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Michel Duprez�,Vanessa Lleras�, Alexei Lozinski§

November 2, 2022

Abstract

We present an immersed boundary method to simulate the creeping motion of a rigid
particle in a fluid described by the Stokes equations discretized thanks to a finite element
strategy on unfitted meshes, called ϕ-FEM, that uses the description of the solid with a level-
set function. One of the advantages of our method is the use of standard finite element spaces
and classical integration tools, while maintaining the optimal convergence (theoretically in
the H1 norm for the velocity and L2 for pressure; numerically also in the L2 norm for the
velocity).

1 Introduction

The main goal of the present article is to demonstrate that the recently proposed ϕ-FEM method-
ology [12, 11, 10] is suitable for numerical simulation of incompressible viscous fluid flow past
moving rigid bodies. This approach allows us to use simple (Cartesian) computational meshes,
not evolving in time and not fitted to the moving rigid bodies, while achieving the optimal accu-
racy with classical finite element (FE) spaces of any order and performing the usual numerical
integration on the whole mesh cells and facets, allowing for the use of standard FEM libraries for
the implementation. We consider here only the creeping motion regime (zero Reynolds number),
neglecting all the inertial terms in the equation governing both the fluid and the rigid bodies.

Numerical simulations of flows around moving rigid or elastic structures using immobile simple
grids is a popular approach in, for instance, biomechanics, starting from the work of Peskin [22].
Different approaches have emerged since then, such as the Immersed Boundary method [18, 21],
the Fictitious Domain method [15, 16], the penalty approximation [2], etc. All these classical
methods suffer from poor accuracy due to the necessity to approximate the singularities near the
fluid-solid interfaces which arise as the artifact of extending the fluid velocity field inside the solid
domain. More recently, several optimally convergent fictitious domain-type methods have been
proposed for the Stokes equations, which can also be used to simulate the fluid-solid motions.
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We cite in particular [8, 20, 17] following the CutFEM paradigm, and [1, 14] following the X-
FEM paradigm. The common feature of all these methods is that they discretize the variational
formulation of the Stokes equation on the physical fluid domain Ω using the FE spaces defined
on the background mesh occupying a domain Ωh, slightly larger than Ω. On the one hand,
this permits to avoid a non-smooth extension of the solution outside its natural domain and to
retrieve the optimal accuracy of the employed finite elements. On the other hand, this introduces
integrals on the cut cells into the FE scheme, i.e. the numerical integration should be performed
on the portions of mesh cells, cut by the fluid-solid interface, making the methods difficult to
implement.

The ϕ-FEM approach, which is the subject of the present paper, aims at combining the
advantages of both classical Immersed Boundary/Fictitious Domain methods, and more recent
CutFEM/X-FEM. Similarly to the former, ϕ-FEM does not need non-standard numerical inte-
gration on the cut cells; similarly to the latter, ϕ-FEM achieves the optimal accuracy of the finite
elements employed. The general procedure of ϕ-FEM can be summarized as follows:

� Supposing that the physical domain Ω is given by a level set function Ω = {ϕ < 0} and
that it is embedded into a simple background mesh, introduce the active computational
mesh Th by getting rid of the mesh cells lying completely outside Ω. The active mesh thus
occupies a domain Ωh ⊃ Ω, cf. Fig. 1, as in CutFEM/X-FEM.

� Extend the governing equations from Ω to Ωh and write down a formal variational formu-
lation on Ωh without taking into account the boundary conditions on Γ (the relevant part
of the boundary of Ω).

� Impose the boundary conditions on Γ using an appropriate ansatz or some additional
variables, explicitly involving the level set ϕ which provides the link to the actual boundary.
For instance, the homogeneous Dirichlet boundary conditions (u = 0 on Γ) can be imposed
by the ansatz u = ϕw thus reformulating the problem in terms of the new unknown w.

� Add appropriate stabilization, typically combining the ghost penalty [7] with a least square
imposition of the governing equation on the mesh cells intersected by Γ, to guarantee
coerciveness/stability on the discrete level.

This program has been successfully carried out for elliptic scalar PDEs with Dirichlet boundary
conditions in [12] and for Neumann boundary conditions in [11]. Its feasibility is also demon-
strated in [10] for the linear elasticity with mixed boundary conditions including the cases of
internal interfaces between different materials or cracks, and for the heat equation. However,
the adaptation to the equations governing the fluid flow around the moving particles is not
straightforward. In particular, the following challenges are dealt with in the present article:

� The discrete inf-sup stability theory should be adapted to the case of a non-standard
variational formulation of the Stokes equations posed on Ωh rather than on Ω, and lacking
the saddle-point structure. We shall show that this is possible by adapting the ghost
penalty, which should be taken slightly more complicated than in the case of scalar elliptic
equations [12]. We shall do it here for Taylor-Hood finite elements of any order, but similar
ideas should be also applicable to other classical inf-sup stable FE spaces.

� The motion equations for the solid particles involve the forces exerted on them by the
surrounding fluid. These are defined through the integrals of some functions of fluid velocity
and pressure on the particle boundary. However, the whole point of ϕ-FEM is to avoid
such integrals. Indeed, the particle boundary is not resolved by the mesh, and our goal
is to provide a method that necessitates the integration on the whole mesh cells or facets
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Figure 1: Left: an example of geometry for the fluid Ω with a solid S inside; Right: the non-
conforming active mesh Th on Ωh with its internal boundary Gh.

only. The way out of this paradox, pursued in the present paper, lies in providing a weak
formulation of the governing equations, extended to Ωh, that incorporates in an appropriate
way the force balance equations, without stating them directly. This formulation is similar
in spirit but different from that in [16].

We note that the method of this article shares some similarities to the shifted boundary method
(SBM) proposed in [19] and analysed in [3] in the case of Stokes equations. In particular, SBM
also gives an optimal accurate solution (at least with the lowest order finite elements) without
introducing integrals on the cut cells. It is however not evident how one can deal with the
computation of the forces on the particles in the SBM framework.

The paper is structured as follows. In the next section, we properly introduce the governing
equations, develop an appropriate weak formulation, discretize it (thus introducing our ϕ-FEM
scheme), and announce the main theorem about the convergence of the scheme. Section 3 is
devoted to the proof of this theorem. As a by-product, we also introduce a ϕ-FEM approach to
discretize the Stokes equations alone (on a fixed geometry) on a non-fitted mesh. The details
about this (comparatively simple) particular case are given in Appendix A. In section 4, we
illustrate our theoretical results with numerical examples both for the Stokes equations and
for the fluid/rigid particle motion problem. ϕ-FEM is also compared there with a standard
(non isoparametric) FEM on fitted meshes, demonstrating the superiority of ϕ-FEM in terms
of the accuracy achieved on comparable meshes. We end up with the last section giving some
conclusions and perspectives.

Various notations for different parts of geometry and triangulation appear throughout the
article. For readers’ convenience, they are gathered in Appendix B.

2 Construction of the ϕ-FEM scheme and main results

2.1 Governing equations

We consider the motion of a viscous incompressible fluid around a solid (rigid) particle in the
regime of creeping motion, i.e. neglecting all the inertial terms (for simplicity, we restrict our-
selves here to the case of one particle, the extension to multiple particles being straight-forward).
The particle is mobile and it moves under the action of the forces exerted by the surrounding fluid
and the external forces (gravity). Let the fluid occupy (at a given time t) the domain Ω ⊂ Rd
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(d = 2 or 3), the particle occupy the domain S ⊂ Rd, and denote O = Ω∪S̄. Let Γw = ∂O be the
external boundary of the fluid domain (the immobile wall) where the fluid velocity is assumed
to vanish, Γ = ∂S be the fluid/solid interface, and assume that Γ does not touch Γw, so that ∂Ω
contains two disjoint components Γw and Γ. For simplicity, we assume that the only external
body force is gravitation with the constant acceleration g. Hence, the body force density in the
fluid is ρfg where ρf is the constant fluid density. Let ρs be the constant density of the solid.
Then, the resultant external force on the particle is mg where m = ρs|S| is the mass of the
particle, and the resultant moment of the external force with respect to the barycenter of the
particle is 0. Denoting the constant fluid viscosity by ν, the equations governing the motion of
the fluid/particle system can be now given as:

−2ν divD(u) +∇p = ρfg, in Ω (1a)

div u = 0, in Ω (1b)

u = U + ψ × r, on Γ (1c)

u = 0, on Γw (1d)∫
Γ

(2νD(u)− pI)n = mg (1e)∫
Γ

(2νD(u)− pI)n× r = 0 (1f)∫
Ω

p = 0 (1g)

Here, the unknowns are the fluid velocity u : Ω → Rd and the pressure p : Ω → R, the velocity
of the particle barycenter U ∈ Rd, and the angular velocity of the particle ψ ∈ Rd′

(d′ = 1 if
d = 2 and d′ = 3 if d = 3). In these equations, D(u) = 1

2 (∇u+∇uT ) denotes the strain tensor, r
denotes the vector from the barycenter of the solid S, and n denotes the unit normal on Γ looking
into the solid. Equations (1e)–(1f) come from the balance of forces exerted on the particle (the
force exerted by the fluid and the gravitational force).

From a numerical simulation perspective, it is natural to introduce an immobile computational
mesh on the immobile box O containing both the fluid and the particle. On the other hand,
the solid S will be moving with velocities U = U(t), ψ = ψ(t) at all-time t, thus permanently
changing the shape of the fluid domain Ω. It is therefore interesting to design numerical methods
for the system (1a)–(1g) that discretize u and p on a mesh non fitted to Ω.

2.2 A formal derivation of the appropriate weak formulation

Let T O
h be a regular simplicial mesh on O (the background mesh). Assume that the solid and

fluid domains are given by the level-set function ϕ: S = {ϕ > 0} and Ω = O∩{ϕ < 0}. Introduce
the active computational mesh Th as a submesh of T O

h covering Ω, i.e. excluding the cells of T O
h

lying completely inside S. Let Ωh ⊃ Ω be the domain of Th and Gh be the component of ∂Ωh,
other than Γw, and thus lying inside S, cf. Fig. 1.1

Assume (on a formal level, just to derive the scheme) that u and p can be extended from Ω

1In practice, the geometrical setting may be slightly more complicated. The rigorous theoretical definitions of
Ωh and Gh will be given in (8) and (9) and will be based on an approximation ϕh to the levelset ϕ, rather than
on ϕ itself. This may occasionally result in situations where some tiny portions of Ω lie outside Ωh so that Gh

slightly penetrates Ω. These technical details are not important for the forthcoming formal derivation of the FE
scheme, while the rigorous proofs will be done assuming definitions (8) and (9). The actual implementation may
introduce yet more geometrical approximations, as mentioned in Remark 1, which are not covered by our theory.
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to Ωh as solution to the Stokes equations so that

−2ν divD(u) +∇p = ρfg and div u = 0 in Ωh.

Taking any sufficiently smooth test functions v and q on Ωh such that v = 0 on Γw, an integration
by parts gives

2ν

∫
Ωh

D(u) : D(v)−
∫
Ωh

p div v −
∫
Ωh

q div u−
∫
Gh

(2νD(u)− pI)n · v =

∫
Ωh

ρfg · v. (2)

Assuming u = 0 on Γw, this imposes already the boundary condition (1d) on Γw, which we
suppose to fit to the mesh Th. On the contrary, this formulation does not take into account any
boundary conditions on Γ. In order to incorporate boundary conditions (1c) we make the ansatz

u = ϕw + χ(U + ψ × r) (3)

where ϕ is the level-set for Ω so that ϕ = 0 on Γ, and χ is a sufficiently smooth function on
O such that χ = 1 on the solid S and χ = 0 on Γw. This introduces the new vector valued
unknown w on Ωh that should vanish on Γw (indeed w = 0 on Γw implies u = 0 on Γw thanks
to the choice of χ; in fact, the reason for χ is to decouple the boundary conditions on Γ and Γw

from one another).
The test functions v in (2) can be represented in the same way as the solution (3):

v = ϕs+ χ(V + ω × r) (4)

for all vector-valued functions s on Ωh vanishing on Γw, and V ∈ Rd, ω ∈ Rd′
. In particular,

the test functions of the form χ(V + ω × r) can be used to take into account the force balance
(1e–1f). To this end, we introduce Bh = Ωh \ Ω, i.e. the strip between Γ and Gh, and use the
divergence theorem on Bh to transfer the boundary term in (2) from Gh to Γ where it can be
evaluated by (1e–1f):∫

Gh

(2νD(u)− pI)n · χ(V + ω × r) =

∫
Gh

(2νD(u)− pI)n · (V + ω × r)

=

∫
Γ

(2νD(u)− pI)n · (V + ω × r) +

∫
Bh

div(2νD(u)− pI)n · (V + ω × r)

= mg · V −
∫
Bh

ρfg · χ(V + ω × r) = · · · (5)

(the unit normal n on Gh in the first line is exterior with respect to domain Ωh, whereas n on
Γ in the second line is the exterior unit normal with respect to domain Ω, so that the exterior
normals with respect to Bh are n on Gh and −n on Γ). We now remark Bh = Ωh \ (O \ S) to
rewrite the above as

· · · = −
∫
Ωh

ρfg · χ(V + ω × r) +

∫
O
ρfg · χ(V + ω × r)−

∫
S
ρfg · (V + ω × r) +mg · V

= −
∫
Ωh

ρfg · χ(V + ω × r) +

∫
O
ρfg · χ(V + ω × r) +

(
1− ρf

ρs

)
mg · V. (6)

The last line is justified by observing
∫
S ρsg · (V + ω × r) = mg · V with ρs being the constant

density of the solid. Indeed,
∫
S ρs = m and

∫
S ρsr = 0 since r = x − xb is the vector pointing

from the barycenter of the solid xb =
1
m

∫
S ρsx to the current position x.
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Substituting the ansatzes (3)-(4) for u and v into (2) and rewriting the boundary term using
(5)-(6) we arrive at the following formal variational formulation of our problem in terms of the
new unknowns w,U, ψ: find w : Ωh → Rd vanishing on Γw, U ∈ Rd, ψ ∈ Rd′

, and p : Ωh → R
such that

2ν

∫
Ωh

D(ϕw+χ(U +ψ×r)) : D(ϕs+χ(V +ω×r))−
∫
Gh

(2νD(ϕw+χ(U +ψ×r))−pI)n ·ϕs

−
∫
Ωh

p div(ϕs+ χ(V + ω × r))−
∫
Ωh

q div(ϕw + χ(U + ψ × r))

=

∫
Ωh

ρfg · ϕs+
∫
O
ρfg · χ(V + ω × r) +

(
1− ρf

ρs

)
mg · V (7)

for all s : Ωh → Rd vanishing on Γw, V ∈ Rd, ω ∈ Rd′
, and q : Ωh → R. In addition, the pressure

p should satisfy the constraint (1g).
Note that the formulation above contains only the integrals on Ωh, Gh, O which can be easily

approximated by quadrature rules on meshes Th and T O
h . We can thus discretize using the usual

finite elements for the trial and test functions.

2.3 The ϕ-FEM scheme: discretization with Taylor-Hood finite ele-
ments

We fix an integer k ⩾ 2 and introduce the approximations ϕh and χh to the levelset ϕ and to
the cut-off χ, given by the standard nodal interpolation to the continuous FE spaces of degree k
on the mesh T O

h . The active computational mesh Th, its domain Ωh and the internal boundary
component Gh are actually defined as follows, cf. Fig. 1,

Th = {T ∈ T O
h : T ∩ {ϕh < 0} ≠ ∅}, Ωh := (∪T∈Th

T )
o
, (8)

Gh = ∂Ωh \ Γw = {E (boundary facets of Th) such that ϕh ≥ 0 on E} . (9)

Moreover, we shall need the collections of the mesh cells T Γ
h and facets FΓ

h near the boundary
Γ, as illustrated in Fig. 2, to include the appropriate stabilization into the FE scheme. More
specifically, we introduce the submesh T Γ

h ⊂ Th and the corresponding subdomain ΩΓ
h ⊂ Ω

containing the mesh elements intersected by the approximate interface

Γh = {ϕh = 0},

i.e.

T Γ
h = {T ∈ Th : T ∩ Γh ̸= ∅}, ΩΓ

h :=
(
∪T∈T Γ

h
T
)o

. (10)

Finally, we set FΓ
h as the collection of the interior facets of the mesh Th either cut by Γh or

belonging to a cut mesh element

FΓ
h = {E (an internal facet of Th) such that ∃T ∈ T Γ

h and E ∈ ∂T}.

Remark 1. The definitions of Th and T Γ
h above assume an idealized setting where one can check

the sign of ϕh at any point of any given mesh cell T . In practice, one would rather check this
sign only at the vertices of the mesh or, eventually, at some other well chosen points. In our
current implementation, we attribute the cells to Th or T Γ

h based on the sign of ϕ (equivalently,
the sign of ϕh) at the vertices only: in 2D, a triangle T ∈ T O

h is selected to be in Th if ϕ ⩽ 0 on
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Figure 2: Example of T Γ
h and FΓ

h with the geometry given in Fig. 1 (left).

at least one vertex of T ; a triangle T ∈ Th is then selected to be in T Γ
h if ϕ ⩾ 0 on at least one

vertex of T . This deviation from definitions (8)-(9) is not covered by our theory.
We also note that in more advanced applications of ϕ-FEM, ϕh and χh may be given directly

on the discrete level, for instance by a discrete level-set equation. This possibility is however
outside of the scope of the present article. We suppose here that the shape of the particle is
sufficiently simple so that ϕ and χ are known analytically.

Introduce the FE spaces for velocity and pressure on the mesh Th:

Vh =
{
vh ∈ C(Ω̄)d : vh|T ∈ Pk(T )d ∀T ∈ Th, vh = 0 on Γw

}
and

Mh =

{
qh ∈ C(Ω̄) : qh|T ∈ Pk−1(T ) ∀T ∈ Th,

∫
Ω

qh = 0

}
.

Remark 2. Note that the definition of the pressure space involves an integral on Ω, which is
incompatible with our ϕ-FEM framework since its whole point is to avoid integrals on Ω and Γ.
In practice, we shall rather impose

∫
Ωh
qh = 0, introducing a mismatch in the additive pressure

constant (which, anyway, has no physical meaning) with respect to the exact solution satisfying
(1g). We prefer however to keep the unimplementable constraint in the definition above to avoid
some technical difficulties in theory. In practice, a special care will have to be taken in the
interpretation of the error in pressure. We shall return to this technical point in the numerical
results section.

The stabilized scheme inspired by (7) can be now written as: find wh ∈ Vh, Uh ∈ Rd, ψh ∈ Rd′
,
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ph ∈ Mh such that

2ν

∫
Ωh

D(ϕhwh + χh(Uh + ψh × r)) : D(ϕhsh + χh(Vh + ωh × r))

−
∫
Gh

(2νD(χh(Uh + ψh × r) + ϕhwh)− phI)n · ϕhsh −
∫
Ωh

ph div(ϕhsh + χh(Vh + ωh × r))

−
∫
Ωh

qh div(ϕhwh + χh(Uh + ψh × r))

+ σuJu(χh(Uh + ψh × r) + ϕhwh, χh(Vh + ωh × r) + ϕhsh)

+ σh2
∑

T∈T Γ
h

∫
T

(−ν∆(ϕhwh + χh(Uh + ψh × r)) +∇ph) · (−ν∆(ϕhsh + χh(Vh + ωh × r))−∇qh)

+ σ
∑

T∈T Γ
h

∫
T

div(ϕhwh + χh(Uh + ψh × r)) div(ϕhsh + χh(Vh + ωh × r))

=

∫
Ωh

ρfg · ϕhsh +

∫
O
ρfg · χh(Vh + ωh × r) +

(
1− ρf

ρs

)
mg · Vh

+ σh2
∑

T∈T Γ
h

∫
T

ρfg · (−ν∆(ϕhsh + χh(Vh + ωh × r))−∇qh) (11)

for all sh ∈ Vh, Vh ∈ Rd, ωh ∈ Rd′
, qh ∈ Mh.

Here Ju is the ghost penalties for the velocity, cf. [7]:

Ju(u, v) = h
∑

E∈FΓ
h

∫
E

[∂nu] · [∂nv] + h3
∑

E∈FΓ
h

∫
E

[
∂2nu

]
·
[
∂2nv

]
.

Note that, unlike [7, 8], we do not penalize the jumps of all the derivatives of the velocity; only
the derivatives of order up to 2 are included in Ju. There is no penalization on the pressure
either. This alleviation of the ghost penalty is possible thanks to the additional least-squares-
type stabilization (the terms multiplied by σ), cf. Lemmas 1 and 2. These least-squares terms
are also necessary in themselves to control the fictitious extension of the solution outside Ω,
cf. the proof of Lemma 9. Note that this extension is not present in CutFEM (this is indeed
the principal difference between CutFEM and ϕ-FEM). We also mention that the version of the
ghost penalty in ϕ-FEM for Poisson problem in [12] is even more reduced: only the jumps of
the first order derivatives are penalized there. The inclusion of the second order derivatives in
Ju in the present case of Stokes equations allows us to control both velocity and pressure in the
forthcoming proofs, cf. Lemma 1.

2.4 Assumptions on the mesh and main results

Prior to stating our main results on the numerical convergence of our method, we begin with
some geometrical assumptions on Ω and the functions ϕ and χ.

Assumption 1. The boundary Γ can be covered by open sets Oi, i = 1, . . . , I and one can
introduce on every Oi local coordinates ξ1, . . . , ξd with ξd = ϕ such that all the partial derivatives
∂αξ/∂xα and ∂αx/∂ξα up to order k+1 are bounded by some C0 > 0. Thus, ϕ is of class Ck+1

on O.

Assumption 2. χ ∈ Hk+1(O), χ = 1 on S, χ = 0 on Γw.

8



We continue with assumptions on the mesh. To this end, we introduce an extended band
of mesh elements near the boundary Γ, namely the submesh T Γ,ext

h with T Γ
h ⊂ T Γ,ext

h ⊂ Th by
adding to T Γ

h the cells which are neighbors and neighbors of neighbors of cells in T Γ
h .

Assumption 3. |∇ϕ| ≥ m, |∇ϕh| ≥ m
2 on all the mesh cells in T Γ,ext

h , |ϕ| ≥ mh on Th \T Γ,ext
h ,

and |∇ϕh| ≤M on Ωh with some m,M > 0.

Assumption 4. The approximate interface Gh can be covered by element patches {Πk}k=1,...,NΠ

having the following properties:

� Each Πk is composed of a mesh element Tk lying inside Ω and some elements cut by Γ,
more precisely Πk = Tk ∪ ΠΓ

k where Tk ∈ Th, Tk ⊂ Ω̄, ΠΓ
k ⊂ T Γ

h , and ΠΓ
k contains at most

N mesh elements;

� Each mesh element in a patch Πk shares at least a facet with another mesh element in the
same patch. In particular, Tk shares a facet Fk with an element in ΠΓ

k ;

� T Γ
h = ∪NΠ

k=1Π
Γ
k ;

� Πk and Πl are disjoint if k ̸= l.

Assumption 5. Any mesh cell T ∈ Th has at least d facets not lying on Γw.

Remark 3. Assumptions 1, 3, 4 are similar to those made in the previous ϕ-FEM publications
[12, 11], which contain a more detailed discussion about them and some illustrations. In what
concerns the mesh, these assumptions are satisfied if the mesh is sufficiently refined and Γ is
sufficiently smooth. In what concerning the level-set function ϕ, we require essentially that it
behaves like the signed distance to Γ near Γ and it is bounded away from zero far from Γ,
while remaining globally smooth. In general, one cannot thus take the signed distance to Γ as ϕ
everywhere since it is guaranteed to be smooth only in a vicinity of Γ.

Remark 4. The last assumption 5 is usually required in the theoretical analysis of Taylor-Hood
elements for the Stokes equation in the geometrically conforming setting [13], although it can
be significantly relaxed, at least in the 2D setting [5]. Note that this assumption only affects
the mesh near the outer wall Γw, more particularly in the corners of O, which we treat in the
standard geometrically conforming manner anyway. It does not impose any further restriction
on the active mesh Th near the interface Γ, where ϕ-FEM is effectively employed.

Let us now state our main results:

Theorem 1. Suppose that Assumptions 1–5 hold true and the mesh Th is quasi-uniform. Let
(u, U, ψ, p) ∈ Hk+1(Ω)d × Rd × Rd′ ×Hk(Ω) be the solution to (1a)-(1g) and (wh, Uh, ψh, ph) ∈
Vh × Rd × Rd′ ×Mh be the solution to (11). Denoting

uh := χh(Uh + ψh × r) + ϕhwh

it holds for h ≤ h0

|u− uh|1,Ω∩Ωh
+

1

ν
∥p− ph∥0,Ω∩Ωh

≤ Chk(∥u∥k+1,Ω +
1

ν
∥p∥k,Ω) (12)

and

|U − Uh|+ |ψ − ψh| ≤ Chk(∥u∥k+1,Ω +
1

ν
∥p∥k,Ω) (13)
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with some C > 0 and h0 > 0 depending on the parameters C0, m, M , N in Assumptions 1–5,
on the maximum of the derivatives of ϕ and χ of order up to k + 1, on the mesh regularity, and
on the polynomial degree k, but independent of h, f , and u.

Moreover, supposing Ω ⊂ Ωh

∥u− uh∥0,Ω ≤ Chk+1/2(∥u∥k+1,Ω +
1

ν
∥p∥k,Ω) (14)

with a constant C > 0 of the same type as above.

Remark 5. The numerical results in Section 4 suggest that the convergence order for the particle
velocity error and that for the L2-error of the fluid velocity is k + 1. This suggests that both
estimates (13) and (14) are not sharp. This is similar to our previous studies [12] and [11], in
what concerns the L2-error.

3 Proofs

From now on, we put the viscosity of the fluid to ν = 1 to simplify the formulas. The general
case can be easily recovered by dividing the governing equations by ν and redefining p

ν as p. We
shall also tacitly suppose that Assumptions 1–5 holds true.

This section is organized as follows: we start with some technical lemmas in Sections 3.1 and
3.2, essentially adapting the corresponding results from [12]. Note however that the interpolation
error bound in Section 3.2 is sharper than its counterpart in [12]; it is now optimal with respect
to the Sobolev norm expected from the interpolated function. The proofs of Taylor-Hood inf-sup
stability, the generalized coercivity of the bilinear form and finally the a priori error estimates
are then given, respectively, in Sections 3.3, 3.4 and 3.5, thus establishing Theorem 1.

3.1 Some technical lemmas.

Lemmas 1, 2, and 4 are adaptions of, respectively, Lemmas 3.2, 3.3, and 3.4-3.5 from [12]. Lemma
3 is a version of the well known Korn inequality stating the uniformity of the constant in this
inequality for a family of h-dependent domains Ωh. All these results, most notably Lemma 2,
are necessary to prove the inf-sup stability of our scheme.

Lemma 1. Let T be a triangle/tetrahedron, E one of its sides, v a vector-valued polynomial
function on T , q a scalar-valued polynomial function on T such that

v =
∂v

∂n
=
∂2v

∂n2
= 0 on E (15)

and
−∆v +∇q = 0 and div v = 0 on T. (16)

Then v = 0 and q = const on T .

Proof. We shall give the proof only in the two dimensional setting, the generalization to the
case d = 3 being straightforward. Without loss of generality, we can choose the Cartesian
coordinates (x, y) such that the edge E lies on the x-axis. We shall denote the components of
the vector-valued function v by (v1, v2).

Let us write, for k ∈ {1, 2},

vk =
∑
i,j≥0

vkijx
iyj and q =

∑
i,j≥0

qijx
iyj .

10



We will prove by strong induction on m that

vkij = 0 ∀k ∈ {1, 2}, i ≥ 0, j ∈ {0, ...,m}. (Sm)

Using (15), it holds ∑
i≥0

vki0x
i =

∑
i≥0

vki1x
i =

∑
i≥0

vki2x
i = 0

for all x and k ∈ {1, 2}. Hence vki0 = vki1 = vki2 = 0 for all i ≥ 0, k ∈ {1, 2} and we obtain (S2).
Assume that for a given m ≥ 2, (Sm) holds true. Thanks to (16), one has

−(i+ 2)(i+ 1)v1(i+2)j − (j + 2)(j + 1)v1i(j+2) + (i+ 1)q(i+1)j = 0, (17)

−(i+ 2)(i+ 1)v2(i+2)j − (j + 2)(j + 1)v2i(j+2) + (j + 1)qi(j+1) = 0 (18)

and
(i+ 1)v1(i+1)j + (j + 1)v2i(j+1) = 0. (19)

From (17) and (18), for each i, j

(i+ 2)v1(i+2)(j+1) +
(j + 3)(j + 2)

i+ 1
v1i(j+3) =

(i+ 3)(i+ 2)

j + 1
v2(i+3)j + (j + 2)v2(i+1)(j+2).

The last equality for j = m− 2 combined with (Sm) implies that

v1i(m+1) = 0 ∀i ≥ 0.

Relation (19) for j = m and (Sm) gives

v2i(m+1) = 0 ∀i ≥ 0,

which leads to (Sm+1). Thus v = 0. This also implies ∇q = 0 on T thanks to (16).

Lemma 2. For any β > 0 and any integers s, r ≥ 1 there exists 0 < α < 1 depending only on
the mesh regularity and s, r such that for any continuous vector-valued Ps FE function vh on Th
and any continuous scalar Pr FE function qh it holds

∥D(vh)∥20,ΩΓ
h
+ (1− α)h2|qh|21,ΩΓ

h
≤ α∥D(vh)∥20,Ωh

+ β

h2∥ −∆vh +∇qh∥20,ΩΓ
h
+ ∥ div vh∥20,ΩΓ

h
+

∑
E∈FΓ

h

(h∥[∂nvh]∥20,E + h3∥[∂2nvh]∥20,E)

 . (20)

Proof. Thanks to Assumption 4, the boundary Γ can be covered by patches {Πk}k=1,...,NΠ
. Take

β > 0 and set
α := max

Πk,vh,qh
F (Πk, vh, qh), (21)

where

F (Πk, vh, qh) =
∥D(vh)∥20,ΠΓ

k
+h2|qh|21,ΠΓ

k
− βG(Πk, vh, qh)

∥D(vh)∥20,Πk
+h2|qh|21,ΠΓ

k

with

G(Πk, vh, qh) = h2∥ −∆vh +∇qh∥20,ΠΓ
k
+ ∥ div vh∥20,ΠΓ

k
+ h ∥[∂nvh]∥2Fk

+ h3
∥∥[∂2nvh]∥∥2Fk

.
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The maximum in (21) is taken over all the continuous vector-valued Ps FE functions vh on Πk, all
the continuous scalar Pr FE functions qh on ΠΓ

k , such that the denominator in the expression for
F does not vanish, and over all the possible configurations of patches Πk satisfying Assumption
4. The notation Fk stands for the set of mesh facets inside the patch Πk which includes thus Fk

separating Tk from ΠΓ
k and the other facets inside ΠΓ

k . The norm ∥ · ∥Fk
should be understood

as (
∑

F∈Fk
∥ · ∥2F )1/2.

Since the maximized function F is invariant with respect to the transformation x 7→ 1
hx, vh 7→

1
hvh, qh 7→ qh, we can assume that h = 1 in (21). Furthermore F (Πk, vh, qh) = F (Πk, λvh, λqh)
for any λ ̸= 0. Hence the maximum (21) is attained since it can be taken over all admissible
patches with h = 1 and all vh, qh such that ∥D(vh)∥20,Πk

+h2|qh|21,ΠΓ
k
= 1, forming the unit sphere

in the finite dimensional space of all (vh, qh) factored by rigid body motions on Πk and constants
on ΠΓ

k .
Clearly α ⩽ 1. Let us prove by contradiction that α < 1. Assume that α = 1. Consider the

patch Πk (with h = 1) and vh, qh with ∥D(vh)∥20,Πk
+|qh|21,ΠΓ

k
= 1 on which the maximum (21)

is attained. Then,
∥D(vh)∥20,Tk

+ βG(Πk, vh, qh) = 0,

since Πk = Tk ∪ ΠΓ
k . We deduce that vh = ∂vh

∂n = ∂2vh
∂n2 = 0 on all the facets in Fk and

−∆vh +∇qh = 0, div(vh) = 0 on all T ∈ ΠΓ
k . Moreover, vh is a rigid body motion on Tk. Let

vrbmh be the rigid body motion velocity on Rd coinciding with vh on Tk. Thanks to Lemma 1
applied to vh − vrbmh and to qh on the cells in ΠΓ

k starting from the cell adjacent in ΠΓ
k to Tk,

we have vh = vrbmh on Πk and qh = const on ΠΓ
k (recall that qh is continuous). We have thus

reached a contradiction with the assumptions ∥D(vh)∥20,Πk
+|qh|21,ΠΓ

k
= 1 and α = 1.

This proves that there exists α < 1 such that

∥D(vh)∥20,ΠΓ
k
+ (1− α)h2|qh|21,ΠΓ

k
≤ α∥D(vh)∥20,Πk

+ β
(
h2∥ −∆vh +∇qh∥20,ΠΓ

k
+ ∥div vh∥20,ΠΓ

k
+ h ∥[∂nvh]∥2Fk

+ h3
∥∥[∂2nvh]∥∥2Fk

)
on all the patches Πk and for all vh, qh. Summing this over all Πk gives (20).

Lemma 3. For any v ∈ H1(Ω)d vanishing on Γw

|v|1,Ωh
≤ C∥D(v)∥0,Ωh

. (22)

Proof. Since v = 0 on Γω, we have the following Korn inequality

|v|1,Ω ≤ C∥D(v)∥0,Ω (23)

with a constant C > 0 depending only on the shape of Ω, cf. [9, Theorem 6.3-4]. This implies

|v|1,Ωi
h
≤ C∥D(v)∥0,Ωh

, (24)

where Ωi
h denotes the mesh cells inside Ω. Now, for any pair of mesh cells T, T ′ sharing a facet

E, we can prove
|v|1,T ≤ C∥D(v)∥0,T + C|v|1,T ′ (25)

with a constant C independent of h. Indeed, combining the Korn inequalities (23) and the trace
theorem on the reference element leads to |v|1,T ≤ C∥D(v)∥0,T + C|v|1/2,E . Employing again
the trace inequality |v|1/2,E ≤ C|v|1,T ′ (see [6, Lemma 7.5.26 ]) leads to (25).
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Let Ωi,1
h be Ωi

h plus the cells which are not in Ωi
h but have a neighbor in Ωi

h. For any such
cell T , we take T ′ as its neighbor in Ωi

h, apply the estimate above and sum which gives

|v|1,Ωi,1
h \Ωi

h
≤ C∥D(v)∥0,Ωi,1

h \Ωi
h
+ C|v|1,Ωi

h
,

hence, using (24),
|v|1,Ωi,1

h
≤ C∥D(v)∥0,Ωh

.

Let Ωi,2
h be Ωi,1

h plus the cells which are not in Ωi,1
h but have a neighbor in Ωi,1

h . We have similar
to above

|v|1,Ωi,2
h

≤ C∥D(v)∥0,Ωh

and so on. After a finite number of steps, say k, we arrive at Ωi,k
h = Ωh. And

|v|1,Ωh
= |v|1,Ωi,k

h
≤ C∥D(v)∥0,Ωh

.

Lemma 4. For any sh ∈ Vh and any Vh ∈ Rd, ωh ∈ Rd′
,

∥ϕhsh∥0,ΩΓ
h
+

 ∑
F∈FΓ

h

h∥ϕhsh∥20,F

1/2

+
√
h∥ϕhsh∥0,Gh

≤ Ch∥D(ϕhsh + χh(Vh + ωh × r))∥0,Ωh

and
|Vh|+ |ωh| ⩽ C∥ϕhsh + χh(Vh + ωh × r)∥1,Ωh

. (26)

Proof. Take any sh ∈ Vh, Vh ∈ Rd, ωh ∈ Rd′
and denote vh = ϕhsh + χh(Vh + ωh × r). By [12,

Lemma 3.4]

∥ϕhsh∥0,ΩΓ
h
⩽ Ch|ϕhsh|1,ΩΓ

h
⩽ Ch(|vh|1,ΩΓ

h
+ |χh(Vh + ωh × r)|1,ΩΓ

h
)

⩽ Ch(|vh|1,ΩΓ
h
+ ∥χh∥1,ΩΓ

h
(|Vh|+ |ωh|)). (27)

By equivalence of norms
|Vh|+ |ωh| ⩽ C∥Vh + ωh × r∥0,Γ. (28)

Denote by BΓ
h the band between Γ and Γh. Applying the divergence theorem to the vector field

|Vh + ωh × r|2∇ϕ and noting that the normal on Γ (resp. Γh) is given by ± ∇ϕ
|∇ϕ| (resp. ±

∇ϕh

|∇ϕh| )
gives∫

Γ

|Vh + ωh × r|2|∇ϕ| ⩽
∫
Γh

|Vh + ωh × r|2 |∇ϕ · ∇ϕh|
|∇ϕh|

+

∣∣∣∣∣
∫
BΓ

h

div
(
|Vh + ωh × r|2∇ϕ

)∣∣∣∣∣
We now note that |∇ϕ| (resp. |∇ϕh| and χh) are both positive and bounded away from 0 on Γ
(resp. on Γh) uniformly in h for h small enough, and the measure of BΓ

h is of order hk+1. The
inequality above implies thus

∥Vh + ωh × r∥20,Γ ≤ C(∥χh(Vh + ωh × r)∥20,Γh
+ hk+1(|Vh|+ |ωh|)2).

Combining this with (28) gives, for h small enough

|Vh|+ |ωh| ⩽ C∥χh(Vh + ωh × r)∥0,Γh
= C∥vh∥0,Γh

and, by the trace inequality, |Vh| + |ωh| ⩽ C∥vh∥1,Ωh
, i.e. (26). Substituting this into (27) and

combining with the Korn inequality (22) yields the announced estimate for ∥ϕhsh∥0,ΩΓ
h
since

∥χh∥1,ΩΓ
h
is bounded uniformly in h. The remaining part of the estimate follows by trace inverse

inequalities as in [12, Lemma 3.5].
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3.2 Interpolation by finite elements multiplied with the level set

We recall first a Hardy-type inequality, cf. [12].

Lemma 5. For any integer s ∈ [0, k] and any u ∈ Hs+1(Ωh) vanishing on Γ, it holds

∥∥∥∥uϕ
∥∥∥∥
s,Ωh

≤

C∥u∥s+1,Ωh
with C > 0 depending only on the constants in Assumption 1 and on s.

This allows us to prove the following bound for interpolation by the products of finite elements
with ϕh.

Lemma 6. Let t be an integer 1 ⩽ t ⩽ k+1. For any v ∈ Ht(Ωh)
d∩H1

0 (Ω) there exists wh ∈ Vh

s.t.
∥v − ϕhwh∥s,Ωh

⩽ Cht−s∥v∥t,Ωh
, s = 0, 1 (29)

with C > 0 depending only on t, s, the constants in Assumptions 1–3, and the mesh regularity.

Proof. Let v ∈ Ht(Ωh)
d, v = 0 on Γ, and set w = v/ϕ. Thanks to Lemma 5, w ∈ Ht−1(Ωh)

d and
∥w∥t−1,Ωh

≤ C∥v∥t,Ωh
. Consider wh = Ichw, where I

c
h is a Scott-Zhang interpolation operator.

For any T ∈ Th, let ωT denote the patch of mesh cells adjacent to T (not necessarily all the
adjacent cells) regrouping the cells affected by the construction of Ichw on T , so that Ichw on T
depends on w only through its restriction to ωT . The Scott-Zhang interpolation operator can be
constructed so that ωT ⊂ T Γ,ext

h for all T ∈ T Γ,ext
h , and ωT ⊂ Th \ T Γ,ext

h for all T ∈ Th \ T Γ,ext
h .

In what follows, we assume that the operator Ich enjoys this property together with the usual
interpolation error estimates see for instance [6].

Our first goal is to prove (29) for s = 0. Taking any T ∈ Th. Recall that ϕ is supposed to be
of class (at least) Ct so that ∥ϕ− ϕh∥∞,T ⩽ Cht. Hence,

∥v − ϕhwh∥0,T = ∥ϕw − ϕhwh∥0,T (30)

⩽ ∥ϕ∥∞,T ∥w − wh∥0,T + ∥ϕ− ϕh∥∞,T ∥wh∥0,T
⩽ ∥ϕ∥∞,T ∥w − wh∥0,T + Cht∥w∥0,ωT

.

To continue this proof, we distinguish two cases: the cells T ∈ T Γ,ext
h close to Γh and the

remaining cells, which are at the distance of at least order h from Γh.

(i) Consider T ∈ T Γ,ext
h . We have ∥ϕ∥∞,T ⩽ Ch on these cells since they are at the distance

∼ h from Γ. Noting that ∥w−wh∥0,T ⩽ Cht−1|w|t−1,ωT
by the usual interpolation estimate,

we derive from (30)

∥v − ϕhwh∥0,T ⩽ Cht (|w|t−1,ωT
+ ∥w∥0,ωT

) . (31)

(ii) Now consider T ∈ Th \ T Γ,ext
h . We note that ϕ does not vanish on ωT for such T (recall

that ωT ⊂ Th \ T Γ,ext
h ), so that w ∈ Ht(ωT ) and, by (30) and the usual approximation

estimates,
∥v − ϕhwh∥0,T ⩽ Cht (∥ϕ∥∞,T |w|t,ωT

+ ∥w∥0,ωT
) . (32)

In order to bound |w|t,ωT
here, we recall the Leibniz rule valid for any multi-index α ∈ Nd

∂αv = ∂α(ϕw) =
∑

β ∈ Nd

β ⩽ α

Cβ
α (∂βϕ) (∂α−βw)
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with binomial coefficients Cβ
α depending only on the multi-indices α and β (this formula

can be easily proven by induction on the length of α) β ⩽ α means ∀i = 1, . . . , d, βi ⩽ αi.
If α ̸= 0, this can be rewritten, by separating the term with β = 0 (note that C0

α = 1) and
dividing by ϕ, as

∂αw =
1

ϕ
∂αv −

∑
β ∈ Nd

β ⩽ α, β ̸= 0

Cβ
α

∂βϕ

ϕ
∂α−βw (33)

Applying (33) to w on ωT gives

|w|t,ωT
⩽

1

minωT
|ϕ|

(|v|t,ωT
+ C∥w∥t−1,ωT

).

Hence, by (32),

∥v − ϕhwh∥0,T ⩽ Cht
(

∥ϕ∥∞,T

minωT
|ϕ|

(|v|t,ωT
+ ∥w∥t−1,ωT

) + ∥w∥0,ωT

)
. (34)

Recall that minωT
|ϕ| ⩾ mh by Assumption 3. The distance between any point on T and

any point on ωT is at most 2h so that

∥ϕ∥∞,T

minωT
|ϕ|

= 1 +
maxT |ϕ| −minωT

|ϕ|
minωT

|ϕ|
⩽ 1 +

2Mh

mh
⩽ 1 +

2M

m

with M denoting an upper bound on |∇ϕ|. Substituting this into (34) gives

∥v − ϕhwh∥0,T ⩽ Cht(|v|t,ωT
+ ∥w∥t−1,ωT

). (35)

Summing (31) over all the cells T ∈ T Γ,ext
h and (35) over all the remaining cells of mesh Th gives

∥v − ϕhwh∥0,Ωh
⩽ Cht(|v|t,Ωh

+ ∥w∥t−1,Ωh
) .

This yields (29) with s = 0 thanks to the estimate ∥w∥t−1,Ωh
⩽ ∥v∥t,Ωh

given by Lemma 5.
Let us now prove (29) for s = 1. Introduce vh = Ichv so that

|v − vh|1,Ωh
⩽ Cht−1|v|t,Ωh

and ∥v − vh∥0,Ωh
⩽ Cht|v|t,Ωh

.

Then, combining the already proven estimate (29) for s = 0, the inverse inequality, and the
interpolation estimates above, we obtain

|v − ϕhwh|1,Ωh
⩽ |vh − ϕhwh|1,Ωh

+ |v − vh|1,Ωh

⩽
C

h
∥vh − ϕhwh∥0,Ωh

+ |v − vh|1,Ωh

⩽
C

h
∥v − ϕhwh∥0,Ωh

+
C

h
∥v − vh∥0,Ωh

+ |v − vh|1,Ωh

⩽ Cht−1∥v∥t,Ωh
.
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3.3 An adaptation of the Taylor-Hood inf-sup stability to ϕ-FEM

In this section, we prove some velocity-pressure inf-sup conditions that will be used to establish
the generalized coercivity (inf-sup) for the full bilinear form in the next section. The proofs are
inspired by [17] and start from an auxiliary inf-sup condition of Lemma 7 with respect to an
h-dependent norm for the pressure. The final result in Lemma 8 is weaker than the usual inf-sup
since it does not provide the control of the L2 norm of the pressure over the whole domain Ωh.
It will be however sufficient for our purposes since the encumbering term −Ch2|ph|21,ΩΓ

h
will be

controlled by the stabilization present in the scheme, cf. Lemma 2 for this matter.

Lemma 7. There exists an h-independent constant C > 0 such that ∀ph ∈ Mh, ∃wh ∈ Vh

satisfying

h2|ph|21,Ωh
− Ch2|ph|21,ΩΓ

h
⩽

∫
Ωh

∇ph · (ϕhwh) and |ϕhwh|1,Ωh
⩽ Ch|ph|1,Ωh

. (36)

Proof. Let us introduce the submesh T i
h = Th \ T Γ

h so that ϕh ⩽ 0 on T ∈ T i
h . Denote by E i

h the
set of the edges of the mesh T i

h including those shared with T Γ
h , but excluding those lying on Γw.

For any edge E ∈ E i
h, let tE be the unit tangent vector to E (any of two, but fixed), xE be the

midpoint of E, ω(E) be the set of the mesh cells sharing E, and ψE be the piecewise quadratic
function such that ψE(xE) = 1 and ψE vanishes at all the other edge midpoints and at all the
nodes of Th. Moreover, define for all E ∈ E i

h,

ϕ̄E =

 −h, if E belongs to a cell from T Γ,ext
h ,

1

|E|

∫
E

ϕh, otherwise.

Take any ph ∈ Mh and set wh ∈ Vh as

wh =
∑
E∈Ei

h

h2

ϕ̄E
ψE(tE · ∇ph)tE . (37)

We have indeed wh ∈ Vh, since the pressure tangential derivative tE ·∇ph is a continuous piecewise
polynomial of degree ⩽ k − 2 on ω(E) and ψE is a continuous piecewise polynomial of degree 2,
vanishing outside ω(E). Note also that wh = 0 on Γw since E i

h does not contain the edges lying
on Γw.

Take any E ∈ E i
h and any cell T ∈ ω(E) ∩ T i

h . We shall see that∫
T

ϕh
ϕ̄E

ψE |tE · ∇ph|2 ≥ c

∫
T

|tE · ∇ph|2 . (38)

Here and elsewhere, the constants c > 0 depend only on the polynomial degree k, the shape
regularity, and the parameters of Assumption 3. To prove (38), we set ϕ̃h = ϕh

ϕ̄E
and note that

ϕ̃h ⩾ 0 on T since ϕh ⩽ 0 on T ∈ T i
h . To derive further properties of ϕ̃h from Assumption 3, we

consider 3 following cases with respect to the placement of T and E in the mesh (we recall that
T ∈ T i

h in any case and E is an edge belonging to T ).

Case 1 T ∈ T Γ,ext
h . We have then ϕ̄E = −h so that

ϕ̃h ⩾ 0 and h
∣∣∣∇ϕ̃h∣∣∣ ≥ m

2
on T . (39)
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Case 2 T ̸∈ T Γ,ext
h , E is not shared with any cell from T Γ,ext

h . Then ϕ̄h = ϕh(xE) for some
point xE ∈ E and we have for any x ∈ T

ϕ̄E
ϕh(x)

=
ϕh(xE)

ϕh(x)
= 1 +

ϕh(xE)− ϕh(x)

ϕh(x)
= 1 +

∇ϕh(c) · (xE − x)

ϕh(x)
≤ 1 +

Mh

mh
=
m+M

m

where c ∈ T is a point on the segment connecting xE with x. This implies

ϕ̃h ≥ m

m+M
on T . (40)

Case 3 T ̸∈ T Γ,ext
h , E is shared with a cell from T Γ,ext

h . Then ϕ̄E = −h and 1
|E|

∫
E
ϕh ≤ −c1h

with some c1 > 0 depending only on the constants in Assumption 3 (since the distance
between E and Γh, where ϕh vanishes, is of order h and |∇ϕh| is bounded away from 0 on

T Γ,ext
h ). Combining this with the arguments of the previous case, we arrive at

ϕ̃h ≥ c1m

m+M
on T . (41)

Moreover, in all of the 3 cases above,

|ϕ̃h| ⩽ C on T . (42)

with some C > 0 depending only on the constants in Assumption 3. In case 1, this follows from
the bound |∇ϕh| ≤ M and the fact that the maximal distance between T and Γh is of order h.
In cases 2 and 3, (42) can be proven in the same way as (40) and (41).

Inequality (38) can be now proven setting

c = min
T,ϕ̃h,qh

∫
T
ϕ̃hψEq

2
h∫

T
q2h

(43)

where the minimum is taken over all the simplexes T permitted by the mesh regularity, all
the polynomials ϕ̃h := ϕh

ϕ̄E
of degree k satisfying (42) and either of (39)–(40)–(41), and all the

polynomials qh := tE · ∇ph ̸= 0 of degree k − 2. By homogeneity and rescaling, one can safely
assume that h = 1 and ∥qh∥0,T = 1. The sets of possible T , ϕ̃h, qh are bounded and closed, so
that the minimum in (43) is indeed attained and c > 0. Indeed, either of (39)–(40)–(41) excludes
the possibility of ϕ̃h vanishing everywhere on T . This concludes the proof of (38).

Thanks to (38), we have, setting Ωi
h = Ωh \ ΩΓ

h and denoting by E(T ) the set of edges of a
cell T excluding the edges on Γw,∫

Ωi
h

ϕhwh · ∇ph =
∑
E∈Ei

h

h2
∫
ω(E)∩Ωi

h

ϕh
ϕ̄E

ψE |tE · ∇ph|2 ≥ c
∑
T∈T i

h

∑
E∈E(T )

h2
∫
T

|tE · ∇ph|2 .

Taking into account Assumption 5, we have by scaling and the equivalence of norms on all T ∈ T i
h∑

E∈E(T )

∫
T

|tE · ∇ph|2 ≥ c|ph|21,T .

Hence, ∫
Ωi

h

ϕhwh · ∇ph ⩾ ch2|ph|21,Ωi
h
. (44)
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Now, on a mesh cell T ∈ T Γ
h having common edges with cells of T i

h , definition (37) clearly
gives ∣∣∣∣∫

T

ϕhwh · ∇ph
∣∣∣∣ =

∣∣∣∣∣∣
∑

E∈E(T )∩Ei
h

h

∫
T

ϕhψE |tE · ∇ph|2
∣∣∣∣∣∣ ⩽ Ch2|ph|21,T

since ϕh is of order h on such cells. Combining this with (44) gives

ch2|ph|21,Ωh
⩽

∫
Ωh

ϕhwh · ∇ph −
∫
ΩΓ

h

ϕhwh · ∇ph + ch2|ph|21,ΩΓ
h

⩽
∫
Ωh

ϕhwh · ∇ph + Ch2|ph|21,ΩΓ
h
. (45)

We also have

|ϕhwh|21,Ωh
=

∫
Ωh

|(∇ϕh)wh + ϕh(∇wh)|2

≤ C
∑
T∈Th

∑
E∈E(T )∩Ei

h

h4
∫
T

(
|∇ϕh|2

ϕ̄2E
|∇ph|2 +

ϕ2h
ϕ̄2E

|∇ψE |2|∇ph|2 +
ϕ2h
ϕ̄2E

|∇2ph|2
)

≤ C
∑
T∈Th

h2
∫
T

|∇ph|2 = Ch2|ph|21,Ωh
. (46)

We have used here the finite element inverse estimates on ϕh, ψE , ph, and the uniform upper

bound (42) on |ϕ̃h| = |ϕh|
|ϕ̄E | .

Redefining wh as wh/c with the constant c from (45) shows (36) as a combination of (45) and
(46).

Lemma 8. There exists an h-independent constant C > 0 such that ∀ph ∈ Mh ∃sh ∈ Vh

∥ph∥20,Ωh
− Ch2|ph|21,ΩΓ

h
≤

∫
Ωh

∇ph · (ϕhsh) and |ϕhsh|1,Ωh
⩽ C∥ph∥0,Ωh

. (47)

Proof. Taking ph ∈ Mh. By continuous velocity-pressure inf-sup (recall that
∫
Ω
ph = 0), there

exists v ∈ H1
0 (Ω) s.t.

div v = −ph on Ω, and ∥v∥1,Ω ⩽ C∥ph∥0,Ω .

Let ṽ ∈ H1(Ωh) be the extension of v by 0 outside Ω. Lemma 6 with t = 1 implies ∃vh ∈ Vh s.t.

∥ṽ − ϕhvh∥0,Ωh
⩽ Ch∥ṽ∥1,Ωh

⩽ Ch∥ph∥0,Ω
h

and |ϕhvh|1,Ωh
⩽ C∥ṽ∥1,Ωh

⩽ C∥ph∥0,Ω
h
.

Thus,

∥ph∥20,Ω = −
∫
Ω

ph div v =

∫
Ω

∇ph · ṽ =

∫
Ωh

∇ph · (ϕhvh) +
∫
Ωh

∇ph · (ṽ − ϕhvh)

⩽
∫
Ωh

∇ph · (ϕhvh) + Ch|ph|1,Ωh
∥ph∥0,Ω

h
. (48)

We have
∥ph∥20,Ωh

⩽ C1(∥ph∥20,Ω + h2|ph|21,ΩΓ
h
).
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This can be proven by an argument similar to that in Lemma 2: one can consider the maximum

of
∥ph∥2

0,Πk

∥ph∥2
0,Tk

+h2|ph|2
1,ΠΓ

k

taken over all the admissible patches Πk, as in Assumption 4, and piecewise

polynomials ph, observe that this maximum is attained and takes the value C1 > 0, and sum up
over all the patches covering ΩΓ

h.
We can thus pass from the norm on Ω to that on Ωh in (48):

∥ph∥20,Ωh
⩽ C1

∫
Ωh

∇ph · (ϕhvh) + Ch|ph|1,Ωh
∥ph∥0,Ωh

+ C1h
2|ph|21,ΩΓ

h
.

Hence, by Young inequality,

1

2
∥ph∥20,Ωh

⩽ C1

∫
Ωh

∇ph · (ϕhvh) + C2h
2|ph|21,Ωh

+ C1h
2|ph|21,ΩΓ

h

⩽ C1

∫
Ωh

∇ph · (ϕhvh) + C2

∫
Ωh

∇ph · (ϕhwh) + Ch2|ph|21,ΩΓ
h

with wh given by Lemma 7. Thus,

1

2
∥ph∥20,Ωh

− Ch2|ph|21,ΩΓ
h
⩽

∫
Ωh

∇ph · ϕh(C1vh + C2wh)

and
|ϕh(C1vh + C2wh)|1,Ωh

⩽ C∥ph∥0,Ω
h

since |ϕhwh|1,Ωh
⩽ Ch|ph|1,Ωh

⩽ C∥ph∥0,Ωh
by inverse finite element estimates.

Setting sh = 2(C1vh + C2wh) proves (47).

3.4 The generalized coercivity (the inf-sup condition) for the bilinear
form.

To ease the forthcoming calculations, let us introduce the finite element space of velocities com-
bining the rigid body motion on the approximate boundary and the contributions involving the
level set:

Vrbm
h = {χh(Vh + ωh × r) + ϕhsh with sh ∈ Vh, Vh ∈ Rd, ωh ∈ Rd′

}. (49)

In the scheme (11), we shall now combine the test functions sh, Vh, ωh into vh ∈ Vrbm
h as in

the definition above. Similarly, we shall combine the trial functions wh, Uh, ψh into uh ∈ Vrbm
h

setting uh = χh(Uh +ψh × r) + ϕhwh). Scheme (11) can be then rewritten in the compact form:
find uh ∈ Vrbm

h and ph ∈ Mh such that

ch(uh, ph; vh, qh) = Lh(vh, qh), ∀vh ∈ Vrbm
h , qh ∈ Mh , (50)

where the bilinear form ch is given by

ch(uh, ph; vh, qh) = 2

∫
Ωh

D(uh) : D(vh)−
∫
Gh

(2D(uh)− phI)n · ϕhsh

−
∫
Ωh

qh div uh −
∫
Ωh

ph div vh

+ σh2
∑

T∈T Γ
h

∫
T

(−∆uh +∇ph) · (−∆vh −∇qh) + σ
∑

T∈T Γ
h

∫
T

(div uh)(div vh)

+ σuh
∑

E∈FΓ
h

∫
E

[∂nuh] · [∂nvh] + σuh
3

∑
E∈FΓ

h

∫
E

[
∂2nuh

]
·
[
∂2nvh

]
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and the linear form Lh is given by

Lh(vh, qh) =

∫
Ωh

ρfg · ϕhsh +

∫
O
ρfg · χh(Vh + ωh × r) +

(
1− ρf

ρs

)
mg · Vh

+ σh2
∑

T∈T Γ
h

∫
T

ρfg · (−∆vh −∇qh). (51)

In both expressions above, sh, Vh, and ωh are related to vh ∈ Vrbm
h as in (49).

Lemma 9. Introduce the norm on Vrbm
h ×Mh

9vh, qh9h :=

|vh|21,Ωh
+ ∥qh∥20,Ωh

+ h2
∑

T∈T Γ
h

∥ −∆vh +∇qh∥20,T + Ju(vh, vh)

1/2

.

The following inf-sup condition holds provided σ and σu are sufficiently large:

∀(uh, ph) ∈ Vrbm
h ×Mh ∃(vh, qh) ∈ Vrbm

h ×Mh

such that
ch(uh, ph; vh, qh)

9vh, qh9h
⩾ θ 9 uh, ph9h (52)

with a constant θ > 0 depending only on the mesh regularity.

Proof. Let us take ph ∈ Mh and uh = χh(Uh + ψh × r) + ϕhwh ∈ Vrbm
h with wh ∈ Vh, Uh ∈ Rd

and ψh ∈ Rd′
.

Step 1: controlling the velocity. By choosing (uh, ph) as the trial function and (uh,−ph) as
the test function in the bilinear form ch, we obtained:

ch(uh, ph;uh,−ph) = 2

∫
Ωh

|D(uh)|2 −
∫
Gh

(2D(uh)− phI)n · ϕhwh

+ σuh
∑

E∈FΓ
h

∫
E

|[∂nuh]|2 + σuh
3

∑
E∈FΓ

h

∫
E

∣∣[∂2nuh]∣∣2
+ σh2

∑
T∈T Γ

h

∫
T

| −∆uh +∇ph|2 + σ
∑

T∈T Γ
h

∫
T

|div uh|2. (53)

Let B̃h be the strip between Γh = {ϕh = 0} and Gh, i.e. B̃h = {ϕh > 0} ∩ Ωh. Since
ϕhwh = 0 on Γh,∫

Gh

D(uh)n · ϕhwh =

∫
∂B̃h

D(uh)n · ϕhwh

=
∑

T∈T Γ
h

∫
∂(B̃h∩T )

D(uh)nT · ϕhwh −
∑

T∈T Γ
h

∑
E∈Fcut

h (T )

∫
B̃h∩E

D(uh)nT · ϕhwh,

where T Γ
h is defined in (10), Fcut

h (T ) regroups the facets of a mesh element T cut by Γh, and
nT is the unit normal pointing outside of T on the boundary of a mesh cell T . Applying the
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divergence theorem to the integrals on ∂(B̃h ∩ T ) and regrouping the integrals on the facets gives∫
Gh

D(uh)n · ϕhwh =

∫
B̃h

D(uh) : D(ϕhwh) +
∑

T∈T Γ
h

∫
B̃h∩T

divD(uh) · ϕhwh

−
∑

E∈FΓ
h

∫
E∩B̃h

[D(uh)n] · ϕhwh

=

∫
B̃h

|D(uh)|2 +
∑

T∈T Γ
h

∫
B̃h∩T

divD(uh) · ϕhwh −
∑

E∈FΓ
h

∫
E∩B̃h

[D(uh)n] · ϕhwh,

since uh − ϕhwh is the velocity of a rigid motion on B̃h.
Similarly (and simpler)∫

Gh

phn · ϕhwh =

∫
∂B̃h

phn · ϕhwh =

∫
B̃h

ph div uh +

∫
B̃h

∇ph · ϕhwh.

Substituting this into (53) and rewriting 2 divD(uh)−∇ph = ∆uh −∇ph +∇ div uh on the
cells T ∈ T Γ

h yields

ch(uh, ph;uh,−ph) = 2

∫
Ωh

|D(uh)|2 − 2

∫
B̃h

|D(uh)|2 −
∑

T∈T Γ
h

∫
B̃h∩T

(∆uh −∇ph) · ϕhwh

︸ ︷︷ ︸
Young with ε1

+ 2
∑

F∈FΓ
h

∫
F∩B̃h

[D(uh)n] · ϕhwh

︸ ︷︷ ︸
Young with ε2

+

∫
B̃h

ph div uh︸ ︷︷ ︸
Young with ε3

−
∑

T∈T Γ
h

∫
B̃h∩T

(∇ div uh) · ϕhwh

︸ ︷︷ ︸
Young with ε4

+ σuh
∑

E∈FΓ
h

∫
E

| [∂nuh] |2 + σuh
3

∑
E∈FΓ

h

∫
E

∣∣[∂2nuh]∣∣2
+ σh2

∑
T∈T Γ

h

∫
T

|∆uh −∇ph|2 + σ
∑

T∈T Γ
h

∫
T

|div uh|2.

Several terms above are marked with “Young with εi” meaning that we are going to apply the
Young inequality with some weights ε1, . . . , ε4 > 0 (multiplied by the appropriate powers of h)
to these terms. We recall that Lemma 4 implies∑

T∈T Γ
h

1

h2
∥ϕhwh∥2B̃h∩T

≤ C∥D(uh)∥20,Ωh
,

∑
F∈FΓ

h

1

h
∥ϕhwh∥2F∩B̃h

≤ C∥D(uh)∥20,Ωh
,

which allows us to absorb the norms of ϕhwh into the first term with ∥D(uh)∥0,Ωh
. We also use

the inverse inequality h∥∇ div uh∥0,ΩΓ
h
≤ C∥ div uh∥0,ΩΓ

h
. This yields

ch(uh, ph;uh,−ph) ⩾
(
2− C

ε1 + ε2 + ε4
2

)
∥D(uh)∥20,Ωh

− 2∥D(uh)∥20,ΩΓ
h
− ε3

2
∥ph∥0,ΩΓ

h

+ h2
(
σ − 1

2ε1

) ∑
T∈T Γ

h

∥∆uh −∇ph∥20,T +

(
σ − 1

2ε3
− C

ε4

)
∥ div uh∥20,ΩΓ

h

+ h

(
σu − 1

2ε2

) ∑
E∈FΓ

h

∥ [∂nuh] ∥20,E + σuh
3

∑
E∈FΓ

h

∥∥[∂2nuh]∥∥20,E
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Thanks to Lemma 2, this can be further bounded as

ch(uh, ph;uh,−ph) ⩾
(
2(1− α)− C

ε1 + ε2 + ε4
2

)
∥D(uh)∥20,Ωh

+ 2(1− α)h2|ph|1,ΩΓ
h

− ε3
2
∥ph∥0,ΩΓ

h
+ h2

(
σ − 1

2ε1
− 2β

) ∑
T∈T Γ

h

∥∆uh −∇ph∥20,T

+

(
σ − 1

2ε3
− C

ε4
− 2β

)
∥ div uh∥20,ΩΓ

h
+ h

(
σu − 1

2ε2
− 2β

) ∑
E∈FΓ

h

∥ [∂nuh] ∥20,E

+ h3(σu − 2β)
∑

E∈FΓ
h

∥∥[∂2nuh]∥∥20,E (54)

with some β > 0 and α ∈ (0, 1).
Step 2: controlling the pressure. Let now sh ∈ Vh be the function given by Lemma 8 and
set vph = ϕhsh. Noting that

−
∫
Ωh

ph div v
p
h +

∫
Gh

phn · vph =

∫
Ωh

∇ph · vph ⩾ ∥ph∥20,Ωh
− Ch2|ph|21,ΩΓ

h

we get

ch(uh, ph; v
p
h, 0) ⩾ ∥ph∥20,Ωh

− Ch2|ph|21,ΩΓ
h
+ 2

∫
Ωh

D(uh) : D(vph)− 2

∫
Gh

D(uh)n · vph

+ σh2
∑

T∈T Γ
h

∫
T

(∆uh −∇ph) ·∆vph + σ
∑

T∈T Γ
h

∫
T

(div uh)(div v
p
h)

+ σuh
∑

E∈FΓ
h

∫
E

[∂nuh] · [∂nvph] + σuh
3

∑
E∈FΓ

h

∫
E

[
∂2nuh

]
·
[
∂2nv

p
h

]
.

Recalling that |vph|1,Ωh
⩽ C∥ph∥0,Ωh

, remarking that ∥vph∥0,Gh
≤ C√

h
|vph|1,ΩΓ

h
, and applying Young

and inverse inequalities allows us to conclude

ch(uh, ph; v
p
h, 0) ⩾

1

2
∥ph∥20,Ωh

− Ch2|ph|21,ΩΓ
h
− C∥D(uh)∥20,Ωh

− C

σ2h2
∑

T∈T Γ
h

∥ −∆uh +∇ph∥20,T + σ2
∑

T∈T Γ
h

∥ div uh∥20,T

σ2
uh

∑
E∈FΓ

h

∥[∂nuh]∥20,E + σ2
uh

3
∑

E∈FΓ
h

∥∥[∂2nuh]∥∥20,E
 . (55)
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Step 3: combining the estimates. Multiply (55) by λ > 0 and add it to (54). This gives

ch(uh, ph;uh + λvph,−ph) ⩾
(
2(1− α)− C

ε1 + ε2 + ε4
2

− Cλ

)
∥D(uh)∥20,Ωh

+
λ− ε3

2
∥ph∥20,Ωh

+ (2(1− α)− Cλ)h2|ph|21,ΩΓ
h

+ h2
(
σ − 1

2ε1
− 2β − Cλσ2

) ∑
T∈T Γ

h

∥∆uh −∇ph∥20,T

+

(
σ − 1

2ε3
− C

ε4
− 2β − Cλσ2

)
∥ div uh∥20,ΩΓ

h

+ h

(
σu − 1

2ε2
− 2β − Cλσ2

u

) ∑
E∈FΓ

h

∥ [∂nuh] ∥20,E + (σu − 2β − Cλσ2
u)h

3
∑

E∈FΓ
h

∥∥[∂2nuh]∥∥20,E .
Taking λ, ε1, ε2, ε4 small enough, ε3 = λ/2 and σ, σu big enough, and recalling Korn inequality
(22), this amounts to

ch(uh, ph;wh + λvph,−ph) ⩾ c 9 uh, ph92
h

with some c > 0. We also have easily

9wh + λvph,−ph9h ⩽ C 9 wh, ph9h,

hence the inf-sup estimate (52) with vh = uh + λvph, qh = −ph.

3.5 A priori error estimates.

In this section, we will prove Theorem 1 following the argumentation of [12], which is ameliorated
since we require only the optimal regularity Hk+1(Ω)d × Hk(Ω) for the velocity-pressure pair
(u, p) given by (1a)-(1g).

Proof of the H1 a priori error estimate (12): Let (u, p) ∈ Hk+1(Ω)d × Hk(Ω) with
u = U+ψ×r on Γ be the solution to the continuous problem (1a)-(1g) and (uh, ph) ∈ Vrbm

h ×Mh

with uh = ϕhwh+χh(Uh+ψh×r) be the solution to the discrete problem (11). Choose sufficiently
smooth extension ũ and p̃ of u and p on Ωh such that ũ = u, p̃ = p on Ω, and

∥ũ∥k+1,Ωh
⩽ C∥u∥k+1,Ω, ∥p̃∥k,Ωh

⩽ C∥p∥k,Ω.

Applying Lemma 6 to ũ−χ(U +ψ× r), which vanishes on Γ and on Γw, we see that there exists
w̃h ∈ Vh such that

∥ũ− χ(U + ψ × r)− ϕhw̃h∥1,Ωh
⩽ Chk∥ũ− χ(U + ψ × r)∥k+1,Ωh

.

This allows us to introduce ũh = ϕhw̃h + χh(U + ψ × r) ∈ Vrbm
h satisfying

∥ũ− ũh∥1,Ωh
⩽ ∥ũ− χ(U + ψ × r)− ϕhw̃h∥1,Ωh

+ ∥(χ− χh)(U + ψ × r)∥1,Ωh

⩽ Chk(∥ũ∥k+1,Ωh
+ ∥χ∥k+1,Ωh

(|U |+ |ψ|))
⩽ Chk∥ũ∥k+1,Ωh

⩽ Chk∥u∥k+1,Ω, (56)

thanks to the standard interpolation of χ ∈ Hk+1(Ωh) and to the bounds |U |, |ψ| ≤ C∥u∥1,Ω
valid by the trace inequality (recall that u = U + ψ × r on Γ).
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Similarly, ∥ũ− ũh∥0,Ωh
⩽ Chk+1∥u∥k+1,Ω. We define moreover p̃h ∈ Mh by the standard FE

nodal interpolation p̃h = Ihp̃ such that

∥p̃− p̃h∥0,Ωh
⩽ Chk∥p∥k,Ω . (57)

Thanks to Lemma 9, ∃(vh, qh) ∈ Vrbm
h ×Mh such that

9ũh − uh, p̃h − ph9h ≤ C
ch(ũh − uh, p̃h − ph; vh, qh)

9vh, qh9h
. (58)

We should now substitute (ũ, p̃) into the form ch. To this end, we introduce the fictitious right-
hand sides F̃ and Q̃ on Ωh so that

−2 divD(ũ) +∇p̃ = F̃ and div ũ = Q̃ in Ωh.

We observe then, taking any vh = ϕhsh + χh(Vh + ωh × r) ∈ Vrbm
h , qh ∈ Mh,

2

∫
Ωh

D(ũ) : D(vh)−
∫
Ωh

p̃ div vh −
∫
Gh

(2D(ũ)− p̃I)n · vh =

∫
Ωh

F̃ · vh

and, recalling Bh = Ωh \ Ω,∫
Gh

(2D(ũ)− p̃I)n · (Vh + ωh × r) =

∫
Γ

(2D(ũ)− pI)n · (Vh + ωh × r)

+

∫
Bh

div(2D(ũ)− p̃I)n · (Vh + ωh × r) = mg · Vh −
∫
Bh

F̃ · (Vh + ωh × r).

Hence,

ch(ũ, p̃; vh, qh) =

∫
Ωh

F̃ · vh −
∫
Bh

F̃ · (Vh + ωh × r) +mg · Vh −
∫
Ωh

qh div ũ

+ σh2
∑

T∈T Γ
h

∫
T

F̃ · (−∆vh −∇qh) + σ

∫
ΩΓ

h

(div ũ)(div vh).

Also note that the RHS (51) of the scheme (50) can be rewritten as

Lh(vh, qh) =

∫
Ωh

ρfg · vh −
∫
Bh

ρfg · (Vh + ωh × r) +mg · Vh

+ σh2
∑

T∈T Γ
h

∫
T

ρfg · (−∆vh −∇qh)

This allows us to establish the following Galerkin orthogonality relation, valid for all vh ∈ Vrbm
h ,

qh ∈ Mh,
ch(ũ− uh, p̃− ph; vh, qh) = Rh(vh, qh), (59)

where

Rh(vh, qh) =

∫
Bh

(F̃ − ρfg) · ϕhsh −
∫
Bh

qh div ũ

+ σh2
∑

T∈T Γ
h

∫
T

(F̃ − ρfg) · (−∆vh −∇qh) + σ

∫
ΩΓ

h

(div ũ)(div vh).
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The integrals of F̃ − ρfg and div ũ on Ωh have been rewritten as integrals on Bh since both

F̃ − ρfg and div ũ vanish on Ω.
Combination of (58) and (59) entails

9ũh − uh, p̃h − ph9h ≤ C
ch(ũh − ũ, p̃h − p̃; vh, qh) +Rh(vh, qh)

9vh, qh9h
.

We can now use interpolation inequalities as in [12, Section 3.4]. In particular, the term with ch
in the nominator of the fraction above is bounded by Chk(∥u∥k+1,Ω + ∥p∥k,Ω)9vh, qh9h thanks

to (56)–(57) and to the estimates of Lemma 4. To bound Rh(vh, qh) we recall that F̃ − ρfg and
div ũ vanish on Ω. Thus, thanks to [12, Lemma 3.6]

∥F̃ − ρfg∥0,ΩΓ
h
≤ Chk−1∥F̃ − ρfg∥k−1,ΩΓ

h
≤ Chk−1(∥u∥k+1,Ω + ∥p∥k,Ω)

and
∥ div ũ∥0,ΩΓ

h
≤ Chk∥ div ũ∥k,ΩΓ

h
≤ Chk∥u∥k+1,Ω. (60)

This, combined with the estimates of Lemma 4, in particular ∥ϕhsh∥0,ΩΓ
h
≤ Ch|vh|1,ΩΓ

h
, leads to

|Rh(vh, qh)| ≤ Chk(∥u∥k+1,Ω + ∥p∥k,Ω)9vh, qh9h and

9ũh − uh, p̃h − ph9h ≤ Chk(∥u∥k+1,Ω + ∥p∥k,Ω) . (61)

Recalling again the interpolation estimates (56)–(57), we obtain the error estimates for u and
p, announced by (12).

Proof of the a priori error estimate (13) on the velocity of the solid: We have by
the construction of the interpolant ũh = ϕhw̃h + χh(U + ψ × r) and thanks to (26)

|U − Uh|+ |ψ − ψh| ⩽ C∥ϕh(w̃h − wh) + χh(U − Uh + (ψ − ψh)× r)∥1,Ωh
= C∥ũh − uh∥1,Ωh

which proves (13) thanks to (61).
Proof of the L2 a priori error estimate (14): Let (v, q, V, ω) ∈ H2(Ω)d×H1(Ω)×Rd×Rd′

the solution to 

−2 divD(v) +∇q = u− uh, in Ω,
div v = 0, in Ω,
v = V + ω × r, on Γ,
v = 0, on Γw,∫
Γ
(2D(v)− qI)n = 0,∫

Γ
(2D(v)− qI)n× r = 0,∫

Ω
q = 0.

An integration by parts gives

∥u− uh∥20,Ω =

∫
Ω

(u− uh)(−2 divD(v) +∇q) (62)

= 2

∫
Ω

D(u− uh) : D(v)−
∫
Ω

q div(u− uh)−
∫
Ω

(p− ph) div v.

+

∫
Γ

((ϕh − ϕ)wh + (χh − χ)(Uh + ϕh × r)) · (2D(v)− qI)n

Note that the boundary term
∫
Γ
u · (2D(v)− qI)n vanishes since u is a rigid body motion on Γ.

For the same reason,
∫
Γ
(ϕwh + χ(Uh + ϕh × r) · (2D(v)− qI)n vanishes.
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Let (ṽ, q̃) ∈ H2(Ωh)
d × H1(Ωh) coincide with (v, q) on Ω. They can be constructed by a

bounded extension operator in H2 ×H1 so that

∥ṽ∥2,Ωh
+ ∥q̃∥1,Ωh

⩽ C(∥v∥2,Ω + ∥q∥1,Ω) ⩽ C∥u− uh∥0,Ω. (63)

We now further rewrite (62) using Galerkin orthogonality (59) with the test functions vh =
ϕhsh + χh(Vh + ωh × r) ∈ Vrbm

h and qh ∈ Mh and recalling Bh = Ωh\Ω,

∥u− uh∥20,Ω

=

∫
Ωh

2D(ũ− uh) : D(ṽ − vh)−
∫
Ωh

(q̃ − qh) div(ũ− uh)−
∫
Ωh

(p̃− ph) div(ṽ − vh)︸ ︷︷ ︸
I

−
(∫

Bh

2D(ũ− uh) : D(ṽ)−
∫
Bh

q̃ div(ũ− uh)−
∫
Bh

(p̃− ph) div ṽ

)
︸ ︷︷ ︸

II

+

∫
Gh

(2D(ũ− uh)− (p̃− ph)I)n · ϕhsh︸ ︷︷ ︸
III

(64)

−σuh
∑

E∈FΓ
h

∫
E

[
∂

∂n
(ũ− uh)

]
·
[
∂vh
∂n

]
− σuh

3
∑

E∈FΓ
h

∫
E

[
∂2

∂n2
(ũ− uh)

]
·
[
∂2vh
∂n2

]
︸ ︷︷ ︸

IV

− σh2
∑

T∈T Γ
h

∫
T

−∆(ũ− uh) +∇(p̃− ph)) · (−∆vh −∇qh)

︸ ︷︷ ︸
V

− σ
∑

T∈T Γ
h

∫
T

div(ũ− uh) div vh

︸ ︷︷ ︸
V I

+Rh(vh, qh)︸ ︷︷ ︸
V II

+

∫
Γ

((ϕh − ϕ)wh + (χh − χ)(Uh + ϕh × r)) · (2D(v)− qI)n︸ ︷︷ ︸
V III

We now take Vh = V, ωh = ω and set sh ∈ Vh so that ϕhsh is an optimal interpolant of
v − χh(V + ω × r), as guaranteed by Lemma 6. We also set qh = Ĩhq̃ using an appropriate
Clément interpolation Ĩh. We can now estimate all the terms of (64) using the already proven
estimate (61) and the interpolation estimates for ṽ − vh and p̃− ph . This gives

∥u− uh∥20,Ω ≤ Chk+1/2(∥u∥k+1,Ω + ∥p∥k,Ω)(∥ṽ∥2,Ωh
+ ∥q̃∥1,Ωh

). (65)

In particular, term I is completely standard and gives in fact a contribution of the optimal order
hk+1. Rather than go to the details of the tedious calculations leading to the bounds of the
remaining terms, we prefer here to refer to the similar arguments used in [12] to estimate the
terms in eq. (3.24). Indeed, the terms II − III in (64) can be treated as the terms II − III in
eq. (3.24) of [12]. Terms IV − V in (64) can be treated as term IV in eq. (3.24) of [12]. Terms
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V I in (64) is also similar to the latter (note, in particular, ∥ div ṽ∥0,ΩΓ
h
≤ Ch∥v∥2,Ω similarly to

(60)). Finally, term V II in (64) can be treated as term V in eq. (3.24) of [12]. As in [12], all these
terms result in the sub-optimal estimate of order O(hk+1/2). The origin of this sub-optimality
lies in the lack of adjoint consistency in formulation (50): the adjoint discrete problem cannot
be interpreted as a consistent discretization of a meaningful continuous problem.

The only term in (64), which does not have a direct analogue in [12], is term V III. To bound
it, we apply Cauchy-Schwarz inequality together with the interpolation estimates on ϕ− ϕh and
χ− χh, recalling the hypotheses ϕ ∈ Ck+1(Ωh) and χ ∈ Hk+1(Ωh):

|V III| ⩽ Chk+1(∥wh∥0,Γ + |Uh|+ |ϕh|)(∥D(v)∥0,Γ + ∥q∥0,Γ) .

Then, to bound wh in L2(Γ), we start by a trace inverse inequality ∥wh∥0,Γ ⩽ C√
h
∥wh∥0,Ωh

and

apply Hardy inequality of Lemma 5 to wh = ϕwh

ϕ :

∥wh∥0,Ωh
⩽ C∥ϕwh∥1,Ωh

⩽ C(∥(ϕ− ϕh)wh∥1,Ωh
+ ∥ϕhwh∥1,Ωh

) .

Noting that, by interpolation and inverse inequalities,

∥(ϕ− ϕh)wh∥1,Ωh
⩽ C(∥ϕ− ϕh∥L∞(Ωh)|wh|1,Ωh

+ ∥∇ϕ−∇ϕh∥L∞(Ωh)∥wh∥0,Ωh
) ⩽ Chk∥wh∥0,Ωh

we conclude
(1− Chk)∥wh∥0,Ωh

⩽ C∥ϕhwh∥1,Ωh

Hence, for h small enough,

|V III| ⩽ Chk+1

(
1√
h
∥ϕhwh∥1,Ωh

+ |Uh|+ |ϕh|
)
(∥D(v)∥0,Γ + ∥q∥0,Γ) .

Recalling that uh = ϕhwh + χh(Uh + ϕh × r), we conclude by Lemma 4 that ∥ϕhwh∥1,Ωh
, |Uh|,

|ϕh| can be all bounded by ∥uh∥1,Ωh
. Applying the trace inequalities to v and q, we arrive at

|V III| ⩽ Chk+1/2∥uh∥1,Ωh
(∥v∥2,Ω + ∥q∥1,Ω) .

Since we know that ∥uh∥1,Ωh
is bounded by the norms of u and p thanks to the already proven

error estimates for the velocity in H1 norm, we conclude that term V III contributes to (65) in
the same manner as all the other terms.

Combining (65) with (63) proves (14).

4 Numerical tests

In this section, we present numerical results, first in the particular case of a fixed particle, i.e.
for the Stokes equations aone in a fixed domain (cf. Appendix A and the ϕ-FEM scheme (72)),
and second in the case of the particulate flows (equations (1a)-(1g) and the ϕ-FEM scheme (11)).
These schemes will be compared with standard FEM on fitted triangular meshes as on Fig. 3 left
(we do not introduce higher order approximations of the curvilinear boundary of the domain, as
would be the case in the isoparametric FEM for example). In the case of Stokes equations, the
error is measured with respect to a manufactured solution, while a reference solution obtained by
standard FEM on a fitted fine mesh is used in the case of particulate flows. We have implemented
ϕ-FEM in multiphenics [4]. The implementation scripts can be consulted on GitHub.2

2https://github.com/michelduprez/phi-FEM-particulate-flows-Stokes.git

or https://doi.org/10.5281/zenodo.6817135
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The fluid/solid domain in both our test cases is O = (0, 1)2 ⊂ R2 and we take the particle S
as a disk of radius R = 0.21 centered at a point (0.5, 0.5). Then Ω = [0, 1]2\S. The geometry
is presented in Fig. 1 (left). In ϕ-FEM, we use the following level-set function, well defined and
smooth for all (x, y) ∈ R2,

ϕ(x, y) = R2 − (x− 0.5)2 − (y − 0.5)2. (66)

We present only the results with the lowest order Taylor-Hood elements, i.e. setting k = 2
and thus using P2 elements for wh, ϕh, χh (the approximation ϕh for ϕ is exact in this case).
The tests with elements of higher order would lead to essentially the same observations. The
stabilization parameters are set to σ = σu = 20 (as in [12]).

4.1 Particular case of a fixed particle: Stokes equations

We start by Stokes equations (71) in the domain Ω, as above, with the right-hand side such that
the exact solution is as follows, cf. [14],

u(x, y) = (cos(πx) sin(πy),− sin(πx) cos(πy)),

p(x, y) = (y − 0.5) cos(2πx) + (x− 0.5) sin(2πy),

taking ν = 1.

Figure 3: Mesh used for the standard FEM formulation (left) and mesh used in the ϕ-FEM
schemes (right).

We shall test the ϕ-FEM scheme given by (72) in Appendix A and compare it with a standard
Taylor-Hood FEM on a fitted mesh. To this end, we introduce a quasi-uniform triangular mesh
T fit
h fitted to Ω, in the sense that the boundary nodes of the mesh lie on Γ ∪ Γw. The domain

occupied by this mesh, denoted by Ωfit
h , is a polygonal approximation of Ω, since the interface

Γ is curvilinear and cannot be represented exactly by the straight edges. We introduce then the
FE spaces

Vfit,uD

h =
{
vh ∈ C(Ω̄fit

h )d : vh|T ∈ P2(T )d ∀T ∈ T fit
h , vh = IhuD on Γw ∩ Γfit

h

}
(67)

Mfit
h =

{
qh ∈ C(Ω̄fit

h ) : qh|T ∈ P1(T ) ∀T ∈ T fit
h ,

∫
Ωfit

h

qh = 0

}
, (68)
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where Γfit
h is the part of the boundary of Ωfit

h approximating Γ. A standard fitted Taylor-Hood

FEM can be written as: find (uh, ph) ∈ Vfit,uD

h ×Mfit
h such that∫

Ωfit
h

2D(uh) : D(vh)−
∫
Ωfit

h

ph div vh −
∫
Ωfit

h

qh div uh =

∫
Ω

fvh, (69)

for all (vh, qh) ∈ Vfit,0
h ×Mfit

h .
Examples of meshes for the standard FEM formulation and the ϕ-FEM scheme are given in

Fig. 3 (left) and (right), respectively. In Fig. 4, we report convergence results for the standard
fitted Taylor-Hood FEM (69) and for ϕ-FEM (72) in the case of Stokes equations. We recover
the theoretical rates of convergence of ϕ-FEM stated in Theorem 2: 2nd order in h for both the
H1-error in velocity and the L2-error in pressure. The L2-error in velocity is actually better than
theoretically predicted: it is of order 3 instead of theoretically expected 2.5. We observe thus
that ϕ-FEM is fully optimal in practice: it demonstrates the same convergence rates in all the
aforementioned norms as the standard FEM would demonstrate in the ideal situation of a fitted
mesh on a convex polygonal domain. Actually, our setting is not ideal, Ω is neither convex,
not polygonal. It is thus not surprising that the standard Taylor-Hood FEM underperforms
(we recall that the mesh T fit

h is triangular with straight edges and no higher order geometrical
approximation is introduced there). Experimentally observed convergence rates for this scheme
are ≈ 2 for the L2-error in velocity, ≈ 1.5 for the H1-error in velocity, and slightly smaller than
2 for the L2-error in pressure (the error in pressure is thus the only one for which the optimal
convergence order seems to be retained in practice). Moreover, all the errors on all the considered
meshes are systematically smaller for ϕ-FEM than for the fitted FEM.

Remark 6. As already noted in Remark 2, in ϕ-FEM, it is impossible to impose
∫
Ω
ph = 0.

In our implementation, we rather impose
∫
Ωh
ph = 0 with the help of a Lagrange multiplier, i.e.

we add λh
∫
Ωh
ph + µh

∫
Ωh
qh (with λh, µh ∈ R) to the formulation. To compute the relative L2-

error for the pressure, we should compare ph with the exact pressure whose integral vanishes over
Ωh (recall that the pressure is physically defined up to an additive constant any way). We thus
introduce p̃ = p− cΩh

with cΩh
= 1

|Ωh|
∫
Ωh
p and compute the errors with respect to p̃. Similarly,

in the case of standard fitted FEM, we impose
∫
Ωfit

h
ph = 0 by a Lagrange multiplier and compute

the relative error against p̃ = p− cΩfit
h

with cΩfit
h

= 1

|Ωfit
h |

∫
Ωfit

h
p.
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Figure 4: Rates of convergence for the standard Taylor-Hood FEM scheme (69) and the ϕ-FEM
scheme (72) in the case of Stokes equations. The L2 relative error of the velocity (left), the H1

relative error of the velocity (middle) and the L2 relative error of the pressure (right).
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4.2 Particulate flows

We now turn to the creeping particulate flow equations (1a)-(1g) in the same geometry as before.
The level-set ϕ is again defined by (66). The vertical gravity is assumed to be equal to 10. The
density of the fluid and the solid are equal to ρf = 1 and ρs = 2, respectively, and the viscosity
ν = 1. We deduce that the mass of the solid is equal to m = ρsπ

2R2. For the cut-off χ, we
consider the radial polynomial of degree 5 on the interval (r0, r1) with r0 = R and r1 = 0.45
such that χ(r0) = 1 and χ′(r0) = χ′′(r0) = χ(r1) = χ′(r1) = χ′′(r1) = 0 so that, setting χ = 1
for r < R and χ = 0 for r > R, the resulting χ is two times differentiable and thus χ ∈ H3(O)
as required by Assumption 2:

χ(r) =


1, for r < r0

1 + f(r0,r1)
(r1−r0)5

, for r0 < r < r1

0, for r > r1

where

f(r0, r1) = (−6r5 + 15(r0 + r1)r
4 − 10(r20 + 4r0r1 + r21)r

3 + 30r0r1(r0 + r1)r
2

− 30r20r
2
1r + r30(r

2
0 − 5r1r0 + 10r21)).

Let us introduce a Taylor-Hood scheme which will be compared with our ϕ-FEM scheme. We
introduce first the fitting mesh T fit

h on domain Ωfit
h as in the preceding section, cf. Fig. 3 (left),

and adapt the Taylor-Hood FE space velocity space, cf. (67), as

Vfit
h =

{
vh ∈ C(Ω̄fit

h )d : vh|T ∈ P2(T )d ∀T ∈ T fit
h , vh = 0 on Γw

}
,

while keeping the pressure space (68) as before. Note that the velocity FE space does no longer

contain any restrictions on the boundary part Γfit
h approximating Γ. We shall impose the bound-

ary conditions there with the help of Lagrange multipliers, introducing the space

Λfit
h =

{
µh ∈ C(Ω̄fit

h ) : µh|F ∈ P2(F ) ∀F ∈ Ffit
h

}
,

where Ffit
h is the set of the boundary facets on Γfit

h . A fitted Taylor-Hood FE formulation is

then written as: find (uh, ph, λh, Uh, ψh) ∈ Vfit
h ×Mfit

h × Λfit
h × Rd × Rd′

such that∫
Ωfit

h

2D(uh) : D(vh)−
∫
Ωfit

h

ph div vh −
∫
Ωfit

h

qh div uh

+

∫
Γfit
h

λh · (vh − Vh − ωh × r) +

∫
Γfit
h

µh · (uh − Uh − ψh × r) =

∫
Ωfit

h

ρfgvh +mg · Vh, (70)

for all (vh, qh, µh, Vh, ωh) ∈ Vfit
h × Mfit

h × Λfit
h × Rd × Rd′

. We present in Fig. 5 the velocity
obtained with the standard Taylor-Hood FEM scheme (70). Such a velocity and the accompa-
nying pressure, computed on a very fine fitted grid, will be used as the reference solution in the
subsequent numerical experiments and will be denoted as u, p in what follows.

A comparison between the standard Taylor-Hood FEM (70) and ϕ-FEM (11) is presented
in Figs. 6 and 7 (we do not report the error in the particle rotation velocity whose exact value
is 0 and which is accurately predicted by all the schemes up to machine precision; this can be
attributed to the symmetry of our test case). Since the error is computed with respect to a
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Figure 5: Velocity obtained with the standard Taylor-Hood FEM scheme (70).

fine reference solution solution living on a fine fitted mesh, the numerical solution computed by
either (70) or (11) should be projected to this fine mesh in order to compute the errors. This is
reflected in the legends of the convergence curves: Ωfine stands for the fine fitted approximation
there. Similarly to Remark 6, we impose the pressure mean by a Lagrange multiplier in both
schemes, and adjust the additive constants properly when computing the errors in pressure.

The conclusions are essentially the same as in the previous test case (Stokes equations alone):
ϕ-FEM exhibits optimal convergence rates, while the fitted standard FEM is suboptimal (with
the exception of the L2 error in pressure). It seems again that our theoretical estimates for the
L2-error of the fluid velocity is not sharp: the experimental convergence rate is k + 1 rather
than k + 1

2 . The same observation can be made about the particle velocity: the experimental
convergence rate is k + 1 rather than theoretically predicted k.
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Figure 6: Rates of convergence for the standard Taylor-Hood FEM scheme (70) and the ϕ-FEM
scheme (11) in the case of particulate flows. The L2 relative error of the velocity (left) and the
H1 relative error of the velocity (right).

5 Conclusions and perspectives

The main goal of the ϕ-FEM approach is to avoid cut quadrature problems that we can find for
instance in CutFEM. Some of the attractive features of ϕ-FEM are

� It is readily available for finite elements of any order (without the need of any additional
higher order approximation of the geometry).
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Figure 7: Rates of convergence for the standard Taylor-Hood FEM scheme (69) and the ϕ-FEM
scheme (72) in the case of particulate flows. The L2 relative error of the pressure (left) and
relative error of the displacement of the solid (right).

� (corollary of the previous point) ϕ-FEM outperforms the standard fitted FEM on polyg-
onal meshes if the order of piecewise polynomials is > 1 (unless one implements more
complicated versions of FEM in order to treat properly the curvilinear boundary, such as
isoparametric FEM).

� ϕ-FEM uses standard FE spaces and is based on a variational formulation of the problem,
so that it can be easily implemented in existing general-purpose FEM libraries, provided
they allow for the computation of jumps on selected facets and of the second derivatives
on selected mesh cells.

To counter-balance the last point, we should mention that the variational formulation at the base
of ϕ-FEM can be rather complicated. Typically, it contains more terms than a fitted FEM or
a CutFEM scheme for a similar problem. The implementation, although straightforward, may
thus require some extra programming efforts. As a reward, one easily gets a good description of
the geometry which may result in smaller computing times than those for standard FEM as it
has been highlighted in [10].

In the present article we have adapted ϕ-FEM to the Stokes equations and to the combination
of the Stokes equations with the motion of a rigid particle inside the fluid, providing a first brick
in future applications of this technology to fluid structure interaction problems.

Of course, there remains a lot of open questions. To conclude, we list some of those (not
necessarily related to the particular case of Stokes equations or flows with particles) and envisage
potential solutions:

� Theoretical suboptimality of ϕ-FEM in the L2-norm. However, all the numerical exper-
iments show the optimal convergence in this norm, which gives us hope that a sharper
theoretical estimate could be found.

� A mismatch between the theoretical construction of the active mesh Th and its practical
implementation, cf. Remark 1. The theoretical construction of Th is crucial for the current
proof of coercivity, cf. Lemma 9. An alternative proof should be found.

� A practical construction of the levelset function, which should satisfy some assumptions
summarized in Remark 3. In the present article, ϕ was given analytically, but in more
realistic applications one will have to construct an appropriate ϕh on the discrete level
directly. A good candidate, in the vicinity of Γ would be the signed distance to Γ, for

32



which there exist efficient libraries, but it will remain to extend it in a smooth way (again
directly on the discrete level) far from Γ. As an alternative, we note that in other versions
of ϕ-FEM, ϕh may be required only on mesh cells near Γ, cf. [11, 10].

� The current construction of stabilization in ϕ-FEM relies heavily on the linearity of the
governing equations. Indeed, the terms with prefactor σ in (11) reproduce the governing
equations for both trial and test functions. If the equations are non-linear, one cannot
do this since the formulation should remain linear in the test functions. Thus, going
from Stokes to Navier-Stokes, for example, is not straightforward. Various options of
linearization of the stabilization terms should be yet tested numerically and theoretically.

A ϕ-FEM for Stokes equations in a fixed domain

In this section, we propose a ϕ-FEM scheme for the simpler case of a fixed solid in the fluid. The
governing equations are the non-homogeneous Stokes equations given by −2 div(D(u)) +∇p = f, in Ω,

div u = 0, in Ω,
u = uD, on Γ ∪ Γw.

(71)

Assume that uD and f are defined in the whole discrete domain Ωh. Inspired by the ϕ-FEM
scheme for particulate flow given in (11), we can derive the following ϕ-FEM scheme for the
non-homogeneous Stokes equations (71): find wh ∈ Vh, ph ∈ Mh satisfying∫

Ωh

2D(uD + ϕhwh) : D(ϕhsh)−
∫
Gh

(2D(uD + ϕhwh)− phI)n · ϕhsh (72)

−
∫
Ωh

ph div(ϕhsh)−
∫
Ωh

qh div(uD + ϕhwh) + σuJu(uD + ϕhwh, ϕhsh)

+σh2
∑

T∈T Γ
h

∫
T

(−∆(uD + ϕhwh) +∇ph) · (−∆(ϕhsh)−∇qh)

+σ
∑

T∈T Γ
h

∫
T

div(uD + ϕhwh) div(ϕhvh)

=

∫
Ωh

fϕhsh + σh2
∑

T∈T Γ
h

∫
T

f(−∆(uD + ϕhsh)−∇qh),

for all sh ∈ Vh, qh ∈ Mh.
We now state our second main result for the Stokes equations:

Theorem 2. Suppose that Assumptions 1, 3, 4 and 5 hold true, the mesh Th is quasi-uniform.
Let (u, p) ∈ Hk+1(Ω)d ×Hk(Ω) be the solution to (71) and (wh, ph) ∈ Vh ×Mh be the solution
to (72). Denoting uh := ϕhwh, it holds

|u− uh|1,Ω∩Ωh
+

1

ν
|p− ph|0,Ω∩Ωh

≤ Chk(∥u∥k+1,Ω +
1

ν
∥p∥k,Ω)

with a constant C > 0 depending on the C0, m, M in Assumptions 1, 4, on the maximum of the
derivatives of ϕ, on the mesh regularity, and on the polynomial degree k, but independent of h,
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f , and u.
Moreover, supposing Ω ⊂ Ωh

∥u− uh∥0,Ω ≤ Chk+1/2(∥u∥k+1,Ω +
1

ν
∥p∥k,Ω)

with a constant C > 0 of the same type.

The proof of Theorem 2 can be adapted from the proof of Theorem 1. It is even more simple.

B A glossary of geometrical notations.

Γh the approximate interface: Γh = {ϕh = 0}
Th the active mesh: Th = {T ∈ T O

h : T ∩ {ϕh < 0} ≠ ∅}
T Γ
h intersection of Th with Γh T Γ

h = {T ∈ Th : T ∩ Γh ̸= ∅}
T Γ,ext
h T Γ

h and the cells which are neighbors and neighbors of neighbors of cells
of T Γ

h in Th
T i
h Th \ T Γ

h

FΓ
h FΓ

h = {E (an internal facet of Th) such that ∃T ∈ T Γ
h and E ∈ ∂T}.

Gh the internal component of ∂Ωh, corresponding to the interface Γ: Gh = ∂Ωh \ Γw

Bh the strip between Γ and Gh: Bh = Ωh \ Ω
BΓ

h the strip between Γ and Γh

B̃h the strip between Γh = {ϕh = 0} and Gh: B̃h = {ϕh > 0} ∩ Ωh

We also recall that the domain occupied by the active mesh Th is denoted by Ωh, i.e. Ωh :=
(∪T∈Th

T )
o
. The same convention is applied to the submeshes T Γ

h and T i
h , giving respectively ΩΓ

h

and Ωi
h.
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