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Abstract

Composed of collagen, elastin and muscular fibrous networks, vocal
folds are soft laryngeal multi-layered tissues owning remarkable vibro-
mechanical performances. However, the impact of their histological fea-
tures on their overall mechanical properties still remains elusive. Thereby,
this study presents a micro-mechanical hyperelastic model able to describe
the 3D fibrous architecture and the surrounding matrices of the vocal-fold
sublayers, and to predict their mechanical behavior. For each layer, the
model parameters were identified using available histo-mechanical data,
including their quasi-static response for key physiological loading paths,
i.e., longitudinal tension, transverse compression and longitudinal shear.
Regardless of the loading path, it is shown how macroscale nonlinear,
anisotropic tissue responses are inherited from the fiber scale. Scenarios of
micro-mechanisms are predicted, highlighting the major role of 3D fiber
orientation in tension, steric hindrance in compression, and matrix contri-
bution in shear. Finally, combining these predictions to vibrating hypere-
lastic Timoshenko beam’s theory, the impact of the fibrous architecture of
the upper layers on vocal-fold vibratory properties is emphasized.
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1. Introduction

Human vocal folds possess a complex lamellar structure with two prin-
cipal layers : the lamina propria, i.e., a loose connective tissue, and the vo-
calis or inferior thyroarytenoid muscle. Each layer is a soft material with
architectured networks of collagen, elastin and/or skeletal muscle fibers
(Fig. 1; [44, 14, 3]). Clinical observations clearly support the major role
played by such fibrous microstructure in the vocal-fold vibrations : in
cases of benign or cancerous lesions, alterations of the fiber-scale arrange-
ment of the lamina propria systematically induce a vibratory dysfunction
[27, 28, 41] ; with aging, a loss of elastin fibers, fibrosis or muscle atrophy
together with vocal and perceptual changes such as hoarseness, low pitch
and breathiness has also been observed [89, 88, 84]. However, to date,
the acquired knowledge is still not sufficient to understand the relation-
ship between the microstructural specifications of vocal folds and their
macroscale performances.

This is mainly ascribed to their challenging experimental multiscale
characterization. Despite the considerable progress made in 3D micro-
imaging [43, 52, 18, 73, 51, 32, 3, 48], vocal folds, along with their fibrous ar-
chitectures, are hardly observable in vivo [71, 23]. Although a large biome-
chanical database has been collected on excised vocal folds over the last
twenty years [17, 87, 49, 74, 16, 20], the 3D microscale rearrangement of
the loaded tissues is still to be explored. Conversely, the development
of macroscopic (tissue scale) or micro-mechanical (fiber scale) models of
phonation is a promising alternative to gain an in-depth understanding of
the vocal-fold biomechanics :
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Figure 1: Human vocal-fold histology. (left) Idealised scheme of one fold, with focus
on the fold sublayers and fibrous microstructure : ¬ Epithelium,  Lamina propria, ®
Vocalis muscle. (right) Corresponding 2D histological photomicrographs prepared with
HES staining : collagen fibers (yellow-orange) ; cytoplasms, striated muscular and elastin
fibers (pink) ; nuclei (black-purple). Adapted from [3].

• In macroscopic approaches, phenomenological exponential and po-
wer-law functions are commonly proposed to describe the stress-
strain responses typically observed when deforming soft biological
tissues [6, 45, 46, 58, 59, 72]. Doing so, however, the model parame-
ters can hardly be related to the material intrinsic structure and me-
chanics, and need to be adjusted according to the applied loading
path. This first approach is robust and adequate in absence of tissue
histo-mechanical data.

• Microstructure-based formulations are instead inspired from histo-
logical evidence, and conceived to correlate the model input param-
eters to the physical and structural properties of the tissue (e.g., cells,
fibers and surrounding matrix). To name a few, the shape, concen-
tration, orientation and tortuosity of fibers are the relevant struc-
tural parameters that are commonly considered. Therefrom, to de-
termine the macroscale mechanical behavior of the tissue, homoge-
nization techniques [61, 62, 63, 67, 69, 68, 78, 4], energetic approaches
[75, 77, 79, 82, 81], statistical descriptions [18, 33, 56, 47] or varia-
tional considerations [22, 31, 54, 66, 70] are used. Regardless, the
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identification and validation of these formulations with multiscale
experimental data remains a challenging task.

By contrast with many other soft tissues (e.g., arteries, heart, skin), the
majority of the theoretical approaches adopted to model the vocal-fold me-
chanical properties still rely on macroscopic formulations. Since 2010, a
few authors have proposed micro-mechanical models for the vocal-fold
tissues, opening a new insight into voice biomechanics [49, 75]. These
models allow to predict the tensile behavior of the lamina propria, but their
relevance was not assessed for other important biomechanical loadings
such as transverse compression and longitudinal shear [37, 92, 97]. Fur-
thermore, theoretical formulations still need : (i) to be fed up with 3D
microstructural descriptors of human vocal-fold sublayers and to account
for the fiber-to-fiber mechanical interactions likely to occur within such
dense media [26], (ii) to be extended to the specific micro-arrangement of
the vocalis muscle.

Within this context, the present work proposes a micro-mechanical mo-
del able to reproduce the nonlinear anisotropic mechanical properties of
vocal-fold layers (i.e., lamina propria, vocalis) subjected to multiaxial finite
strains, from the knowledge of their 3D fibrous architecture. It combines
the use of ex vivo database acquired on human vocal-fold microstructures
over the past ten years, with a recent study on their finite strain macroscale
mechanics in longitudinal tension, as well as transverse compression and
longitudinal shear [20]. The paper is structured as follows. Section 2 in-
troduces an improvement of the theoretical formulation firstly proposed
and validated in the context of vascular biomechanics [4, 5]. The model
identification procedure is described in Section 3. Section 4 presents the
vocal-fold multiscale predictions and a micro-parametrical study aimed
to investigate the effect of the tissue’s 3D fibrous orientation changes on
its vibro-mechanical response.

2. Micro-mechanical model

2.1. Experimental observations and assumptions
In line with histological evidence (Fig. 1; [3, 64, 40, 50, 75]), both the lam-

ina propria and the vocalis can be conceived as 3D incompressible compos-
ite structures made of a gel-like matrix reinforced by a network of fibers.
Furthermore, each fiber can in turn be seen as a bundle of quasi-aligned
(myo)fibrils with wavy shapes and preferred orientations at rest :
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• The lamina propria is made of cells and an extracellular matrix (ECM)
comprising amorphous ground substances (e.g., hyaluronic acid), en-
tangled fibrous networks of collagen (mainly Type I and III) and
elastin [73]. Collagen plays a key role in the mechanics of soft tissues
and is, by weight, the most abundant fibrous protein in the human
lamina propria, representing at least 50% of the total proteins (less
than 10% for elastin [38, 39, 93]). The lamina propria is finally known
to be arranged in three sublayers with distinct fibers’ type, density
and arrangement, albeit very challenging to model due to the lack of
available quantitative topological descriptors. In the following, the
multilayered tissue of the lamina propria is therefore simplified to a
one-layered structure. The fibrous network of its ECM is assumed
to include a single population of collagen fibers, i.e., fiber bundles
of collagen fibrils, embedded into a surrounding matrix gathering
the other neighboring tissue components (cells, elastin, ground sub-
stances).

• The vocalis is primarily made of muscle fibers (also called “muscle
cells” or “rhabdomyocytes”), grouped into fiber bundles (or fasciculi)
and wrapped together by connective tissue sheaths (Fig. 1; [3]). This
muscle ECM is dominated by collagen in terms of mass, and is orga-
nized into three interconnected levels : the epimysium, surrounding
the whole muscles, the perimysium, surrounding fascicles, and the
endomysium, surrounding individual muscle fibers [10, 98]. Collagen
has been recently shown to be a major load-bearing component in the
finite strain passive response of skeletal muscles [98]. Therefore, in
the following, each individual muscle fiber is conceived as a myofib-
rils bundle surrounded by a sheath of collagen fibers (i.e., bundles of
collagen fibrils). The other constituents of the skeletal muscle ECM
(elastin, proteoglycans, glycoproteins) will constitute the matrix of
the micro-mechanical model [24].

2.2. Idealization of the vocal-fold layers’ fibrous architectures
Regardless of the considered vocal-fold layer (i.e., lamina propria or vo-

calis), its microstructure is idealized by the periodic repetition of a Repre-
sentative Elementary Volume (REV) inspired from that already proposed
for rubber-like materials [1, 11, 7] or self-entangled superelastic wires [86],
as sketched in Fig. 2a. In the undeformed configuration C0 (resp. deformed
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Figure 2: Idealised geometry of the vocal-fold sublayers. a) REV in the undeformed con-
figuration C0 : one node of periodicity C0 (blue) and a 4-bar truss (brown) embedded in a
soft isotropic matrix (green). The dotted lines illustrate the possible steric interactions of
C0 with the neighboring nodes. b) Correspondence fiber-bar for i) lamina propria and ii)
vocalis, conceived as fiber bundles of collagen (orange) and/or muscular fibrils (pink).
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configuration C), the REVs can be seen as prisms with a truss of N = 4 bars,
of identical initial length `0 (resp. actual lengths `i), embedded in a matrix
and connected to a central node C0 (resp. c0) and to the nodes Ci (resp. ci),
i ∈ [1, . . . , N] of corresponding neighboring REVs at their extremities. The
initial (resp. actual) orientation of each bar i is denoted by the direction
of its unit vector Ei = C0Ci/‖C0Ci‖ = sin θ0i cos ϕ0i ex + sin θ0i sin ϕ0i ey +
cos θ0i ez (resp. ei = c0ci/‖c0ci‖ = sin θi cos ϕi ex + sin θi sin ϕi ey + cos θi ez)
where ex, ey and ez lie along the medio-lateral, infero-superior and antero-
posterior anatomical directions (Fig. 1). In the following, considering the
typical orthogonal symmetry planes previously found in the vocal-fold
fibrous architectures at rest [49, 3], we further assume that the initial an-
gles of the fibrous networks do not depend on the bar i : ∀i, θ0i = θ0 and
ϕ0i = ±ϕ0 ∓ kπ, k ∈ [0, 1].

Therefrom, as illustrated in Fig. 2b, each bar i represents the chord of a
wavy (collagen or muscle) fiber bundle i. Additionally, each fiber bundle
i is considered as an assembly of n identical and parallel fibrils of equal
waviness and length. Furthermore, each fibril j is defined by its initial
diameter d0, length `

f
0 (resp. actual ` f

j ), and tortuosity ξ0 = `
f
0/`0 (resp.

ξ j = `
f
j /`i). A monomodal sinusoidal function is used to describe each

fibril’s initial waveform of amplitude R0 and spatial periodicity H0 [22,
55, 75], i.e., with v(u) = R0 sin 2π

H0
u in the reference frame (uj,vj) of fibril j

sketched in Fig. 2, where u and v are the abscissa and ordinate in (uj,vj),
respectively. We assumed the bars to contain 10 typical sinusoidal periods
between nodes. This arbitrary choice is not a restriction. Therewith :

• In the lamina propria (Fig. 2b-i), the volume fraction of fibrils in the
REV is Φ = Vf /VREV , where VREV = 4`3

0 sin2 θ0 cos θ0 cos ϕ0 sin ϕ0

is the volume of the REV and where Vf = πNnd2
o`

f
0/4 with `

f
0 =∫ `0

0

√
1 + (2πR0

H0
cos( 2π

H0
u))2 du.

• In the vocalis (Fig. 2b-ii), even if collagen and muscle fibers are re-
ferred to the same bar (with the same mean orientation (θi , φi) ),
each family of fibrils is characterized by distinct geometrical param-
eters, labeled with subscript c (resp. m) for collagen (resp. muscular)
fibrils. Thus the volume fraction of fibrils is decomposed as follows :
Φ = Φc + Φm, where Φc and Φm are the volume fractions of collagen
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and myofibrils, respectively, with waveform parameters H0k, R0k and
diameters d0k, k ∈ {c, m}.

2.3. Micro-mechanical behavior of the constitutive materials
Matrix – Independently of the vocal-fold sublayer, the gel-like matrix is
conceived as a soft isotropic, hyperelastic and incompressible material, as
a first reasonable approximation. The corresponding mechanical behavior
is described by a simple neo-Hookean model [96], characterized by a vol-
umetric strain-energy function W = 0.5 µ(1− Φ)(I1 − 3), where µ is the
shear modulus of the matrix, and I1 = tr(B) where B = F · FT (F being the
macroscopic transformation gradient).

Fibrils

Figure 3: (a) Strain-tension curve at the fibril scale. (b) Strain-repulsion force curve mod-
eling fiber-to-fiber interactions.

Tension – As sketched in Fig. 3 (a), when stretched with a strain ε j = ln
`j
`0

,
the mechanics of wavy fibrils is firstly dominated by their progressive un-
folding (regimes (i) and (ii) ), up to a critical strain εc = ln ξ0 once fully
unfolded (`j = `

f
0). Past this threshold, fibrils behave as straight elastic

rods showing a quasi-linear tensile response (regime (iii) ) with a Young
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modulus E f [21, 34]. These two regimes, as well as the transition in be-
tween, are well described by the following constitutive relation [80]:

tj =
πd2

0
4

[
Eeq0ε j +

E f − Eeq0

2

(
ε j +

√(
ε j − ln ξ0

)2
+ α2 −

√
ln2 ξ0 + α2

)]
ei

(1)
where tj is the tension along the fibril j. In this last equation, α is a pa-
rameter that ensures a smooth transition between the two aforementioned
regimes. Additionally, Eeq0 is the initial tangent modulus measured on
(tj , ε j) curves. Its expression can be analytically obtained [83] :

Eeq0 = E f 〈cos β0〉 /[
〈

cos2 β0

〉
+ 16

〈
v2
〉

/d2
0 ] (2)

where 〈·〉 = 1
`0

∫ `0
0 · du, β0 = arctan

(
2π R0

H0
cos 2π

H0
u
)

and
〈
v2〉 = R2

0/2.

In the particular case of the vocalis (see Fig. 2b-ii), note that the ten-
sion force tjk within each type of fibrillar networks (collagen or muscular)
is characterized by distinct fibril’s Young modulus E f k and toe-region pa-
rameter αk.

Compression – The stiffening regime (ii) - (iii) occurring in tension is not
prone to occur during the compression of fibrils. Instead, fibrils should
rather increase their crimping. To account for this tension-compression
asymmetry, from Eq. (1), we simply assumed that fibrils compression fol-
lows the same tendency detailed in tension during regime (i) solely :

tj =
πd2

0
4

Eeq0 ε j ej (3)

Fibers – Between nodes, fiber bundles can be seen as wavy beams of par-
allel fibrils (Fig. 2(b)), whose transverse shear interactions are significantly
weaker than their longitudinal tensile behavior. Therefrom, the tension-
compression force Ti in the fiber is simply expressed (with N = 4) as :

Ti =
n

∑
j=1

tj = n ti =
ΦVREV

πd2
0`

f
0

ti (4)
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In the case of two fibrils families (vocalis), this generic equation comes :

Ti =
VREV

π

(
Φc

d2
0c`0ξ0c

tic +
Φm

d2
0m`0ξ0m

tim

)
(5)

Fiber-to-fiber interactions : steric hindrance – When fibrous networks
are subjected to mechanical loading, the resulting deformation does not
solely arise from the (un)folding of fiber bundles, which may also rotate
and get closer. These motions are physically constrained by steric hin-
drance, so that they generate fiber-to-fiber interactions [26]. These con-
straints are not taken into account in the standard eight chains model [1]
whereas they should alter the REV deformation micro-mechanisms and
thus its macroscale properties. Therefore, in this first approach, we added
repulsive forces between neighbored unconnected nodes of the truss to
take into account such steric interaction forces. More precisely, in the de-
formed configuration C, once the relative distance δq between the two un-
connected nodes C0 and Cq (q 6= 0) exceeds a critical value δc, a repulsive
force is activated to mimic the contact interactions between the concerned
fibers. By periodicity, this comes to mimic the interactions between C0 and
its 5 neighboring nodes, as illustrated in Fig. 2 (a) (see dotted lines). The re-
sulting M = 5 fiber-to-fiber interaction forces are noted Rq and expressed
using the power-law-based function [85, 91] :

Rq = Rq eq = β H(εq) ε
ς
q eq (6)

where εq = ln
(

δq
δc

)
, eq = cqc0/‖cqc0‖, H(.) is the Heaviside function, and

where β and ς are interaction coefficients. Over small deformations and
linear elasticity, ς should be equal to 2 in accordance with the Hertzian
contact theory [85, 91]. In the present study, dealing with hyperelastic
bars and large transformations, ς was not fixed. A typical strain-repulsion
force curve is shown in Fig. 3(b).
In the case of the vocalis, only one coefficient of interaction β and one
length of interaction δc are defined for the two families of fibrils since steric
interactions are considered at the fiber scale solely.

2.4. Macro-mechanical behavior of the overall composites
Using the approach developed for aortic tissues [4, 5], the macroscale

mechanical behavior of the lamina propria and the vocalis tissues can be

10



determined. Regardless of the considered layer, its macroscopic Cauchy
stress tensor σ is expressed as :

σ = −pδ +σm +σ f +σs (7)

where p is the incompressibility pressure, δ the identity tensor, σm and
σ f represent the stress contribution of the matrix and the fibrous network,
respectively, and where the stress contribution σs is induced by steric in-
teractions.

Matrix – Under the previous assumptions, σm can be written as:

σm = F ·
(

∂W
∂F

)T
(8)

Overall fibrous network – Using the homogenization method for trusses
of hyperelastic bars [15], the bar σ f and the steric σs tensors can be ex-
pressed as :

σ f =
1

VREV

N

∑
i=1

Ti ⊗ `iei =
Φ

πd2
0ξ0

N

∑
i=1

tiλi ei ⊗ ei (9)

and

σs =
Φ

πd2
0ξ0

M

∑
q=1

Rqδ∗q eq ⊗ eq (10)

for the lamina propria, with λi = `i
`0

and δ∗q = δq/`0, and:

σ f =
Φc

πd2
0cξ0c

N

∑
i=1

ticλi ei ⊗ ei +
Φm

πd2
0mξ0m

N

∑
i=1

timλi ei ⊗ ei (11)

and

σs =

(
Φc

πd2
0cξ0c

+
Φm

πd2
0mξ0m

)
M

∑
q=1

Rqδ∗q eq ⊗ eq (12)

for the vocalis. Thus, the overall response of the lamina propria (resp. vocalis)
depends on 12 (resp. 18) input parameters to be determined at rest :
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6 (resp. 10) histological parameters : the fibrils diameter d0 (resp. d0k),
their waviness amplitude R0 (resp. R0k), spatial periodicity H0 (resp.
H0k) from which the tortuosity ξ0 (resp. ξ0k) can be estimated, the
fibrils volume fraction Φ (resp. Φk) and initial 3D fiber orientation
(θ0 , ϕ0) .

6 (resp. 8) mechanical parameters : the fibrils Young’s modulus E f (resp.
E f k), the matrix shear modulus µ, the transition parameter α (resp.
αk) and the interaction coefficients β, ς and δc related to the steric
effects.

3. Model identification

The identification of the histo-mechanical parameters of the model was
performed by adjusting its predictions to biomechanical data recently ac-
quired on human vocal-fold tissues [20]. To do so, a representative set of
lamina propria and vocalis sublayers (hereinafter noted as LPi and Vi, i ∈
[1, 2]) was selected from the reported database. Each sample was sequen-
tially subjected to a series of finite-strain and cyclic physiological loadings,
i.e., longitudinal tension, transverse compression, and longitudinal shear.
Only the first load-unload sequence of each test was considered, as dis-
played in Fig. 4 for samples (LP1 , V1), and Supplementary Fig. S1 for
samples (LP2 , V2).

3.1. Simulated mechanical tests
To reproduce each experimental loading path, the REVs were subjected

to the following loading conditions :

• Simple tension along the longitudinal direction ez of the vocal folds,
i.e., with a F = Fxx ex⊗ ex + Fyy ey⊗ ey + Fzz ez⊗ ez and σ = σzz ez⊗
ez. The component Fzz was controlled, whereas Fyy was computed to
ensure the transverse stress-free state condition σxx = σyy = 0. The
component Fxx = 1/FyyFzz was determined by the incompressibility
condition. The hybrid conditions also allowed the pressure p to be
determined.

• A similar procedure was employed for simple compression along the
transverse direction ex.
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• To simulate simple shear in the ”longitudinal” plane (ez, ex), the REVs
were subjected to F = δ+ γzx ez⊗ ex and p = 0, where γzx is the im-
posed shear strain.

Regardless of the loading path, the stress predictions of the model were
expressed using the first Piola-Kirchoff stress tensor P = σ · F−T.

3.2. Optimization procedure
In order to fit macroscale stress-strain responses, the following protocol

was adopted to obtain optimized sets of histo-mechanical parameters :

(i) As far as possible, all input histological parameters were determined
from microstructural analyses collected on the unloaded samples
and observed using 2D standard optical microscopy [20]. Alterna-
tively, the remaining histo-mechanical parameters were initialized
and bounded within a range of physiological values determined from
the literature.

(ii) A least-squared approach was used to minimize the discrepancies
between theoretical and experimental stress tensors. To do so, a non-
linear constraint optimization process was applied, as in [4]. For each
tested sample, this procedure accounts for the three mechanical load-
ing conditions the sample was subjected to. Furthermore, as the pro-
posed model is purely hyperelastic, it cannot reproduce the hystere-
sis observed experimentally [20]. The optimization procedure was
accordingly adjusted to experimental ”neutral” stress-strain curves,
lying in between the loading and unloading paths.

4. Results and discussion

4.1. Histo-mechanical parameters: choice of initial guesses and optimized values
In order to obtain the optimized histological parameters reported in

Tables 1 and 2 for the lamina propria samples and in Tables 3 and 4 for the
vocalis ones, initial guess corridors discussed hereafter were initially used.
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Sample θ0 (◦) ϕ0 (◦) H0 (µm) R0 (µm) d0 (µm) Φ ξ0

LP1 16 83 42 5 0.4 0.46 1.129
LP2 16 83 42.5 5 0.4 0.48 1.126

Table 1: Set of histological parameters identified for lamina propria samples, LPi. Gray-
colored columns refer to quantities computed as a function of the determined histological
parameters.

Sample E f (MPa) µ (Pa) α β (N) ς δc (µm)
LP1 847 330 4.4 10−3 2 10−4 3 66
LP2 847 290 4.3 10−3 4 10−4 3 65.7

Table 2: Set of mechanical parameters identified for lamina propria samples, LPi.

4.1.1. Lamina propria
Collagen volume fraction Φ : According to the literature, Φ is reported

to vary between 0.15 and 0.55 depending on the tissue depth ex [14,
39, 75, 93]. Note that the upper limit may appear underestimated
when analyzing the micrographs of the chosen samples LPi zoomed
in their deepest sublayers (Fig. 1), but it is relevant when averaged
over the whole sample thickness. Within this range of admissible
values, the optimization led to Φ ≈ 0.47 for both LPi samples.

Collagen fibril’s diameter d0 : d0 is known to range between 10 nm (col-
lagen Type III) and 500 nm (Type I) [2, 30, 34, 35, 101]. By impos-
ing these physiological boundaries, the identification procedure con-
ducted to d0 = 400 nm for each sample.

Fibril’s sine waveform parameters (H0 ; R0) : The spatial period and am-
plitude of wavy collagen fibrils at rest were bounded within the cor-
ridors (10–70 µm ; 1–10 µm) respectively [3, 75]. The optimization
process led to similar values for both samples, close to (42 µm ; 5 µm),
implying an initial tortuosity ξ0 of about 1.13.

Network 3D orientation (θ0 ; ϕ0) : The 3D angular distribution of colla-
gen fibrils in the lamina propria was extrapolated from recent 3D CT
images obtained on a single unloaded sample [3] for which (θ0 ; ϕ0) =
(30° ; 39°), showing a pronounced preferred orientation along ez and
a slight orthotropy in the perpendicular plane. To account for the
inter-sample variability, previous values were let free to vary within
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the range (0–50°; 20–90°). The optimization process led to (θ0 ; ϕ0) ≈
(16° ; 83°) for both samples, a nearly 2D network in the plane (ez, ey).
It should be noticed that a quasi-plane network (i.e., θ0 ≤ 35° and ϕ0
≥ 80°) was required by the model to properly reproduce the lamina
propria’s shear response.

Collagen fibril’s Young modulus E f : Although very challenging, the me-
chanical properties of a single collagen (Type I) fibril have already
been investigated using Atomic Force Microscopy, Micro Electro Me-
chanical Systems technology and X-ray diffraction [13, 34, 60, 90,
101]. In aqueous media, the tangent modulus measured in longi-
tudinal tension, E f , is ranging from 1 MPa at small strains up to
an asymptotic value of 1 GPa at finite strains, where a linear stress-
strain regime is achieved. Imposing these boundaries, the optimiza-
tion process yielded to E f ≈ 850 MPa for both LPi samples.

Matrix shear modulus µ : This parameter was first initialized by the shear
modulus of hyaluronic acid µHA ≈ 20-50 Pa [42], i.e., the major and
most abundant component of the ground substance within the lam-
ina propria [17, 29, 27, 28, 36, 38, 40, 42]. In order to account for
other components within the matrix (e.g., cells, elastin), µ was let
free to vary up to 1.5 MPa, i.e., the estimated Young’s modulus of
isolated elastin fibers [100, 101]. The optimization finally yielded to
µ ≈ O(102) Pa for both samples.

Transition parameter α : Initially not fixed, the optimization yielded to
α ≈ O(10−3) for both samples. This order of magnitude was fur-
ther confirmed by comparing the tension tj predicted by the micro-
mechanical model when a fibril (d0, H0, R0, E f ) is stretched to that
predicted by the FE simulation (not shown here) of the stretching of
a corrugated elastic beam with identical properties.

Interaction coefficient β, ς and δc : β, ς and δc were freely adjusted dur-
ing the optimization process, respectively yielding to ≈ O(10−4) N,
≈ 3 and≈ 66 µm for both samples. To our knowledge, contact forces
endured by entangled collagen fibers in soft living tissues are not
documented. This is probably ascribable to experimental limitations.
However, the reaction forces determined on collagen fibrils using
transverse nano-indentation were recently reported [2], showing an
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amplitude of O(102) pN, i.e., of the same order of magnitude of the
predicted reaction forces Rq between fibers during transverse com-
pression (see Fig. 6). It is also worth noting that interaction lengths
δc remain rather close to the fiber’s characteristic ”encumbrance”,
i.e., O(2R0 + D0), where typical values of the collagen fiber bundle
diameter D0 range between 1 and 20 µm [10, 30].

4.1.2. Vocalis

Sample θ0 (◦) ϕ0 (◦) H0k (µm) R0k (µm) d0k (µm) Φk ξ0k

V1c 33 70 28 6.4 0.4 0.10 1.4
V1m 33 70 1 350 130 1 0.70 1.08
V2c 28 67 30 5.5 0.4 0.12 1.28
V2m 28 67 1 620 90 1 0.70 1.03

Table 3: Set of histological parameters identified for vocalis samples, Vi. k ∈ {c, m} la-
bels collagen or muscular fibrils accordingly. Gray-colored columns refer to quantities
computed as a function of the determined histological parameters.

Sample E f k (MPa) µ (Pa) αk β (N) ς δc (µm)
V1c 847 900 4.4 10−3 2.2 10−4 3 367
V1m 0.05 900 1.1 10−2 2.2 10−4 3 367
V2c 847 980 4.4 10−3 7.6 10−5 3 360
V2m 0.05 980 2.7 10−2 7.6 10−5 3 360

Table 4: Set of mechanical parameters identified for vocalis samples Vi. k ∈ {c, m} labels
collagen or muscular fibrils accordingly.

For collagen sheaths, the parameters d0c, E f c, αc were respectively set
equal to the optimized values d0, E f , α previously obtained for the lam-
ina propria (see Tables 1 and 2). Furthermore, the equivalent myofibrils
diameter was set to d0 = 1 µm which is in agreement with measurements
performed on Vi micrographs [20] and with other available data [89, 21,
57, 76, 19, 3].

Volume fractions Φk : Consistently with the values measured for the con-
sidered samples [20], myofibrils’ (resp. collagen fibrils’) volume frac-
tion Φm (resp. Φc) in the vocalis were found within the range 0.60 to
0.80 (resp. 0.05 to 0.15). If little is reported regarding Φm for skeletal
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muscles, our measurements for Φc seem consistent with other val-
ues collected on rabbit tissues [98], varying from 0.10 to 0.25. There-
from, within these ranges of admissible values, the optimization led
to Φm ≈ 0.70 (resp. Φc ≈ 0.10) for both Vi samples.

Muscular and collagen fibril’s sine waveform parameters (H0k ; R0k) : Spatial
period and amplitude of wavy myofibrils (H0m ; R0m) were bounded
within narrow corridors (1 300 – 1 700 µm ; 70 – 140 µm) [3]. The op-
timization procedure led to distinct values for Vi samples, yielding
to tortuosity ξ0 of 1.08 and 1.03 respectively, showing rather straight
fibrils at rest in both cases in accordance with Fig. 1 . Regarding
collagen fibrils’ tortuosity, physiological bounds were kept as set in
lamina propria, which yielded to (H0c ; R0c) ≈ (30 µm ; 6 µm) after
optimization. Thus, the model identification suggests that collagen
fibrils covering each myofibrils bundle in the vocalis at rest are wavier
that those laying in the lamina propria (from 15 up to 23 %). This re-
sult is in agreement with previous micrographs, showing a double
wavelength for the collagen sheath, due to a first muscular waviness
entwined with a second-degree collagen crimping.

Network 3D orientation (θ0 ; ϕ0) : As for the lamina propria-case, initial ori-
entation of the muscular network was determined extrapolating 3D
descriptors from vocalis X-ray images [3], i.e., (θ0 ; ϕ0) ≈ (33° ; 53°).
Final model identification led to (θ0 ; ϕ0) ≈ (30° ; 68°) for both sam-
ples.

Myofibril’s Young modulus E f m : The ”passive” longitudinal Young mod-
ulus of frog and rabbit myofibrils [65, 98] is reported to range from
1 to 35 kPa below 10% strains, rising up to ≈ 60 kPa at finite strains.
Within this range of admissible values, the optimization process yielded
to E f m ≈ 50 kPa for both Vi samples.

Matrix shear modulus µ : Vocalis ground substance composition was as-
sumed to be close to that of the lamina propria. Accordingly, vocalis
matrix shear modulus µ was calibrated on HA data, as detailed for
the lamina propria-case. This conducted to µ ≈ O(103) Pa for both
samples.

Parameter αm : Optimization yielded to αm ≈ O(10−2) for both samples.
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Interaction coefficient β, ς and δc : As for the lamina propria-case, no con-
straints were applied to the three parameters during the model iden-
tification, yielding to values of β ≈ O(10−4) andO(10−5) N for each
Vi sample, ς ≈ 3 and δc ≈ 360 µm for both samples.

4.2. Macro and microscale predictions
A comparison between the model macroscale predictions and corre-

sponding experimental data acquired is illustrated in Fig. 4, for both sub-
layers (LP1 and V1 , results obtained for LP2 and V2 are reported in Fig. S1)
and for three loading modes, i.e., tension, compression, shear. For each
case, the stress-strain response of a homogeneous isotropic neo-hookean
material with the same mechanical properties of the corresponding matrix
was superimposed to better understand the contribution of each phase
to the overall composite behavior. The strain-induced evolution of mi-
croscale descriptors is displayed in Figs. 5 and 6.

• Longitudinal tension – Regarding the lamina propria, the model fairly
well captures its macroscale nonlinear stress-strain response with a
typical J-shape strain-hardening (Fig. 4a). The stress contribution
predicted for the matrix-equivalent medium is negligible compared
to the overall response of the composite sublayer. This emphasizes
the major mechanical role of the collagen fibrous network to the lon-
gitudinal tensile behavior of the lamina propria, which is supported
by predictions of lower-scale mechanisms : as shown in Fig. 5a, colla-
gen fibrils are permanently stretched during the load, and gradually
unfolded. The tensile response is coupled with a noticeable rotation
and progressive alignment towards the load direction ez, so that an-
gles θi decrease down to 10° at εzz ≈ 0.10. These micro-mechanisms
result in large deformations of the REV, highly stretched along ez,
shrunk along ey (e.g., with εyy ≈ −0.60 for LP1 at εzz = 0.10), but
also expanded along ex (e.g., with εxx ≈ 0.50), thereby exhibiting an
auxetic behavior. Conversely, these transverse deformations would
be close to εyy = εxx ≈ −0.05 without any fibers (Φ = 0), i.e., with
an incompressible isotropic material (see Fig. 5a, in green). The pre-
dicted auxeticity of the lamina propria is ascribable to a strong cou-
pling between the high anisotropy of its collagen network and the
incompressibility constraint.
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Figure 4: Macroscopic stress-strain curves of vocal-fold sublayers under multiaxial load-
ings. Experimental data vs. model predictions obtained for lamina propria sample LP1
(left, in red) and vocalis sample V1 (right, in blue) : (a) longitudinal tension, (b) transverse
compression, (c) longitudinal shear.
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Figure 5: Strain-induced evolution of multiscale descriptors predicted for (a) lamina
propria LP1, and (b) vocalis V1 during tension along ez : (top left) macroscopic loading
paths ; (bottom) stereographic projection of orientation vectors ei from initial to final state,
i ∈ [1..4] ; (top right) strain-variation of the fibril chord εi, and corresponding tension ti.
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Figure 6: Strain-induced evolution of multiscale descriptors for lamina propria LP1 during
(a) compression along ex and (b) shear in the plane (ez, ex) : (top left) macroscopic loading
paths; (bottom) stereographic projection of orientation vectors ei from initial to final state,
i ∈ [1..4] ; (top right) strain-variation of the fibril chord εi and corresponding interactions
Rq and tension ti. 21



Concerning the vocalis, the macroscale tensile behavior is similarly
rather well predicted by the model (Fig. 4a), whereas the involved
micro-mechanisms slightly differ due to histo-mechanical discrep-
ancies between the tissues. The less pronounced nonlinear response
of the vocalis is attributable both to a lower initial tortuosity ξ0 and to
the negligible stiffness of muscular fibers compared to that of colla-
gen fibers. Note that Fig. 5b shows the key role played by the sheaths
of collagen fibers surrounding muscle fibers, as recently reported by
Ward et al.[98], in the definition of the tissue passive tensile proper-
ties. Still, a minor volume fraction of collagen leads to lower orders
of magnitude stress levels at the macroscale, compared to those dis-
played by the lamina propria.

• Transverse compression – The nonlinear response and strain harden-
ing of the lamina propria is additionally well reproduced under trans-
verse compression along ex, i.e., applied perpendicularly to the main
fiber orientation. However, in this case, the macroscale nonlinearity
is not inherited from the coupled unfolding/rotation of the collage-
neous network : indeed, Fig. 6a shows that the fibrils’ end-to-ends
are barely stretched (∀ εxx, εi ≈ 0, ti ≈ 0 and ξi ≈ ξ0). Fibers rota-
tions in the (ey, ez) plane are also moderate, e.g., angles θi (resp. ϕi)
of about 5° (resp. 2°) at εxx ≈ −0.25. Auxetic effects along the ez-
direction are still predicted, albeit less marked than in longitudinal
tension. The origin of the nonlinearity exhibited at the tissue scale
should rather be sought in the steric interactions : Fig. 6a shows
non-zero microscopic repulsion forces Rk predicted along the load
direction, while interaction forces in other eq-directions (see Fig. 2)
– here noted Rl and Rm – are not triggered. More generally, among
all the modeling cases considered in the present study, steric inter-
actions were activated under compressive loading exclusively. Fur-
thermore, Fig. 4b displays what macroscale predictions would be
when neglecting steric hindrance effects (β = 0 , see dotted lines),
showing a quasi-linear mechanical behavior very close to that of the
matrix. By contrast with the trends obtained in longitudinal tension,
this highlights the major mechanical contribution of the matrix un-
der compression at low strains, and its strong attenuation once steric
interactions are triggered (for εxx ≈ −0.05). Similar results are ob-
tained for vocalis sample V1, even though a faster fiber recruitment
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and unfolding are predicted in that case.

• Longitudinal shear – Leaving aside the experimental artifacts at the
end of the load (notably for the vocalis) [20], the model yields to
rather good theoretical predictions of both sublayers’ shear responses,
capturing the quasi-constant strain hardening exhibited in Fig. 4c.
The predicted mechanical behavior is very close to that of the sole
matrix. This is ascribable to the mechanisms evidenced at the mi-
croscale and illustrated in Fig. 6b for LP1 : fibers rotation is negligi-
ble, and their unfolding is limited. More specifically, fibers i = {1, 2}
are slightly stretched, while fibers i = {3, 4} are compressed (∀i,
|εi| < 0.02) so that they all remain crimped during the load – the
complete unfolding of the fibers being predicted for γzx ≈ 3.

4.3. Effect of fiber orientation on the monotonic and vibratory properties

Figure 7: (a) Panel of the three REVs in the undeformed configuration C0, proposed to
gauge the effect of 3D fiber orientations on the lamina propria mechanics. (b) Predicted
stress-strain responses obtained for each REV subjected to longitudinal tension, trans-
verse compression and longitudinal shear (from left to right), along with reference experi-
mental data (LP1).

The identified model is used in this section to further investigate the
effect of fiber orientation on the mechanics of the lamina propria, subjected
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both to quasi-static monotonic and vibratory loading. More specifically, a
major focus was drawn to the degree of alignment and symmetry along
the antero-posterior direction ez by studying the mechanics of REVs own-
ing identical histo-mechanical properties (see Tables 1 and 2), albeit dif-
ferent initial fiber orientations (θ0 ; ϕ0). As illustrated in Fig. 7a, three
distinct 3D configurations were selected, differentiated two-by-two by a
single angular parameter: (i) a first reference quasi-planar and highly ori-
ented orthotropic structure REV1, resulting from the previous model iden-
tification (sample LP1); (ii) a second configuration with a high orthotropic
fiber orientation along ez, albeit equilibrated (i.e., with in-plane tetratropy
in the (ex, ey) plane simulating highly oriented fibrous structures but with
transverse isotropy), noted REV2 – this configuration corresponds to LP1
optimal set of histo-mechanical parameters but ϕ0 = 45°; (iii) a third equi-
librated structure with a moderate fiber alignment along ez, noted REV3
– this last configuration is less orientated than REV2 and tends toward
the rotational symmetry of the antero-posterior axis, being a standard as-
sumption to model vocal-fold tissues so far (e.g., [8, 50, 99]).

• Monotonic loading – The predicted stress-strain curves in longitudi-
nal tension, transverse compression and longitudinal shear for the
three structures are compared in Fig. 7b. Globally, strongly oriented
structures exhibit stiffer responses in longitudinal tension, whereas
less oriented configurations offer a higher resistance in longitudinal
shear and transverse compression. In particular, comparing the re-
sponses of REV1 and REV2 allows to estimate the impact of the mi-
crostructural symmetry : despite very close θ0-values, their multi-
axial responses differ drastically. In tension, structure REV1 shows
lower stress levels and tangent moduli : the structure is required
to open along ex before enabling fibers to work in tension along
ez. Conversely, a transverse isotropic structure limits fibers’ rotation
along the load direction, thus leading to an earlier fiber recruitment,
which stiffens the macroscopic tissue response (see Supplementary
Videos V1, V2 and V3). Likewise, the response of REV1 is softer in
compression : the contraction and repulsive forces due to steric hin-
drance along ex being induced after sufficient in-plane rotations of
fibers and global opening of the structure along ey (see Supplemen-
tary Videos). Similar qualitative trends are exhibited in shear, even if
the fiber rotation is negligible in this case : fiber recruitment is faster
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for REV2, inducing higher stress levels at the macroscale (see Supple-
mentary Videos). In conclusion, a rather small change in the initial
orientation of the fibrous network may result in a combination of
nonlinear micro-mechanisms of deformation (e.g., fibers’ rotations,
uncrimping, tension, compression and steric interactions), which in
turn would strongly impact the multiaxial behavior of the lamina pro-
pria. Finally, this study points out that a orthotropic configuration is
more suited than a transverse isotropic structure to reproduce the
physiological loading conditions the lamina propria is subjected to in
vivo.

• Vibratory loading – To better highlight the impact of these fiber-scale
micro-mechanisms on vocal-fold vibrations, a simplified analysis of
the lamina propria vibratory properties is here tackled resorting to
beam theory. Various beam models are used in the literature to semi-
quantitatively describe the vocal-fold vibration [25, 9, 95, 102, 103],
albeit with a poor correlation to the tissue’s microstructural spec-
ifications. The approach proposed by Kelleher et al. [50] is here
adopted using the present micro-mechanical model to compute the
natural frequencies of the lamina propria subjected to transverse vi-
brations. Thus, as a first approximation, the lamina propria is con-
sidered as a pinned-pinned Timoshenko beam of rectangular cross-
section (initial length L0, width w0y , thickness w0x), with incompress-
ible, anisotropic and hyperelastic properties. When subjected to a
tensile strain εzz along the antero-posterior direction ez, the corre-
sponding frequency of the nth mode of vibration of the beam, noted
fn, can be expressed as follows [50] :

fn(εzz) =
n2π2

L2

√
Et I
ζρA

(
1 +

2

n2π2Et I
+

ϑ

ksGt A

)
, (13)

with

ζ(εzz) = 1 + n2π2
(

I
AL2

(
1 +

ϑ

ksGt A

)
+

Et I
ksGt AL2

)
, (14)

and where L = L0 eεzz is the beam length, A = wxwy its cross-section
(wx = w0x eεxx , wy = w0y eεyy), ϑ = A σzz the applied longitudi-
nal tension, ρ the tissue density, ks the Timoshenko’s shear correc-
tion coefficient (ks = 5/6 for a beam of rectangular cross-section)
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Figure 8: Theoretical predictions of lamina propria’s vibratory properties as functions of
the applied tensile strain εzz. (a) Tangent longitudinal modulus Et, as derived from the
predicted nominal stress Pzz (REV1, see inset). (b) Tangent transverse shear moduli Gtxz

and Gtyz (REV1). (c) First three modal frequencies in the (ex, ez)- and (ey, ez)-planes of
vibration (REV1). (d) Fundamental frequency f0 obtained for the three structures REV1,
REV2 and REV3. Blue-shaded area : human voice f0 range.
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and where Et is the longitudinal tangent modulus predicted by the
micro-mechanical model at εzz (see Fig. 8a in the case of REV1). Ac-
counting for the orthotropic properties of the lamina propria, two planes
of vibration (ex , ez) and (ey , ez) were considered. The beam’s sec-
ond moment of inertia I = wx w3

y/12 (resp. wy w3
x/12) and its pre-

dicted tangent shear modulus Gt = Gtxz (resp. Gtyz) were varied ac-
cordingly (see Fig. 8b in the case of REV1). Choosing ρ = 1 040 kg.m−3,
L0 = 17 mm and w0x = w0y = 1.5 mm [20, 50], natural frequencies
of the first three modes of vibration (n = 1..3) were derived for REV1
– the latter being expected to account for 99% of the energy at the
onset of vocal-fold self-oscillation [50]. Corresponding predictions
f1 < f2 < f3 are displayed in Fig. 8c for both planes of vibration in
the case of structure REV1. They drastically increase with the ap-
plied pre-strain εzz, this being mainly ascribed to a stiffening of Et
(see Fig. 8a). Additionally, the marked orthotropy of REV1 induces a
significant difference for f2 and f3 depending on the vibration plane.
Note that f1 is also referred to as f0, it being the expected acoustical
fundamental frequency during phonation to a first approximation.
Comparison of f0 predictions for structures REV1, REV2 and REV3 is
analyzed in Fig. 8d . Regardless of the considered case, a nonlinear
evolution of f0 with the applied strain is observed for all frequen-
cies, in quantitative agreement with typical in vivo f0 data (50 – 1 500
Hz) [12, 53] and with former theoretical works based on the gold-
standard Gasser-Ogden-Holzapfel constitutive model [50, 94]. More
importantly, the induced effect of the initial fiber orientation on f0 is
clearly evidenced.

5. Conclusion

In this study we proposed an idealized description of the 3D fibrous ar-
chitecture of human vocal-fold sublayers, i.e., the lamina propria and the vo-
calis, based on histological evidence. Therefrom, a new 3D micro-mechani-
cal model of vocal-fold tissues was proposed and identified on four exper-
imental targets, i.e., two lamina propria and two vocalis samples. From a sin-
gle set of histo-mechanical parameters per sample, this model is able not
only to reproduce its nonlinear and anisotropic behavior under key physi-
ological loadings (tension, compression, shear), but also to predict the un-
derlying deformation micro-mechanisms at the fiber scale i.e., a complex
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and path-dependent combination of 3D fibers’ rotations, matrix/fibers de-
formations and interactions that were analyzed to clarify the inherited
macroscopic tendencies. More particularly, this study highlights the ma-
jor role of 3D fiber orientation in longitudinal tension, steric hindrance
in transverse compression and matrix contribution in longitudinal shear.
We also showed that a slight change of the histo-mechanical configuration
may drastically alter both the tissue monotonic and vibratory properties,
which in turn would affect vocal folds vibration in vivo.
Further developments are needed to improve the proposed micro-mechanical
model. Although challenging to identify experimentally, the introduction
of microscale time-dependent phenomena would be needed to account for
viscoelastic effects in the vocal-fold behavior, such as its strain-rate sensi-
tivity and the stress hysteretic response typically measured during cyclic
loading. This work is planned. The mechanical contribution of ”active”
myofibrils should be also modeled, so as to better understand the relative
contribution of the vocalis and the lamina propria in the f0 regulation. Fi-
nally, damage mechanisms could be studied by modifying the constitutive
laws at the fiber scale.
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L. [2016], ‘Reversible dilatancy in entangled single-wire materials’,
Nature Materials 15(1), 72–77.

[87] Rohlfs, A. K., Goodyer, E., Clauditz, T., Hess, M., Kob, M., Koops,
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Figure 9: Supplementary Fig S1. Macroscopic stress-strain responses of vocal-fold sub-
layers under multiaxial loadings. Experimental data vs. model predictions obtained for
lamina propria sample LP2 (left, in red) and vocalis sample V2 (right, in blue) : (a) longitu-
dinal tension, (b) transverse compression, (c) longitudinal shear.

40


