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 10 

Abstract 11 

The investigation of safe mud pressure window of horizontal wellbore drilled in the saturated rock by accounting 12 

for the combined effect of anisotropy and uncertainty is the main purpose of this work. To this aim, the 13 

deterministic solution of collapse and fracture initiation pressures are firstly presented in three cases that describe 14 

the behavior of wellbore: (1) immediately after drilling (i.e., undrained problem); (2) at long term due to the 15 

steady-state fluid flow (permeable boundary case) and (3) by neglecting the variation of initial pore pressure 16 

(i.e., impermeable boundary condition case). Based on these deterministic solutions, the key parameters of 17 

different sources of anisotropy (initial stress state, poro-elastic and strength properties of rock mass) are 18 

highlighted through sensitivity analysis. Then, the famous Monte Carlo Simulation (MCS) is undertaken to 19 

quantify the uncertainty effect on the probability of success of safe mud pressure window of the wellbore. We 20 

also present an adaptation of the Kriging metamodeling technique to study the stability of wellbore.  In 21 

comparison with the referent solution of MCS, the Kriging metamodel provides a high accuracy and can be used 22 

as a performant tool for the probabilistic assessment of wellbore. The consideration of anisotropy combined with 23 

uncertainty, and the hydraulically boundary condition around wellbore in this work allows us to complete the 24 

contributions in the literature and confirm their strong effect on the design of wellbore. 25 

 26 

Keywords: Safe mud pressure window, horizontal wellbore, anisotropic rock, sensitivity analysis, stochastic 27 

analysis, Monte Carlo Simulation, Kriging metamodeling technique. 28 

 29 

1. Introduction 30 

The accurate prediction of safe mud pressure window is the most important task in wellbore design. 31 

Traditionally, the estimation of mud weights to ensure the stability of wellbore against shear and tensile failure is 32 

widely undertaken under the hypothesis of isotropic behavior of geological rock formation. In addition, collapse 33 

and fracture initiation pressures in the wellbore result from the deterministic calculation with the fixed values of 34 

input data [1-3].  35 
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It has been shown in many works that the anisotropic behavior of rocks (e.g., sedimentary and metamorphic 36 

foliated rock) can significantly affect the distribution of stress state around the wellbore [4-8]. For example, 37 

Aadnoy [9] and then Hefny and Lo [10] determined the stress state around the horizontal borehole drilled in 38 

transversely isotropic rock by using the complex stress functions of Lekhnitskii [11, 12]. The problem is then 39 

extensively considered in the more general case of inclined wellbore drilled in the anisotropic rock (see [13, 14] 40 

and references therein) based on the Lekhnitskii-Amadei solution [15]. These studies highlighted the strong 41 

dependence of stress state and hence of the safe mud pressure window on the elastic properties of anisotropic 42 

rocks. Furthers, the anisotropy of tensile and shear strengths of rocks also presents an essential role on the 43 

stability of the wellbore [13, 14, 16-18]. Especially, in the bedded rocks like shale, the strength of planes of 44 

weakness can be the critical parameter. Combined with the wellbore inclinations and the three-dimensional stress 45 

state, the effect of weak planes may lead to severe collapse of the wellbore [13, 16, 17]. In their work, Setiawan 46 

and Zimmerman [14] demonstrated the pronounced effect of plane of weakness as well as the intermediate stress 47 

on the wellbore stability by using the both well-known Mogi-Coulomb and Jeager models as failure criteria of 48 

intact rock and the bedding plane.  49 

Whilst most the contributions as cited above focus in the case of dry rock, the effect of pore pressure in the 50 

anisotropic saturated rock has been recently received more attention. For instance, in their work, Do and his co-51 

workers used the well-known complex potential approach to derive the closed-form solution of effective stresses 52 

around the wellbore drilled in the transversely isotropic poro-elastic rock [19-22]. Unlike the case of the 53 

wellbore in isotropic rock, the explicit expressions of effective radial and tangential stresses depend on the poro-54 

elastic properties of anisotropic rock. Consequently, in the application of wellbore design, Do et al. [7-8] pointed 55 

out that the anisotropic poro-elastic properties of rock mass combined with the anisotropy in the in-situ stress 56 

state and that in the tensile and shear strengths, result in the remarkable difference of mud pressure windows in 57 

comparison with ones calculated from the isotropic rock. Furthermore, the hydraulic boundary prescribed on the 58 

borehole wall can also present a pronounced impact on the collapse and fracture pressures in the wellbore.   59 

The heterogeneous characteristic in nature and the lack of knowledge related to the limitation test data induce the 60 

inherent uncertainty in rock properties. Therefore, there is an increasing interest in modeling of uncertainties 61 

propagation on the stability and optimization design of the underground structure in rock engineering [23-25]. In 62 

petroleum application, the stochastic analysis has been intensively considered to assess the optimal mud pressure 63 

windows by accounting for the uncertainty of input data like in-situ stress state, initial pore pressure, and 64 

strength properties of the surrounding rock. For example, several studies used the quantitative risk assessment to 65 

study the stability and optimize the mud weight windows [26-29]. The Monte Carlo Simulation (MCS) has been 66 

generally chosen in these previous studies to quantify the uncertainties and the associated probability of success 67 

in wellbore collapse and lost circulation pressures [30-37]. However, to the best of the authors’ knowledge, the 68 

entire stochastic assessment of wellbore has been limited in the case of isotropic rocks. 69 

The aim of this work consists in assessing the safe mud pressure windows of the horizontal wellbore drilled in 70 

anisotropic saturated rock by accounting for the uncertainty combined with anisotropy of input data including the 71 

anisotropic in-situ stress, anisotropic poro-elastic properties, as well as the anisotropic strengths of rock mass.  72 

In the following, the paper will be organized into three main parts. Firstly, the deterministic solution of safe mud 73 

pressure windows derived from the closed-form solution of stress state around the horizontal wellbore for the 74 
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chosen tensile and shear failure of anisotropic poro-elastic rock is shown. Then, the sensitivity analysis and the 75 

probabilistic assessment based on the MCS are undertaken by accounting for the uncertainty of different 76 

anisotropic sources. An adaptation and validation of the well-known Kriging metamodeling technique for the 77 

stability analysis of such wellbore are also presented in this section. Essential conclusions are finally made from 78 

the results drawn throughout the manuscript.   79 

  80 

2. Tensile and collapse pressures of horizontal wellbore in transversely isotropic rock 81 

In this section, the deterministic solution of the tensile and collapse pressures of the horizontal wellbore 82 

drilled in the transversely isotropic rock with a vertical axis of symmetry (VTI) is briefly presented. The solution 83 

of this deterministic problem is key issue to conduct the probabilistic analysis using the MCS. 84 

 85 

2.1. Closed-form solution of stress state around wellbore in transversely isotropic saturated rock 86 

Considering a circular horizontal wellbore drilled in a transversely isotropic poro-elastic rock, with the 87 

assumption that the longitudinal axis of the wellbore lies on the horizontal plane and coincides with one principal 88 

horizontal stress axis as shown in Fig. 1a. The angle between the normal to the bedding plane and the principal 89 

vertical stress is β (Fig.1b). The rock formation around the wellbore is saturated with an initial pore pressure pff 90 

whilst the mud pressure in wellbore Pw acts as radial stress on the wall of the wellbore. In the case of highly 91 

permeable rock, the mud pressure can also act as pore pressure on the well wall [7, 38]. Thus, by noting p0 as the 92 

pore pressure on the circumference of the wellbore, we have p0=pff if the variation of pore pressure is neglected 93 

(called as impermeable boundary case of wellbore) while p0=Pw if the boundary of wellbore is permeable [7].  94 

Adopting the 2D plane strain hypothesis (i.e., the component ��, ��� and ���vanish everywhere), this initial 95 

problem can be transformed into the equivalent problem in the symmetric coordinate system of the VTI medium 96 

(Fig.1c). In this 2D plane strain equivalent problem, the far-field stress reads:  97 
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with 
0 /ff ff

h v
K σ σ=  98 

The determination of the stress state around the wellbore consists in solving the following differential equations:  99 

- The 2D plane strain equilibrium equation: 100 
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 (2) 

- The strain compatibility equation: 101 
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where the Hooke’s law written in 2D plan strain conditions is: 102 
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(4) 

- The fluid flow in the porous rock is characterized by the diffusion equation:   103 
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where kx and ky are hydraulic conductivities in the horizontal x-direction and vertical y-direction respectively and 104 

γw is the unit weight of the pore fluid. The variation of fluid volume per unit volume of the porous material χ is 105 

defined as:  106 

( ),x x y y

p

M
χ α ε α ε= + +  (6) 

where the parameter M is the well-known Biot’s modulus whilst the second term in brackets presents change of 107 

fluid volume due to volumetric strain by accounting for the mechanical effect. 108 

In Eq. (4), the notion of effective stress based on the Biot’s theory is used to characterize the influence of the 109 

pore pressure on the mechanical response: 110 

 , ,
x x x y y y

p pσ σ α σ σ α′ ′= + = +  (7) 

with ,σ σ′  are respectively the effective and the total stresses; ,x yα α are the Biot coefficients in the horizontal 111 

and vertical directions. Herein, we note that the tensile stress and pressure are considered positive. 112 

The compliance coefficients ( 11 12 21 22 33, , , ,s s s s s ) in Eq. (4) and the Biot coefficients are calculated from the 113 

five independent elastic parameters of transversely isotropic rock which are respectively: the horizontal and 114 

vertical Young’s moduli (
x

E ,
yE ), the Poisson’s ratios in the isotropic plane and anisotropic plane (

xz
ν ,

yxν ) and 115 

the shear modulus 
xyG in the anisotropic plane: 116 
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(8) 

Note that the independent elastic parameters of the transversely isotropic rock verify the following 117 

thermodynamic conditions:  118 
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( ) 21 2 0,E xz yxk ν ν− − >  
(9) 

So far, the derivation of the analytical resolution for the anisotropic poro-elastic problem above has been always 119 

a great challenging. As pointed out by Kanfa et al. [6], most studies in the literature assume that the pore 120 

pressure is the initial reservoir pressure around the borehole wall to simplify the problem. The effect of pore 121 

pressure variation due to the steady flow on the wellbore stability was recently considered by Do et al. [7]. An 122 

extension of this analytical solution was then conducted in [8] in which the one-way hydro-mechanical (HM) 123 

coupling was adopted by neglecting the mechanical effect (i.e., the second term in brackets in Eq. (6)) on the 124 

variation of pore pressure. Following that, the closed-form solution of this last problem was derived by these 125 

authors using the well-known complex potential approach introduced by Lekhnitskii [11]. As a function of time, 126 

the solution of this uncoupled problem approaches the fully coupled problem and attains the solution of steady 127 

state at long term [19].  128 

The stability of the wellbore immediately after the quick extraction for the low permeable rocks like shale is 129 

another important case that the closed-form solution can be derived. This phenomenon is referred to as the 130 

“undrained” drilling effect when the change of stresses (i.e., rate of loading) is much faster than the capacity of 131 

the rock to dissipate induced excess pore pressure which is calculated as follows [22, 39]:     132 
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In this study, three cases are considered relating to the pore pressure state around the wellbore. The first case 133 

adopts the initial uniform pore pressure by ignoring the fluid flow in the rock formation. This case, as usually 134 

accepted in the literature, will be noted hereafter as the impermeable boundary problem. The second one, called 135 

the permeable boundary problem, considers the effect of steady flow on the mechanical behavior of the wellbore. 136 

The last case consists in the undrained problem to consider the stability of the wellbore immediately after 137 

drilling. 138 

To simplify the presentation, only the final expressions of the effective radial and tangential stresses on the wall 139 

of the wellbore of these cases are summarized in Appendices A and B. For more details about the derivation of 140 

these closed-form solutions, the interested readers can refer to [7, 8, 19, 20, 22, 39]. The effective radial and 141 

tangential stresses at a point on the well wall, characterized by an inclination angle θ (θ∈[0,π]) with respect to 142 

the horizontal axis Ox as shown in Fig. 2, depend on the initial pore pressure pff, the wellbore pressure Pw, the 143 

initial far-field stress, as well as the anisotropic poro-elastic properties of the surrounding rock:   144 
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with the pore pressure on the well wall p0=Pw for the case of permeable boundary, p0=pff for the case of 145 

impermeable boundary, or p0=pff  + ∆p for the undrained case.  146 

2.2. Fracture initiation pressure 147 
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It has been largely accepted that tensile failure occurs when the effective tangential stress on the well wall 148 

exceeds the tensile strength of the massif. Among different models to characterize tensile strength of transversely 149 

isotropic rock, the well-known model of Nova and Zaninetti [7, 40, 41] is chosen in this work to calculate the 150 

fracture initiation pressure. According to this model, the tensile strength for an inclined plane, characterized by 151 

the angle θt (θ∈[0,π/2]) between its normal vector ( sin , cos , 0)
t t

θ θ= −n with respect to the normal vector of the 152 

bedding plane, is defined as: 153 

 
  90 0 90 0 0 0( 1) ( 1)

( ) cos 2 cos 2 ,
2 2 2 2

T T
t t t

T T T T k T k T
T θ θ θ+ − + −= − = −  

(12) 

where T0 and T90 are respectively the tensile strengths of the plane parallel and perpendicular to the bedding 154 

plane; and kT=T90/T0 represents the anisotropic degree of the tensile strength for the transversely isotropic 155 

medium. Note that, the inclination angle θt relates to θ as follows:    156 

 
[ ]
[ ]

if 0, / 2

/ 2,
t

if

θ θ π
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                    (13) 157 

The combination of Eqs. (11, 12) yields the expression of the fracture initiation pressure 
w

iniP
θ

 at a point 158 

characterized by an angle θ on the wellbore wall:    159 

   
0( , , , , , , , , , , , , , , , ) ( ),ff
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E E G k k K M p P Tθσ ν ν θ β σ α α θ′ =  (14) 

Due to the dependence of the effective tangential stress on anisotropic poro-elastic properties, the anisotropic 160 

tensile strength of the rock, the initial far-field stresses, and the orientation of the bedding plane, the solution of 161 

tensile pressure 
w

fraP
θ

at each inclined plane θ depends also on these parameters and can be expressed in the 162 

following form:  163 
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The fracture initiation pressure is then determined as the minimum value of ( )
w

fraP
θ

θ  with θ∈[0, π]: 164 
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where the critical plane characterized by θc at which the fracturing initiates is determined from the following 165 

equation: 166 
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 167 

2.3. Collapse pressure 168 
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The instability of the wellbore due to collapse occurs when the surrounding stress state exceeds the shear 169 

strength of the rock formation. Thus, the determination of collapse pressure depends strongly on the chosen 170 

criterion of shear failure.  171 

Research on the shear failure of anisotropic rock remains an active topic despite numerous contributions in the 172 

literature. Several sophisticated models have been developed to reproduce the laboratory and in-situ observation 173 

[4, 41-47]. However, their application in practical petroleum engineering seems limited because of their high 174 

number of associated parameters whose physical meaning and calibration are not simple to be evaluated.       175 

In the present paper, the model of Jaeger [42, 46] is chosen to evaluate the collapse pressure. As a reminder, 176 

Jaeger [42] used the Mohr-Coulomb failure criterion to define the shear strength of the rock mass having a set of 177 

parallel planes of weakness. Also known as the single weakness plane theory, this model supposes that failure 178 

can take place in the weak plane characterized by its shear strength or in the other planes characterized by the 179 

strength of the intact rock. So far, the application of the Jeager model has been largely used and discussed in the 180 

literature. For example, in [5], the author showed that the shear failure in a sample under the compressive test 181 

can occur in the plane of weakness if the inclination angle θ (i.e. angle between the direction of the maximum 182 

compressive stress and the normal of the plane of weakness) varies from the friction angle of the plane of 183 

weakness φw to 90°. Outside this range, the orientation of the failure plane (i.e. the critical plane ϕc) can be 184 

different from that of the weakness plane and is controlled by the strength of intact matrix rock (see Fig. 2). 185 

From the triaxial compressive tests performed on a shale rock, the authors in [17] observed the ‘U-shaped’ of 186 

curve between compressive strength with respect to the inclination angle θ. The minimum value of strength is 187 

found at 55° while the strength is maximum at θ=0° and 90°. This ‘U-shaped’ is also remarked in the previous 188 

contribution of Aadnoy et al. [16]. Application in the context of stability of inclined wellbore and under the 189 

three-dimensional stress state, these last authors reveal the conditions where the plane of weakness control 190 

wellbore failure. Following that, the wellbore failure at the plane of weakness depends not only on the shear 191 

strength of the bedding plane but also on the combinations of borehole orientation and magnitude of the in-situ 192 

stresses. Always in the condition of three-dimensional stress state of inclined wellbore, Setiawan and 193 

Zimmerman [14] used the Mogi-Coulomb and Jeager models to describe the failure criteria of intact rock and the 194 

bedding plane. In addition to the high effect of plane of weakness, they also demonstrated the important role of 195 

the intermediate stress on the stability of wellbore. In comparison with this last contribution and for the sake of 196 

clarity, we note here that the Mohr-Coulomb model is also chosen as failure criterion of intact rock regarding 197 

with our plane strain assumption for the considered horizontal wellbore.  198 

Mathematically, the shear failure of intact rock is described by two well-known parameters: the cohesion Ci and 199 

friction angle φi according to the Mohr-Coulomb model:  200 

  ( ) ( )( ) sin( )
cos 0

2 2

r ir
i iC

θθ σ σ φσ σ φ
′ ′+′ ′− + − =  

(18) 

In Eq. (18), the two major and minor principal stresses are directly replaced by the effective radial and tangential 201 

stresses and the compressive stress is negative as assumed previously.  202 
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Correspondingly, the shear failure at the weak plane, characterized by the inclined angle θw∈[0, π/2], depends on 203 

the cohesion Cw and the friction angle φw which are lower than the ones of the intact rock (i.e., Cw < Ci, tan(φw) < 204 

tan(φi)) :  205 

  ( ) ( ) ( )( ) ( )2 2( ) sin 2
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with 206 
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From Eqs. (18, 19), we can deduce the following collapse pressure 
col

wP θ with respect to θ (with θ∈[0, π]) :  207 

  int( ) Max( ( ), ( ))col wp

w w wP P Pθ θ θθ θ θ=  (21) 

where ( )wp

wPθ θ , ( )int

wPθ θ are the collapse pressure corresponding to the shear failure of the bedding plane and of 208 

intact rock.  209 

Finally, the collapse pressure that ensures the stability of wellbore from shear failure is evaluated from the 210 

maximum value of ( )col

wPθ θ
 calculated from Eq. (21) with θ∈[0, π] :  211 

  
[ ]

( )( )
0,

Max
col col

w w
P P θ

θ π
θ

∈
=  

(22) 

 212 

3. Safe mud pressure window of horizontal wellbore in anisotropic rock 213 

The heterogeneous characteristic in nature of rock mass, as well as the deficiencies in human knowledge 214 

due to the limitation or lack of test data, are considered as the principal uncertainty sources of input parameters 215 

in rock engineering design. In petroleum-related applications, logs data are widely used to calibrate the input 216 

parameters against core data. The logs data involve different sources of uncertainty related to the malfunctioning 217 

of the device and human error during acquisition and interpretation. This paper does not intend to discuss the 218 

uncertainty of the calibrated input parameters (e.g., the in-situ stress state, pore pressure, the mechanical 219 

properties of rock mass) by log-based correlations which were largely pointed out by many previous studies [2, 220 

28, 29, 33, 37, 48]. It is worth also noting that the characterization of the transversely isotropic rock remains 221 

nowadays a challenging issue and the associated uncertainty could be much higher when the anisotropic effect is 222 

accounted for. 223 

From the methodology point of view, the traditional wellbore pressure design bases on the deterministic solution, 224 

which can highly underestimate the collapse pressure and overestimate the fracture initiation pressure resulting 225 

in a large mud weight window [1, 2, 38]. By using the probabilistic analysis that can consider the uncertainty of 226 

input parameters to verify the reliability of the deterministic results, different studies highlighted much narrower 227 

safe pressure windows [26-36, 48]. Consequently, the consideration of uncertainty through the probabilistic 228 

assessment (also called the risk or stochastic analysis) seems extremely necessary for the optimization design of 229 
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the wellbore. Among various probabilistic analysis methods, the Monte Carlo Simulation (MCS) is the most 230 

widely used and can be chosen as the referent approach to validate the other stochastic techniques [24, 25]. The 231 

main idea of the MCS is to construct the limit state functions (LSF) that separate the safe and failure domains by 232 

point-by-point evaluations from the large random samples of input variables. In the present work, this well-233 

known probabilistic analysis method is also chosen to quantify the uncertainty effect on the safe mud pressure 234 

window as well as to validate the Kriging metamodeling technique which is firstly adapted to solve the 235 

stochastic analysis of wellbore.    236 

  237 

3.1. Deterministic results  238 

Before performing the sensitivity and probabilistic analysis, we discuss firstly the results of the 239 

deterministic problem. For this purpose, the stability of the horizontal wellbore drilled in a VTI rock like 240 

Tournemire shale at a depth of 1000 m is considered. The transversely poro-elastic properties of this argillaceous 241 

rock are taken in the previous studies [49-53] whilst their corresponding anisotropic tensile and shear strengths 242 

are extracted from [45].  Table 1 summaries the adopted hydro-mechanical properties of this shale rock, as well 243 

as the stress state and pore pressure at the far-field.  In addition, due to the lack of the statistical data, these 244 

parameters are considered as the mean values while the same coefficient of variation COV=30% is assumed in 245 

this work to characterize the uncertainty of these input parameters. For the sensitivity analysis and then for the 246 

stochastic analysis in the next parts, the normal distribution of each input parameter A is truncated at 95% 247 

confidence interval thus the corresponding minimum and maximum values (Amin = (1-1.96COV). Amean and Amax 248 

= (1+1.96COV). Amean) can be calculated and are also detailed in Table 1. 249 

Fig. 3 presents the deterministic solution of collapse and fracture pressures versus the inclination angle θ 250 

(θ∈[0,π]) for three considered cases of the horizontal well (i.e., impermeable boundary, permeable boundary, 251 

and undrained cases). The results calculated from the mean value of input parameters show that the anisotropic 252 

behavior of shale rock and the adopted state of pore pressure around the well wall can significantly affect the 253 

distribution of fracture and collapse pressures in the wellbore. For the case of uniform initial pore pressure by 254 

neglecting the effect of hydro-mechanical coupling, the values of 8.99 MPa and 49.65 MPa can be noted as the 255 

safe mud pressure window corresponding to the shear and tensile failure of the horizontal wellbore. Those values 256 

are respectively equal to 8.66 MPa and 45.37 MPa in the case of a permeable boundary at the well wall (i.e., case 257 

of steady fluid flow) whilst the mud pressure in the range of 6.76 MPa to 53.96 MPa ensures the stability of the 258 

wellbore immediately after drilling by adopting the undrained condition. Thus, these deterministic results 259 

highlight that the mud pressure window is largest in the undrained case representing by the lowest collapse 260 

pressure and highest fracture pressure. The comparison between the impermeable and permeable boundary 261 

conditions at the well wall shows that both the collapse and fracture pressures in the wellbore are higher in the 262 

former case and the difference seems more pronounced on the fracture pressure than the collapse pressure. This 263 

can be explained by the high contrast between the fracture pressure in the wellbore and the initial pore pressure 264 

of rock mass that induces a significant variation of stress state on the circumference of horizontal well.  265 

Fig. 4 highlights the distributions of effective stress state on the wall of the wellbore corresponding to the 266 

fracture initiation pressure
w

fraP and the collapse pressure 
w

colP in cases of impermeable and permeable boundary 267 
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conditions, as well as the undrained problem. For the two former cases, the results of stress state at the shear 268 

failure are quite similar (Fig. 4a) but their difference becomes much stronger for the tensile failure state (Fig. 269 

4b). This can be explained by the fact that the higher wellbore pressure increases the compressive radial stress 270 

but decreases the compressive tangential stress on the well wall. Furthers, this variation is much more 271 

pronounced in the permeable boundary condition especially at the horizontal and vertical planes (e.g., θ=0 and 272 

θ=π/2) of the wellbore. Although in both cases of impermeable and permeable boundary conditions, a fracture 273 

can initiate at the horizontal plane (θ=0), we can note however that the maximum tensile stress in the permeable 274 

rock is located at θ=π/2 whose value is however still lower than the tensile strength of this vertical plane. The 275 

results of this deterministic problem confirm the important effect of anisotropy and the interaction of different 276 

input parameters on the distribution of stress state and failure of the wellbore as demonstrated in [7, 8].  277 

Regarding the results of the undrained case, we can observe a similar tendency of stress distribution as the two 278 

previous cases using the fracture pressure in the wellbore. However, the maximum tensile strength located at 279 

θ=π/2 exceeds the tensile strength in this undrained case which induces the tensile failure in the vertical plane 280 

instead of the horizontal plane as depicted in Fig. 3c. The difference of the undrained response of the wellbore in 281 

comparison with the impermeable and permeable boundary conditions is clearer when the collapse pressure is 282 

taken in the wellbore. Follow that, the non-uniform excess pore pressure in the undrained case (Fig. 5) can 283 

significantly affect the distribution of effective stresses on the well wall when the maximum compressive stress 284 

is located at the vertical plane θ=π/2 for both the radial and tangential stresses.  285 

Now we compare these deterministic results of collapse and fracture pressures of anisotropic rock with the ones 286 

calculated for the isotropic rock. For this purpose, the mechanical properties extracted from the vertical direction 287 

of the Tournemire shale are chosen for the isotropic rock. Following that, the Young’s modulus and Poisson ratio 288 

of the isotropic rock are chosen E=Ey, ν=νyx whilst its corresponding parameters characterize the tensile and 289 

shear strengths are equal to the ones of the bedding plane of the anisotropic rock (see Table 2). Note that, for the 290 

sake of clarity, the classical expressions of stress state and pressures at failure of wellbore drilled in the isotropic 291 

rock and under different conditions of impermeable and permeable boundaries as well as undrained behavior are 292 

summarized in Appendix C.  293 

Fig. 6 illustrates the evolution of collapse and fracture pressures of the wellbore drilled in this isotropic rock. 294 

Due to the higher compressive stress in the horizontal direction at far-field, the highest collapse pressure is found 295 

at θ=π/2 whilst lowest fracture pressure is at θ=0 for all three cases of impermeable, permeable boundaries and 296 

undrained rock. Like the anisotropic rock, these results reveal that the permeable boundary case presents the 297 

narrowest safe mud pressure window which ranges from 10.72 MPa to 49.18 MPa. However, both these last 298 

values are higher than the ones calculated from the anisotropic rock.  299 

 300 

3.2. Sensitivity analysis 301 

The sensitivity analysis is undertaken in this part to determine the role of each parameter on the variation of 302 

the safe pressure window of wellbore in the anisotropic rock. The sensitivity analysis is essential since it helps 303 

the experimental campaign to put more effort into the parameters significantly affecting the safe pressure 304 

window variation. For this purpose, the mono-parametric investigation is conducted by considering only the 305 

variation of each considered parameter whilst all the other properties are fixed.  306 
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To simplify the presentation, only the results of the key parameters such as the initial stress state, pore pressure 307 

(Fig. 7), poro-elastic properties (Fig. 8), and strength properties (Fig. 9) of rocks are shown. The first remark is 308 

made on the important effect of the initial stress state on the variation of collapse and fracture pressures. By 309 

varying the value of the initial vertical stress ff

vσ or the anisotropic coefficient K0, the mud pressure window 310 

changes considerably. Follow that, the decrease of ff

vσ induces a strong decrease of both collapse and fracture 311 

pressures in the horizontal wellbore (Fig. 7a). The increase of K0 reveals an increase of collapse pressure in the 312 

wellbore whilst the fracture pressure can become smaller at the high degree of anisotropy of the initial stress 313 

state (Fig. 7b). However, it seems that the variation of pore pressure in the rock mass affects quite slightly the 314 

evolution of mud pressure window (Fig. 7c) while the variation of the inclination angle of bedding plane β in the 315 

range of [4.12°, 15.88°] does not affect the safe mud pressure window in all cases (Fig. 7d).  316 

Among different poro-elastic properties of the transversely isotropic rocks, the influence of shear modulus Gxy, 317 

horizontal Young’ modulus Ex and the ratio Ey/Ex are the most pronounced (Fig. 8). A higher value of shear 318 

modulus Gxy results in higher fracture pressures (Fig. 8a). Inversely, an increase of Young’s modulus in the 319 

horizontal or vertical direction (represented by a higher value of Ey/Ex) reduces the safe mud pressures in the 320 

wellbore (Figs. 8b, c). By varying the Biot coefficient in the range αx∈[0.17, 0.27], its effect on the wellbore 321 

pressures seems moderate in all cases of impermeable and permeable boundary conditions, as well as the 322 

undrained problem (Fig. 8d). The same remark can be noted for the permeability’s ratio ky/kx (or the Biot 323 

modulus M) when the higher value of this parameter can increase slightly the fracture pressure of wellbore in the 324 

permeable boundary (or undrained case) as illustrated in Figs. 8e, f.     325 

Regarding the strength properties of shale rock, the cohesion of the weak plane Cw affects the most the variation 326 

of collapse pressure in the wellbore (Fig. 9a). The decrease of this last pressure is remarkable when the value Cw 327 

attains its maximum value. In comparison with the cohesion, the influence of friction angle of the weakness 328 

plane φw is smaller (Fig. 9b). The anisotropic effect of shear strength is characterized by the two ratios Ci/Cw and 329 

φi/φw. The results exhibited in Fig. 9c show that a ratio of Ci/Cw approaches to 1 can significantly increase the 330 

collapse pressure in the wellbore. In this case, the shear failure on the well wall does not occur at the plane of 331 

weakness but at the vertical plane of the intact rock (θ=π/2). The other ratio φi/φw does not present any effect on 332 

the mud pressure window of the wellbore (Fig. 9d). Concerning the effect of tensile properties of the Tournemire 333 

shale, we observe that the tensile strength of the horizontal plane T0 presents its considerable effect on the 334 

variation of fracture pressure in all considered cases of the wellbore (Fig. 9e). The influence of the anisotropic 335 

tensile strength characterized by the parameter kT seems slight in the impermeable and permeable boundary 336 

conditions but significant in the undrained case (Fig. 9f).    337 

The results of the sensitivity analysis can also be represented in the well-known Tornardo chart for parameter 338 

ranking (Figs. 10 and 11). From these diagrams, one can conclude that the initial stress state characterized by the 339 

vertical stress ff

vσ and the anisotropic coefficient K0 is the most sensitive parameters on the safe mud pressure 340 

windows of the horizontal well drilled in the Tournemire shale. Indeed, the variation of ff

vσ results in a wide 341 

range of fracture and collapse pressures representing a strong variation of the safe mud weight window. It 342 

indicates that the influence of the shear strength of the weak plane (e.g., Cw, φw) on the collapse pressure is 343 

higher than the ones of the anisotropic elastic properties (e.g., Gxy, Ex, Ey/Ex). In turn, these later parameters have 344 
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more effect on the fracture initiation pressure than the tensile strength parameters (T0, kT). The role of the pore 345 

pressure and coefficient of Biot αx on the results of safe mud weight window is moderate. It is also the case of 346 

the permeable ratio ky/kx and Biot modulus M when they can impact slightly on the variation of the fracture 347 

pressure in the permeable boundary and undrained cases. From the results of this sensitivity study, it indicates 348 

that the effects of the other parameters like the inclination angle of bedding plane β, and the ratio of friction 349 

angle φi/φw are negligible and can be omitted in the stochastic assessment for the horizontal wellbore drilled in 350 

Tournemire shale. The sensitivity analysis performed in this work allows us to confirm and extend the 351 

conclusion of various works in the literature, which however are mainly limited in the case of isotropic poro-352 

elastic rocks [26-34, 48].   353 

In general, the deterministic results and the sensitivity analysis conducted in this section show that the safe mud 354 

pressure window in the wellbore is largest in the undrained case. Furthermore, in comparison with the 355 

impermeable boundary case, where the variation of pore pressure around the wellbore is neglected, the mud 356 

pressure window seems narrower when the variation of pore pressure due to the steady-state flow is accounted 357 

for (i.e., permeable boundary case).      358 

 359 

3.3. Quantification of uncertainty effect 360 

In this part, the probabilistic analysis of wellbore stability is carried out by using firstly MCS to quantify 361 

the uncertainty effect combined with the anisotropy of input parameters on the safe mud weight windows. 362 

Following that, ten thousand samples of each input parameter A are randomly generated in the range [Amin, Amax] 363 

as summarized in Table 1. We remind that this range is truncated at a 95% confidence interval by assuming the 364 

same coefficient of variation COV=30% for all parameters as mentioned above. Note also that the sensitivity 365 

analysis in the previous section reveals the insignificant effect of the friction angle ratio φi/φw and the inclination 366 

angle β, thus their variations are not considered in the stochastic analysis. Similarly, the effect of the variability 367 

in Poisson’s ratio on the stress distribution around the wellbore and the mud pressures is also negligible [7, 8, 368 

19]. As an illustration, we present in Fig. 12 the histogram of the initial stress state and pore pressure, the poro-369 

elastic and strength properties of the generated samples of Tounrnemire shale rock.  370 

Using the closed-form solution of the deterministic problem, the MCS allows calculating the safe mud pressure 371 

window of each considered case and for each random sample. Fig. 13 depicts the probability distribution 372 

function and the cumulative likelihood of success of the mud pressures of the three considered cases (i.e., 373 

impermeable and permeable boundary conditions, as well as the undrained behavior case). In addition, for the 374 

comparison purpose, Table 3 recapitulates the safe mud pressure windows evaluated from the deterministic 375 

problem and stochastic analysis taken at different confidence of levels (CL).  By adopting the higher value of 376 

CL, the safe window provided by the probabilistic analysis becomes narrower. For example, at CL=60% the safe 377 

mud window of [13.41 MPa, 35.74 MPa] reduces strongly to [23.71 MPa, 24.31 MPa] at CL=88% in the case of 378 

permeable boundary. Especially, an intersection of the probability of success curves obtained from the fracture 379 

and collapse stochastic analysis can be observed at CL=88.44% in this last case, which signifies that the safe 380 

mud pressure window is not available.  381 
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The comparison of the results calculated from the three considered cases of wellbore shows that the safe mud 382 

pressure window is the largest in the undrained case and the narrowest in the permeable case for all values of 383 

CL. For instance, at CL=88%, the possibility to obtain the safe mud pressure calculated as the difference 384 

between the fracture and collapse pressures is about 0.6 MPa for the permeable boundary case whilst this value 385 

for the impermeable boundary and undrained cases are about 6.59 MPa and 8.66 MPa respectively. The critical 386 

confidence of level is also higher in these two latter cases which are about 92.71% for the impermeable boundary 387 

case and 93.78% for the undrained one.  388 

Like the deterministic analysis, we also compare these results of the probabilistic analysis with the one estimated 389 

by MCS method for the isotropic rock. The corresponding probabilistic distribution function and the cumulative 390 

likelihood of success for the three considered cases of this isotropic rock are depicted in Fig. 14. In comparison 391 

with the results illustrated in Fig. 13d of the anisotropic rock, the similar tendency of the likelihood of success 392 

can be stated for the isotropic rock formation (see Fig. 14d). More precisely, with the increase of CL, the safe 393 

mud pressure window decreases with the narrowest corresponds to the case of the permeable boundary of rock. 394 

The recapitulated values in Table 4 show a higher collapse and fracture pressures in all three considered cases of 395 

the isotropic rock comparing with the ones of anisotropic rock at the same CL. A lower critical confidence of 396 

level at about 84% is also observed in the permeable boundary condition of the isotropic. At this critical level, 397 

the same value of collapse and fracture pressures (about 26.7 MPa) is higher than the one calculated from the 398 

anisotropic rock (about 24 MPa). In general, with respect to the specific considered rock in this work, the 399 

difference of safe mud pressure windows of horizontal wellbore drilled in the VTI rock and in the isotropic rock 400 

whose properties are extracted from the ones in the vertical direction of the initial anisotropic rock seems 401 

moderate. This statement is consistent with the previous sensitivity analysis when the most effect factors on the 402 

collapse and fractures pressure in the wellbore are the initial stress state and the strength parameters of the 403 

bedding plane.            404 

The strong difference of safe mud pressure windows calculated from the deterministic and stochastic analysis 405 

elucidates the crucial role of uncertainty on the wellbore design. It is important to note here that, due to the limit 406 

of the analytical approach, the effect of anisotropic hydro-mechanical (HM) coupling on the safe mud pressure 407 

window was only considered at short term (i.e., undrained behavior of wellbore immediately after drilling) and at 408 

long term (i.e., at steady state regime of fluid flow) whilst the fully HM coupling in the transient state remains a 409 

grand challenge. However, thanks to these closed-form solutions, the computational expensive MCS method can 410 

be conducted and their results can be used as the reference to investigate the performance of the other techniques 411 

in the stochastic analysis of wellbore in the complex contexts (e.g. the fully HM coupling problem, the 412 

consideration of thermal and/or chemical effect in anisotropic rocks) that the analytical solutions are no longer 413 

available. As an example, in the recent contribution of Do et al. [24], the Kriging metamodeling technique was 414 

successfully adopted to study the failure probability at long term of underground structure constructed in a 415 

viscoelastic rock. The efficiency of this metamodel was demonstrated by comparing with the referent results 416 

provided by MCS. An extension of Kriging surrogate was then presented in [25] to assess the probabilistic 417 

behavior of a deep drift excavated in the visco-plastic rock in which the deterministic problem must be solved by 418 

the numerical simulation.  419 
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If the performance of the Kriging metamodel has been revealed in the purely mechanical problem as mentioned 420 

above, its applicability to treat the coupling problem in rock mechanical engineering has not yet discussed in the 421 

literature. Thus, an adaptation of this metamodeling technique to assess the probabilistic results of safe mud 422 

pressure window of the horizontal wellbore drilled in the anisotropic saturated rock, even in the simple case of 423 

one-way HM coupling, is extremely useful for the future applications.     424 

As detailed in [24, 25], the principal idea of Kriging metamodel consists of approximating each limit state 425 

function (LSF) G(X) that separates the safety (G(X) > 0) and failure domains (G(X) ≤ 0) in the space of random 426 

input variables gathered in the vector X by a Gaussian process: 427 

  
( ) ( ) ( ) ( )T

G G = + Z≈X X k X β X
 

(23) 

The first term k(X)Tβ of the Kriging metamodel ( )G X  represents the mean value whilst the second term Z(X) is 428 

assumed to have the zero-mean stationary Gaussian process. This metamodel can be built iteratively by 429 

determining the unknown parameters 
2, ,Zσβ θ in which 

2σ Z  is the constant process variance and θ is the 430 

hyperparameter vector of the kernel function R(θ, X, X’). To this end, an optimization process is carried out 431 

using the exact results of the performance function ( )G X  at different training points of the Design of 432 

Experiment (DoE). This DoE, generated from the Latin Hypercube Sampling (LHS) technique at the initial step, 433 

will be iteratively updated by adding the new training points thank for using a so-called learning function. The 434 

procedure will be repeated until the stopping criterion (the convergence) is verified. The interested reader can 435 

refer to [24, 25] for more details.  436 

The constructed Kriging metamodel ( )G X  is then used as the predictor to calculate the results of LSF at each 437 

random realization of X through which the MCS can be applied to calculate the failure probability:   438 
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where:  439 

  1( ) ( ) ( ) ( )T T

G
µ −=X k X β+r X R y-Kβ  

(25) 

For the concerned problem of wellbore stability in the anisotropic rock, before the application of the Kriging 440 

metamodeling technique to determine the safe mud pressure window, two LSF corresponding to the two failure 441 

modes (i.e., tensile and shear failures) must be defined. From the Eq. (14) that characterizes the tensile failure of 442 

wellbore, one can propose the first LSF as follows: 443 

  
( , ) ( , ),tensile w wG P T Pθσ ′= −X X

 
(26) 

Respectively, for the shear failure of wellbore using the Jeager model as defined in Eqs. (18, 19), we adopt the 444 

following second LSF: 445 
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In Eqs. (26, 27) all the random variables (i.e., anisotropic in-situ stress state, anisotropic poroelastic properties, 446 

anisotropic tensile or shear strength of rock mass) as defined previously are gathered in the vector X whilst the 447 

constant mud pressure Pw in wellbore plays the role of the design parameter. Note that, to simplify the 448 

presentation, the inclined angle θ is omitted in Eqs. (26, 27) but keeping in mind that the two LSFs must be 449 

determined at the critical plane at which the value of each LSF G(X) must be maximal. For the current problem 450 

that bases on the closed-form solutions, this critical plane (and hence the maximal value of G(X)) can be 451 

analytically evaluated. But, for the more complex problems in which the deterministic problem must be solved 452 

numerically, the post processing around well wall is necessary to determine this maximum value of G(X) as well 453 

as critical position [25].  454 

In Fig. 15, the numerical applications of the Kriging metamodeling technique to determine the likelihood of 455 

success of two failure modes in wellbore are highlighted and compared with the results provided from the MCS. 456 

To simplify the presentation, only the undrained and permeable boundary cases are considered. In these 457 

calculations, the Kriging metamodel is built from 48 training points (generated by LHS technique) in the initial 458 

DoE while the same number of random samples (ten thousand realizations) as the direct MCS is chosen for the 459 

evaluation of failure probability by interpolation (Eq. 24). In all the calculations, the number of iterations at 460 

convergence is less than 35. Thus, the total number of the direct evaluations of the wellbore response is about 83. 461 

A very good agreement between the Kriging metamodel and the MCS confirms the applicability and efficiency 462 

of this metamodeling technique on the probabilistic assessment of wellbore.  463 

However, as observed in Fig. 15, for an arbitrary value of CL, the safe mud pressure window cannot be accessed 464 

directly by the Kriging-based stochastic analysis. Unlike the MCS in which the safe mud pressure window can 465 

be determined easily from the statistical processing of the exact results of wellbore response thanks to the direct 466 

evaluation of all random samples (ten thousand), in the Kriging metamodeling technique, the safe mud pressure 467 

window corresponding to a predefined CL must be calculated iteratively through an optimization procedure [54]. 468 

This problem, known also as the reliability-based design optimization of safe mud pressure window of wellbore 469 

using metamodeling technique will be discussed in our future work. Nevertheless, the proposition of the failure 470 

criteria and the adaptation with high accuracy of the Kriging metamodel in this study provide a useful tool for 471 

the probabilistic analysis of wellbore. Furthers, an extension in the future of this technique by accounting for the 472 

time-dependent effect allows treating the problem in different complex contexts such as the fully HM coupling 473 

in the transient state of the anisotropic rock as well as their interaction with the thermal and/or chemical 474 

phenomena. Combining with an appropriate optimization algorithm such as the Quantile Monte Carlo approach 475 

[55, 56], the Kriging metamodel allows a quick estimation of safe mud pressure window which is particularly 476 

important in wellbore design.           477 

 478 

4. Conclusion 479 
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In this study, the investigation of the safe mud pressure window of the horizontal wellbore is conducted 480 

considering the combined effect of anisotropy and uncertainty, which has not been studied in the literature yet. 481 

For this aim, the deterministic results of the fracture and collapse pressures in the wellbore are derived using the 482 

available analytical solutions of stress state on the well wall and two well-known anisotropic models describing 483 

the tensile strength (the Nova and Zaninetti model) and shear strength (the single weakness plane model of 484 

Jaeger) of rock. Three cases are considered which describe the behavior of wellbore immediately after drilling 485 

(i.e., undrained problem) and at long term due to the steady-state fluid flow (permeable boundary case) or by 486 

ignoring the variation of initial pore pressure (i.e., impermeable boundary condition case).  487 

The numerical applications are carried out for the VTI Tournemire shale rock whose hydro-mechanical 488 

properties are taken from the literature. The sensitivity analysis in this specific rock shows that the in-situ stress 489 

state is the most sensitive factor with respect to the safe mud pressure windows. It seems that the shear strength 490 

parameters (e.g., the cohesion, the friction angle) of the weak plane have more effect than the anisotropic elastic 491 

properties, which in turn affect more significantly than the tensile strength parameters. The effect of initial pore 492 

pressure, Biot coefficient and Biot modulus presents a moderate impact on the variation of mud weight windows. 493 

The stochastic analysis by MCS elucidates a strong uncertainty of the safe mud weight windows which are much 494 

narrower than the deterministic results and can be vanished beyond a critical value of the confidence level. It is 495 

worth noting that the results of safe mud pressure windows depend on the adopted hydraulically boundary 496 

condition at the circumference of well wall. Among the considered cases, the results show that the safe mud 497 

pressure window is the largest in the undrained case and narrowest when the steady fluid flow around the 498 

wellbore is accounted for. The safe mud pressure windows of the three cases are also calculated for the isotropic 499 

rock whose mechanical properties are extracted from the vertical direction of the VTI rock whilst the tensile and 500 

shear strengths corresponding to the ones of the bedding plane. In comparison with the initial anisotropic rock, 501 

the safe mud pressure windows of isotropic rock provide a moderate difference with higher values of both 502 

collapse and fracture pressures.  503 

Finally, a proposition of the two limit state functions characterizing the tensile and shear failure modes allows us 504 

to adapt the Kriging metamodeling technique in the stochastic analysis of wellbore. The performance of this 505 

technique was demonstrated by comparing with the MCS. The study conducted in this work confirms the crucial 506 

role of uncertainty combined with anisotropic effect on the stability of wellbore whilst the Kriging metamodeling 507 

can provide an efficient tool for the probabilistic assessment of the safe mud pressure window.   508 

 509 

Acknowledgements 510 

This research is funded by Vietnam National Foundation for Science and Technology Development 511 

(NAFOSTED), under grant number 105.99-2020.21. 512 

 513 

References 514 

 515 



17 

 

1. Fjaer E, Holt RM, Raaen AM, Risnes R. Petroleum Related rock mechanics. 2nd Edition, Elsevier, 516 

Developments in Petroleum Science; 2008. 517 

2. Aadnoy SB, Looyeh R. Petroleum rock mechanics: drilling operation and well design. Elsevier publication, 518 

Amsterdam; 2010.  519 

3. Darvishpour A, Cheraghi SM, Wood DA, Ghorbani H. Wellbore stability analysis to determine the safe mud 520 

weight window for sandstone layers. Petrol. Explor. Develop. 2019; 46: 1031-1038.  521 

4. Gupta D, Zaman M. Stability of borehole in a geologic medium including the effects of anisotropy. Applied 522 

Math. Mech. 1999; 20: 837-866. 523 

5. Zhang J. Borehole stability analysis accounting for anisotropies in drilling to weak bedding planes. Int. Jour. 524 

Rock Mech. Min. Scien. 2013; 60: 160-170. 525 

6. Kanfar MF, Chen Z, Rahman SS. Risk-controlled wellbore stability analysis in anisotropic formations. Jour. 526 

Petro. Scien. Engin. 2015; 134: 214-222.  527 

7. Do DP, Tran NH, Hoxha D, Dang HL. Assessment of the influence of hydraulic and mechanical anisotropy on 528 

the fracture initiation pressure in permeable rocks using a complex potential approach. Int. Jour. Rock Mech. & 529 

Min. Scien. 2017; 100: 108-123. 530 

8. Do DP, Tran NH, Dang HL, Hoxha D. Closed-form solution of stress state and stability analysis of wellbore 531 

in anisotropic permeable rocks. Int. Jour. Rock Mech. Min. Scien. 2019; 113: 11-23. 532 

9. Aadnoy BS. Stress around horizontal boreholes drilled in sedimentary rocks. Jour. Petro. Sci. Eng. 1989; 2: 533 

349-360. 534 

10. Hefny AM, Lo KY. Analytical solutions for stresses and displacements around tunnels driven in cross-535 

anisotropic rocks. Int. Jour. Num. Ana. Meth. Geomech. 1999; 23: 161-177.  536 

11. Lekhnitskii SG. Theory of elasticity of an anisotropic elastic body. San Francisco: Holden-Day, Inc; 1963. 537 

12. Lekhnitskii SG. Anisotropic plates. New York, Gordon and Breach; 1968. 538 

13. Aadnoy BS. Modeling of the stability of highly inclined boreholes in anisotropic rock formations. SPE Dril 539 

Eng. 1988 ; 3: 259-268. 540 

14. Setiawan NB, Zimmerman RW. Wellbore breakout prediction in transversely isotropic rocks using true-541 

triaxial failure criteria. Int. Jour. Rock Mech. Min. Scien. 2018; 112: 313-322. 542 

15. Amadei B. Rock anisotropy and the theory of stress measurements. Berlin: Springer-Verlag; 1983. 543 

16. Aadnoy B, Hareland G, Kustamsi A, de Freitas T, Hayes J. Borehole failure related to bedding plane. In: 43rd 544 

US Rock Mechanics Symposium & 4th US-Canada Rock Mechanics Symposium. June 2009, Asheville, North 545 

Carolina. Paper ARMA-09-106. 546 

17. Liu X, Zeng W, Liang L, Lei M. Wellbore stability analysis for horizontal wells in shale formations. Jour. 547 

Natur. Gas Sci. Eng. 2016; 31: 1-8.  548 

18. Ma T, Zhang QB, Chen P, Yang C & Zhao J. Fracture pressure model for inclined wells in layered 549 

formations with anisotropic rock strengths. Jour. Petro. Scien. Engin. 2017; 149: 393-408. 550 

19. Tran NH. Hydro-mechanical behavior of deep tunnels in anisotropic poroelastic medium. PhD dissertation. 551 

University of Orléans, France, 2016. 552 

20. Tran, NH, Do DP, Hoxha D. A closed-form hydro-mechanical solution for deep tunnels in elastic anisotropic 553 

rock. Euro. Jour. Envir. Civil Engin. 2017; 1-17. 554 



18 

 

21. Do DP, Tran NH, Hoxha D. Behavior of horizontal borehole in anisotropic poro-elastic media with transient 555 

fluid flow: a closed-form solution based on the complex potential approach. In: Proceedings of the Sixth Biot 556 

Conference on Poromechanics. 9-13 July 2017, Paris. 557 

22. Vu MN, Guayacán Carrillo LM, Armand G. Excavation induced over pore pressure around drifts in the 558 

Callovo-Oxfordian claystone. Euro. Jour. Envir. Civil Engin. 2020; 1-16. 559 

doi.org/10.1080/19648189.2020.1784800.  560 

23. Do DP, Tran NT, Mai VT, Hoxha D, Vu MN. Time-dependent reliability analysis of deep tunnel in the 561 

viscoelastic Burger rock with the sequential installation of liners. Rock Mech. Rock Eng. 2019; 53: 1259-1285.  562 

24. Do DP, Vu MN, Tran NT, Armand, G. Closed-form solution and reliability analysis of deep tunnel supported 563 

by a concrete liner and a covered compressible layer within the viscoelastic Burger rock. Rock Mech.Rock Eng. 564 

2021; 54: 2311-2334. 565 

25. Tran NT, Do DP, Hoxha D, Vu MN, Armand G. Kriging-based reliability analysis of the long-term stability 566 

of a deep drift constructed in the Callovo-Oxfordian claystone. Jour. Rock Mech. Geotech. Eng. 2021; 567 

doi.org/10.1016/j.jrmge.2021.06.009. 568 

26. Ottesen RH, Zheng RH, McCann RC. Borehole stability assessment using quantitative risk analysis. In: 569 

SPE/IADC Drilling Conference. March 1999. Paper SPE-52864-MS. 570 

27. Moos D, Peska P, Finkbeiner T, Zoback M. Comprehensive wellbore stability analysis utilizing quantitative 571 

risk assessment. Jour. Petro. Scien. Engin. 2003; 38: 97-109. 572 

28. Gholami R, Rabiei M, Rasouli V, Aadnoy BS, Fakhari N. Application of quantitative risk assessment in 573 

wellbore stability analysis. Jour. Petro. Scien. Engin. 2015; 135: 185-200.  574 

29. Mondal S, Chatterjee R. Quantitative risk assessment for optimum mud weight window design: a case study. 575 

Jour. Petro. Scien. Engin. 2019; 176: 800-810. 576 

30. Udegbunam JE, Aadnoy BS, Fjelde KK. Uncertainty evaluation of wellbore stability model predictions. 577 

Jour. Petro. Scien. Engin. 2014; 124: 254-263. 578 

31. Eshiet KII, Sheng Y. The performance of stochastic designs in wellbore drilling operations. Petro. Scien. 579 

2018; 15: 335-365. 580 

32. Zhang L, Bian Y, Zhang S, Yan Y. A new analytical model to evaluate uncertainty of wellbore collapse 581 

pressure based on advantageous synergies of different strength criteria. Rock Mech. Rock Engin. 2019; 52: 2649-582 

2664.  583 

33. Al-Ajmi AM, Al-Harthy MH. Probabilistic wellbore collapse analysis. Jour. Petro. Scien. Engin. 2010; 74: 584 

171-177.  585 

34. Nino FAP. Wellbore stability analysis based on sensitivity and uncertainty analysis. In: SPE Annual 586 

Technical Conference and Exhibition. September 2016, Dubai, UAE. Paper SPE-184480-STU. 587 

35. Ma Y, Yu R. New analytical methods to evaluate uncertainty of wellbore stability. Jour. Petro. Scien. Engin. 588 

2019; 180: 268-277. 589 

36. Ma T, Tang T, Chen P, Yang C. Uncertainty evaluation of safe mud weight window utilizing the reliability 590 

assessment method. Energies 2019, 12, 942. 591 

37. Han W, Yan Y, Yan X. Uncertainty and sensitivity analysis of in-situ stress in deep inclined strata. Geotech. 592 

Geol. Eng. 2020; 38: 2699-2712. 593 



19 

 

38. Zhang J, Bai M, Roegiers JC. Dual-porosity poroelastic analysses of wellbore stability. Int. Jour. Rock Mech. 594 

Min. Scien. 2003; 40: 473-483. 595 

39. Bobet A, Yu H. Stress field near the tip of a crack in a poroelastic transversely anisotropic saturated rock. 596 

Eng. Fract. Mech. 2015; 141: 1-18.  597 

40. Nova R, Zaninetti A. An investigation into the tensile behavior of a schistose rock. Int. Jour. Rock Mech. 598 

Min. Scien. Geomech. 1990; 27: 231-242. 599 

41. Lee YK, Pietruszczak S. Tensile failure criterion for transversely isotropic rocks. Int. Jour. Rock Mech. Min. 600 

Scien. 2015; 79: 205-215. 601 

42. Jaeger JC. Shear failure of anisotropic rocks. Geol. Mag. 1960; 97: 65-72. 602 

43. Pietruszczak S, Pande GN. Description of soil anisotropy based on multi-laminate framework. Int. Jour. 603 

Num. Ana. Methods Geomech. 2001; 25: 197-206. 604 

44. Pietruszczak S, Mroz Z. On failure criteria for anisotropic cohesive-frictional materials. Int. Jour. Num. Ana. 605 

Methods Geomech. 2001; 25: 509-524. 606 

45. Mroz Z, Maciejewski J. Failure criteria of anisotropically damaged materials based on the critical plane 607 

concept. Int. Jour. Num and Ana. Meth. Geo. 2002; 26: 407-431. 608 

46. Jaeger JC, Cook NGW, Zimmerman W. Fundamentals of rock mechanics. Fourth Edition, Blackwell 609 

Publishing; 2007. 610 

47. Chen X, Yang Q, Qui KB, Feng JL. An anisotropic strength criterion for jointed rock masses and its 611 

application in wellbore stability analyses. Int. Jour. Num. Ana. Methods Geomech. 2008; 32: 607-631. 612 

48. Aadnoy BS. Quality assurance of wellbore stability analyses. In: SPE/IADC Drilling Conference and 613 

Exhibition. March 2011, Amsterdam, The Netherlands. Paper SPE-140205-MS. 614 

49. Niandou HJ. Etude du comportement rhéologique et modélisation de l’argilite de Tournemire. Application à 615 

la stabilité d’ouvrages souterrains (in French). PhD dissertation, Université des Sciences et Technologies de 616 

Lille, France, 1994. 617 

50. Niandou HJ, Shao JF, Henry JP, Fourmaintraux D. Laboratory investigation of the mechanical behaviour of 618 

Tournemire shale. Int. Jour. Rock Mech. & Min. Scien. 1997; 34: 3-16. 619 

51. Cosenza P, Ghoreychi M, de Marsily G, Vasseur G, Violette S. Theoretical prediction of poroelastic 620 

properties of argillaceous rocks from in situ specific storage coefficient. Water Resources Research. 2002; 38, 621 

1207. 622 

52. Valès F, Nguyen Minh D, Gharbi H, Rejeb A. Experimental study of the influence of the degree of saturation 623 

on physical and mechanical properties in Tournemire shale (France). Applied Clay Science. 2004; 26: 197-207. 624 

53. Noiret A. Contribution à la caractérisation du comportement géomécanique des roches couverture des 625 

réservoirs pétroliers (in French). PhD dissertation, Institut National Polytechnique de Lorraine, France, 2009. 626 

54. Tran N T, Do DP, Hoxha D, Vu MN. Reliability-based design of deep tunnel excavated in the viscoelastic 627 

Burger rocks. In: Geotech. Sustain. Infrastruct. Dev. 2020, Springer, p. 375-382. doi.org/10.1007/978-981-15-2184-628 

3_48. 629 

55. Moustapha M, Sudret B, Bourinet JM, Guillaume B. Quantile-based optimization under uncertainties using 630 

adaptive Kriging surrogate models. Struct. Multidisc. Optim. 2016; 54: 1403-1421. 631 



20 

 

56. Do DP, Tran NT, Hoxha D, Vu MN, Armand G. Kriging-based optimization design of deep tunnel in the 632 

rheological Burger rock. IOP Conf. Ser. : Earth Environ. Sci. 2021. 833, 012155. 633 

57. Detournay E, Cheng AHD. Poroelastic response of a borehole in a non-hydrostatic stress field. Int. J. Rock 634 

Mech. Min. Sci. & Geomech. 1988; 25: 171-182. 635 

 636 

Appendix A: Expression of radial and tangential stresses on the wellbore wall by accounting for the steady 637 

fluid flow 638 

This appendix presents the closed-form solution of the principal (i.e. tangential and radial) stresses 639 

determined on the well wall by accounting for the variation of pore pressure in the steady state. This solution is 640 

synthetized from [7].   641 

The total stresses around the wellbore are expressed in the forms: 642 
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The solution of total stresses with superscripts Ib and II are derived from: 644 
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In Eq. (A3), the two potentials 
1 2,Φ Φ and their derivatives are expressed in the form: 645 
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Thus : 646 

   647 
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where  648 
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The other solutions of stress state are written as: 649 
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and: 650 
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The parameters E1, E2, F1, F2 are defined as:  651 
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The parameters µ11, µ21 and  µ12, µ22 in Eqs. (A5 to A9) are the real and imaginary part of two complex roots  µ1, 652 

µ2  (with positive imaginary part) of the characteristic equation: 653 
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In Eq. (A7) the real parameter η is calculated from:  654 
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and 
2 /w x yk kµ = is the imaginary part of the purely imaginary parameter µw. The other parameters N11, N21 and  655 

N12, N22 are the real and imaginary part of two complex constants N1, N2 which are determined from the 656 

following system of equations (see Appendix A of [7]):  657 
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In case that the roots  µ1, µ2 of the characteristic equation are purely imaginary, the following expressions of  N1, 658 

N2 are derived in ([20]):  659 
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Finally, the effective tangential and radial stress on the wall of wellbore are deduced as follows by using the 660 

Biot’s theory: 661 

0 0
, ,

cos 2 sin 2 ,
2 2

cos 2 sin 2 ,
2 2

x x x y y y

x y x y

xy

x y x y

r xy

p p

θ

σ σ α σ σ α

σ σ σ σ
σ θ τ θ

σ σ σ σ
σ θ τ θ

′ ′= + = +

′ ′ ′ ′+ −
′ = − −

′ ′ ′ ′+ −
′ = + +

 

(A14) 

with p0=Pw (case permeable boundary) or p0=pff (case impermeable boundary).  662 

 663 

Appendix B: Closed-form solution of stress state around wellbore in the undrained case 664 

For the undrained case, the behavior of wellbore is purely mechanical by accounting for the effect of initial 665 

and excess pore pressure in the calculation of effective stress state. Thus, with respect to the previous case 666 

defined in Appendix A, only the solution of problem I, Ib and II are necessary.  667 

The solution of problem I as expressed in Eq. (A2) is remained as it represents the initial stress state around 668 

wellbore before excavation. For the excavation problem with wellbore pressure Pw (problem Ib and II), by 669 

substituting the total stress defined in Eq. (A3) in Eq. (10) the following excess pore pressure can be obtained:   670 
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The expressions of the two potentials 
1 2,Φ Φ and their derivatives are similar with ones defined in Eq. (A4) but the 671 

complex roots µ1, µ2 are now determined from the following characteristic equation (see also Bobet and Yu, 2015):  672 
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where:  673 
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Thus, one can deduce the effective tangential and radial stress on the wall of wellbore as defined in Eq. (A14) in 674 

which p0=pff +∆p. 675 

 676 

Appendix C: Analytical solutions of stress state around the wellbore in the isotropic rock 677 

For the comparison purpose, the analytical solutions of stress state and the safe mud pressure windows of 678 

wellbore in the isotropic rock, which have been derived since the long time, are rewritten in this appendix. 679 

Following that, the solution for the case of wellbore in the dry rock will be firstly captured and then extended in 680 

the other cases (i.e., permeable boundary, impermeable boundary, and undrained rocks) as considered in the 681 

anisotropic part. The interested reader can refer to the well-known contributions ([5, 13, 57]) for more details of 682 

the developments of these solutions.  683 

- Case of dry rock: 684 

  

2( )cos(2 );

;

;

;

ff ff ff ff

v h w h v

r w

r r

P

P

θ

θ θ

σ σ σ σ σ θ
σ
σ σ
σ σ

= + + − −
= −

′ =
′ =

 
(C1) 

- Case of impermeable boundary (i.e., constant pore pressure in the rock mass): 685 
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- Case of permeable boundary: 686 
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- Undrained case: 687 
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In Eq. (C4), λ and G are the two Lamé parameters. 688 

It is important to remind here that the compressive stress is negative in this study while the wellbore and pore 689 

pressures are positives.  690 

From these explicit expressions of effective stresses in the well wall, the fracture initiation pressure and collapse 691 

pressure can be deduced without difficulty using the following conditions: 692 
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where T is the tensile strength while C and φ are the Mohr Coulomb parameters of the isotropic rock.    693 

 694 

 695 

List of table headings 696 

 697 

Table 1. In-situ stress state, pore pressure and mechanical properties of the transversely isotropic Tournemire 698 

shale.  699 

 700 

Table 2. Mechanical properties of the isotropic rock using the ones of the vertical direction of the Tournemire 701 

shale. 702 

 703 

Table 3. Safe mud pressure windows in the deterministic problem and probabilistic assessment evaluated at 704 

confidence level (CL) in the permeable and impermeable boundary and undrained cases.  705 

 706 



25 

 

Table 4. Safe mud pressure windows in the deterministic problem and probabilistic assessment evaluated at 707 

confidence level (CL) in the permeable and impermeable boundary and undrained cases of the isotropic rock.  708 

 709 

 710 

List of figures captions 711 

 712 

Fig. 1. Geometry of horizontal wellbore drilled in transversely anisotropic formation (a) whose bedding plane 713 

inclined an angle β with the principal stress axis at the far-field (b), equivalent problem after the rotation (c).  714 

 715 

Fig. 2. Critical plane characterized by the inclined angle ϕc at which the shear failure initiates. This critical plane 716 

can coincide (i.e., ϕc = θ) or have different orientation (i.e., ϕc ≠ θ) with respect to the weak plane according to 717 

the Jaeger model.  718 

 719 

Fig. 3. Evolution of collapse pressures ( )
w

co l
P

θ
θ  and fracture pressure ( )

w

fra
P

θ
θ  versus inclination angle θ in the 720 

case: impermeable boundary (a), permeable boundary (b) and undrained problem (c).  721 

 722 

Fig. 4. Distribution of effective tangential and radial stresses on the well wall using fracture pressure 
w

fraP  (a) 723 

and collapse pressure 
w

colP  (b) in the wellbore.  724 

 725 

Fig. 5. Distribution of excess pore pressure on the well wall in the undrained case using fracture pressure 
w

fraP  726 

(a) and collapse pressure 
w

colP  (b) in the wellbore.  727 

 728 

Fig. 6. Evolution of collapse pressures ( )
w

col
P

θ
θ  and fracture pressure ( )

w

fra
P

θ
θ  versus inclination angle θ in the 729 

case: impermeable boundary (a), permeable boundary (b) and undrained problem (c) of the isotropic rock.  730 

 731 

Fig. 7. Effect of vertical initial stress ff

v
σ  (a), initial stress ratio K0 (b), initial pore pressure pff (c) and inclination 732 

angle β (d) on the safe mud pressure window of wellbore in the impermeable boundary, permeable boundary, 733 

and undrained cases.  734 

 735 

Fig. 8. Effect of shear modulus 
xy

G (a), Youngs’s modulus Ex (b), Young’s modulus ratio Ey/Ex (c), coefficient of 736 

Biot αx (d), permeability ratio ky/kx (e) and Biot modulus M (f) on the safe mud pressure window of wellbore in 737 

the impermeable boundary, permeable boundary, and undrained cases.  738 

 739 

Fig. 9. Effect of shear strength parameters like cohesion 
w

C (a), friction angle of the weak plane 
w

φ  (b), 740 

cohesion’s ratio /
i w

C C (c), friction angle ratio /
i w

φ φ (d) on the collapse pressure and tensile strength T0 (e), kT (f) 741 
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on the fracture initiation pressure of wellbore in the impermeable boundary, permeable boundary, and undrained 742 

cases. 743 

 744 

Fig. 10. Sensitivity analysis of collapse pressure in wellbore exhibited in tornardo graph: permeable boundary 745 

(a), undrained problem (b) and impermeable boundary (c). 746 

 747 

Fig. 11. Sensitivity analysis of fracture initiation pressure in wellbore exhibited in tornado graph: permeable 748 

boundary (a), undrained problem (b) and impermeable boundary (c). 749 

 750 

Fig. 12. Probability distribution function (PDF) of ten thousand randomly generated samples used in the MCS: 751 

initial stress state and pore pressure (a), poro-elastic properties (b), shear strength parameters (c) and tensile 752 

strength properties (d) of Tournemire shale rock.  753 

 754 

Fig. 13. Probability distribution function (PDF) of wellbore pressure in the impermeable boundary (a), 755 

permeable boundary (b), undrained case (c) and their likelihood of success (d).  756 

 757 

Fig. 14. Probability distribution function (PDF) of wellbore pressure in the impermeable boundary (a), 758 

permeable boundary (b), undrained case (c) and their likelihood of success (d) in the isotropic rock.  759 

 760 

Fig. 15. Likelihood of success of mud pressure window calculated by Kriging metamodeling technique and 761 

MCS:  permeable boundary (a), undrained case (b).  762 

 763 
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Table 1 

In-situ stress state, pore pressure and mechanical properties of the transversely isotropic Tournemire shale.  

Initial stress state and pore pressure Poro-elastic properties 

Parameter Mean Min Max Parameter Mean Min Max 

ff

vσ  (MPa) -26.5 -10.92 -42.08 Ex (GPa) 27.93 11.51 44.35 

0 /
ff ff

h vK σ σ=  1.05 0.43 1.67 kE=Ey/Ex 0.33 0.14 0.52 

pff (MPa) 10 4.12 15.88 Gxy (GPa) 3.9 1.61 6.19 

β (°) 10 4.12 15.88 αx 0.17 0.07 0.27 

Tensile and shear strengths M (GPa)                                         17.14 7.06 27.22 

T0 (MPa) 8 3.30 12.70 ky/kx 0.5 0.21 0.79 

kT 
2.17 1 3.45 kx (10-13 m/s) 5.5 2.27 8.73 

Cw (MPa) 10.88 4.48 17.28 νxz 0.17 0.07 0.27 

φw (°) 19.36 7.98 30.74 νyx 0.2 0.08 0.32 

Ci/Cw 1.65 1 2.62     

φi/φw 1.24 1 1.97     
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Table 2 

Mechanical properties of the isotropic rock using the ones of the vertical direction of the Tournemire shale. 

Parameters E (GPa) ν α M (GPa) k (10-13 m/s) T (MPa) C (MPa) φ (°) 

Mean 9.22 0.2 0.53 17.14 2.75 8 10.88 19.36 

Min 3.80 0.08 0.22 7.06 1.13 3.30 4.48 7.98 

Max 14.64 0.32 0.84 27.22 4.37 12.79 17.28 30.74 
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Table 3 

Safe mud pressure windows in the deterministic problem and probabilistic assessment evaluated at confidence 

level (CL) in the permeable and impermeable boundary and undrained cases.  

 

Case 

Permeable boundary Impermeable boundary Undrained case 

Pw
col (MPa) Pw

fra (MPa) Pw
col (MPa) Pw

fra (MPa) Pw
col (MPa) Pw

fra
 (MPa) 

Deterministic 8.66 45.37 8.99 49.65 6.76 53.96 

CL=60% 13.41 35.74 12.70 40.35 10.63 41.80 

CL=70% 16.39 32.32 14.93 36.45 13.06 37.46 

CL=80% 19.88 28.46 17.79 31.99 16.04 32.58 

CL=88% 23.71 24.31 20.83 27.40 19.45 28.11 
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Table 4 

Safe mud pressure windows in the deterministic problem and probabilistic assessment evaluated at confidence 

level (CL) in the permeable and impermeable boundary and undrained cases of the isotropic rock.  

Case 

Permeable boundary Impermeable boundary Undrained case 

Pw
col (MPa) Pw

fra (MPa) Pw
col (MPa) Pw

fra (MPa) Pw
col (MPa) Pw

fra
 (MPa) 

Deterministic 10.72 49.18 10.49  54.38 10.68 54.94 

CL=60% 17.09 37.10 14.89 40.78 15.72 43.21 

CL=70% 20.36 33.25 17.07 36.32 18.09 38.81 

CL=80% 24.66 28.80 20.02 31.32 21.16 33.82 

CL=84% 26.70 26.73 21.46 29.03 22.71 31.57 

 




