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Gif-sur-Yvette, France, E-mail: clement.gauchy@cea.fr, cyril.feau@cea.fr

2 CMAP, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex,
France, E-mail: josselin.garnier@polytechnique.edu

Résumé. Les études probabilistes de sûreté sismique consistent à évaluer les proba-
bilités de défaillance de structures mécaniques soumises à des excitations sismiques. Ces
études nécessitent l’estimation de courbes de fragilité sismique, qui sont la probabilité de
défaillance de la structure conditionnellement à une mesure d’intensité du signal sismique.
Cependant, leur estimation requiert de nombreuses expériences numériques qui peuvent
être très coûteuses en temps de calcul, ce qui rend l’estimation par une méthode Monte
Carlo inappropriée. Nous proposons dans ce papier de construire un algorithme de plani-
fication séquentielle d’expériences en supposant un a priori de processus Gaussien sur la
réponse du code de calcul mécanique.

Mots-clés. processus Gaussien, planification séquentielle, courbes de fragilité.

Abstract. Seismic probabilistic risk assessment studies consist in evaluating the prob-
abilities of failure of mechanical structures when submitted to seismic ground motions.
These studies are often concentrated on fragility curve estimation. The fragility curve
is the probability of failure of the structure conditionally to a seismic intensity measure.
However, its estimation requires computer experiments involving huge computation time.
Such a computational burden makes crude Monte Carlo methods untractable, fragility
curves estimation must then be economical in terms of sample size. We propose an al-
gorithm of sequential planning of experiments by supposing a Gaussian process prior on
the output of the mechanical computer model.

Keywords. Gaussian process, sequential planning of experiments, fragility curves.

1 Introduction

The estimation of so-called fragility curves is a crucial part of seismic probabilistic risk
assessment (SPRA) or probabilistic based earthquake engineering (PBEE). The fragility
curve is a way to evaluate structural reliability using a sample of seismic ground motions,
which are characterized by their intensity measure (IM) (e.g maximum acceleration of the
seimic signal given a time frame). It consists in the conditional probability P(Y > C|IM =
a) that a specific mechanical demand Y exceeds a threshold of acceptable structural
behaviour C for a given seismic intensity of value a. The mechanical demand Y often
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needs time consuming computation using complex computer codes, making the estimation
of fragility curves intractable. This article proposes a Bayesian algorithm of sequential
design of experiments, inspired from Bayesian algorithms of the same kind for probability
of failure estimation [1] or quantile estimation [2]. The proposed Bayesian algorithm for
sequential design of experiments is presented in Section 2. The Section 3 details the
practical implementation of the algorithm. Finally, Section 4 presents the performance
of the algorithm on a real industrial application concerning a simplified part of a piping
system of a French Pressurized Water Reactor.

2 Bayesian decision theory framework

Let X be a compact set of R and X an X -valued random variable, in SPRA studies
X = log IM. We define the following nonparametric regression model linking the seismic
intensity x ∈ X to the log structural mechanical demand y(x):

y(x) = g(x) + ε , (1)

where ε is a Gaussian homoscedastic noise such that ε ∼ N (0, σ2
ε). The usual regression

model used in SPRA studies is the log linear model [3], we keep the homoscedasticity
assumption but we propose a non-parametric regression function g instead of a linear
regression. The problem to be considered here is to estimate the fragility curve expressed
as

Ψ(x; g) = Pε (y(X) > C|X = x) = Φ

(
g(x)− C

σε

)
, (2)

which corresponds to the probability of exceedance of the level C given an input pa-
rameter x. The noise variance σ2

ε is supposed known while g is unknown. Based on
a sequential budget of evaluation points DN = (Xi)1≤i≤N with corresponding observed

values (y(Xi))1≤i≤N , it is possible to provide an estimator Ψ̂N of Ψ. After choosing an

estimator Ψ̂N , one has to focus on the good choices of a sequential strategy of evaluation
(Xi)1≤i≤N . For that matter, we follow the lines of [1] to propose a Bayesian decision-
theoretic framework to solve the decision problem of choosing DN . Given a loss function
ℓ : R × R → R+, we measure the quality of the design of experiments DN by the ap-
proximation error e(DN , g) = ℓ(Ψ, Ψ̂N). In this paper we consider the Integrated Squared
Error (ISE):

e(DN , g) =

∫
X
(Ψ(t; g)− Ψ̂N(t))

2η(t)dt , (3)

where η is the pdf of a probability measure with respect to the Lebesgue measure on X . We
consider a Bayesian framework to model the uncertainty about the regression function
g, we assume that g is a realization of a real-valued Gaussian process G defined on a
probability space (Ω,B,P0). We define the random observation tainted by the Gaussian
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process uncertainty
Y (x) = G(x) + ε . (4)

Denote by Fn the σ-algebra generated by (Xi, Y (Xi))1≤i≤n for 1 ≤ n ≤ N . Given a

Gaussian process G and a set of evaluation points DN , the optimal estimator Ψ̂n that

minimizes EP0

[∫
X (Ψ(t;G)− Ψ̂n(t))

2η(t)dt
∣∣∣Fn

]
among the Fn - measurable estimators is:

Ψ̂n(t) = EP0

[
Ψ(t;G)

∣∣∣Fn

]
= Φ

(
Ĝn(t)− C

σn(t)

)
, (5)

where σn(x)
2 = σ̂n(x)

2 + σ2
ε and EP0 is the expectation with respect to P0, given that

(G(t)|Fn) ∼ N (Ĝn(t), σ̂n(t)
2) using kriging equations. We choose the optimal strategy

D∗
N = (X∗

i )1≤i≤N as the minimizer of the Bayes risk :

D∗
N = argmin

DN∈XN

EP0 [e(DN , G)] , (6)

The optimal strategy can be formally obtained. We defineRN = EP0

[∫
X (Ψ(t;G)− Ψ̂N(t))

2η(t)dt
∣∣∣FN

]
the terminal risk and using backward induction:

Rn = min
x∈X

EP0 [Rn+1|Xn+1 = x,Fn] , (7)

X∗
n+1 = argmin

x∈X
EP0 [Rn+1|Xn+1 = x,Fn] , (8)

for 0 ≤ n ≤ N − 1. However, the optimal evaluation points for a finite horizon N suffers
from the curse of dimensionality. So, in the rest of the paper, we build a sub-optimal set
of evaluation points by resolving the optimization problem (8) for N = 1. We thus define
a Fn-measurable sampling criterion Jn(x):

Jn(x) = EP0

[∫
X
(Ψ(t;G)− Ψ̂n+1(t))

2η(t)dt
∣∣∣Xn+1 = x,Fn

]
. (9)

We define the Stepwise Uncertainty Reduction (SUR) - based set of evaluation points
DSUR

N = (Xi)1≤i≤N such that for 1 ≤ n ≤ N − 1:

XSUR
n+1 = argmin

x∈X
Jn(x) . (10)
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3 Practical computation of the sampling criterion

This section is devoted to derive a numerical approximation of the sampling criterion
Jn(x) defined in Equation 9. First of all remark that

Jn(x) =

∫
X
EP0

[
EP0

[(
Ψ(t;G)− Ψ̂n+1(t)

)2 ∣∣∣Fn+1

] ∣∣∣Xn+1 = x,Fn

]
η(t)dt

=

∫
X
EP0

[
EP0

[
Ψ(t;G)2 − Ψ̂n+1(t)

2
∣∣∣Fn+1

] ∣∣∣Xn+1 = x,Fn

]
η(t)dt

=

∫
X
EP0

[
Ψ(t;G)2

∣∣∣Xn+1 = x,Fn

]
− EP0

[
Ψ̂n+1(t)

2
∣∣∣Xn+1 = x,Fn

]
η(t)dt

We can now precise the two expectations inside the integrands: For the first term, we
have

EP0

[
Ψ(t;G)2

∣∣∣Xn+1 = x,Fn

]
= EZ∼N (Ĝn(t),σ̂n(t)2)

[
Φ

(
Z − C

σε

)2
]

(11)

For the second term, we have

EP0

[
Ψ̂n+1(t)

2
∣∣∣Xn+1 = x,Fn

]
= EZ∼N (Ĝn(x),σ̂n(x)2)

Φ(Ĝn+1(t;Z)− C

σn+1(t)

)2
 (12)

where Ĝn+1(t;Z) and σ̂n+1(t)
2 are respectively the conditional mean and variance of the

GP G knowing the observations (Xi, Y (Xi))1≤i≤n and the virtual output Z at point

Xn+1 = x. Remark that Ĝn+1 is an affine function in Z and σ̂n+1 depends only on
(Xi)1≤i≤n+1. The two expectations can be approximated using Gauss-Hermite quadrature
(for the heat kernel e−x2

) with Q points with quadrature points (uq)1≤q≤Q and quadrature
weights (ωq)1≤i≤Q. The integral with respect to η can be approximated by a Riemann
sum with regular grid (ti)1≤i≤T of interval length ∆T (Gaussian quadrature could be used
as well):

 Jn(x) ≈ 1√
π

T∑
i=1

Q∑
q=1

∆Tωq

(
Φ
(

zn,q(ti)−C

σε

)2
− Φ

(
Ĝn+1(ti;zn,q(x))−C

σn+1(ti)

)2)
η(ti)

zn,q(x) = Ĝn(x) + σ̂n(x)uq

√
2

(13)

4 Industrial application: safety water pipe of a French

Pressurized Reactor

The following test case corresponds to a piping system which is a simplified part of a
secondary line of a French Pressurized Water Reactor [4]. The structural mechanical
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demand in this case is the out-of-plane rotation R of a specific elbow. A single degree
of freedom nonlinear oscillator is calibrated on the Finite Element Model of the pipe
implemented in CAST3M [5] and is used to validate the proposed sequential planning of
experiments. The synthetic seismic signals dataset – developed and used in [6] – is filtered
by a fictitious linear single-mode building at 5 Hz and damped at 2 %. The fragility curve
of the piping system is here expressed as a function of the pseudo-spectral acceleration
of the initial set of the synthetic signals (i.e not filtered signals), calculated at 5 Hz (first
eigenfrequency of the pipe) and 1 % damping ratio. The rotation threshold considered
here is C = 1.8◦. This is the 90 %-level quantile of the full dataset of simulations
based on 105 synthetic seismic ground motions. The Gaussian process used has a zero
mean function and stationary Matèrn 5/2 covariance function. The performance of the

proposed sequential planning strategy is evaluated by comparing the estimator Ψ̂n with a
non-parametric estimation of the fragility curve Ψref with the full dataset of 105 synthetic
signals (see e.g. [6]). We compute the bias bn and the posterior variance vn of a design
Dn by:

bn =

∫
(Ψ̂n(t)−Ψref(t))

2η(t)dt , vn = EP0

[∫
(Ψ(t;G)− Ψ̂n(t))

2η(t)dt
∣∣∣Fn

]
. (14)

For this case we choose η(t) = 1[a,b](t) (a = 3, 1 m/s2, b = 31, 2 m/s2). The SUR
procedure starts by choosing 10 synthetic seismic ground motions in a stratified manner,
by dividing the full dataset into 10 partitions of same size using the (j/10)1≤j≤9-level
quantiles of the seismic intensity measure. They are the first points of the design set and
are used to optimize the Gaussian process hyperparameters (including σε). After that, we
propose a brute force algorithm to solve the optimization problem (10). A set of candidate
seismic signals with log intensity measure (Ui)1≤i≤ m (m = 200) are chosen in the dataset
of 105 synthetic seismic ground motions. The candidate set is built by using the same
partition into 10 subdomains as for initialization. 20 seismic signals are chosen at random
for each subdomain. We then evaluate the sampling criterion using Eq. (13) for each
seismic signal in the set of candidates. We then take the seismic signal that minimizes
the criterion i∗ = argmin1≤i≤ m Jn−1(Ui), Xn = Ui∗ and then we add Xn to our design
Dn of size n and compute the log mechanical demand y(Xn) using our computer code.
The Gaussian process hyperparameters are optimized every 10 iterations.

Figure 1 compares the biases bn and variances vn as a function of the training size n
for the SUR strategy and for 100 replications of Monte-Carlo sampling in the 105-sized
dataset of seismic signals. The SUR strategy offers good performance in terms of bias
between the estimated fragility curve Ψ̂n and the reference fragility curve Ψref and is
equivalent to Monte-Carlo sampling in terms of variance. These results motivate further
research in this topic.

Acknowledgments: Clément Gauchy would like to thank Vincent Chabridon and Elias Fekhari for
fruitful discussions about Bayesian decision theory.
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Figure 1: Comparison of the bias bn and variance vn (in log) between Monte-Carlo sam-
pling and our SUR strategy. The green error bars correspond to the interval between the
10% and 90% level quantile of 100 replications of Monte Carlo sampling.
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