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NETWORK TORUS CANARDS AND THEIR MEAN-FIELD LIMITS*

EMRE BASPINAR', DANIELE AVITABILE!, AND MATHIEU DESROCHES$

Abstract. We show that during the transition from and to elliptic burstings both classical and
mized-type torus canards appear in a Wilson-Cowan type neuronal network model, as well as in its
corresponding mean-field framework. We show numerically the overlap between the network and
mean-field dynamics. We comment on that mixed-type torus canards result from the nonsymmetric
fast subsystem. This nonsymmetricity provides the dynamics linked to an associated canonical form
presented in [7], and it occurs mainly due to the three-timescale nature of the Wilson-Cowan type
models.

1. Introduction. Many biological systems express complex oscillatory dynamics
such as periodic, quasi-periodic, chaotic spiking and bursting oscillations [44], as well
as mixed-mode oscillations [19]. Our interest in this work is on elliptic bursting
oscillations and slow-fast structures, in particular on torus canards [38] appearing at
the transition from elliptic bursting regimes to other stable regimes such as tonic firing.
We observe such bursting patterns in many experimental recordings, for example in
the behavior of dorsal root ganglion neurons [34], in reticular thalamic neurons [43]
or in the sepia’s giant axon [5].

The simplest observable biological rhythm is tonic firing: cells operating in this
regime respond to an input by firing periodic action potentials, as seen in the top
row of Figure 1. Another fundamental neuronal regime is bursting, which refers to an
alternation between phases of low activity (called silent or quiescent) and phases of
high activity (called active or burst) consisting of a succession of fast oscillations or
action potentials; see the bottom row of Figure 1.

Mapping the transition between bursting and tonic spiking regimes, which may
carry different information content [39,48,53], is a key question in neuroscience, which
has partially been addressed in single-cell recordings [2,41,58]. In models of single
cells the transition may be sharp, and organised by special solutions termed torus
canards, which we now review briefly.

The theoretical setup for studying complex temporal waveforms of bursting type
is based on slow-fast dynamical systems of the following type:

u/ :f(u7 Z’p7 8)7
Z/ :€g(u7 Z7p7 E:)7

(1.1)

where prime denotes a differentiation with respect to time, and where u € R, v € R™
are the fast and slow variables, respectively. The time-scale separation is marked by
the presence of the small parameter 0 < € < 1, and allows to study the system in terms
of slow and fast subsystems, approximating the silent and active phases of a neuronal
regime, respectively. Finally, the vector p represents other control parameters.
Within this setup, bursting types have been classified by several authors. A first
classification of bursting behaviour was proposed by Rinzel [44] and later extended
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Fic. 1. Transition from tonic spiking (top row) to elliptic bursting (bottom row) via torus
canards (central row). In each row: (left) 8D phase space view; (middle) 2D projection onto; (right)
time profile of a fast variable.

by Izhikevich [31]. The classification is based on bifurcations of the fast subsystem,
that is the e = 0 limit of (1.1): different bursting types are defined depending on
the bifurcation causing the onset of the burst, and on the bifurcation causing the
termination of the burst. Generically, bursting occurs when n > 2 and m > 1.

According to Izhikevich’s classification, the fast subsystem bifurcations involved
in elliptic bursting are as follows: a subcritical Hopf bifurcation, which triggers the
onset of burst, and a saddle-node of limit cycles (SLC), which terminates the burst.
This scenario is sketched in the bottom row of Figure 1. Owing to the presence of the
SLC in the fast subsystem, elliptic bursting supports torus canards. One geometrical
property of these torus canard solutions is that their fast oscillations do not stop
near the SLC of the fast subystem, but instead continue along the associated branch
of unstable limit cycles. This feature justifies the term “canard” [9, 23] because the
fast oscillations follow a repelling object of the fast subsystem; see the middle row
in Figure 1. Small variations in parameter space lead from near bursting solutions
of this type to amplitude-modulated tonic spiking solutions which: (i) follow the
branch of unstable limit cycles of the fast subsystem (¢ = 0), and (ii) wind around an
invariant torus of the full system (¢ # 0). The torus originates at a Neimark-Sacker
bifurcation of the full system, located in the phase space at a small distance from the
SLC bifurcation.

These two salient features justify the name “torus canard”, which were first pre-
dicted without a dedicated analysis in a normal form of an elliptic burster by Izhike-
vich [33]. They were later investigated as a canard phenomenon in computational
studies of biophysical models [10, 38], as well as analysed theoretically in idealised
models [8,46,57,61]. A recent work sheds new light onto the role of the underlying
torus bifurcation [35].

The role and structure of torus canards has become clearer in recent years, albeit
several outstanding theoretical questions remain. This is in stark contrast with their



NETWORK TORUS CANARDS AND THEIR MEAN-FIELD LIMITS 3

existence at network level, which is by and large unexplored. A nontrivial question
is the effect of noise on these canard structures, which are evanescent already at a
single-cell level, and which could be destroyed by stochastic fluctuations. The effect
of noise on canard-type dynamics has been analysed mostly at single-cell level, and in
cases where the canard occurs on the slow part of the dynamics (for instance Van der
Pol and FitzHugh-Nagumo models). Torus canard segments, however, occur during
the fast phase of the dynamics, which make them more sensitive to perturbation, and
they have not been studied in noisy single-cell models, let alone in neuronal network
and mean-field models.

In the present article we introduce torus canards in a network of stochastic slow-
fast oscillators. A new family of torus canards, mized-type torus canards were found
and described in [7] via a canonical framework of elliptic bursting mean-field neuronal
models. We provide here both classical and mixed-type torus canards at network
level for the first time in the literature. We show the overlap between the network
and mean-field torus canards by using bifurcation diagrams, phase space and the
patterns in the time domain.

We will first see the microscopic model description based on the single-cell equa-
tions. Then we will explain the macroscopic model description, which is the mean-field
layout obtained from the single-cell equations at population level. Finally, we will see
our results showing the new types of torus canards as well as the comparison between
network and mean-field patterns.

up

Up

0 z
—5.6 —5.2

4.5

Fi1G. 2. Top left: Fast subsystem bifurcation diagram of (3.1). Here HB, PD and TR refer to
Hopf bifurcation, periodic doubling and torus bifurcation, respectively. Top right: Mean field pattern
from region D, and the corresponding variance tube of the network oscillators. Middle and bottom:
Representative patterns of regions B, k = 1.7 and D, k = 2.9.
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2. Microscopic framework and network equations. We consider a network
of n. excitatory and n; inhibitory coupled Wilson-Cowan cells with instantaneous
firing rates ul, i = 1,..., e, u!, j =1,...,n;. Henceforth, we will adopt the compact
notation N, = {1,...,n4}, @ € {e,i}, and collect rates into the vectors u,, o € {e,i}
with components

(uq)i = ul), i € Ng, a € {e,i}.

The microscopic model, adapted from a previous study [56], is specified by the fol-
lowing set of 2(ne + n;) + 1 stochastic differential equations (SDEs)

7—edue = [ — Ue + fe(Jee<ue> + Jei<ui> + 2o + ge)}dta
midui = [ — ui + fi(Jie(ue) + Jii(ws) + 2 + &) ] dt,
(2.1) nidze = [k — (ue) — (u;)]dt,
dée = =0 dt + oo AW,
d& = —0;& dt + o3 dW;,
where u4(0), £, (0)i.i.d.N(0, %) for each cell and «. Here z, z; € R are scalar adap-
tation currents [16,31], common to all neurons within the excitatory and inhibitory
populations, respectively. The inhibitory adaptation current z; is constant, for sim-

plicity, while z., is time dependent and its evolution is coupled to the excitatory and
inhibitory mean firing rates, defined by the multivariate real-valued function

(2.2) (-):R" 5 R, <ua>:nizui.
@ ieNy

Neurons are coupled through the coefficients Jn.g, a, 5 € {e,i}. In addition to
the adaption current, each neuron receives an impinging stochastic current, which
is modeled via an Ornstein-Uhlenbeck process with prescribed covariance o, and
drift coefficient 6,. The stochastic currents and corresponding independent Brownian
motions are also collected in vectors with components (£4)i, (Wa )i, with (i,a) €
N, x {e, i}, respectively. The microscopic model is completed with a choice of current-
to-rate transforms, which are expressed in terms of the sigmoidal function S: R> — R,

(2.3) S(xz, p,v,0,0) = g [1 + erf (20”>} ,

\/2(402 + v20?)
as the vector-valued functions f,: R® — R™,
(2.4) (fa(y))l = S(Yi, PasVasba,0).  (i,a) € Ny x {e,i}.

In (2.1), solution &,(t) with a € {e,i} is a Gaussian process with mean and
variance

Ega(t) =e e ]Ega(o)v
2.5 — - [e%
(2 v €a(t) = & var g (1) + 00 e

respectively. Moreover, &, (¢t + h), with h denoting a small time step, can be written
as

(2.6) Calt+h) =e Mg (t) +n(t),
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Fic. 3. Torus canards in network and mean field settings, both in phase plane superimposed
onto the fast subsystem bifurcation diagram and in time domain. Top and bottom rows in each panel
correspond to mean field and network settings, respectively. a) headless, k = 2.536083, b) with head,
k = 2.60988, c): headless mized-type, k = 3.60118, and d): mized-type with head, k = 3.60110.

where 7(t)i.i.d.N (0, %(1—6_2}10”)) for each time ¢ € (0, 00) [4]. Therefore, the choice

of £,(0) in (2.1) allows to write &,(¢)i.i.d.N(0, %) and generate £(t) directly from
the distribution independently for each time ¢ € [0, 00).

Henceforth we will refer to (2.1)—(2.4), with suitable choices of the control pa-
rameters, as the microscopic model. We mention in passing that 7o, o € {e,i,r} set
the characteristic timescales of the excitatory and inhibitory population, and the one

of the inhibitory recovery variable, respectively.

3. Macroscopic description. The microscopic model comprises n, = ne + 14
neurons, and admits an exact mean-field limit. In this limit one considers n, — oo,
a € {e,i}, so that n, — oo and ne/np — 6o € (0, 1), where d, are the non-vanishing
mean-field population ratios [56].

To make the statement more precise, we start by observing that the stochastic
currents (£, ); are decoupled from other state variables. Henceforth we assume

2
Yo

(€a):(0)i.i.d.N(0, 5,

), (1,) € N, x {e, i},
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which implies
2
O-CK

(Ea)i(DiEAN(0,

), (i,a) € N, x {e, i},
for all ¢ € [0, 00).

The independence and identical distribution of the microscopic input currents
is a direct consequence of the modelling assumptions, as they evolve according to
decoupled Ornstein-Uhlenbeck processes. Notably, a similar property holds for the
other state variables in the model, as n,, — oo: in this limit, if the initial conditions are
independent, then the stochastic processes (ue);, (1), ¢ € Ny, and z, are independent
and converge in law towards stochastic processes ug®, ug®, z25°, respectively.

The stochastic processes ug®, ui® 2° satisfy a system of 3 implicit SDEs, which
we omit here for brevity. These evolution equations are a stepping stone to derive a
macroscopic description of the model: using the implicit SDEs, it can be shown [55,56]

that the expectations
U =Eu>, Ui=Eu>*, Z,=Ez>,
satisfy the following system of ODEs

TeUe/ = —Ue + Fe(JeeUe =+ JeiUi —+ Ze)’
(3.1) nU] = Ui + Fi(JieUe + JuUi + 21),
TrZé :]f_U'e—U'i7

where
F,: R—> R, Fy(x)=58(x,pasVa,ba,0a), «€{ei}.

In other words, there exists a macroscopic description of the network model, which
closes at the level of the expectations of the mean-field variables, that is, the system
given in (3.1) is exact. The macroscopic model (3.1) is a set of 3 ODEs, and the
noise levels of the underlying, microscopic input currents occur as parameters of the
nonlinear functions Fy,.

4. Results. Classical torus canards, both headless and with head, were shown
previously [32,35,61]. Here we find for the first time classical torus canards in a
stochastic network of elliptic bursters as well as in their mean-field limit; see Figure 3
a) and b). Moreover, we have recently identified a new torus scenario, namely headless
mized-type torus canards and mized-type torus canards with head, as well as given
their complete characterization using a generalized normal form [7] corresponding to
a canonical elliptic bursting system supporting all types of torus canards. Here we
provide all these types of torus canards, including mixed-type ones, at network level;
see Figure 3 ¢) and d).

The bifurcation diagram of the fast subsystem associated with (3.1) is presented
in Figure 2, with k as the control parameter. We divide the main branch of limit
cycles into 5 regions, each region is highlighted by vertical bands and representative
patterns associated with regions B and D are given in the middle and bottom panel,
respectively. When increasing k from 1 onward, system (3.1) undergoes a first super-
critical Hopf bifurcation (HB1). As k increases through region A, stable limit cycles
that correspond to tonic population spikes in the time domain approach a first period-
doubling bifurcation (PD1) through which they lose their stability. Increasing k past
PD1, the system undergoes further PDs forming a cascade route to chaos with irreg-
ular population spikes in the time domain. Beyond this chaotic regime, the system
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develops mixed-mode oscillations and then arrives at a stable tonic spiking regime
via PD2. The system’s behavior is symmetric with respect to k values between PD1
and PD2. We provide two representative patterns on the phase plane and in the time
domain in Figure 2, where the mean field and network results are superimposed.

The stable tonic spiking regime loses its stability via the Neimark Sacker bifurca-
tion TR1, around which classical torus canards are found [32,35,61]; see Figure 3 a)
and b). Mixed-type torus canards disappear for larger k values and periodic elliptic
bursting oscillations emerge. The elliptic bursting oscillations persist until a second
torus bifurcation (TR2) as k increases. At the vicinity of TR2, the elliptic bursting
oscillations become degenerate and mixed-type torus canards appear in region E; see
Figure 3 ¢) and d). In Figure 3, we compare torus canards from both the network
and its mean-field limit.

Occurrence of the mixed-type torus canards requires that (slow) Z. nullcline in-
tersects the critical manifold at a single point for each k value. This condition is
fulfilled in Leidenator [7], which is the associated canonical form to (3.1), by a per-
turbative term in the slow variable equation. This requirement in (3.1) is satisfied by
the nonsymmetricity of the fast variables resulting from: 1) 7. # 7; (albeit close to
each other), 2) Z. is dynamical whereas z; is constant. Those two properties play the
analogous role of the aforementioned perturbative term.

5. Conclusion. In this work, we found for the first time classical torus ca-
nards [32,35,61] at network level. Furthermore, we also found in the same network,
given by (2.1), a new class of torus canards called mixed-type torus canards and ana-
lysed them at mean-field level in a companion article [7]. We compared both classical
and mixed-type torus canards obtained from the mean-field setting (3.1) with those
obtained from the network setting (2.1). Those results show numerically that the
torus canard phenomena observed in the relevant canonical form Leidenator [7], in
both classical sense and mixed-type sense, can be produced by real neural models at
both network and mean-field levels.

This work has multiple potential follow-ups, it can for instance be extended in
following two directions. First, the above results are somewhat influenced by the fact
that the mean-field is not symmetric [7]. If one rescues the symmetry, how it can
affect network behaviour is an interesting question for future work. Second, network
torus canards might be present in other types of bursting networks. Which network
models give rise to classical and mixed-type torus canards, and what role do these
structures play at network level, in link e.g. with synchronisation properties of the
network, is also an interesting open question.
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