so

cannot be made functorial on the category Set(VI)op . It can nonetheless be made functorial on the
category whose objects are provided with a surjection from a fixed

⊔
i∈I

HomVI( ,Wi).

Definition 5.4. Let (Wi)i∈I
Set(VI)op be the slice category whose objects are pairs (F, qF ) with

F ∈ Set(VI)op and qF a natural surjection from
⊔
i∈I

HomVI( ,Wi) to F , and whose morphisms

from (F, qF ) to (G, qG) are natural transformations η from F to G such that the following diagram
commutes:

F

η

��

⊔
i∈I

HomVI( ,Wi)

qF

88

qG
&&
G.

Proposition 5.5. (F, qF ) 7→ G(F,qF ) := G(((Wi)i∈I ,qF )
F is a functor from the category (Wi)i∈I

Set(VI)op

to the category of groupoids.

Proof. For η a morphism from (F, qF ) to (G, qG) two objects in (Wi)i∈I
Set(VI)op , we have to define

a morphism Gη from G(F,qF ) to G(G,qG). G(F,qF ) has the same objects as G(G,qG), furthermore for
all i ∈ I, η(ϕFi ) = ϕGi , otherwise the diagram of Definition 5.4 would not commute. Then, for all
α ∈ G(F,qF )(U ⊂Wi, U

′ ⊂Wj), the commutativity of the preceding diagram implies that

α∗ι∗U ′ϕGj = η(α∗ιU ′ϕFj ) = ι∗Uϕ
G
i ,

therefore α ∈ G(G,qG). Hence, G(F,qF ) is a sub-groupoid of G(G,qG) and we define Gη to be the
inclusion of this sub-groupoid.

In the following, we fix a family (Wi)i∈I . When there can be no ambiguity, for (F, qF ) ∈(Wi)i∈I

Set(VI)op , we will use the notation GF instead of G(F,qF ). We want to prove that the isomorphism

class of (F, qF ) in (Wi)i∈I
Set(VI)op is determined by the groupoid G(F,qF ).

Lemma 5.6. Let (F, qF ) be an object in (Wi)i∈I
Set(VI)op . Then, GF satisfies the following property.

For α ∈ GF (U ⊂Wi, U
′ ⊂Wj), for M a sub-space of U , and for αM : M → α(M) the restriction

of α to M corestricted to α(M), αM ∈ GF (M ⊂Wi, α(M) ⊂Wj).

Proof. For ιUM the inclusion ofM in U (we reserve the notation ιM for the inclusion ofM inWi) we
have, α◦ ιUM = αM . Then, α∗ι∗U ′ϕj = ι∗Uϕi implies that α∗

M ι
∗
α(M)ϕj = (ιUM )∗α∗ι∗U ′ϕj = (ιUM )∗ι∗Uϕi =

ι∗Mϕi. Then, αM ∈ GF (M ⊂Wi, α(M) ⊂Wj).

Example 5.7. Let W be a finite dimensional vector-space and G be a sub-group of Gl(W ). We
consider F (V ) := HomVI(V,W )/G where G acts on HomVI(V,W ) by composition. F is an object
in Set(VI)op . Then, for q the canonical projection HomVI(V,W ) ↠ HomVI(V,W )/G, (F, q) ∈
WSet(VI)op . GF is the groupoid whose objects are the sub-vector spaces ofW , and whose morphisms
from U to U ′ are the isomorphisms α from U to U ′ such that α∗q(ιU ′) = q(ιU ). But, α∗q(ιU ′) =
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q(ιU ) implies that q(ιU ′ ◦ α) = q(ιU ), by definition of q, it implies that there is g ∈ G such that
ιU ′ ◦α = g ◦ ιU , in other terms α = gU . So GF (U,U ′) is the set of isomorphisms of the form gU , for
g ∈ G such that g(U) = U ′.

Definition 5.8. For G a groupoid whose objects are the sub-vector spaces of theWi with i ∈ I, and
whose morphisms are isomorphisms of vector spaces, we say that G has the restriction property if, for
all U ⊂Wi, for all U

′ ⊂Wj and for all α ∈ G(U ⊂Wi, U
′ ⊂Wj), αM is in G(M ⊂Wi, α(M) ⊂Wj).

Remark 5.9. Thus, Lemma 5.6 asserts that, for F ∈ (Wi)i∈I
Set(VI)op , GF has the restriction

property.

Remark 5.10. The set of groupoids whose set of objects is the disjoint union of the sets of sub-
vector spaces of the Wi and that satisfies the restriction property, is ordered by inclusion, where
G ⊂ H if, for each pair (U ⊂Wi, U

′ ⊂Wj), G(U ⊂Wi, U
′ ⊂Wj) ⊂ H(U ⊂Wi, U

′ ⊂Wj).

Notation 5.11. We denote by Groupoid((Wi)i∈I) the poset of groupoids whose objects are the
sub-spaces of the Wi and that satisfies the restriction property.

ForW a finite dimensional vector space, let us also denote by Group(W ) the poset of sub-groups
of Gl(W ).

Definition 5.12. Let g be the poset preserving map from Group(W ) to Groupoid(W ) which sends
G a subgroup of Gl(W ) to the groupoid g(G) such that, for U and U ′ subspaces of W and α from
U to U ′, α ∈ g(G)(U,U ′) if and only if there is g ∈ G sucht that α = gU .

Remark 5.13. We have seen in Example 5.7 that G(HomVI( ,W )/G,qG) = g(G), for qG the canonical
projection from HomVI( ,W ) to HomVI( ,W )/G.

In the following, we want to show that for G a groupoid whose objects are the sub-vector spaces of
the Wi and whose morphisms are isomorphisms of vector spaces, there exists F ∈ (Wi)i∈I

Set(VI)op

such that GF = G if and only if G has the restriction property. We will then show that those
groupoids are in on-to-one correspondence with isomorphism classes of objects in (Wi)i∈I

Set(VI)op .

Definition 5.14. For G ∈ Groupoid((Wi)i∈I), let ∼G be the relation on⊔
i∈I

HomVI(V,Wi) defined by ζ ∼G ϵ if there is α ∈ G(Im(ζ) ⊂Wi, Im(ϵ) ⊂Wj) such that ϵ̃ = α ◦ ζ̃,

where ζ̃ and ϵ̃ denote the corestriction of ζ and ϵ to their images.

Lemma 5.15. For G ∈ Groupoid((Wi)i∈I), ∼G is an equivalence relation.
We will denote by [ϵ]G the equivalence class of ϵ for this equivalence relation.

Proof. Since for all U ⊂ Wi, idU ∈ G(U ⊂ Wi, U ⊂ Wi), the relation is reflexive. The transitivity
comes from the composition of morphisms in G and the symmetry from the fact that G is a groupoid
and hence that every morphism in G has an inverse.

Proposition 5.16. For G ∈ Groupoid((Wi)i∈I),
⊔
i∈I

HomVI( ,Wi)/ ∼G defines an object of Set(VI)op .

Moreover,
⊔
i∈I

HomVI( ,Wi)/ ∼G is connected if and only if, for all (i, j) ∈ I2,

G(0 ⊂Wi, 0 ⊂Wj) contains the only morphism from 0 to 0.
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Proof. To prove that
⊔
i∈I

HomVI( ,Wi)/ ∼G is an object in Set(VI)op , let us prove that if ρ ∼G ζ,

for ρ ∈ HomVI(V,Wi) and ζ ∈ HomVI(V,Wj) with V ∈ VI, and if β : U → V is a morphism in

VI, then β∗ρ ∼G β
∗ζ. Let α be in G(Im(ρ) ⊂ Wi, Im(ζ) ⊂ Wj) such that ζ̃ = α ◦ ρ̃. Then since G

has the restriction property, αρ◦β(U) : ρ◦β(U) → ζ ◦β(U) is in G(Im(ρ◦β) ⊂Wi, Im(ζ ◦β) ⊂Wj)

and ζ̃ ◦ β = αρ◦β(U) ◦ ρ̃ ◦ β therefore β∗ρ ∼G β
∗ζ.

Theorem 5.17. 1. For G ∈ Groupoid((Wi)i∈I),

G(
⊔
i∈I

HomVI( ,Wi)/∼G ,q) = G,

for q the canonical surjection from
⊔
i∈I

HomVI( ,Wi) to
⊔
i∈I

HomVI( ,Wi)/ ∼G.

2. Conversely, let F ∈ (Wi)i∈I
Set(VI)op . Then, F is isomorphic to

⊔
i∈I

HomVI( ,Wi)/ ∼GF
.

Proof. Let us prove the first point. Let α be an isomorphism from U ⊂ Wi to U ′ ⊂ Wj .
α ∈ G ⊔

i∈I

HomVI( ,Wi)/∼G (U ⊂ Wi, U
′ ⊂ Wj) if and only if α∗ [ιU ′ ]G = [ιU ]G . This the case if

and only if α ∈ G(U ⊂Wi, U
′ ⊂Wj).

By construction, for α an isomorphism from U to U ′ with U and U ′ sub-spaces of Wi and
Wj , α

∗ι∗U ′ [idWj ]G = ι∗U [idWi ]G if and only if α ∈ G(U ⊂ Wi, U
′ ⊂ Wj). We only have to

prove that [ϵ]GF
7→ ϵ∗ϕi, for ϵ ∈ HomVI(V,Wi), is well defined and defines a bijection from⊔

i∈I
HomVI(V,Wi)/ ∼GF

to F (V ) for V ∈ VI.

For the second point, if ϵ ∼GF
ζ, there exists α : ϵ(V ) → ζ(V ) such that α ∈ GF (Im(ϵ) ⊂

Wi, Im(ζ) ⊂Wj) and ζ̃ = α ◦ ϵ̃. Then,

ζ∗ϕj = ζ̃∗ι∗ζ(V )ϕj ,

= ϵ̃∗α∗ι∗ζ(V )ϕj ,

= ϵ̃∗ι∗ϵ(V )ϕi,

= ϵ∗ϕi.

The map which maps [ϵ]GF
to ϵ∗ϕi is then well defined. It is obviously surjective.

Let us prove that it is injective. Let ϵ and ζ be morphisms from V to Wi and Wj such that

ϵ∗ϕi = ζ∗ϕj . Then, ϵ̃
∗ι∗ϵ(V )ϕi = ζ̃∗ι∗ζ(V )ϕj . Since ϵ̃ is an isomorphism from V to the image of ϵ, we

have ι∗ϵ(V )ϕi = (ζ̃ ◦ ϵ̃−1)∗ι∗ζ(V )ϕj . Therefore ζ̃ ◦ ϵ̃
−1 ∈ GF (Im(ϵ) ⊂Wi, Im(ζ) ⊂Wj) and ϵ ∼GF

ζ.

The following is a “converse” of example 5.7.

Example 5.18. Let F be an object in WSet(VI)op and consider the group G = GF (W,W ). We
know, since GF has the restriction property, that GF ⊂ g(G) (see Definition 5.12). Suppose that
this inclusion is an equality. Then, ∼G is the equivalence relation defined by ρ ∼G ζ if and only if
there is g ∈ G such that g ◦ ρ = ζ. By Theorem 5.17, F ∼= HomVI( ,W )/G.
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5.2 Computation of C(F ) using GF

In this sub-section, we take F ∈ (Wi)i∈I
Set(VI)op . We want to prove that, under some assumptions

on the generating family of F , the central elements of F are determined by the groupoid GF .

We start by proving that, if F has a generating family with one element, ρF,(V,x) is surjective
for all V ∈ VI and for all x ∈ F (V ).

Notation 5.19. For F ∈ Set(VI)op and for (W, q) a generating family with one element, we denote
by ϕF ∈ F (W ) the image of idW under q.

On one hand, for F ∈ WSet(VI)op , the functor F is determined up to isomorphism by the
groupoid GF . On the other hand, Lemma 4.54 gives a criterion for the centrality of a pair (V, x)
through the sets F (V ⊕ν,µ U) with the V ⊕ν,µ U ∈ B(V,U) which are not sub-vector spaces of
W . To characterise the centre of F using GF , we need to reformulate the centrality condition by
comparing the V ⊕ν,µ U with sub-vector spaces of W .

Remark 5.20. Consider δ : V → W and ϵ : U → W two morphisms in VI. For δ + ϵ the
morphism from V ⊕ U to W which sends v to δ(v) + ϵ(v), since δ and ϵ are injective, there exists
ν and µ from ker(δ + ϵ) to V and U such that for all v ∈ ker(δ + ϵ), v = ν(v) − µ(v). Then, by
the universal property of the pushout, (V ⊕ U)/ ker(δ + ϵ) is isomorphic to V ⊕ν,µ U . The first
isomorphism theorem implies that δ+ ϵ induces an isomorphism between V ⊕ν,µU and δ(V )+ ϵ(U)
(which is the image of δ + ϵ).

Notation 5.21. For δ : V → W and ϵ : U → W two morphisms in VI, let ν and µ be as in
Remark 5.20. Then, let ϵ ↑ δ denote the isomorphism from V ⊕ν,µ U to δ(V )+ ϵ(U) induced by the
first isomorphism theorem. It satisfies δ+ ϵ = ιδ(V )+ϵ(U) ◦ (ϵ ↑ δ) ◦ π, for π the canonical projection
from V ⊕ U to V ⊕ν,µ U and ιδ(V )+ϵ(U) the inclusion from δ(V ) + ϵ(U) in W .

Lemma 5.22. For F ∈ WSet(VI)op , δ from V to W and ϵ from U to W , (ϵ ↑ δ)∗ι∗δ(V )+ϵ(U)ϕ
F ∈

F (V ⊕ν,µ U) is in the inverse image of ϵ∗ϕF under ρF,(V,δ∗ϕF ).

Proof. By definition of ϵ ↑ δ, we have ιδ(V )+ϵ(U) ◦ (ϵ ↑ δ) ◦ ιV = δ and ιδ(V )+ϵ(U) ◦ (ϵ ↑ δ) ◦ ιU = ϵ,
for ιV and ιU the inclusions of U and V in V ⊕ν,µ U . Therefore, ι∗U ((ϵ ↑ δ)∗ι∗δ(V )+ϵ(U)ϕ

F ) = ϵ∗ϕF

and ι∗V ((ϵ ↑ δ)∗ι∗δ(V )+ϵ(U)ϕ
F ) = δ∗ϕF .

This lemma implies two things, firstly that ρF,(V,δ∗ϕF ) is always surjective, for F ∈ WSet(VI)op

and δ from V to W . Secondly, that δ∗ϕF ∈ F (V ) is central if and only if, for all morphisms
ϵ : U →W in VI, (ϵ ↑ δ)∗ι∗δ(V )+ϵ(U)ϕ

F ∈ F (V ⊕ν,µ U) is the only element in the inverse image of

ϵ∗ϕF under ρF,(V,δ∗ϕF ).

In the case F ∈ (Wi)i∈I
Set(VI)op with |I| greater than one, we recall that Fi denotes the image

of HomVI( ,Wi) in F . We want to use the surjectivity of each ρFi,(V,x) with i ∈ I and x ∈ Fi(V ).
We start by proving that, under some condition on the surjection qF from

⊔
i∈I

HomVI( ,Wi) to F ,

if (V, x) is central, then x ∈ Fi(V ) for all i ∈ I.

Definition 5.23. Let F be an object in Set(VI)op , with generating family ((Wi)i∈I , q). We say
that ((Wi)i∈I , q) is a minimal generating family, if for all i ̸= j, Fi ̸⊂ Fj .
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Remark 5.24. We can always extract a minimal sub-generating family from a given generating
family.

Lemma 5.25. Let F be in Set(VI)op and ((Wi)i∈I , q) a minimal generating family of F . Let also
(V, x) be a central element of F . Then, x ∈

⋂
i∈I

Fi(V ) and (V, x) is a central element for each Fi.

Proof. For each i, let xi ∈ F (Wi ⊕ωi,νi V ) be in the inverse image of ϕi under ρF,(V,x). If xi ∈
Fj(Wi ⊕ωi,νi V ), ϕi = ι∗Wi

xi hence Fi is a sub-functor of Fj . Since we supposed the generating
family to be minimal, this implies that i = j. Then, x = ι∗V xi and therefore x ∈ Fi(V ).
By Lemma 5.22, we get that an element in Fi(E), for E ∈ VI, has at least one element in its inverse
image under ρFi,(V,x). If (V, x) is central for F , this element is unique and (V, x) is also central for
Fi.

Now, let us consider x ∈
⋂
i∈I

Fi(V ). We want to find a criterion on GF to determine whether

(V, x) is central. Since, x is in every Fi(V ) and that each Fi are generated by one element, Lemma
5.22 implies that every ρFi,(V,x) is surjective, and so ρF,(V,x) is surjective. So the only way that
(V, x) can fail to be central is if a given element has two elements in its inverse image under ρF,(V,x).

Since x ∈
⋂
i∈I

Fi(V ), for all i ∈ I, there is some inclusion δi from V to Wi such that x = δ∗i ϕi

and we have the following lemma.

Lemma 5.26. For F ∈(Wi)i∈I
Set(VI)op and (V, x) a central element of F , we consider for all

i ∈ I, δi from V to Wi such that x = δ∗i ϕi. Then, for ϵk : U → Wk and ϵj : U → Wj such that
ϵ∗kϕk = ϵ∗jϕj, we have (ϵk ↑ δk)∗ι∗δk(V )+ϵk(U)ϕk = (ϵj ↑ δj)∗ι∗δj(V )+ϵj(U)ϕj.

Proof. Lemma 5.22 states that (ϵk ↑ δk)
∗ι∗δk(V )+ϵk(U)ϕk and (ϵj ↑ δj)

∗ι∗δj(V )+ϵj(U)ϕj are in the

inverse image of ϵ∗kϕk = ϵ∗jϕj , respectively under ρFj ,(V,x) and ρFk,(V,x). Hence, each of them
are in its inverse image under ρF,(V,x). Thus, if (V, x) is central, we necessarily have that (ϵk ↑
δk)

∗ι∗δk(V )+ϵk(U)ϕk = (ϵj ↑ δj)∗ι∗δj(V )+ϵj(U)ϕj .

This gives us a necessary condition on GF , for (V, x) to be central. This condition will also be
sufficient.

For α ∈ G(U ⊂ Wi, U
′ ⊂ Wj), α

∗ι∗U ′ϕj = ι∗Uϕi has two, possibly equal, elements in its inverse
image under ρF,(V,x), where x = δ∗i ϕi for all i. Namely ((ιU ′ ◦ α) ↑ δj)

∗ι∗U ′+δj(V )ϕj and (ιU ↑
δi)

∗ιU+δi(V )ϕi. If (V, x) is central, those two have to be equal, in particular they have to live in the
same F (V ⊕ν,µ U), which gives us a first condition on GF .

Lemma 5.27. Let F in Set(VI)op and ((Wi)i∈I , q) a minimal generating family of F . Let (V, x) be
a central element of F and for all i ∈ I, let

δi : V →Wi,

such that x = δ∗i ϕi. Then, for α ∈ GF (U ⊂ Wi, U
′ ⊂ Wj), if v ∈ U ∩ Vi, α(v) = δj ◦ (δi|Vi)−1(v),

for Vi the image of V under δi.
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Proof. We consider
(ιU ↑ δi)∗(ιWi

U+Vi
)∗ϕi ∈ Fi(V ⊕ν,µ U)

and
((ιU ′ ◦ α) ↑ δj)∗(ι

Wj

U ′+Vj
)∗ϕj ∈ Fj(V ⊕ν′,µ′ U),

where µ is the injection of U ∩Vi into U , ν is the restriction to U ∩Vi of (δi|Vi)−1, and ν′ and µ′ are
the restriction to U ′ ∩ Vj of α−1 and (δj |Vj )−1. They are equal by Lemma 5.26. In particular they
need to live in the same set. We get that V ⊕ν,µU = V ⊕ν′,µ′ U , which implies that, for v ∈ U ∩Vi,
α(v) ∈ Vj and (δj |Vj )−1(α(v)) = (δi|Vi)−1(v), which means that α(v) = δj ◦ (δi|Vi)−1(v).

If the condition of Lemma 5.27 is satisfied, both ((ιU ′ ◦ α) ↑ δj)∗ι∗U ′+δj(V )ϕj and

(ιU ↑ δi)∗ι∗U+δi(V )ϕi live in F (V ⊕ν,µ U) where µ is the inclusion from U ∩ Vi in U and ν is the

restriction to U ∩ Vi of (δi|Vi)−1. Since by definition ιU ↑ δi and (ιU ′ ◦ α) ↑ δj are isomorphisms
from V ⊕ν,µ U respectively to Vi + U and Vj + U ′, ((ιU ′ ◦ α) ↑ δj) ◦ (ιU ↑ δi)−1 is an isomorphism
from U + Vi to U

′ + Vj that we can compute.

Lemma 5.28. Let α be an isomorphism from U ⊂ Wi to U
′ ⊂ Wj and let δi and δj be two injec-

tions from V respectively to Wi and Wj whose images are Vi and Vj. Then, if for every v ∈ U ∩Vi,
α(v) = δj ◦ (δi|Vi)−1(v), ιU ↑ δi and (ιU ′ ◦ α) ↑ δj are isomorphism from V ⊕ν,µ U respectively to
Vi + U and Vj + U ′, where ν is the inclusion of U ∩ Vi in U and µ is the restriction to U ∩ Vi of
(δi|Vi)−1.

Furthermore, ((ιU ′ ◦ α) ↑ δj) ◦ (ιU ↑ δi)−1 is the isomorphism from U + Vi to U
′ + Vj which

sends u ∈ U to α(u) and v ∈ Vi to δj((δi|Vi)−1(v)).

Proof. The first part of the statement is a direct consequence of the definition of ιU ↑ δi and
(ιU ′ ◦ α) ↑ δj .

For u ∈ U , (ιU ↑ δi)
−1(u) = ι

V⊕ν,µU
U (u), then ((ιU ′ ◦ α) ↑ δj)(ι

V⊕ν,µU
U (u)) = α(u), and for

v ∈ Vi, (ιU ↑ δi)−1(v) = ι
V⊕ν,µU
V ((δi|Vi)−1(v)) and ((ιU ′ ◦ α) ↑ δj)(ι

V⊕ν,µU
V ((δi|Vi)−1(v))) = δj ◦

(δi|Vi)−1(v).

Notation 5.29. Let α be an isomorphism from U ⊂ Wi to U
′ ⊂ Wj and let δi and δj be two

injections from V respectively to Wi and Wj whose images are Vi and Vj and such that for every
v ∈ U ∩ Vi, α(v) = δj ◦ (δi|Vi)−1(v). We denote by ᾱ the morphism from U + Vi to U

′ + Vj which
sends u ∈ U to α(u) and v ∈ Vi to δj((δi|Vi)−1(v)).

If (V, x) is central, we have ((ιU ′ ◦α) ↑ δj)∗ι∗U ′+δj(V )ϕj = (ιU ↑ δi)∗ι∗U+δi(V )ϕi, which implies that

ᾱ must be in GF (U + Vi ⊂Wi, U
′ + Vj ⊂Wj). We state the principal theorem of this sub-section.

Theorem 5.30. Let F be in Set(VI)op and ((Wi)i∈I , q) a minimal generating family of F . Let also
x ∈ F (V ) and (δi : V →Wi)i∈I a family of injective morphisms from V to the Wi, such that, for
all i ∈ I, x = δ∗i ϕi. Then, (V, x) is central if and only if the two following conditions are satisfied:

1. for all α ∈ GF (U ⊂Wi, U
′ ⊂Wj), and for all v ∈ U ∩ Vi, α(v) = δj ◦ (δi|Vi)−1(v),

2. for all sub-spaces U of Wi and U
′ of Wj and for all isomorphism α from U to U ′ satisfying

α(v) = δj ◦ (δi|Vi)−1(v), for v ∈ U ∩ Vi, α ∈ GF (U ⊂ Wi, U
′ ⊂ Wj) if and only if ᾱ ∈

GF (U + Vi ⊂Wi, U
′ + Vj ⊂Wj).
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Proof. Let us show first necessity. We suppose that (V, x) is central, then by Lemma 5.27, the
first condition is satisfied. We consider α ∈ GF (U ⊂ Wi, U

′ ⊂ Wj), then by Lemma 5.26, (ιU ↑
δi)

∗(ιWi

U+Vi
)∗ϕi = ((ιU ′ ◦ α) ↑ δj)∗(ι

Wj

α(U)+Vj
)∗ϕj . By Lemma 5.28, this implies that ᾱ∗ι∗U ′+Vj

ϕj =

ι∗U+Vi
ϕi. Then, ᾱ ∈ GF (U +Vi ⊂Wi, U

′+Vj ⊂Wj). Conversely, if ᾱ ∈ GF (U +Vi ⊂Wi, U
′+Vj ⊂

Wj), since GF has the restriction property, α = ᾱU ∈ GF (U ⊂Wi, U
′ ⊂Wj).

We now prove sufficiency. Suppose that F and (V, x) satisfy the two conditions. We consider
ζ∗ϕi ∈ Fi(V ⊕ν,µ U) in the inverse image of an element β∗ϕj ∈ F (U), where j is not necessarily
equal to i. The first condition implies that, if η : V → Wi satisfies η ∼GF

δi, then η = δi. But
ζ|∗V ϕi = δ∗i ϕi, hence ζ|V = δi. Then, the equality ζ|∗Uϕi = β∗ϕj implies the existence of a morphism

α ∈ GF (β(U), ζ(U)) such that ζ̃|U = α ◦ β̃, where ζ̃|U and β̃ are the corestrictions of ζ|U and β
to their images. Therefore, ζ = (ιWi

ζ(U)+Vi
) ◦ ᾱ ◦ (β ↑ δj) and by the second condition, we get that

ζ∗ϕi = (β ↑ δj)∗(ι
Wj

β(U)+Vj
)∗ϕj . Hence, (β ↑ δj)∗(ι

Wj

β(U)+Vj
)∗ϕj is the only element in the inverse

image of β∗ϕj under ρF,(V,x).

Example 5.31. When F ∈ WSet(VI)op , the two conditions become simpler. We consider δ from
V to W , such that (V, δ∗ϕF ) is central.

The first condition becomes that, for α ∈ G(U,U ′) and for v ∈ U ∩δ(V ), α(v) = v. Furthermore,
in this case, ᾱ is the morphism from U+δ(V ) to U ′+δ(V ) which sends u ∈ U to α(u) and v ∈ δ(V )
to v.

We return to Example 5.7.

Proposition 5.32. For G a sub-group of Gl(W ), the centre of F = HomVI( ,W )/G is given by
(C, ιC) with C the maximal sub-vector space of W such that for all v ∈ C and g ∈ G, g(v) = v and
with ιC the inclusion of C in W .

Proof. As we have seen in Example 5.7, GF = g(G) (see Definition 5.12). Let δ be an injection
from some vector space V to W such that (V, q(δ)) is central, for q the canonical projection from
HomVI( ,W ) to F . We will denote by V ′ the sub-space δ(V ) of W . The first condition of Theorem
5.30 implies that, for all g ∈ G, g ∈ GF (W,W ), therefore for all x ∈ V ′, g(x) = x. Conversely, if,
for all g ∈ G and for x ∈ V ′, g(x) = x, since for all sub-spaces U of W , and for all α ∈ GF (U,U ′),
there exists g ∈ G such that α = gU , (V, q(δ)) satisfies the first condition of the theorem.

In this case, if (V, q(δ)) satisfies the first condition of the theorem, the second condition of The-
orem 5.30 is immediately satisfied. Indeed, for α ∈ GF (U,U ′), ᾱ is the morphism from U + V ′ to
U ′ + V ′ which sends u ∈ U to α(u) and v ∈ V ′ to v. Then, let g ∈ G such that α = gU . Since for
all v ∈ V ′, g(v) = v, gU+V ′ = ᾱ. Hence, ᾱ ∈ GF (U + V ′, U ′ + V ′).

Therefore, q(δ) is central if and only if δ factorizes through ιC . Thus, (C, ιC) is the centre of
F .

6 The algebras H∗(W )G

This section shows how to apply the groupoid GF of the last section to classification problems of
nil-closed, integral, noetherian, unstable algebras. Before we explain the focus of this section, let
us recall the theorem of Adams-Wilkerson.
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Definition 6.1. [HLS93, Part II.2] For K ∈ K, the transcendence degree of K is d ∈ N ∪ {∞},
the supremum of the cardinals of finite sets of homogeneous elements in K which are algebraically
independent .

Remark 6.2. If K is noetherian, the transcendence degree of K is finite.

Let us recall the theorem of Adams-Wilkerson.

Theorem 6.3. [HLS93, Theorem 3] Let K be an integral, unstable algebra of transcendence degree
lesser or equal to dim(W ), then there exists an injection ϕ from K to H∗(W ). Furthermore, this
injection is regular if and only if the transcendence degree of K equals dim(W ).

Therefore, every integral, nil-closed, noetherian, unstable algebra is isomorphic to a nil-closed,
noetherian sub unstable algebra of some H∗(W ). In the first sub-section we define H∗(W )G for G
a groupoid on sub spaces of W that satisfies the restriction property. Then, G 7→ H∗(W )G defines
an explicit one-to-one correspondence between the groupoids on sub spaces of W satisfying the re-
striction property and the noetherian, nil-closed, unstable sub algebras of H∗(W ) of transcendence
degree dim(W ).

For simplicity, we restrict to the integral case. The constructions generalizes to the non integral
case.

Let us now recall the definition of the primitive elements of a comodule.

Definition 6.4. For K ∈ K provided with a H∗(V )-comodule structure κ in K, the algebra of
primitive elements ofK is the sub-algebra ofK whose elements are those satisfying that κ(x) = x⊗1,
for 1 the unit of H∗(V ). We will denote by P (K,κ) the algebra of primitive elements of K for the
H∗(V )-comodule structure κ.

Remark 6.5. By Corollary 3.15, for all (V, ϕ) ∈ C(K), there is a unique structure κϕ of H∗(V )-
comodule on K such that (ϵK ⊗ idH∗(V )) ◦ κϕ = ϕ.

Notation 6.6. We will also denote P (K,κϕ) by P (K,ϕ).

The problem that we are interested in is the following. If we fix V some finite dimensional vec-
tor space and P some unstable algebra, can we classify, under suitable hypothesis, the connected,
noetherian, nil-closed unstable algebras K, satisfying that K admit a H∗(V )-comodule structure
κ in K, whose algebra of primitive elements is isomorphic to P . Since, every nil-closed, noetherian,
integral, unstable algebra of transcendence degree dim(W ) is isomorphic to some H∗(W )G , we need
to be able to identify the primitive elements associated with a regular central element (V, ϕ) of
H∗(W )G .

In the second subsection, we consider H∗(W )G and an inclusion δ from some vector space V to
W , such that (V, δ∗ϕ) ∈ C(H∗(W )G) for ϕ the inclusion of H∗(W )G in H∗(W ). Then, we prove
that P (H∗(W )G , δ∗ϕ) is a nil-closed and noetherian sub-algebra of π∗(H∗(W/Im(δ))) for π the
projection from W to W/Im(δ). Since π∗ is injective, there exists H∗(W/Im(δ))G

′ ⊂ H∗(W/Im(δ))
such that P (H∗(W )G , δ∗ϕ) = π∗(H∗(W/Im(δ))G

′
). We conclude this sub-section by explaining how

to determine G′ from G.

Finally, in the last sub-section, we give examples of how to answer the following question: given
G′ a groupoid with the restriction property on sub-spaces of W/V , with W a finite dimensional
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vector space and V a sub-space of W , what are the groupoids G with the restriction property
on sub-spaces of W such that (V, ι∗V ϕ) ∈ C(H∗(W )G), for ιV the inclusion of V in W , and such
that the primitive elements of H∗(W )G for the H∗(V )-comodule structure induced by ι∗V ϕ are

π∗(H∗(W/V )G
′
).

6.1 Noetherian, nil-closed, unstable sub-algebras of H∗(W )

In this sub-section, we give an explicit one-to-one correspondence between the groupoids on sub
spaces of W satisfying the restriction property and the noetherian, nil-closed, unstable sub algebra
of H∗(W ) of transcendence degree dim(W ).

Theorem 6.7. For all W ∈ Vf , there is a one-to-one correspondence between the set of nil-
closed and noetherian sub-algebras of H∗(W ) whose transcendence degree is dim(W ) and the set of
groupoids with the restriction property, whose objects are the sub-vector spaces of W .

Proof. By Theorem 5.17, there is a one-to-one correspondence between isomorphism classes in

WSet(VI)op and the set of groupoids satisfying the assumption. Thus, we have to justify that
the set of nil-closed and noetherian sub-algebras of H∗(W ) of transcendence degree dim(W ) are
in one-to-one correspondence with isomorphism classes in WSet(VI)op . Let K be a nil-closed,
noetherian, sub-algebra of H∗(W ) whose transcendence degree is dim(W ). Then, for ϕK the
inclusion of K in H∗(W ), since the transcendence degree of K is dim(W ), by the Theorem
of Adams-Wilkerson, ϕK is regular. Since K is noetherian, this implies that we can restrict
ϕ∗K : HomVf ( ,W ) ↠ HomK(K,H

∗( )) to regular elements. For F := HomKf.g.(K,H
∗( )) and

qF : HomVI( ,W ) ↠ F the restriction of ϕ∗K to regular elements, we have that ϕ∗K = q̃F and that
(F, qF ) is an element in WSet(VI)op . This defines a map h from the set of nil-closed and noetherian
sub-algebras of H∗(W ) whose transcendence degree is dim(W ) to the set of isomorphism classes in

WSet(VI)op .

Let us prove that h is injective. We consider, K and K ′ two nil-closed and noetherian sub-
algebras ofH∗(W ) such that, for h(K) = (F, qF ) and h(K

′) = (F ′, qF ′) are isomorphic inWSet(VI)op .

Then, there is an isomorphism η from F to F ′ such that qF ′ = η ◦ qF . By applying the functor (̃ ),

we get the following commutative diagram in Set(Vf )op :

HomK(K,H
∗( ))

η̃

��

HomK(H
∗(W ), H∗( ))

ϕ∗
K

44

ϕ∗
K′ **

HomK(K
′, H∗( )).

34



Finally, by applying the functor m ◦ L, we get the following commutative diagram:

l1(K) � s
l1(ϕK)

&&

l1(H
∗(W ))

l1(K
′)

m◦L(η̃)

OO

+ � l1(ϕK′ )

99

,

where, m ◦ L(η̃) is an isomorphism. Since K, K ′ and H∗(W ) are nil-closed, this implies that there
is an isomorphism from K to K ′ such that the following diagram commutes:

K � q
ϕK

##
∼=

��

H∗(W )

K ′
- 

ϕK′
;;

,

so that K and K ′ are the same sub-algebra of H∗(W ), hence h is injective.

We conclude, by exhibiting a right inverse of h, for (F, qF ) ∈ WSet(VI)op , we consider the

injection m ◦L(F̃ )
m◦L(q̃F )
↪→ H∗(W ) and we define j(F, qF ) the image of m ◦L(q̃F ) in H∗(W ), which

does not depend on the choice of (F, qF ) in its isomorphism class. By construction, j(F, qF ) is
nil-closed, and g(j(F, qF )) ∼= F̃ is noetherian so, by Proposition 4.8, j(F, qF ) is noetherian. j is
obviously a right inverse of h; since h is injective, it is a bijection.

Definition 6.8. For G a groupoid whose objects are the sub-vector spaces of W and which has
the restriction property, for F := HomVI( ,W )/ ∼G and for qF the canonical surjection from
HomVI( ,W ) to F , H∗(W )G is the image of the map

m ◦ L(q̃F ) : m ◦ L(F̃ ) ↪→ H∗(W ).

Remark 6.9. H∗(W )G is the unique nil-closed, noetherian, sub-algebra of H∗(W ), whose tran-
scendence degree is dim(W ) and such that G(F,qF ) = G, for F := HomKf.g.(H

∗(W )G , H∗( )) and
qF the natural surjection from HomVI( ,W ) to HomKf.g.(H

∗(W )G , H∗( )) induced by the inclusion
from H∗(W )G to H∗(W ).

Furthermore, G 7→ H∗(W )G defines a contravariant functor between Groupoid(W ) (see Notation
5.11) and the poset of nil-closed, noetherian, sub-algebras of H∗(W ), whose transcendence degrees
are dim(W ), ordered by inclusion.

Corollary 6.10. Any nil-closed, integral, noetherian, unstable, algebra whose transcendence degree
is equal to dim(W ) is isomorphic to H∗(W )G for some G.

Proof. It is a reformulation of the theorem of Adams-Wilkerson using Theorem 6.7.
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Example 6.11. For G a sub-group of Gl(W ), H∗(W )g(G) = H∗(W )G, for H∗(W )G the algebra of
invariant element of H∗(W ) under the action of G.

Let us identify precisely the sub-algebra H∗(W )G of H∗(W ).

Proposition 6.12. Let G be a groupoid whose objects are the sub-vector spaces of W with the
restriction property. Then,

H∗(W )G = {x ∈ H∗(W ) ; α∗ι∗U ′(x) = ι∗U (x) for all α ∈ G(U,U ′)}.

Proof. Let ϕ be the inclusion of H∗(W )G in H∗(W ) and let K(G) = {x ∈ H∗(W ) ; α∗ι∗U ′(x) =
ι∗U (x) for all α ∈ G(U,U ′)}. By definition, α∗ι∗U ′ϕ = ι∗Uϕ for all α ∈ G(U,U ′) and for all sub-spaces
U and U ′ of W . Then,

H∗(W )G ⊂ K(G).

Furthermore, the inclusion fromK(G) toH∗(W ) induces a surjection from HomVI( ,W ) to g(K(G))
which factorises through an isomorphism from HomVI( ,W )/ ∼G to g(K(G)). The fact that the
surjection factorises through HomVI( ,W )/ ∼G↠ g(K(G)) is a direct consequence of the defini-
tions of K(G) and ∼G , and the fact that this morphism is injective, comes from the fact that the
isomorphism from HomVI( ,W )/ ∼G to g(H∗(W )G) factorises as the following diagram:

HomVI( ,W )/ ∼G→ g(K(G)) → g(H∗(W )G).

Then, by applying the functor m◦L to the last diagram, we get the bottom line of the following:

H∗(W )G �
�

//

ηH∗(W )G

��

K(G) �
�

//

ηK(G)

��

H∗(W )

ηH∗(W )

��

l1(H
∗(W )G)

∼= // l1(K(G)) �
�

// l1(H
∗(W )),

where η denotes the unit of the adjunction between f and m. Then, since H∗(W )G and H∗(W ) are
nil-closed, ηH∗(W )G and ηH∗(W ) are isomorphisms. Furthermore, K(G) is a sub unstable algebra
of H∗(W ), hence it does not contains any nilpotent sub module, and ηK(G) is injective. Then, the
commutativity of the diagram implies that ηK(G) is an isomorphism, and therefore that H∗(W )G =
K(G).

Definition 6.13. For g ∈ Gl(W ), and G ∈ Groupoid(W ), g · G is the groupoid in Groupoid(W )
defined by β ∈ g · G(R,R′), for β an isomorphisms between subspaces R and R′ of W , if there exist
α ∈ G(U,U ′) for U = g−1(R) and U ′ = g−1(R′), such that the following diagram commutes:

U
g|RU //

α

��

R

β

��

U ′
g|R

′
U′

// R′.

This defines a poset preserving action of Gl(W ) on Groupoid(W ).
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Remark 6.14. This action generalises the action by conjugation on Group(W ). Indeed, for G a
subgroup of Gl(W ) and g ∈ Gl(W ), g · g(G) = g(gGg−1).

Proposition 6.15. For g ∈ Gl(W ) and G ∈ Groupoid(W ), H∗(W )g·G = (g−1)∗(H∗(W )G).

Proof. This is a direct consequence of Proposition 6.12.

Remark 6.16. We want to notice that the (H∗(W )G)G∈Groupoid(W ) does not constitute a minimal
list for representing elements of isomorphism classes of nil-closed, integral and noetherian unstable
algebras of transcendence degree dim(W ). For g ∈ Gl(W ) and G ∈ Groupoid(W ), g · G needs not
to be equal to G, but, by Proposition 6.15, H∗(W )G ∼= H∗(W )g·G .

Conversely, since the inclusion of H∗(W )G in H∗(W ) induces a surjection from
HomK(H

∗(W ), H∗(W )) to HomK(H
∗(W )G , H∗(W )), and since g 7→ g∗ induces an isomorphism

between HomK(H
∗(W ), H∗(W )) and Gl(W ), we have that if H∗(W )G ∼= H∗(W )H, there exists

g ∈ Gl(W ) such that H∗(W )H = (g−1)∗(H∗(W )G). By Proposition 6.15, H = g · G.

6.2 Centrality and primitive elements of H∗(W )G

Throughout this sub-section, we fix V and W two objects in Vf , as well as an injection δ from V
to W .

We consider K a nil-closed, noetherian unstable sub algebra of H∗(W ) of transcendence degree
dim(W ), such that (V, δ∗ϕ) ∈ C(K), for ϕ the inclusion of K in H∗(W ). We start by explaining
why the H∗(V )-comodule structure on K induced by δ∗ϕ is induced from the H∗(V )-comodule
structure on H∗(W ) given by (idW + δ)∗ : H∗(W ) → H∗(W )⊗H∗(V ).

Then, for K = H∗(W )G , we explain how to determine the primitive elements of this comodule
structure from G.

Proposition 6.17. Let K be a noetherian unstable sub algebra of H∗(W ) of finite transcendence
degree dim(W ) such that (V, δ∗ϕ) ∈ C(K), for ϕ the inclusion of K in H∗(W ). The H∗(V )-
comodule structure κ on K, induced by δ∗ϕ and Corollary 3.15, fits into the following commutative
diagram:

K

ϕ

��

κ // K ⊗H∗(V )

ϕ⊗idH∗(V )

��

H∗(W )
(idW+δ)∗

// H∗(W )⊗H∗(V ).

Proof. We consider the following diagram:

K

ϕ

��

κ // K ⊗H∗(V )

ϕ⊗idH∗(V )

��

H∗(W ) H∗(W )⊗H∗(V ).

The existence of a morphism ψ∗ from H∗(W ) to H∗(W ) ⊗ H∗(V ) which turns it into a com-
mutative diagram is a consequence of the surjectivity of ϕ∗ from HomK(H

∗(W ), H∗(W ⊕ V )) to
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HomK(K,H
∗(W ⊕ V )). We only have to justify why we can take ψ = idW + δ. We have that the

composition of (ϕ⊗ idH∗(V )) ◦ κ with ϵK ⊗ idH∗(V ) is equal to δ
∗ϕ and that with idH∗(W ) ⊗ ϵH∗(V )

is equal to ϕ. Hence, since δ∗ϕ is central, (ϕ ⊗ idH∗(V )) ◦ κ is the unique element in the inverse
image of ϕ under ρHomK(K,H∗( )),(V,δ∗ϕ). But (idW + δ)∗ϕ is also in this inverse image of ϕ, hence
the diagram commutes.

We consider (idW + δ)∗ : H∗(W ) → H∗(W )⊗H∗(V ) which is the H∗(V )-comodule structure
on H∗(W ) associated with (V, δ) ∈ C(H∗(W )).

Proposition 6.18. Let K be a noetherian unstable sub algebra of H∗(W ) of finite transcendence
degree dim(W ) such that (V, δ∗ϕ) ∈ C(K), for ϕ the inclusion of K in H∗(W ). Then, we have a
pullback diagram of the following form:

P (K, δ∗ϕ) �
�

//
� _

��

K� _

ϕ

��

H∗(W/Im(δ))
� �

π∗
// H∗(W ).

Proof. Proposition 6.17 says that the following diagram commutes:

K

ϕ

��

κ // K ⊗H∗(V )

ϕ⊗idH∗(V )

��

H∗(W )
(idW+δ)∗

// H∗(W )⊗H∗(V ).

This means that the H∗(V )-comodule structure on K is induced by that on H∗(W ). Hence, the
primitive elements of K are simply the primitive elements of H∗(W ) that are in K. But the
comodule structure on H∗(W ) is the morphism (idW + δ)∗ whose algebra of primitive elements is
the image of H∗(W/Im(δ)) under π∗, for π the projection from W to W/Im(δ).

Corollary 6.19. Let K be a noetherian unstable sub algebra of H∗(W ) of finite transcendence
degree dim(W ) such that (V, δ∗ϕ) ∈ C(K), for ϕ the inclusion of K in H∗(W ). Then, the following
is a pushout diagram:

HomVf ( ,W ) // //

����

HomK(K,H
∗( ))

����

HomVf ( ,W/Im(δ)) // // HomK(P (K, δ
∗ϕ), H∗( )).

Proof. It is a direct consequence of Lemma 2.15 and of Proposition 6.18.

We can thus identify HomK(P (K, δ
∗ϕ), H∗( )) in this context. In particular, we show that P is

always noetherian.

Lemma 6.20. For S a set, and ∼1 and ∼2 two equivalence relations on S, we denote by ∼ the
smallest equivalence relation on S (in the sense that {(a, b) ∈ S×S ; a ∼ b} ⊂ S×S is the smallest)
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such that, for all a and b in S such that a ∼1 b or a ∼2 b, a ∼ b. Then, the following is a pushout
in Set:

S // //

����

S/ ∼1

����

S/ ∼2
// // S/ ∼ .

Proof. Let Σ denote the pushout of

S // //

����

S/ ∼1

S/ ∼2 .

Then, for s : S → Σ the composition of the projection from S to S/ ∼1 with the surjective
application S/ ∼1→ Σ, s is surjective. We define ∼′ the equivalence relation on S defined by a ∼′ b
if and only if s(a) = s(b). Σ is isomorphic in Set with S/ ∼′ and we will show that ∼′=∼.

By commutativity of the pushout diagram, for a and b in S such that a ∼1 b or a ∼2 b,
s(a) = s(b). Suppose that ∼′ is not the smallest such equivalence relation. Then, there exists x and
y with x ∼′ y and an equivalence relation ∼′′, satisfying that for a and b such that a ∼1 b or a ∼2 b,
a ∼′′ b, and such that x is not equivalent to y for ∼′′. Then, the following diagram is commutative:

S // //

����

S/ ∼1

����

S/ ∼2
// // S/ ∼′′,

and factorise by a morphism S/ ∼′→ S/ ∼′′. This is a contradiction, so ∼′=∼.

Remark 6.21. For ∼1 and ∼2 as in Lemma 6.20, and for S finite, the smallest equivalence relation
∼ on S such that, for all a and b in S such that a ∼1 b or a ∼2 b, a ∼ b, is the equivalence relation
defined by a ∼ b if there is a finite family (si)i∈[|1,n|] of objects in S such that:

1. s1 = a,

2. sn = b,

3. for all 1 ≤ i ≤ n, if i is odd si ∼1 si+1 and if i is even si ∼2 si+1.

We deduce the following proposition.

Proposition 6.22. Let K be a noetherian unstable sub algebra of H∗(W ) of finite transcendence
degree dim(W ) such that (V, δ∗ϕ) ∈ C(K), for ϕ the inclusion of K in H∗(W ). Then, for ζ and
γ in HomVI(U, V ), γ∗ϕ|P (K,δ∗ϕ) = ζ∗ϕ|P (K,δ∗ϕ) ∈ HomK(P (K, δ

∗ϕ), H∗(U)) if and only if there
exists a family (ϵi)i∈[|1,n|] ∈ HomVf (U,W )n with n ∈ N greater than 1, such that:

1. γ = ϵ1,
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2. ζ = ϵn,

3. for all 1 ≤ i ≤ n− 1, ϵ∗iϕ = ϵ∗i+1ϕ if i is odd and π ◦ ϵi = π ◦ ϵi+1 if i is even.

Proof. By Corollary 6.19, the following is a pushout:

HomVf ( ,W )
k // //

π∗
����

HomK(K,H
∗( ))

p

����

HomVf ( ,W/Im(δ)) // // HomK(P (K, δ
∗ϕ), H∗( )),

where k maps ζ : U → W to ζ∗ϕ : K → H∗(U), p maps ψ : K → H∗(U) to ψ|P (K,δ∗ϕ) and π∗
maps ζ : U →W to π ◦ ζ : U →W/Im(δ). Then, by Lemma 6.20, p ◦ k(ζ) = p ◦ k(γ) if and only
if there exists a family (ϵi)i∈[|1,n|] ∈ HomVf (U,W )n with n ∈ N greater than 1, such that γ = ϵ1,
ζ = ϵn and for all 1 ≤ i ≤ n− 1, k(ϵi) = k(ϵi+1) if i is odd and π∗(ϵi) = π∗(ϵi+1) if i is even.

Corollary 6.23. Let K be a noetherian unstable sub algebra of H∗(W ) of finite transcendence
degree dim(W ) such that (V, δ∗ϕ) ∈ C(K), for ϕ the inclusion of K in H∗(W ). Then, for ζ ∈
HomVf (U,W ), ker(ζ∗ϕ|P (K,δ∗ϕ)) = ker(π ◦ ζ).

Proof. Let ζ0 ∈ HomVf (U/ ker(ζ∗ϕ|P (K,δ∗ϕ),W ) such that ζ∗ϕ|P (K,δ∗ϕ) = π∗
Uζ

∗
0ϕ|P (K,δ∗ϕ), with πU

the projection from U to U/ ker(ζ∗ϕ|P (K,δ∗ϕ)). Let ϵ1 = ζ0 ◦ πU , ϵn = ζ and for all i ϵ∗iϕ = ϵ∗i+1ϕ if
i is odd and π ◦ ϵi = π ◦ ϵi+1 if i is even. Then, since HomK(K,H

∗( )) is noetherian, ker(π ◦ ϵi) =
ker(π ◦ ϵi+1) for all 1 ≤ i ≤ n− 1. Hence, ker(π ◦ ζ) = ker(π ◦ ζ0 ◦ πU ) = ker(ζ∗ϕ|P (K,δ∗ϕ)).

Corollary 6.24. Let K be a noetherian unstable sub algebra of H∗(W ) of finite transcendence
degree dim(W ) such that (V, δ∗ϕ) ∈ C(K), for ϕ the inclusion of K in H∗(W ). Then,
HomK(P (K, δ

∗ϕ), H∗( )) is noetherian.

Proof. The fact that HomK(P (K, δ
∗ϕ), H∗( )) is finite is obvious. Let ζ∗ϕ|P (K,δ∗ϕ) in

HomK(P (K, δ
∗ϕ), H∗(U)) and let α be a morphism from a vector space Y to U . Then, by Corollary

6.23
ker(α∗ζ∗ϕ|P (K,δ∗ϕ)) = ker(π ◦ ζ ◦ α).

Since α is injective, this is equal to

α−1(ker(π ◦ ζ)) = α−1(ker(ζ∗ϕ|P (K,δ∗ϕ))).

Theorem 6.25. Let K be a noetherian unstable sub algebra of H∗(W ) of finite transcendence
degree dim(W ) such that (V, δ∗ϕ) ∈ C(K), for ϕ the inclusion of K in H∗(W ). Then, P (K, δ∗ϕ)
is nil-closed and noetherian.

Proof. Since, P (K, δ∗ϕ) is the kernel of κ− idK ⊗ 1 from K to K⊗H∗(V ) which are nil-closed, for
κ the comodule structure of K associated with δ∗ϕ, and since f is exact and m is left-exact, the
following is an exact sequence:

0 → l1(P (K, δ
∗ϕ)) → l1(K)

l1(κ−idK⊗1)−→ l1(K ⊗H∗(V )).

Therefore, since K is nil-closed, P (K, δ∗ϕ) is also nil-closed. Then, the noetherianity of P (K, δ∗ϕ)
is a consequence of the noetherianity of HomK(P (K, δ

∗ϕ), H∗( )) and of Proposition 4.8.
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Remark 6.26. We have identified P (K, δ∗ϕ) with a sub-algebra of H∗(W/Im(δ)). Furthermore,
we proved that P (K, δ∗ϕ) is nil-closed and noetherian, and (because we took δ to be an injection)
Corollary 6.23 implies that the inclusion from P (K, δ∗ϕ) into H∗(W/Im(δ)) is regular. Therefore,
by Theorem 6.7, P (K, δ∗ϕ) has the form H∗(W/Im(δ))G

′
, for some G′ ∈ Groupoid(W/Im(δ)).

This leads to the following question: for W and V in Vf , for δ an inclusion from V to W and
for G′ a groupoid with the restriction property and whose objects are the sub-spaces of (W/Im(δ)),
which are the groupoids G with the restriction property and whose objects are the sub-spaces of
W , such that

1. H∗(W )G is a sub H∗(V )-comodule of H∗(W ) for the comodule struture induced by δ,

2. the intersection of H∗(W )G with π∗(H∗(W/Im(δ))) is the image under π∗ : H∗(W/Im(δ)) →
H∗(W ) of H∗(W/Im(δ))G

′
.

Remark 6.27. H∗(W )G is a sub H∗(V )-comodule of H∗(W ) for the comodule struture induced
by δ if and only if G satisfies the two conditions of theorem 5.30.

We recall that, from the begining of this sub-section, V and W are fixed objects of Vf and δ a
fixed injective morphism from V to W .

Theorem 6.28. Let G be a groupoid with the restriction property and whose objects are the sub-
vector spaces of W , such that H∗(W )G is a sub H∗(V )-comodule of (H∗(W ), (idW + δ)∗). For G′

the only groupoid whose objects are sub spaces of W/Im(δ) which satisfies that π∗(H∗(W/Im(δ))G
′
)

is the algebra of primitive elements of H∗(W )G, the two following conditions are equivalent:

1. α ∈ G′(U,U ′), where U and U ′ are sub-vector spaces of W/Im(δ) and α is an isomorphism
from U to U ′,

2. there exists N and N ′ sub spaces of W such that π induce isomorphisms from N and N ′ to
U and U ′, as well as an element β ∈ G(N,N ′) such that α = π|U ′

N ′ ◦ β ◦ (π|UN )−1.

Proof. We consider the pushout diagram of Corollary 6.19:

HomVf ( ,W )
k // //

π∗

����

HomK(H
∗(W )G , H∗( ))

q

����

HomVf ( ,W/Im(δ))
p
// // HomK(H

∗(W/Im(δ))G
′
, H∗( )),

where π∗ maps γ : U →W to π ◦ γ, k maps γ to γ∗ϕG for ϕG the inclusion from H∗(W )G , q maps
ψ : H∗(W )G → H∗(U) to ψ|π∗(H∗(W/Im(δ))) the restriction of ψ to π∗(H∗(W/Im(δ))) and, finally,

p maps ζ from U to W/Im(δ) to ζ∗ϕG′ , for ϕG′ the inclusion of H∗(W/Im(δ))G
′
into H∗(W/Im(δ)).

We fix a section s from W/Im(δ) to W . Since π ◦ s = idW/Im(δ), π∗(s) = idW/Im(δ). Then, by
commutativity of the pushout diagram, we have ϕG′ = q(s∗ϕG) = s∗ϕG |π∗(H∗(W/Im(δ))).

By construction, there are natural isomorphisms HomKf.g.(H
∗(W )G , H∗( )) ∼= HomVI( ,W )/ ∼G

and HomKf.g.(H
∗(W/Im(δ))G

′
, H∗( )) ∼= HomVI( ,W/Im(δ))/ ∼G′ . These are the isomorphisms
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that map ϕG to [idW ]G and ϕG′ to
[
idW/Im(δ)

]
G′ respectively.

Let us first prove 2) ⇒ 1). We consider, β ∈ G(N,N ′) such that π induces isomorphisms π|UN
and π|U ′

N ′ between N and U and between N ′ and U ′. Let α be an isomorphism from U to U ′ such

that α = π|U ′

N ′ ◦ β ◦ (π|UN )−1. Then, (π|U ′

N ′)−1 ◦ α = β ◦ (π|UN )−1. Therefore,

α∗((π|U
′

N ′)−1)∗ι∗N ′ϕG = ((π|UN )−1)∗β∗ι∗N ′ϕG

= ((π|UN )−1)∗ι∗NϕG .

We can choose the section s in such a way that s ◦ ιU ′ = ιN ′ ◦ ((π|U ′

N ′)−1), then

α∗ι∗U ′s∗ϕG = ((π|UN )−1)∗ι∗NϕG .

This implies that α∗ι∗U ′s∗q(ϕG) = ((π|UN )−1)∗ι∗Nq(ϕG). Furthermore, π ◦ s ◦ ιU = π ◦ ιN ◦ (π|UN )−1.
Hence, we also have, by Proposition 6.22, that ι∗Us

∗q(ϕG) = ((π|UN )−1)∗ι∗Nq(ϕG). Hence,

α∗ι∗U ′s∗q(ϕG) = ι∗Us
∗q(ϕG).

Since s∗q(ϕG) =
[
idW/Im(δ)

]
G′ , this implies that α ∈ G′(U,U ′), as required.

Now, let us prove the far more challenging 1) ⇒ 2).
We consider α ∈ G′(U,U ′) where U and U ′ are two sub-spaces of W/Im(δ). Then,

α∗ι∗U ′

[
idW/Im(δ)

]
G′ = ι∗U

[
idW/Im(δ)

]
G′ ,

or, equivalently,
[ιU ′ ◦ α]G′ = [ιU ]G′ .

By Proposition 6.22, since
[
idW/Im(δ)

]
G′ is the image of s∗q(ϕG) under the isomorphism

HomKf.g.(H
∗(W/Im(δ))G

′
, H∗( )) ∼= HomVI( ,W/Im(δ))/ ∼G′ ,

we have that [ζ]G′ = [γ]G′ , if and only if there exists a family (ϵi)i∈[|1,n|] ∈ HomVf (U,W )n with
n ∈ N greater than 1, such that s ◦ γ = ϵ1, s ◦ ζ = ϵn and, for all 1 ≤ i ≤ n− 1, ϵ∗iϕG = ϵ∗i+1ϕG if i
is odd and π ◦ ϵi = π ◦ ϵi+1 if i is even.

So let (ϵi)i∈[|1,n|] ∈ HomVf (U,W )n be such that ϵ1 = s ◦ ιU , ϵn = s ◦ ιU ′ ◦ α and for all
1 ≤ i ≤ n− 1, ϵ∗iϕG = ϵ∗i+1ϕG if i is odd and π ◦ ϵi = π ◦ ϵi+1 if i is even.

By induction, for all i ∈ [|1, n|], ϵ∗iϕG and π ◦ ϵi are regular elements respectively of
HomK(H

∗(W )G , H∗(U)) and HomVf (U,W/Im(δ)). Hence, ϵi and π ◦ ϵi are injections. For all i, let
Ni denote the image of ϵi in W , we denote also by ϵ̃i the corestriction of ϵ to Ni. Then, for i odd,
ϵ∗iϕG = ϵ∗i+1ϕG implies that there exists βi in G(Ni, Ni+1) such that ϵ̃i+1 = βi ◦ ϵ̃i.

We take some moment to explain subtlety in the proof. We would like, for i even, to have
ϵi = ϵi+1. Then, the composition of the βi with i odd would give an isomorphism β between
N1 = s(U) and Nn = s(U ′) such that β ∈ G(N1, Nn), since G is a groupoid and we would have
(s ◦ ιU ′)|Nn ◦ α = β ◦ (s ◦ ιU )|N1 . Since (s ◦ ιU )|N1 and (s ◦ ιU ′)|Nn are inverse isomorphisms of
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π|UN1
and π|U ′

Nn
, we would have α = π|U ′

Nn
◦ β ◦ (π|UN1

)−1. If this were the case, we would have found
a β for any N and N ′ such that π induces isomorphisms between U and N and between U ′ and
N ′, and we would have done so without using the assumption that δ∗ϕG is central. Unfortunately,
this naive approach fails, and N and N ′ must be chosen carefully. The hypothesis on the ϵi for
i even indicates how to modify our original N1 and Nn to make it work, using the centrality of δ∗ϕG .

First notice that, since π ◦ ϵi is injective for all i, we always have Ni ∩ Im(δ) = {0}. Then,
the assumption that, for i even, π ◦ ϵi = π ◦ ϵi+1 implies that there exists ρi from U to W whose
image is inside Im(δ) and such that ϵi+1 = ϵi + ρi. Now, since H∗(W )G is a sub H∗(V )-comodule
of (H∗(W ), (idW +δ)∗) we know that [δ]G is a central element of HomVI( ,W )/ ∼G . Then, by The-
orem 5.30, for i odd, we know that the isomorphisms β̄i from Ni ⊕ Im(δ) to Ni+1 ⊕ Im(δ) defined
by β̄i(n) = βi(n) for n ∈ Ni and β̄i(v) = v for v ∈ Im(δ) satisfy β̄i ∈ G(Ni ⊕ Im(δ), Ni+1 ⊕ Im(δ)).
Moreover, for i even, π ◦ ϵi = π ◦ ϵi+1 implies that Ni ⊕ Im(δ) = Ni+1 ⊕ Im(δ). Then, at each even
step i, we can “correct” ϵi−1 to get βi−1 ◦ ϵ̃i−1 = ϵ̃i+1 instead of ϵ̃i.

For each i ∈ [|1, n|], we define ϵ′i (the “corrected” ϵi) by

ϵ′i := ιWNi⊕Im(δ) ◦ (ϵ̃i ⊕
∑

{j even ; i≤j<n}

β−1
i→j ◦ ρj |

Nj⊕Im(δ)),

where βi→j is the composition of all the β̄k with k odd and i ≤ k < j. The family (ϵ′i)i∈[|1,n|]
satisfies the following:

1. π ◦ ϵ′1 = ιU , π ◦ ϵ′n = ιU ′ ◦ α,

2. for all i, if we denote by N ′
i the image of ϵ′i, then N

′
i ⊕ Im(δ) = Ni ⊕ Im(δ),

3. for i odd, if we denote by β′
i the restriction of β̄i to N

′
i corestricted to N ′

i+1, ϵ̃
′
i+1 = β′

i◦ ϵ̃′i, with
β′
i ∈ G(N ′

i , N
′
i+1)), since β̄ ∈ G(Ni ⊕ Im(δ), Ni+1 ⊕ Im(δ)) and G has the restriction property,

4. for i even, ϵ′i = ϵ′i+1.

Then, let N = N ′
1, N

′ = N ′
n and β = (β′

k ◦ ... ◦ β′
3 ◦ β′

1), where k = n− 2 if n is odd, k = n− 1
otherwise. Then, β ∈ G(N,N ′) and β ◦ ϵ̃′1 = ϵ̃′n. Finally, π ◦ ϵ′1 = ιU implies that ϵ̃′1 = (π|UN )−1 and

π ◦ ϵ′n = ιU ′ ◦ α implies that ϵ̃′n = (π|U ′

N ′)−1 ◦ α. Hence, α = π|U ′

N ′ ◦ β ◦ (π|UN )−1.

6.3 Applications

We end this section by presenting some applications of Theorem 6.28. The first result was already
known.

Proposition 6.29. Let K be a noetherian, nil-closed, integral, unstable algebra of transcendence
degree d. We assume that the centre of K is of dimension d. Then, K ∼= H∗(W ) with dim(W ) = d.

Proof. By Theorem 6.7 and the theorem of Adams-Wilkerson K ∼= H∗(W )G for some groupoid G
with the restriction property and whose objects are the sub-spaces of W . Then, since the centre
of K has dimension dim(W ), up to isomorphism the centre of K is given by (W,ϕ) where ϕ is the
inclusion from K to H∗(W ) induced by the theorem of Adams-Wilkerson. Then, by Theorem 5.30,
for all α ∈ G(U,U ′), where U and U ′ are sub-vector spaces of W , and for all x ∈ U = U ∩W ,
α(x) = x. Hence, G is the groupoid in which the only morphisms are identities of sub-spaces of W .
Then, H∗(W )G = H∗(W ).
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Let us now consider the case where the centre is of dimension d − 1, for d the transcendence
degree of K.

Theorem 6.30. Let K be a noetherian, nil-closed, integral, unstable algebra of transcendence degree
d. We assume that the centre of K is of dimension d − 1. Then, there exists G a sub-group of
Gl(W ) such that K is isomorphic to the algebra of invariant elements H∗(W )G with dim(W ) = d.
Furthermore, G satisfies that the set of element x ∈ W such that g(x) = x for all g ∈ G is a
sub-vector space of W of dimension d− 1.

Proof. By Theorem 6.7 and the theorem of Adams-Wilkerson K ∼= H∗(W )G for some groupoid
G with the restriction property and whose objects are the sub-spaces of W . Then, the centre
of K is associated with a H∗(V )-comodule structure on H∗(W )G , with dim(V ) = d − 1. Up to
isomorphism, we can suppose that this H∗(V )-comodule structure is induced by ιV the inclusion of
a sub-vector space V in W (we can assume that the comodule structure is induced by an injection,
because it is associated with the centre of K which is regular by definition). By Theorem 5.30, for
all α ∈ G(U,U ′) and for all x ∈ U ∩ V , α(x) = x. Furthermore, for all sub-spaces U and U ′ of
W , G(U,U ′) is determined from G(V ⊕ U, V ⊕ U ′) by the restriction property. Since we assumed
dim(V ) = dim(W ) − 1, G is uniquely determined by G(V, V ) and G(W,W ). Then, since for all
x ∈ V and for all α ∈ G(V, V ), α(x) = x, G(V, V ) is reduced to the identity of V . Therefore, for
g ∈ G := G(W,W ), g(x) = x for all x ∈ V , and α ∈ G(U,U ′) if and only if there is g ∈ G such that
α = gU . We get that H∗(W )G = H∗(W )G.

Corollary 6.31. Let K be a noetherian, nil-closed, integral, unstable algebra of transcendence
degree dim(W ), and let (C, γ) be its centre. Then if K is not isomorphic to H∗(W )G for some
sub-group G of Gl(W ), dim(C) ≤ d− 2.

In the next section, we will have examples where dim(C) = d − 2 and K is not an algebra of
invariant elements under some action on H∗(W ).

7 Two examples

In the following, we focus on the case where p = 2, so that H∗(V ) ∼= F2 [x1, ..., xn], for (x1, ..., xn)
a basis of V ♯.

We take V3 = F2e1 ⊕ F2e2 ⊕ F2e3 and denote by (x, y, z) the dual basis of (e1, e2, e3). The
morphism

(idV3 + ιF2e1)
∗ : H∗(V3) → H∗(V3)⊗H∗(F2e1),

which maps x to x⊗ 1+1⊗x, y to y⊗ 1 and z to z⊗ 1 defines an H∗(F2e1)-comodule structure on
H∗(V3) in K. In each of the following examples we want to find the list of noetherian, nil-closed,
unstable sub-algebras of H∗(V3) of transcendence degree 3, which are sub H∗(F2e1)-comodules of
H∗(V3) for the comodule structure given by (idV3 + ιF2e1)

∗ and whose algebra of primitive elements
is π∗(H∗(V3/F2e1)

G′
) for π the projection from V3 over V3/F2e1, and for H∗(V3/F2e1)

G′
a cho-

sen nil-closed, noetherian, sub algebra of H∗(V3/F2e1). By Theorem 6.28, G has to satisfy that
α ∈ G′(U,U ′) if and only if there is β ∈ G(N,N ′) such that π|N ′ ◦ β = α ◦ π|N .

Furthermore, by Theorem 5.30, since [ιF2e1 ]G ∈ HomKf.g.(H
∗(W )G , H∗(F2e1)) is central, all

morphism β in G(N,N ′) is the restriction of a morphism β̄ in G(F2e1 + N,F2e1 + N ′) defined by
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β̄(e1) = e1 and β̄(n) = β(n) for n ∈ N . So G can be deduced from its full sub-groupoid whose
objects are V3, F2e1 ⊕ F2e2, F2e1 ⊕ F2e3, F2e1 ⊕ F2(e2 + e3) and F2e1. This full sub-groupoid can
be represented as follows:

V3

F2e1 ⊕ F2e2 F2e1 ⊕ F2e3

F2e1 ⊕ F2(e2 + e3)

F2e1

G

G22 G33

G44

G23

G34G42

{idF2e1}

Where G denotes G(V3, V3) and Gij denotes G(F2e1 ⊕ F2ei,F2e1 ⊕ F2ej) with e4 := e2 + e3, and
where we omitted G43, G24, etc, which can be deduced by composition and inversion of the already
given sets of morphisms.

We consider first the case where G′ contains only identities.

Proposition 7.1. There are exactly 15 nil-closed, noetherian, unstable sub-algebras K of H∗(V3)
of transcendence degree 3, which are sub F2 [x]-comodules of H∗(V3), for the comodule structure
that maps x to x ⊗ 1 + 1 ⊗ x, y to y ⊗ 1 and z to z ⊗ 1, and such that the algebra of primitive
elements of K is F2 [y, z]. These are :

1. F2 [y, z, x(x+ y)(x+ z)(x+ y + z)] ,

2. F2 [y, z, x(x+ y)] ,

3. F2 [y, z, x(x+ z)] ,

4. F2 [y, z, x(x+ y + z)] ,

5. F2 [y, z, x(x+ y)(x+ z)(x+ y + z)] + F2 [y, z, x(x+ y)] y,

6. F2 [y, z, x(x+ y)(x+ z)(x+ y + z)] + F2 [y, z, x(x+ z)] z,

7. F2 [y, z, x(x+ y)(x+ z)(x+ y + z)] + F2 [y, z, x(x+ y + z)] (y + z),
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8. F2 [x, y, z] ,

9. F2 [x, y, z] (y + z)⊕ F2 [z, x(x+ z)] ,

10. F2 [x, y, z] y ⊕ F2 [z, x(x+ z)] ,

11. F2 [x, y, z] z ⊕ F2 [y, x(x+ y)] ,

12. F2 [z, x(x+ z)]⊕ F2 [x, y, z] (y + z)y ⊕ F2 [y, x(x+ y)] y,

13. F2 [y, x(x+ y)]⊕ F2 [x, y, z] (y + z)z ⊕ F2 [z, x(x+ z)] z,

14. F2 [(y + z), x(x+ y + z)]⊕ F2 [x, y, z] yz ⊕ F2 [z, x(x+ z)] z,

15. F2 [z, x(x+ z)] z ⊕ F2 [y, x(x+ y)] y ⊕ F2 [y, x(x+ y)] (y + z)y ⊕ F2 [x, y, z] (y + z)yz.

Proof. In this case, F2 [y, z] = π∗(H∗(V3/F2e1)). Then, the groupoid G′ is the trivial groupoid,
which contains only identities. Therefore, by Theorem 6.28, for all β ∈ G(N,N ′), π ◦ β = π. For
β ∈ Gij with i and j in {2, 3, 4}, π ◦ β(ei) = π(ei) which is not possible if i ̸= j. Hence, Gij = ∅
if i ̸= j. We only have to determine G, G22, G33 and G44. We have two condition on β ∈ G or
β ∈ Gii, the first is that β(e1) = e1 (by Theorem 5.30 and the centrality of [ιF2e1 ]G) and the second
that π ◦β = π (by Theorem 6.28 and the hypothesis on G′). Therefore, β has a block matrix of the
following form: (

idF2e1 β̂
0 idN

)
,

where N ∈ {F2e2,F2e3,F2(e2 + e3),F2e2 ⊕ F2e3} and β̂ is a morphism from N to F2e1. Hence, the
set of matrices of morphisms in G in the basis (e1, e2, e3) is a sub group of

H = {

 1 0 0
0 1 0
0 0 1

 ,

 1 1 0
0 1 0
0 0 1

 ,

 1 0 1
0 1 0
0 0 1

 ,

 1 1 1
0 1 0
0 0 1

}.

There are five possibilities forG, G1 = {idV3}, G2 =<

 1 1 0
0 1 0
0 0 1

 >, G3 =<

 1 0 1
0 1 0
0 0 1

 >,

G4 =<

 1 1 1
0 1 0
0 0 1

 > and G5 the full group. The groups Gii are either trivial or equal to Hii

the group generated by the morphism which sends e1 to itself and ei to e1 + ei. Furthermore for a
chosen G, the restriction property (Definition 5.8) requires that some of them are non trivial. Let
us summarise the possible values of the Gii for each value of G.

G G22 G33 G44

G1 {id} or H22 {id} or H33 {id} or H44

G2 H22 {id} or H33 H44

G3 {id} or H22 H33 H44

G4 H22 H33 {id} or H44

G5 H22 H33 H44
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We find, 15 possible values for (G,G22, G33, G44). Each one characterising precisely one G ∈
Groupoid(V3) such that H∗(V3)

G satisfies the required conditions.

We give details for only two computations of H∗(V3)
G . The other ones are left to the reader.

First case: If G contains all morphisms whose matrix are in H, then by the restriction
property Gii contains all the morphisms β that satisfy the two conditions, for i ∈ {2, 3, 4}. Hence,
all morphisms in Gii are induced by restriction from a morphism in G. Therefore, H∗(V3)

G is equal
to H∗(V3)

G the algebra of invariant elements under the action of G on H∗(V3). Let us start by
using that an element of H∗(V3)

G has to be invariant under the action gy which sends x to x+ y,
and y and z to themselves. Then, every polynomial P (x, y, z) satisfies that

x2P (x, y, z) = x(x+ y)P (x, y, z) + yxP (x, y, z).

Hence, we can express every polynomial P (x, y, z) as P1(x(x+ y), y, z) + xP2(x(x+ y), y, z). Then,
since P1(x(x+ y), y, z) is invariant under gy, xP2(x(x+ y), y, z) has also to be invariant, therefore
P2 = 0. So every element in H∗(V3)

G can be expressed as P (X, y, z) with X = x(x+ y).

But an element of H∗(V3)
G is also invariant under the action of gz which send x to x + z and

y and z to themselves. gz sends X to X + y(y + z). We can show as before that P (X, y, z) can be
expressed as P1(X(X+y(y+z)), y, z)+XP2(X(X+y(y+z)), y, z). Since P1(X(X+y(y+z)), y, z) is
invariant under gz, P2 = 0. We have X(X+y(y+z)) = x(x+y)(x+z)(x+y+z), so every element in
H∗(V3)

G is in F2 [y, z, x(x+ y)(x+ z)(x+ y + z)], but conversely, y, z and x(x+y)(x+z)(x+y+z)
are invariant under G. Hence, H∗(V3)

G = F2 [y, z, x(x+ y)(x+ z)(x+ y + z)].

Second case: If G = G2, by the restriction property G22 and G44 are the groups of iso-
morphisms of F2e1 ⊕ F2ei, with i = 2 or 4, generated by the morphism whose matrix in the basis

(e1, ei) is

(
1 1
0 1

)
. The only group which is not fully determined by the restriction property is

G33 which can either be equal to {idF2e1⊕F2e3}, or to the subgroup B2 of Gl(F2e1⊕F2e3) generated

by the morphism β whose matrix in the basis (e1, e3) is

(
1 1
0 1

)
.

1. If G33 = {idF2e1⊕F2e3}, then all the sets G(U,U ′) are determined by G2 = G(V3, V3), by the
restriction property, hence H∗(V3)

G = H∗(V3)
G2 = F2 [y, z, x(x+ y)].

2. If G33 = B2, we get our first example which is not an algebra of invariant elements. By
Proposition 6.12,

H∗(V3)
G = {x ∈ H∗(V3) ; α

∗ι∗U ′(x) = ι∗U (x) for all α ∈ G(U,U ′)},

which is equal to

H∗(V3)
G2 ∩ {x ∈ H∗(V3) ; β

∗ι∗F2e1⊕F2e3(x) = ι∗F2e1⊕F2e3(x)}.

Hence, H∗(V3)
G contains the element of H∗(V3)

G which are in the inverse image of H∗(F2e1⊕
F2e3)

B2 = F2 [x(x+ z), z] under ι∗F2e1⊕F2e3
which maps x(x + y) to x2, y to 0 and z to

z. We notice that ι∗F2e1⊕F2e3
(F2 [x(x+ y), y, z]) ∩ F2 [x(x+ z), z] = F2

[
x2(x+ z)2, z

]
and
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that ker(ι∗F2e1⊕F2e3
) = F2 [x(x+ y), y, z] y. Since F2 [x(x+ y)(x+ z)(x+ y + z), y, z] is a sub

algebra of F2 [x(x+ y), y, z] that surjects onto F2

[
x2(x+ z)2, y, z

]
under ι∗F2e1⊕F2e3

, we get
that

(ι∗F2e1⊕F2e3)
−1(F2

[
x2(x+ z)2, z

]
) = F2 [y, z, x(x+ y)(x+ z)(x+ y + z)] +F2 [y, z, x(x+ y)] y.

Therefore,

H∗(V3)
G = F2 [y, z, x(x+ y)(x+ z)(x+ y + z)] + F2 [y, z, x(x+ y)] y.

Remark 7.2. In Proposition 5.8, it is worth noticing that, for example, F2 [y, z, x(x+ y)] ,
F2 [y, z, x(x+ z)] and F2 [y, z, x(x+ y + z)] are conjugates. In particular, they are isomorphic. To
get a minimal list of isomorphism classes of nil-closed, noetherian, integral, unstable algebras
of transcendence degree 3, with a F2 [x]-comodule structure whose algebra of primitive elements is
isomorphic to F2 [y, z], we should consider the conjugacy classes of the algebras found in Proposition
7.1. (See Remark 6.16.)

Proposition 7.3. There are exactly 12 nil-closed, noetherian, unstable sub-algebras K of H∗(V3)
of transcendence degree 3, which are sub F2 [x]-comodules of H∗(V3), for the comodule structure
that maps x to x ⊗ 1 + 1 ⊗ x, y to y ⊗ 1 and z to z ⊗ 1, and such that the algebra of primitive
elements of K is F2 [z, y(y + z)]. These are :

1. F2 [z, y(y + z), x(x+ y)(x+ z)(x+ y + z)] ,

2. F2 [z, y(y + z), x(x+ y)(x+ z)(x+ y + z)]
+ F2 [z, y(y + z), x(x+ y)(x+ z)(x+ y + z)] (xz(x+ z) + y2(y + z)),

3. F2 [z, y(y + z), x(x+ z)] ,

4. F2 [y(y + z), x(x+ y)(x+ z)(x+ y + z)]⊕ F2 [z, y(y + z), x(x+ z)] z,

5. F2 [x, z, y(y + z)] ,

6. F2 [x, z, y(y + z)] z ⊕ F2 [y(y + z), x(x+ y)(x+ z)(x+ y + z)] ,

7. F2 [x, z, y(y + z)] y(y + z)⊕ F2 [z, x(x+ z)] ,

8. (F2 [x, z, y(y + z)] y(y + z)⊕ F2 [z, x(x+ z)])z ⊕ F2 [y(y + z), x(x+ y)(x+ z)(x+ y + z)] ,

9. F2 [z, (x+ y), y(y + z)] ,

10. F2 [z, (x+ y), y(y + z)] z ⊕ F2 [y(y + z), x(x+ y)(x+ z)(x+ y + z)] ,

11. F2 [(x+ y), z, y(y + z)] y(y + z)⊕ F2 [z, (x+ y)(x+ y + z)] ,

12. (F2 [z, y(y + z), (x+ y)] y(y+z)⊕F2 [z, (x+ y)(x+ y + z)])z⊕F2 [y(y + z), x(x+ y)(x+ z)(x+ y + z)] .

Proof. In this case, F2 [z, y(y + z)] = π∗(H∗(V3/F2e1)
B2), for B2 the group generated by the mor-

phism b2 which sends e′2 to itself and e′3 to e′2 + e′3, where e
′
2 and e′3 are the images of e2 and e3

under the canonical projection. Then, the groupoid G′ = g(B2) is the following:
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F2e
′
2 ⊕ F2e

′
3

F2e
′
2 F2e

′
3

F2(e
′
2 + e′3)

{0}

B2

{id} {id}

{id}

{γ}
{γ−1}

Theorem 6.28 implies that, for β ∈ G(N,N ′), when e2 ∈ N , π ◦ β(e2) = e′2, when e3 ∈ N ,
π ◦ β(e3) = e′3 or e′4 and when e4 ∈ N , π ◦ β(e4) = e′3 or e′4. In this case, G34 is not necessarily
empty. We have to determine G, G22, G33, G44 and G34 (G43 being the set of inverses of morphisms
in G34). By the two conditions on β ∈ G, the matrix of β is in H, for

H = {

 1 0 0
0 1 0
0 0 1

 ,

 1 1 0
0 1 0
0 0 1

 ,

 1 0 1
0 1 0
0 0 1

 ,

 1 1 1
0 1 0
0 0 1

 ,

 1 0 0
0 1 1
0 0 1

 ,

 1 1 0
0 1 1
0 0 1

 ,

 1 0 1
0 1 1
0 0 1

 ,

 1 1 1
0 1 1
0 0 1

}.

Furthermore, since b2 ∈ G′(F2e
′
2 ⊕ F2e

′
3,F2e

′
2 ⊕ F2e

′
3), by Theorem 6.28 there exist N and N ′ and

β ∈ G(N,N ′) such that π induces isomorphisms from N and N ′ to F2e
′
2 ⊕ F2e

′
3 and b2 ◦ π = π ◦ β.

Then, by Theorem 5.30, β̄ ∈ G. Therefore G contains at least one element among

{

 1 0 0
0 1 1
0 0 1

 ,

 1 1 0
0 1 1
0 0 1

 ,

 1 0 1
0 1 1
0 0 1

 ,

 1 1 1
0 1 1
0 0 1

}.

H is isomorphic to the dihedral group D4. It admits ten subgroups, among those the possible

values of G are: G1 =<

 1 0 0
0 1 1
0 0 1

 >, G2 =<

 1 0 1
0 1 1
0 0 1

 >,

G3 =<

 1 0 0
0 1 1
0 0 1

 ,

 1 0 1
0 1 0
0 0 1

 >, G4 =<

 1 1 0
0 1 1
0 0 1

 > and G5 the full group.

For β ∈ Gii, we necessarily have β(e1) = e1. By Theorem 6.28, β has a block matrix of the
following form: (

idF2e1 β̂
0 idN

)
,
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where N ∈ {F2e2,F2e3,F2(e2 + e3)} and β̂ is a morphism from N to F2e1.
Finally, G34 cannot be trivial, otherwise (b2)F2e′3

̸∈ G′(F2e
′
3,F2e

′
4), and for β ∈ G34, β(e1) = e1

and β(e3) = e4 or e1 + e4. We get that the Gii with i ∈ {2, 3, 4} is a subgroup of Hii := {id, βii},
for βii the morphism which sends e1 to itself and ei to e1 + ei, and G34 is a non trivial subset of
the set H34 := {β1, β2} where β1 and β2 are the morphisms from F2e1 ⊕F2e3 to F2e1 ⊕F2e4 whose

matrix in the basis (e1, e3) and (e1, e4) are either

(
1 1
0 1

)
, or

(
1 0
0 1

)
.

As in Proposition 7.1 (or rather its proof), some values of G imply, by restriction property, the
maximality of some of the Gii or the one of G34. Furthermore, in this case since the groupoid
admits a morphism between F2e1 ⊕ F2e3 and F2e1 ⊕ F2e4, for G to be a groupoid we need the
compositions of morphisms in G33, G34, G44 and G43 to be in G. This is equivalent to requiring
that G33, G44 and G34 have the same cardinal.

G G22 G33 G44 G34

{id} or {id} {id} {β1}
G1 H22 H33 H44 H34

{id} or {id} {id} {β2}
G2 H22 H33 H44 H34

G3 {id} or H22 H33 H44 H34

G4 H22 H33 H44 H34

G5 H22 H33 H44 H34

We find 12 possible values for (G,G22, G33, G44, G34). Each one characterising precisely one
G ∈ Groupoid(V3) such that H∗(V3)

G satisfies the required conditions. We leave the computations
of the corresponding H∗(V3)

G to the reader.
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